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Abstract 26 

Magma movement, fault structures and hydrothermal systems influence volatile 27 
emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the 28 
southern Kenyan Rift, where regional extension controls recent shallow magma 29 
ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity 30 
of Longonot Volcano, as well as fumarolic gas compositions and carbon isotope 31 
data. The total non-biogenic CO2 degassing is estimated at <300 kg d-1, and is 32 
largely controlled by crater faults and fractures close to the summit. Thus, recent 33 
volcanic structures, rather than regional tectonics, control fluid pathways and 34 
degassing. Fumarolic gases are characterised by a narrow range in carbon isotope 35 
ratios (δ13C), from -4.7 ‰ to -6.4  ‰ (vs. PDB) suggesting a magmatic origin with 36 
minor contributions from biogenic CO2. Comparison with other degassing 37 
measurements in the East African Rift show that records of historical eruptions or 38 
unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, 39 
which may instead reflect the current size and characteristics of the subsurface 40 
magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is 41 
reported to be an order of magnitude higher than that from any of the volcanic 42 
centres for which CO2 surveys have so far been reported. 43 

1. Introduction 44 

Over a hundred volcanoes exist in the East African Rift and Red Sea Region 45 
(EARR), of which more than half show signs of unrest or activity (Figure 1A; Brown et 46 
al., 2015; Fournier et al., 2010a). There is abundant evidence that the silicate and 47 
carbonatite magmas of the EARR are rich in volatiles, including carbon dioxide 48 
(CO2), sulfur, water and halogens (Darling et al., 1995; de Moor et al., 2013; Fischer 49 
et al., 2009a; Hudgins et al., 2015; Koepenick et al., 1996; Macdonald and Scaillet, 50 
2006). In addition, primary carbonates have been found in peralkaline lavas at 51 
Suswa, Kenya (Macdonald et al., 1993), at Ol Doinyo Lengai, Tanzania (Dawson et 52 
al., 1994) and at many other volcanic centers in the region (Deans and Roberts, 53 
1984; Ridolfi et al., 2006; Rudnick and McDonough, 1993). 54 

Over the past 15 years, at least 15 EARR volcanoes have erupted and ground 55 
displacement has been observed at many more volcanoes. Furthermore, four crustal 56 
dyking events have been detected (Figure 1B), implying the presence of active 57 
magmatic systems beneath the rift and the prevalence of shallow magmatic 58 
intrusions (Belachew et al., 2011; Biggs et al., 2009a, 2009b, 2011a, 2013a, 2013c; 59 



Grandin et al., 2009; Nobile et al., 2012; Pallister et al., 2010; Wright et al., 2006). 60 
The region is further characterised by extensive and mature geothermal systems and 61 
heat advected by magmatic fluids that sustains hydrothermal systems, which 62 
typically form beneath long-lived axial rift volcanoes (Omenda, 1998; Riaroh and 63 
Okoth, 1994; Wamalwa and Serpa, 2013). 64 

The EARR is therefore a significant source of outgassing mantle volatiles, yet there 65 
is only limited understanding of the gas fluxes from the EARR and how they are 66 
controlled by volcanic structures and modulated by both the tectonics of the region 67 
and the hydrothermal systems. Understanding the carbon output of continental rifts is 68 
a topic of great interest owing to the debates over whether the ingassing (via 69 
subduction) and outgassing (via volcanism) carbon budgets of the solid Earth 70 
balance. It seems likely that rift environments might have been associated with very 71 
large outputs of CO2 over geological time and also in the present day (Hudgins et al., 72 
2015). Lee et al (2016) investigated diffuse degassing from a section in the Eastern 73 
Branch of EARR and show that massive and prolonged mantle CO2 emissions are 74 
prevalent along extensional faults which act as fluid flow pathways. Gas fluxes are 75 
also of potential importance for monitoring unrest and forecasting eruptions (Sparks, 76 
2003); for understanding geothermal systems for commercial gain (Lewicki and 77 
Oldenburg, 2004); and for mitigating risks due to CO2 inundation or accumulation in 78 
topographic lows, which is a significant hazard to human health (Kling et al., 1987).  79 

Active outgassing from volcanoes during eruptions occurs from vents or fissures. 80 
Diffuse degassing of magmatic or hydrothermal fluids may occur through soils, from 81 
fumaroles and from hot springs. Studies show that volcanic systems can release 82 
large quantities of CO2 through soil degassing between and during eruptions (Allard 83 
et al., 1991; Bergfeld et al., 2001; Brombach and Hunziker, 2001; Cardellini et al., 84 
2003; Chiodini et al., 1998; Chiodini et al., 1996; Notsu et al., 2005; Werner et al., 85 
2000). Faults and fractures (both tectonic and volcanic) often focus the ascent of 86 
CO2-rich fluids. At large caldera-forming volcanic centers such as Yellowstone (USA) 87 
and Campi Flegrei (Italy), fluxes reach 1.5 – 4.5 k t d-1 CO2, likely sourced from deep 88 
magma reservoirs whereby the fluids migrate to the surface along tectonic structures 89 
(Chiodini et al., 2001; Granieri et al., 2010; Werner and Brantley, 2003). At Somma-90 
Vesuvius (Italy), the ascent of mantle-sourced CO2 is controlled by basement 91 
lineaments aligned along the regional stress field (Aiuppa et al., 2004). In contrast, 92 
degassing is controlled by local volcanic structures at Santorini (Greece) and Etna 93 
(Italy), and has been used to detect buried active faults (Barberi and Carapezza, 94 



1994; Giammanco et al., 1997). For Etna, up to 50% of CO2 emissions emanate 95 
diffusely through the volcanic flanks, bypassing the main volcanic vent (Giammanco 96 
et al., 1997). 97 

Diffuse degassing of magmas in rifting environments has been little studied. 98 
However, it has long been speculated that rift volcanoes represent a significant, but 99 
unquantified, source of atmospheric CO2 (Koepenick et al., 1996). Magma ascent 100 

and storage in these regions can be controlled by regional structures associated with 101 
extension, pre-existing basement heterogeneities and volcano- tectonic structures 102 
(Abebe et al., 2007; Nobile et al., 2012). In the Natron-Magadi region of Kenya and 103 
Tanzania, deep crustal faults are pathways for CO2 likely derived from crustal 104 
magma bodies that are stalled and degassing at depth (Lee et al., 2016). At Aluto 105 
volcano (Ethiopia), elevated soil CO2 fluxes occur along both major faults and 106 
volcanic structures and demonstrate the complex interaction between both structures 107 
and degassing. In addition, topography and lithological heterogeneities influence 108 
degassing sites (Hutchison et al., accepted). During quiescent periods at Ol Doinyo 109 
Lengai (Tanzania), diffuse soil CO2 emissions account for only <2 % of the total flux 110 
(6,000 – 7,200 t d-1), with the remaining emissions originating from seven crater 111 
vents (Koepenick et al., 1996).  112 

