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Abstract. With increasing pressure on the oceans from environmental change, there has been a 1 

global call for improved protection of marine ecosystems through the implementation of Marine 2 

Protected Areas (MPAs). Here, we used Species Distribution Modelling (SDM) of tracking data 3 

from 14 seabird species to identify key marine areas in the southwest Atlantic Ocean, valuing 4 

areas based on seabird species occurrence, seasonality and extinction risk. We also compared 5 

overlaps between the outputs generated by the SDM and layers representing important human 6 

threats (fishing intensity, ship density, plastic and oil pollution, ocean acidification), and 7 

calculated loss in conservation value by using fishing and ship density as cost layers. The key 8 

marine areas were located on the southern Patagonian Shelf, overlapping extensively with areas 9 

of high fishing activity, and did not change seasonally, while seasonal areas were located off 10 

south and southeast Brazil and overlapped with areas of high plastic pollution and ocean 11 

acidification. Non-seasonal key areas were located off northeast Brazil on an area of high 12 

biodiversity, and with relatively low human impacts. We found support for the use of seasonal 13 

areas depending on the seabird assemblage used, because there was a loss in conservation value 14 

for the seasonal compared to the non-seasonal approach when using ‘cost’ layers. Our approach, 15 

accounting for seasonal changes in seabird assemblages and their risk of extinction, identified 16 

additional candidate areas for incorporation in the network of pelagic MPAs. 17 

Keywords: Ecologically and Biologically Significant Areas; Important Bird Areas; seabird 18 

tracking; species distribution modelling; threats; Zonation   19 
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Introduction 20 

Oceans are facing rapid and profound changes in their characteristics and structure (Halpern et 21 

al., 2008; Rockström et al., 2009; Valdés et al., 2009). Ocean changes are so widespread that 22 

only <4% of the global ocean area is considered to be experiencing very low human impacts 23 

(Halpern et al., 2015). Hence, there is a need for a major international effort to protect and 24 

maintain the functioning of marine ecosystems, through the implementation of Marine Protected 25 

Areas (MPAs) (Rockström et al., 2009; Kachelriess et al., 2014). Despite a global agreement to 26 

designate MPAs covering 10% of the global ocean (Secretariat of the Convention on Biological 27 

Diversity, 2006), only 2.98% is currently protected, and <1% of the global ocean comprise ‘no-28 

take’ zones, where no harvesting of marine resources is allowed (Marine Conservation Institute 29 

2015). Furthermore, few established MPAs effectively and integrally protect their targeted 30 

species, so their value is likely to be even lower than expected (Jameson, Tupper & Ridley, 31 

2002; Mora & Sale, 2011; Edgar et al., 2014). 32 

To truly protect the diversity of marine systems, the design of MPAs must account for 33 

its location (Jameson et al., 2002; Sundblad, Bergström & Sandström, 2011), connectivity with 34 

other areas (Sundblad et al., 2011) number and proportion of protected oceanographic features 35 

(e.g. upwellings, seamounts; Sundblad et al., 2011; Dunn et al., 2014), species occurring there 36 

and their seasonality (Hyrenbach, Forney & Dayton, 2000; Mann & Lazier, 2006), climatic 37 

variability (Jameson et al., 2002), isolation from human impacts (Rife et al., 2013; Edgar et al., 38 

2014), human activities (Charles & Wilson, 2009; Edgar et al., 2014; Mazor et al., 2014) and, 39 

socio-economic use of the area (Charles & Wilson, 2009). Most MPAs are designed to improve 40 

fisheries management, i.e. to manage commercial fish stocks in a more sustainable way (e.g. 41 

(Pitchford, Codling & Psarra, 2007; Horta e Costa et al., 2013ab; Stevenson, Tissot & Walsh, 42 

2013). Few studies have accounted for other environmental factors in the design of MPAs. For 43 

instance, ship movements (Dalton, 2004; Halpern et al., 2008), exposure to plastics (Lebreton, 44 

Greer & Borrero, 2012; van Sebille, England & Froyland, 2012; Wilcox, Van Sebille & 45 

Hardesty, 2015), oil pollution (Wiese & Robertson, 2004; Moreno et al., 2013; Kark et al., 46 
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2015), and ocean acidification (Harvey, Gwynn-Jones & Moore, 2013) present substantial 47 

impacts to marine biodiversity, and should be considered in MPA design (Kelleher, 1999; 48 

Pomeroy et al., 2005). 49 

Wide-ranging, pelagic top predators have been widely proposed as useful tools for 50 

pointing out important areas which can add conservation value to MPA networks (Hooker & 51 

Gerber, 2004; Sergio et al., 2008; Ronconi et al., 2012). Top-predators integrate factors 52 

affecting seasonal variation in abundance and distribution of their lower trophic-level prey over 53 

broad areas (Montevecchi et al., 2012; Tancell et al., 2012; Michael, Jahncke & Hyrenbach, 54 