Geothermal systems are prevalent at young rift volcanoes and CO2 is the dominant 113 
gas constituent in hydrothermal fluids. Soil CO2 degassing studies in Iceland have 114 
been used to constrain the minimum heat flow from a geothermal reservoir 115 
(Fridriksson, 2016), as well as volcano-hydrothermal flux rates (Dereinda, 2008). For 116 
instance, volcano-hydrothermal emissions at Hengill are calculated at <165 x 106 kg 117 
yr-1 CO2, (Hernández et al., (2012) and diffuse geothermal emissions at Krafla reach 118 
84 x 106 kg yr-1 CO2 (Armannsson et al., 2005). Hydrothermal systems likely have an 119 

important role in modifying and/or controlling volatile flux from rift volcanoes. By 120 

combining gas measurements with basaltic emplacement rates and regional fluid 121 

discharge rates, the total CO2 flux from Iceland has been estimated to be 0.2–122 

23 × 1010 mol yr−1, equivalent to ∼0.1–10% of the estimated global ridge flux (Barry 123 

et al., 2014).  124 

This study presents a soil CO2 degassing survey at Longonot volcano (Kenyan Rift). 125 
Between 2004 and 2006, the volcano experienced edifice-wide ground uplift of ~9 126 
cm, followed by slow subsidence at a rate of <0.5 cm yr-1 (Biggs et al., 2009b). The 127 
presence of fumaroles and an extensive hydrothermal system at Longonot suggests 128 



active input of magmatic heat and volatiles into the system (Alexander and Ussher, 129 
2011; Dunkley et al., 1993). The origin of the deformation at Longonot is likely linked 130 
to the presence of an active magma body in the crust that is influencing the behavior 131 
of a shallow hydrothermal system (Biggs et al., 2009b; Biggs et al., 2016). Longonot 132 
therefore represents a good opportunity to understand complex and long-lived 133 
hydrothermal systems in the presence of magma bodies supplying heat and volatiles. 134 

The aim of this paper is to identify the characteristics of CO2 degassing at Longonot 135 
in order to assess the significance of emissions for the presence of stored magma at 136 
depth, its role in sustaining the hydrothermal system and the tectonic control of 137 
degassing in a rifting environment. We first investigate the structural control on 138 
degassing at Longonot using satellite imagery overlain on a British Geological 139 
Survey (BGS) map to identify volcanic and tectonic structures that may represent 140 
permeable pathways for fluid migration and outgassing. Using this information and 141 
results from a diffuse soil CO2 survey, we estimate the total CO2 output from 142 
Longonot and use these results to extrapolate diffuse emissions from that section of 143 
the EARR and comment on the implications for global volcanic CO2 flux estimates. 144 

2. Regional setting and magmatic activity 145 

2.1 East African Rift 146 

The EARR is comprised of the East African Rift, the Afar Triangle, the Gulf of Aden 147 
and Red Sea Rift. Within the EARR, there are 106 volcanoes, of which 18 are 148 
classed as active, 38 as restless and 50 as fully dormant (Siebert et al., 2010) 149 
(Figure 1A). Many active volcanoes are located in northern EARR (e.g. Ethiopia and 150 
Eritrea), although some are situated at the southernmost extent of the rift (Tanzania). 151 

Since 1997, rift-scale InSAR surveys have detected at least 22 deforming volcanoes 152 
in the EARR, indicating the presence of active magmatic systems or perturbed 153 
hydrothermal systems (Biggs et al., 2009b; Biggs et al., 2011a; Biggs et al., 2013b; 154 
Biggs et al., 2013c; Fournier et al., 2010b; Pagli et al., 2012) (Figure 1A). Some 155 
volcanoes erupt (e.g. Ol Doinyo Lengai, Tanzania), others show pulse(s) of uplift and 156 
subsidence patterns, e.g. Longonot and Paka (Kenya), and Aluto and Haledebi 157 
(Ethiopia), whilst others display singular subsidence events, such as Menengai and 158 
Suswa (both Kenya). The latter type of event is more unusual and does not fit the 159 
traditional volcanic cycle model; consequently, the cause of deformation is more 160 
difficult to explain. 161 



Dyke emplacement accommodates extension at some continental rift settings, and 162 
studies of East Africa reveal that large volumes of melt can be emplaced in this way 163 
(Hammond et al., 2011; Keranen et al., 2004a). Dykes may reach the surface and 164 
erupt, or more commonly, they stall at a few kilometres from the surface. Since 2004, 165 
four dyke events have been observed throughout the EARR (Figure 1B): Dallol 166 
(Ethiopia) in 2004 (Nobile et al., 2012), Dabbahu (Ethiopia) between 2005 – 2009 167 
(Wright et al., 2006), Lake Natron (Tanzania) in 2007 (Biggs et al., 2009a; Calais et 168 
al., 2008), and Harrat Lunayyir (Saudi Arabia) in 2009 (Pallister et al., 2010). 169 
Between 2004 – 2010,  ESA’s  Envisat  satellite  acquired  regular  background  imagery  170 
of the EARR. It is therefore reasonable to assume that all dyking events that can be 171 
observed using satellite imagery have been detected. 172 

The volcanic and magmatic activity in the EARR is ultimately the result of the 173 
dynamic processes occurring in the underlying mantle.  Mantle processes are to a 174 
large extent driven by the African Superplume (Behn et al., 2004; Castillo et al., 175 
2014; Ebinger and Sleep, 1998; Pik et al., 2006; Ritsema et al., 1998; Stamps et al., 176 
2014) and seismic data as well as the widespread occurrence of mantle xenoliths 177 
show compelling evidence for extensive mantle metasomatism in the EARR (Baptiste 178 
et al., 2015; Chesley et al., 1999; Hui et al., 2015; Vauchez et al., 2005). Petrological 179 
work on samples from throughout the EARR show only slightly elevated mantle 180 
potential temperatures, despite the slow seismic velocities in the region, implying that 181 
CO2 assisted melt production is prevalent throughout the rift (Rooney et al., 2012). Ol 182 
Doinyo Lengai is one of the largest global emitters of volcanic CO2 and  world’s  only  183 
currently active carbonatite volcano.  The gases discharging from Ol Doinyo Lengai 184 
have clear upper mantle volatile abundance ratios and noble gas, C and N isotope 185 
compositions.  This implies that extremely small mantle melt fractions are 186 
responsible for the generation of these CO2 rich melts (Fischer et al., 2009b) 187 
consistent with extreme enrichment of H2O and CO2 in nepheline hosted melt 188 
inclusions (De Moor et al., 2013). 189 

 190 

2.2 Longonot Volcano, Kenya 191 

Longonot volcano is situated in the southern Kenyan Rift and is one of 12 Quaternary 192 
volcanoes that line the central rift grabens. It is a large caldera volcano, consisting of 193 
a relatively modern trachyte cone situated within a 12 km caldera structure (Figure 194 
2). The geology and volcanic history of Longonot is described in detail in a number of 195 



studies (Clarke et al., 1990; Rogers et al., 2004b; Scott, 1980; Scott and Skilling, 196 
1999). In summary, its history can be subdivided into three distinct stages (Rogers et 197 
al., 2004a). The  first  “Olongonot”  stage  occurred  between  0.4  and  c.  21,000  years  198 
BP with the formation of a large composite trachyte cone and ending with the 199 
incremental collapse of a 7.5 km caldera at c. 21,000 years BP. A second  “caldera  200 
pyroclastic”  phase  was characterised by ignimbrites, surge deposits and pyroclastic 201 
fall deposits with pumices dated at 9150 ± 150 years BP (Clarke et al., 1990). The 202 
third stage commenced with an abrupt shift to effusive eruptive activity wherein a 203 
protracted sequence of trachyte lavas accumulated on the eastern edge of the 204 
caldera, forming the modern Longonot cone. The end of the third stage is marked by 205 
a  large  explosive  eruption  that  produced  an  extensive  ash  fall  deposit,  the  “Longonot 206 
Ash”,  14C-dated at 3280 ± 120 years BP (Clarke et al., 1990). The collapse of a pit 207 
crater on the volcano summit was either concurrent with, or followed shortly after the 208 
ash fall deposit. The most recent activity was the eruption of two lava flows on the 209 
northern  and  southwestern  flanks  in  1863  ±  5.  These  trachyte  a’a’  lava  flows  stand  210 
out  from  the  surrounding  deposits  due  to  lack  of  vegetation.  Over  Longonot’s  211 
eruptive history, three rock types dominate: peralkaline trachyte lavas, mixed 212 
hawaiite-peralkaline lava flows, and peralkaline trachyte pyroclastic rocks (Clarke et 213 
al., 1990). 214 

Scott et al (1980) produced the first geological map of Longonot, updated by Dunkley 215 
et al (1993) at 1:100,000 for a geothermal surface exploration study by the Kenyan 216 
Ministry of Energy and the British Geological Survey (BGS).  Longonot’s  eastern  flank  217 
is situated <8 km from the NNW-trending rift border faults. Dunkley et al (1993) 218 
highlight a major NNW–SSE alignment of eruption centres and fissures at the 219 
volcano, passing through the summit crater (Figure 2A). They also identified minor 220 
volcanic alignments, including eruption centres, located on fissures that extend 221 
radially from the summit crater. The report produced the first systematic map of 222 
fumaroles at Longonot, identifying >50 within the crater, three on the southern 223 
caldera wall and fossil fumaroles on the pyroclastic cones. In the crater, fumaroles 224 
were located on talus slopes at the base of the vertical crater wall and emitted steam 225 
through fractures altering the surrounding rock to red iron-oxides and white kaolin 226 
(Figure 2B). The fossil fumaroles were located around the rims of two pyroclastic 227 
cones on the northern volcanic flank. Here pyroclastic rock had been altered to soft 228 
red, brown, orange clay. A subsequent assessment of geothermal resources in 2010 229 
located 11 fumaroles within the summit crater, crater wall and on flank eruption 230 
centres (Figure 2A–B) (Alexander and Ussher, 2011). 231 



Studies at Longonot have since mainly focused on using the eruptive products to 232 
understand the petrogenesis of peralkaline magmas (Macdonald, 2012), the 233 
evolution of peralkaline systems (Macdonald et al., 2014) and the fractionation rates 234 
and magma storage times of magma (Rogers et al., 2004b). A magnetotelluric (MT) 235 
survey, conducted in 2010, measured resistivity at Longonot for geothermal 236 
prospecting and indicate the presence of a clay cap forming over a high temperature 237 
reservoir to the south of Longonot (Alexander and Ussher, 2011). Oxygen and 238 
hydrogen isotope compositions of geothermal fluids have been used to suggest that 239 
Longonot’s  geothermal  reservoir  is  recharged  from  rainfall  from  the  eastern  rift  240 
shoulder, which  possibly  contrasts  to  Olkaria’s  reservoir, which may be recharged by 241 
Lake Naivasha (Alexander and Ussher, 2011). 242 

Between 28 June 2004 – 20 March 2006, surface uplift of ~9 cm was detected at 243 
Longonot, measured using InSAR (Biggs et al., 2009b). No ground deformation was 244 
observed immediately prior to 2004, and no other geophysical measurements are 245 
available. After 2006, ground subsidence at a rate of -0.5 cm yr-1 was measured up to 246 
2010, after which radar data is unavailable (Biggs et al, 2016). Elastic modelling 247 
based on both a spherical source (Mogi, 1958) and a horizontal penny-shaped crack 248 
(Fialko et al., 2001) both produced displacement patterns similar to the observed 249 
InSAR uplift and subsidence signals, showing that the deformation could be 250 
explained using either of these geometries (Biggs et al., 2009b). The penny-shaped 251 
crack model had slightly lower residuals, placing the uplift source at <4.5 km depth 252 
and the subsidence source at <2 km. Radial fringes on the uplift interferogram 253 
suggest a magmatic origin, but the presence of a shallow hydrothermal system at 254 
Longonot means that a volume change in a hydrothermal system cannot be 255 
discounted. However, the shallow source depth for the subsidence signal strongly 256 
indicates that it originated within the hydrothermal system. Based on these 257 
observations, it is probable that the hydrothermal system was perturbed by a deep 258 
magmatic injection in 2004 – 2006, heating the overlying boiling aquifer that 259 
ultimately led to ground subsidence. 260 

The presence of these volcanoes, their calderas, pyroclastic deposits and geodetic 261 
signs of unrest strongly suggests that the Kenyan Rift is capable of producing large 262 
volcanic eruptions. There are few historical records of minor volcanism in Kenya, and 263 
there is no ground-based monitoring, nor any understanding of what the frequency 264 
and magnitude of past eruptions has been. Baseline records of diffuse degassing, for 265 
example, do not exist. Consequently, compared to other volcanic regions, the 266 



present-day magmatic processes in Kenya remains poorly recorded and the 267 
accompanying assessment of hazard and risk unquantified. Over 410,000 people live 268 
within 30 km of Longonot, and 8.7 million people within 100 km (Siebert et al., 2010). 269 
In a recent UN global assessment on volcanic hazard and risk, Longonot is shown to 270 
have insufficient data in the eruption record to adequately assess the hazard, and 271 
thus assessment of both hazard and risk are associated with large uncertainties. The 272 
high population exposure however suggests a risk level of II to III on a scale of risk 273 
levels from I-III (Brown et al., 2015). 274 

3. Methods    275 

3.1 Geological mapping and structural features 276 

We used Advanced Spaceborne Thermal Emission and Reflection Radiometer 277 
(ASTER) and SPOT5 imagery to map structural features and the spatial extent of 278 
lava flows at Longonot, combined with information from the geological map of 279 
Dunkley et al. (1993). We used the ASTER Level 1B (radiance at sensor) product 280 
acquired on 6 August 2007 and SPOT5 multispectral 2.5 m resolution image 281 
acquired on 27 January 2010. We use the atmospheric correction FLAASH module 282 

in ENVI© v4.8 to retrieve spectral reflectance from radiance images (only visible 283 
near-infrared (VNIR) and short-wave infrared (SWIR) bands). To distinguish 284 
geological features, we applied interactive (false-colour-composite and histogram 285 
stretching) techniques to increase the contrast between units (Figure 3) (Vye-Brown 286 
et al., 2013). We also used pan-sharpening, band ratios and principal component 287 
analysis to increase the spectral contrast between specific absorption features 288 
(Rowan and Mars, 2003). The images were then layered over the SRTM and ASTER 289 

GDEM DEMs in ArcGIS© v10.0 and a geocoded and orthorectified version of the 290 
geological map of Dunkley et al. (1993). Errors depend on the spatial resolution of 291 
the image (2.5 – 15 m) and the manual error in identifying flows.  292 

3.2 Soil CO survey 293 

In November 2012, a soil CO2 flux survey was carried out at Longonot volcano using 294 
the method of Hutchison et al (2015). We surveyed on days with stable and dry 295 
atmospheric conditions, measuring a total of 270 sites. CO2 measurements were 296 
taken using a portable Li-COR LI-8100 automated soil CO2 flux system analyser and 297 
a PP Systems EGM-4 Environmental Gas Monitor attached to a SRC-1 Soil 298 
Respiration Chamber. Both pieces of equipment use the accumulation chamber 299 



technique (Chiodini et al., 1998) to measure CO2 efflux. They consist of an inverted 300 
chamber and an infrared gas analyser (IRGA) that measures both CO2 concentration 301 
and flux. During a sample reading, the CO2 gas diffuses into the accumulation 302 
chamber and is pumped into the IRGA, where the concentration is measured before 303 
being re-circulated back into the chamber. To minimize lateral diffusion of CO2 in the 304 
soil, the chambers were placed on a soil collar that was inserted into the ground 305 
before the measurements were taken. To check that background variability was low 306 
and ensure consistency between instruments, multiple sequential readings or 307 
simultaneous measurements using the Li-COR and PP system were taken at a 308 
randomly-selected subset of sites. Variations were on the order of 10%–25% 309 
comparable with random error in natural emission rates (Carapezza and Granieri, 310 
2004; Viveiros et al., 2010) and the stated precision of the instruments (5%–10%, 311 
Chiodini et al., 1998; Giammanco et al., 2007; Hutchison et al, 2015). 312 
 313 
Sampling was conducted along transects (Figure 2C) that were chosen to cover 314 
recent structural features (e.g. pit crater and faults), identified by detailed mapping. 315 
Five transects cover the volcanic edifice (Figure 2C): A and B traverse up the 316 
modern trachyte cone, with B covering pyroclastic cones; transects C to D are 317 
located beyond the trachyte lava cone, and are perpendicular to recent volcano-318 
tectonic or tectonic structural alignments. We also took measurements along the 319 
summit crater path, down the crater wall and along the perimeter of the crater floor, 320 
as fumaroles were detected in these locations by both Dunkley et al. (1993) and 321 
Alexander and Ussher (2011). 322 

CO2 flux populations were determined by probability distribution analysis using the 323 
Graphical Statistical Analysis (GSA) method of Sinclair (1974), described by Chiodini 324 
et al. (1998). The cumulative probability of CO2 flux is plotted on a log scale - 325 

inflection points reflect the boundary between statistical lognormal populations and 326 
consequently, different flux sources (Figure. 4). The mean flux of each population 327 
and its corresponding 95% confidence limits were determined following the method 328 
of Sinclair (1974). Bimodal CO2 flux distributions occur frequently at volcanic and 329 

hydrothermal settings (Mazot et al., 2013; Parks et al., 2013). The high flux source is 330 
often interpreted as originating from a relatively deep source of gas, such as a 331 
volcanic-hydrothermal system. The low flux population is generally attributed as 332 
background, resulting from biological activity in the soil (Chiodini et al., 2008; 333 
Chiodini et al., 1998; Giammanco et al., 2010). 334 



Usually the Sequential Gaussian Simulation (sGs) method is used as a geostatistical 335 
approach to interpolate the spatial variability of soil CO2 flux and to calculate the total 336 
volatile output (e.g. Parks et al, 2013; Hutchison et al, 2015). However, as the high 337 
flux values are restricted to isolated small areas, we estimate the total area to be 338 
degassing, and multiply this area by the mean high flux value, using maximum and 339 
minimum values to generate a range of possible estimates. Three high flux localities 340 
were identified: the crater wall, crater floor and pyroclastic cones (Figure 2). The area 341 
actively degassing at each locality was calculated individually using satellite imagery 342 
and evidence from fieldwork. The error in the flux rate is determined from the GSA 343 
probability distribution analysis, and estimates of the minimum and maximum 344 
plausible degassing area. 345 

3.3 Composition of volcanic gases 346 

Gas samples from high flux locations were collected for gas composition and carbon 347 
isotopic analysis (Hutchison et al, 2015). A T-connector  was  attached  to  the  “out  348 
flow-line”  between  the  Li-COR IRGA and the accumulation chamber, from which 12 349 
ml of gas was extracted using a syringe 40 seconds into a two-minute analysis. Each 350 
sample was injected from the syringe into an evacuated glass vial through a 351 
pierceable butyl rubber septum and was analysed within three weeks of acquisition. 352 

Loss of CO2 is very low through the rubber septum (Tu et al., 2001), but the rate of 353 
helium loss may be higher due to its mobility. Gas composition and carbon isotope 354 
results were comparable between the two campaigns, even though one set of 355 
samples were analysed within a few days of sampling and the other within one 356 
month (W. Hutchison pers. comm.). Thus, we do not expect significant loss of 357 
volatiles through the rubber septum in our samples during storage. 358 

Gas chemistry and carbon isotopes were measured at the Department of Earth & 359 
Planetary Sciences, University of New Mexico, using the methodology of Lee et al 360 
(2016). The bulk gas composition was determined with a Gow Mac gas 361 
chromatograph (GC) with discharge ionization detector (DID) and thermal 362 
conductivity detector (TCD) analyzers for CH4, CO2, H2, and CO species, in tandem 363 

with a Pfeiffer quadrupole mass spectrometer (QMS) for Ar, He, N2, and O2 364 

concentrations (De Moor et al., 2013; Fischer, 2008). The QMS analyses have a 365 

precision of <0.1%, except for the Helium, which has a precision of  ±1% (de Moor et 366 
al, 2013). The analytical precision for the GC measurements is estimated at ±2% 367 
based on repeat measurements. The samples with the highest CO2 concentration 368 



(i.e. lowest amount of air-derived CO2 ) were selected for carbon isotope analysis. 369 
Carbon isotope data were collected with a Thermo-Finnigan Delta XPPlus isotope ratio 370 
mass spectrometer. In total, seven samples were analysed for bulk gas composition, 371 
of which three were chosen for carbon isotope analysis. 372 

4. Results   373 

4.1 Geological map and structural alignments 374 

Figure 2 presents a lava flow map delineating the spatial extent of individual trachyte 375 
lava flows (Lt2). In contrast to the BGS map, this version largely excludes the 376 
pyroclastic  cover  (“from  the  Longonot  Ash”).  Lava  flow  edges  are  generally  non-377 
vegetated and well exposed in imagery. Even where edges of older flows are 378 
obscured, they could be identified using the enhanced imagery in conjunction with a 379 
DEM. Figure 3 shows a selection of images used to distinguish lavas, including 380 
principle component analysis and band ratios. We identify two subunits within the Lt2 381 
member and separate these into Lt2a, Lt2b, with Lt2a at the stratigraphic base (Figure 382 
3D). 383 

Lava flow vents and pyroclastic cones are controlled by both rift-aligned faults and 384 
volcano-tectonic structures (Figure 2). These alignments are orientated NNW–SSE, 385 
parallel to the rift border faults, and perpendicular to the modern day extension 386 
orientation (109°; Figure 1). Consequently, the entire edifice has a NNW–SSE 387 
elongation – lava flows extend ~26 km in this orientation, but only ~10 km ENE–388 
WSW. 389 

Two lava flows (Lt3) were emplaced  following  the  “Longonot  Ash”  eruption  on  the  390 
north and southwestern flanks (Figure 2C). These units are dark grey/black trachytes 391 
with an a’a  texture.  There  is  minimal  soil  cover  and  vegetation  on  these  units,  392 
consistent with the suggestion that they are recent deposits. The lava flow on the 393 
north flank is dated at 1863 BP, based on archeological evidence (Kimberley, 2011), 394 
but the age of the southwestern flow is unknown. Assuming that it is similar in age to 395 
the northern flow based on vegetation growth may be misleading. The southwestern 396 
flow originates from a fissure formed of six small craters, whilst the source of the 397 
northern flow can be traced to a single pyroclastic cone. 398 

4.2 Soil CO2 399 

Soil CO2 flux readings from Longonot volcano range from 0.13-99.9 g m-2 d-1 (Figure 400 



9). Figure 4 is a probability plot of log-CO2 flux values against cumulative probability 401 

and shows a bimodal distribution with one inflection point located at the 95th 402 
percentile, indicating the presence of two CO2 flux populations (A and B) with relative 403 

proportions of 5% and 95%. The gentle curvature of the inflection point suggests an 404 
overlap between the values in the two populations. The mean, 95% confidence 405 
interval and fraction of each population are reported in Table 1. Population A 406 
corresponds to 5% of the data with a mean flux value of 30 g m-2 d-1 (6.8 – 76 g m-2 d-407 
1; Figure 4 and Table 1). Population B represents 95% of the data with a mean flux of 408 
0.86 g m-2 d-1 (values range from 0.3 – 2.3 g m-2d-1). 409 

We interpret Population B as the background biogenic flux, supported by the 410 
observation that biogenic soil fluxes range between 0.2 – 20 g m-2 d-1, and 411 
occasionally reach 40 – 50 g m-2d-1 in agricultural environments (Chiodini et al., 2008; 412 
Chiodini et al., 1998). Our survey area at Longonot was non-agricultural and in 413 
general lightly vegetated, and our sample sites were located in ash-rich sand and 414 
soils. In this region, our low flux measurements range from 0.3 – 2.3 g m-2 d-1, within 415 
the range of biogenic CO2 flux sources, even on the more densely-vegetated crater 416 

floor. In contrast, our high flux Population A has a mean value of 30 g m-2 d-1, above 417 
typical biogenic values. 418 

4.3 Degassing locations 419 

We measured high soil CO2 fluxes (Population A) at three localities: crater wall, 420 

pyroclastic cones, and the crater floor perimeter. The physical characteristics of 421 
these degassing sites vary (Figure 5A – C). On the crater wall, high fluxes were 422 
located at steaming fumaroles surrounded by highly altered rock less than 1m2 in 423 
area. In contrast, degassing sites on the crater floor were richly vegetated, mildly 424 
altered, and lightly steaming. High flux readings on the pyroclastic cones were 425 
located on fossil fumaroles (non-steaming) and on altered red/brown soils, and were 426 
coincident  with  “geothermal  grass”  (Figure  5D; Lagat and Nakuru, 2011). 427 

Longonot’s  crater  is  2  km  in  diameter  with  near-vertical walls at 50 – 150 m in height 428 
(Figure 6A). The lower part of the wall consists of dense trachyte lavas (Lt) and the 429 
upper  part  is  composed  of  pyroclastic  deposits  from  the  “Longonot  Ash”  eruption  430 
(Lp8). The base of the pyroclastic cover contains pumice lapilli and blocks, whilst the 431 
upper portion forms poorly consolidated ash layers. Fumaroles on the crater wall 432 
were located along fractures within the trachyte lavas, close to the pyroclastic-lava 433 
boundary. We also identified four further steaming fumaroles from the crater wall 434 



path, but were unable to access them (Figure 6C). The lithological change between 435 
the lavas and pyroclastic cover may represent migration pathways or barriers for fluid 436 
flow, and thus may control fumarole sites (Barde-Cabusson et al., 2009; 437 
Gudmundsson et al., 2002; Schöpa et al., 2011). From our observations, fumarole 438 
locations are likely controlled by structural features, such as fractures, but their 439 
proximity to the pyroclastic-lava boundary means that a lithological control cannot be 440 
discounted. 441 

The crater floor is covered with mixed basalt and hawaiite lava flows (Lmx2) that are 442 
blocky  and  a’a  in texture. The lavas are >1 m in height and are densely vegetated by 443 
trees and bushes growing between blocks. The lavas are not overlain by soil, which 444 
is required to take gas measurements; furthermore, traversing the lavas is 445 
unfeasible. Therefore gas measurements were restricted to the crater floor perimeter, 446 
which has a soil-rich path that was 1 – 3 m wide. Fumaroles were located 447 
immediately adjacent to the path and likely mark the location of volcano-tectonic 448 
faults formed during the collapse of the pit crater. Our sampling extended 350 m 449 
around the crater floor; however, based on our observations we would expect 450 
fumaroles to exist along the whole perimeter. This view is supported by the 451 
fumaroles mapped by the BGS (Dunkley et al., 1993). 452 

A series of three overlapping NNW – SSE aligned pyroclastic cones are situated on 453 
Longonot’s  northern  flank  (Figure  6B). The first cone is well defined, with a prominent 454 
circular crater 300 m diameter. The second cone has a small, shallow crater 455 
approximately 100 m diameter, but its deposits cover a larger area downslope. The 456 
third cone is perhaps better classified as a fissure as there is no clear ejected 457 
material on its flanks. It has a breached circular rim and is the source of a lava flow 458 
that extends NNW (Lt3). High flux readings were located on the topographic rims of 459 
the upper two cones, but only on the western edges. The absence of active 460 
fumaroles and minor soil alteration leads us to assume that these are fossil 461 
fumaroles, which is in agreement with Dunkley et al. (1993).  462 

The majority of the soil CO2 flux measurements (95%) yielded values that fall within 463 
background biogenic values. The location and physical characteristics of these sites 464 
vary, from the modern trachyte cone to the flat-lying plains (Transects A-D; Figure 7). 465 
We see no variation in flux rates between sites that are covered with either relatively 466 
older or younger lava flows. At the end of Transect C, there is a hint that the soil CO2 467 
flux was systematically increasing, with some readings above background. These 468 
sample sites are progressively closer to the hypothesised caldera rim fault; it is 469 



possible therefore that these high flux measurements mark the location of the 470 
caldera ring faults. 471 

4.4 Total CO2 output at Longonot 472 

To estimate total CO2 emissions from Longonot, we estimate the total high flux 473 
degassing area across the crater wall, crater floor and pyroclastic cones. We then 474 
multiply the degassing area by our calculated average high flux value (30 g m-2 d-1). 475 

At the crater wall, we measured three fumaroles directly and observed four more 476 
from the crater rim. Assuming the fumaroles are all 1 x 1 m2, our minimum degassing 477 
area estimate is 7 m2. For the maximum area, we estimate that 1% of the crater wall 478 
is degassing (Figure 8). Given that the crater wall area is ~0.8 km2, this equates to 479 
8000 m2, and a total CO2 output of 0.2 – 240 kg d-1. 480 

We took 13 flux measurements along a 350 m section of the crater floor, and 481 
recorded high soil fluxes at seven lightly steaming fumaroles. These fumaroles were 482 
not evenly distributed along the perimeter, but instead were clustered. Our minimum 483 
estimate for the degassing is limited to our observations at ~7 m2 (Figure 9). For our 484 
upper estimate, we assume that this section is representative of the entire perimeter 485 
and extrapolate, giving a total area of 100 m2 and a total CO2 output of 0.2 – 3.0 kg d-486 
1. 487 

High fluxes were located on the pyroclastic cone rims, but only at <12% of all sample 488 
sites in this area. Our lower bound area is constrained at 10 m2. We do not expect 489 
the rest of the pyroclastic cones to be degassing significantly, both from our field 490 
observations and those of Dunkley et al. (1993). Our maximum area estimate is the 491 
total area that encases the fossil fumaroles, ~500 m2 (Figure 11) and so the total CO2 492 

output is estimated at 0.3 – 15 kg d-1. 493 

In total, we estimate an area of 24 – 8,600 m2 is outgassing CO2 at Longonot. Given 494 
that Population A degases at 30 g m-2 d-1, we estimate that the edifice is emitting 0.7-495 
258 kg d-1 CO2, of which 93% originates from the crater wall (Table 2). 496 

4.5 Gas composition 497 

Bulk gas composition and carbon isotope values are reported in Table 3. All samples 498 
are contaminated by air, as indicated by O2 and N2 values of approximately 21% and 499 

77% respectively, although CO2 concentrations are an order of magnitude greater 500 



than atmospheric for the majority of samples.  Typical high-temperature fumarolic 501 
gases have negligible O2, and low N2 values (Fischer, 2008). Air contamination may 502 
be a consequence of using an accumulation chamber rather than Giggenbach bottles 503 
for sampling, but air entrainment in fumarolic gases measured in near-surface soils 504 
has also previously been observed at some volcanoes in Kenya, including Longonot 505 
(Alexander and Ussher, 2011; Darling et al., 1995), and also at other volcanoes 506 
worldwide (Giammanco et al., 1997).  507 

The 13C values of fumaroles in this study range from -4.7  ‰  to  -6.4  ‰ and are within 508 
the mantle component of the EARR and consistent with earlier measurements in the 509 
region (Figure 4b; Darling et al, 1995). Sample ER15.2 is isotopically lighter than the 510 
other two samples (<-6.4  ‰),  which  may  indicate  an  element  of  bacterially  produced  511 
CO2 from the soil (Darling et al., 1995). The extrapolated magmatic  “end  member”  for  512 

Longonot’s  13C is likely to be between -3  ‰  and  -4  ‰,  consistent with values from 513 
across Kenya (Figure 4b; Darling et al., 1995).  514 

 515 

5 Discussion   516 

5.1 Structural control and source of CO2 degassing 517 

Diffuse degassing is an important outlet for magmatic and hydrothermal volatiles and 518 
occurs along permeable pathways, such as faults and fractures and through soils, 519 
hot and cold springs, lakes (Allard et al., 1991; Chiodini et al., 1998). Our results 520 
show that Longonot volcano is degassing 0.7-258 kg d -1 CO2 to the atmosphere, 521 
mainly through crater wall structures. These high flux locations are controlled by 522 
volcano-tectonic and regional tectonic structures where fluids flow along faults and 523 
fractures that have a higher permeability compared to the surrounding rock 524 
(Arnórsson, (1995; Chesner and Rose, 1991). Topography or underlying fissures 525 
may control the fossil fumarole locations. Topography alters the stress field, where 526 
fluid flow is directed parallel to the minimum compressive stress along topographic 527 
highs, thus focusing fluid flow to crater rims (Acocella et al., 2006; Anderson, 1951; 528 
Schöpa et al., 2011). The log-probability plot shows the presence of two flux 529 
populations: a low flux population (Population B) interpreted as background, and a 530 
high flux population (Population A; Figure 4) interpreted as magmatic. The average 531 
high flux value of 30 g m-2 d-1 is low compared to other volcanoes such as Vulcano 532 
(Italy) that has an average rate up to 18,000 g m-2d-1 (Chiodini et al., 2008) or Fogo 533 



(Azores) with an average rate up to 600 g m-2d-1 (Viveiros et al, 2008). Consequently, 534 
soil degassing is an effective technique to detect active faults and fractures at 535 
Longonot, similar to studies at Santorini and Etna volcanoes (Barberi and 536 
Carapezza, 1994; Giammanco et al., 1997). 537 

The depleted upper mantle has G13C values of -5±1  ‰  (vs.  PDB)  based  on  a  global  538 
data-set of MORB glasses (Marty and Zimmermann, 1999), fumarole gas discharges 539 
from Ol Doinyo Lengai, Tanzania have G 13C of -2.4 to -4.0  ‰  (Fischer et al., 2009b), 540 
hot spring discharges from the Rungwe Volcanic region in Southern Tanzania range 541 
from  -2.8 to  -6.5  ‰  (Barry et al., 2013) and diffuse CO2 emissions from the Lake 542 
Natron and Lake Magadi area have an extrapolated end-member G13C value of 543 
approximately  -6  ‰  (Lee et al., 2016). Atmospheric values are -8.5 ‰ (Keeling and 544 
Whorf, 2005). Heavier and lighter G13C values  (up  to  0  ‰)  are  found  in  arc  volcanoes  545 
and are due to the contribution of organic or carbonate derived carbon from the 546 
subducting slab (Oppenheimer et al., 2014; Sano and Marty, 1995) in continental rift 547 
settings, however, we expect values close to the upper mantle with possible 548 
influence of C derived from a plume component. The13C composition of the gases 549 
ranges measured at Longonot range from -4.7  ‰  to  -6.4  ‰ (Figure 4b) and falls 550 
within the range measured throughout the Kenyan Rift (KR) by Darling et al. (1995) 551 
who measured a  δ13C of -1.7  ‰  to  -7.1  ‰,  with  an  average  of  -3.7  ‰  (± 1.1  ‰).  552 

One sample from a fumarole at Longonot has a δ13C of -4.0  ‰  and  a  helium  isotope  553 

ratio (the ratio of helium isotopes in the sample relative to their ratio in air)  R/RA = 554 
6.7 (Darling et al., 1995). Consequently, Darling et al. (1995) interpreted these data 555 
as  evidence  for  a  deep  mantle  source  for  Longonot’s  fumarolic  gases,  which  is 556 
consistent with our interpretation (Figure 4b). Similar helium ratios (R/RA = 5.5 – 8) 557 
and δ13C values are found at the majority of fumaroles and springs associated with 558 

late-Quaternary silicic volcanoes in the Kenyan and Tanzania section of the rift 559 
(Barry et al., 2013; Darling et al., 1995), Ol Doinyo Lengai fumaroles (Fischer et al., 560 
2009a; Teague et al., 2008), carbonatites in Tanzania and mantle xenoliths from the 561 
Chyulu Hills volcanic field (Hopp et al., 2007) and phenocrysts from the Rungwe 562 
volcanic region, southern Tanzania (Hilton et al., 2011). 563 

5.2 Hydrothermal System 564 

Circulation of hydrothermal fluids plays a key role in driving ground deformation at 565 
many calderas (Chiodini et al., 2003; Dzurisin et al., 2006; Hurwitz et al., 2007; Wicks 566 
et al., 1998) and numerical models highlight that even small changes in permeability 567 



and anisotropy of the host rock, and the depth and rate of hydrothermal fluid injection 568 
can lead to significant variations in ground surface displacement and degassing 569 
(Hurwitz et al., 2007). Longonot’s  geothermal  reservoir  is  liquid-dominated, 570 
comprising a boiling aquifer with a vapour- dominated cap with temperatures of 250 – 571 
300 °C (Alexander and Ussher, 2011). The spatial distribution of high CO2 fluxes 572 
demonstrates that volcano-tectonic structures control near-surface permeability at 573 
Longonot but it is unclear whether these features extend into the reservoir itself. 574 

Magmatic volatiles dissolve into hydrothermal systems and outgassing 575 
measurements at the surface may be lower than expected at volcanoes with mature 576 
hydrothermal systems (Werner et al., 2012). Carbon isotope fractionation occurs 577 
during the transport of volatiles by aqueous fluids and by calcite precipitation (Barry 578 
et al., 2014; Barry et al., 2013; Ray et al., 2009) and the latter process in particular is 579 
highly temperature dependent (Barry et al., 2014; Hoefs, 2010). Calcite-anhydrite 580 
dissolution and precipitation in geothermal reservoirs depend on pCO2 variations 581 
(Chiodini et al., 2007; Marini and Chiodini, 1994), with a reduction in this value 582 
leading to sealing of the system by anhydrite precipitation, as seen at Campi Flegrei 583 
(Chiodini et al., 2007). In areas of high permeability, sustained CO2 fluxes and heat 584 
can maintain lower pCO2 values, minimizing precipitation and encouraging fluid flow 585 
and volatile release. Based on its proximity and general similarities in host rock 586 
composition (Macdonald et al., 2008), the Longonot hydrothermal system is 587 
considered comparable to that of Olkaria, where reservoir CO2 concentration is 588 
largely controlled by a flux from a magmatic heat source and CO2 is removed via 589 
calcite precipitation within the aquifer (Karingithi et al., 2010). Thus, we infer that a 590 
proportion of CO2 from the magma source at Longonot is precipitated out of the 591 
system.  592 

5.3 Sources of CO2 in the East African Rift 593 

The total estimated CO2 degassing at Longonot is <0.3 t d-1 (0.1 kt yr-1) and is small 594 
compared to measurements made at other active volcanoes. The only other 595 
volcanoes with CO2 flux estimates in East Africa are Ol Doinyo Lengai Volcano, 596 
Tanzania, with a flux of ~100 t d-1 (36 kt yr-1) (Koepenick et al., 1996) and Aluto 597 
Volcano, Ethiopia. At Aluto, measurements were made of the Artu Jawe fault zone, a 598 
major structural pathway for fluid flow, giving an estimated flux of 57 t d-1 (21 kt yr-1) 599 
of CO2 (Hutchison et al., 2015). However, the Artu Jawe represents a small 600 
proportion of the total area of hydrothermal alteration, and extrapolating gives a total 601 
degassing flux of 250-500 t d-1 (90-180 kt yr-1)  for  the  whole  of  Aluto’s  edifice.   602 



 603 
These three volcanoes have very different eruption records. Ol Doinyo Lengai is an 604 
actively erupting volcano, so a high CO2 flux is not surprising. Longonot had a 605 
historically-recorded eruption in 1863, but although Aluto has clearly experienced 606 
many eruptions during the Holocene, none have been historically observed 607 
(Hutchison et al, in review), suggesting that the last eruption occurred prior to that at 608 
Longonot. In terms of unrest, both Longonot and Aluto have experienced significant 609 
ground deformation during the ~20 year geodetic record (Biggs et al., 2009b; Biggs 610 
et al., 2011b; Biggs et al., 2016; Hutchison et al, accepted), but the deformation at 611 
Aluto is both larger magnitude and more persistent than that at Longonot.   Although 612 
in both cases, the degassing patterns are controlled by structural features, the total 613 
CO2 flux at Aluto is orders of magnitude higher, and the spatial patterns are quite 614 
different;  at Aluto degassing extends along and beyond the 8 km-wide ring fault, 615 
whereas at Longonot, the high flux sites were observed either inside the ~3 km wide 616 
summit crater or at parasitic cones less than a kilometer away. Taken together, these 617 
differences in the patterns and magnitudes of both deformation and degassing 618 
suggest a larger volume of magma is currently stored under Aluto than under 619 
Longonot. 620 
 621 
Recent estimates of degassing along tectonic faults in rift basins are orders of 622 
magnitudes larger than any of the estimates of degassing from rift volcanoes. 623 
Estimates from the Magadi basin, Kenya and Natron basin, Tanzania, located <200 624 
km south of Longonot, are 2700 ± 800 t d-1 (980 kt yr-1) and 570 ± 160 t d-1 (210 kt yr-625 
1) respectively (Lee et al., 2016). If one assumes that this can be extrapolated to the 626 
entire length of the eastern branch of the East African Rift, this is 71 ± 33 Mt yr-1, 627 
equivalent to the entire mid-ocean ridge system. The high CO2 fluxes away from 628 
volcanic edifices is consistent with the idea that magma flux is continuous along the 629 
rift and a signficiant proportion is stored or intruded away from the volcanic centres. 630 
High density, crystallised intrusions are observed in both the Main Ethiopian Rift 631 
(Keranen et al., 2004b) and Kenyan Rifts (Swain, 1992) and comparison between 632 
geodetic constraints on dyke intrusions and the volumes of lava flow fields in Afar 633 
constrain the intrusive-extrusive ratio for recent events at 5 – 10:1 (Ferguson et al., 634 
2010).  635 
 636 
 637 
6. Conclusions 638 



This study shows that CO2 degassing at Longonot was <0.3 t d-1 (0.1 kt yr-1) 1 in 639 

November 2012. We show that volcanic structural faults and fractures control 640 
degassing pathways, with the majority of outgassing emanating from the crater wall. 641 
The chemical composition of fumarolic gases is heavily contaminated by air, but 642 
carbon isotope data imply a mantle source for the carbon, with a minor addition of 643 
organic carbon from the shallow hydrothermal system. The total flux is less than that 644 
observed at other volcanoes within the rift, such as Aluto and Ol Doinyo Lengai and 645 
significantly less than the flux from nearby basins. 646 
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 1074 
 1075 
Table 1: Mean flux, proportion and error bounds for the two diffuse CO2 flux 1076 
populations measured at Longonot volcano in late-2012. 1077 

Flux Population Mean flux (gm-2d-1) 95% confidence 

limit (gm-2d-1) 

Proportion (%) 

A 30 6.8-76 5 

B 0.9 0.3-2.3 95 

 1078 
Table 2: Estimates of total emissions at the three major degassing sites at Longonot 1079 
volcano. The total CO2 output is calculated using the mean flux of Population A, 30 g 1080 
m2 d1. * The value in brackets uses the 95th percentile values of Population A (6.8 – 76 1081 
g m2 d1) to gain upper and lower limits of the total CO2 output. 1082 

 1083 

Locality Total area degassing (m2) Total CO2 output (kg d-1) 

Crater wall 7-8,000 0.2-240 

Crater floor 7-100 0.2-3 

Pyroclastic cones 10-500 0.3-15 

Total 24-8,6000 0.7-258 (0.16-650)* 

  1084 

Table 3: Composition of fumarolic gas samples from Longonot volcano. G13C (‰) = 1085 
[(13C/12C)sample/(13C/12C)standard -1] x 1, 000; the standard for C isotopes is PeeDee 1086 
Belemnite (PDB). N/D = not detected. 1087 

Sample Eastin

g 

Northin
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(ppm
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He 

(ppm
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(ppm
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Ar  
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6.36 
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