2014). Seabirds, in this context, are relatively easy to sample at their breeding colonies and to 55 

track them at sea by using electronic devices, providing information on foraging movements at 56 

various spatio-temporal scales (Phillips et al., 2006a; Delord et al., 2014; Thiebot et al., 2014). 57 

Several important marine areas have been identified based on the distribution and occurrence of 58 

seabird species and proposed to integrate the current network of MPAs. The marine Important 59 

Bird Areas (mIBAs) represent one of the most recent wide-ranging international efforts to 60 

identify relevant areas for marine conservation (Lascelles et al., 2012, 2016). 61 

Here, we applied spatial distribution modelling to tracking data from 14 pelagic seabird 62 

species in the southwest Atlantic Ocean (Food and Agriculture Organization, FAO, Fishing 63 

Area 41). The use of tracking data is deliberately used to identify important areas in offshore 64 

waters since many important “coastal” areas have been identified for MPAs or MIBAs through 65 

other approaches and investigations of coastal seabirds. We identified key areas based solely on 66 

the climatic and oceanographic variables irrespective of the distribution of threats, a posteriori 67 

we quantified sensitivity of species to threats and quantified the costs to human activities within 68 

those areas that are important for the birds, by imposing restrictions of activities within the areas 69 

and calculating changes in conservation value. Such approach is justified by evidences that the 70 

distribution of threats matches oceanographic conditions targeted by marine animals (Karpouzi, 71 

Watson & Pauly, 2007; Hatch et al., 2008; Titmus & Hyrenbach, 2011; Krüger et al., 2016a). 72 

Our objectives were: (1) identify important areas for pelagic seabirds throughout the year; (2) 73 
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quantify the sensitivity of the identified important areas for seabird assemblages to 74 

environmental pressures; (3) compare our spatially-explicit results to the existing networks of 75 

proposed or established protected areas identified by international organizations, and (4) carry 76 

out a cost analysis evaluation of the implementation of seasonal vs non-seasonal protected areas. 77 

FAO Fishing Area 41 encompasses a wide range of latitudes from tropical to Antarctic waters, 78 

including a large array of habitats and oceanographic conditions, the largest continental shelf in 79 

the Southern Hemisphere and a highly productive convergence zone that support a biodiversity-80 

rich ecosystem, and major fisheries (Vasconcellos & Csirke, 2011). Despite several proposals to 81 

identify key areas for conservation in pelagic ecosystems, either in the form of Ecologically and 82 

Biologically Significant Areas (EBSAs) (Dunn et al., 2014) or mIBAs (Lascelles et al., 2012), 83 

the designated MPAs inside FAO41 are mostly restricted to coastal regions (Marine 84 

Conservation Institute 2015, http://www.mpatlas.org/explore/). Thus, such network of MPAs 85 

does not protect marine pelagic species and systems. In this sense, our analysis prioritizes 86 

habitats used by pelagic seabird communities weighted by their seasonality and extinction risk 87 

(which may protect other pelagic species) as pelagic habitats are underrepresented in the MPAs 88 

network within FAO41. The key areas identified with this study may be seen as supporting the 89 

already proposed MPAs as add-ons, which indentifies pelagic and seasonal areas that were not 90 

considered by previous methods. 91 

Materials and methods 92 

Tracking data and bird assemblages 93 

We used geolocator (Global Location Sensor or GLS) tracking data from 14 seabird species, 94 

occurring at the southwest Atlantic Ocean during part or all of the annual cycle (Table 1). 95 

Deployment and other details are provided elsewhere (Grémillet et al., 2000; Croxall et al., 96 

2005; Phillips et al., 2006a; González-Solís, Croxall & Afanasyev, 2008; González-Solís et al., 97 

2009; Mackley et al., 2010; Quillfeldt et al., 2013; Ramírez et al., 2013; Reid et al., 2013; 98 

Missagia et al., 2015, Krüger et al., 2016a,b). The data were modelled in three different periods: 99 

summer (Oct.-Mar.), winter (Apr.-Sep.) and year-round (Jan.-Dec.). For summer and winter 100 
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periods, we removed bird locations from months when the number of points was below10% of 101 

the maximum number for that species in any month in order to remove the interference of 102 

migratory movements from the seasonal data, but all available locations were included in the 103 

year-round models. Each species was classified as one of two groups, based on its core 104 

distribution relative to the mean position of the northern boundary of the Subtropical Front 105 

(Burls & Reason, 2006): Southern species (i.e. species with a distribution largely south of 35°S 106 

within the area) and Northern species (i.e. species mainly distributed north of 35°S within the 107 

area). This categorisation was based on previous evidence for segregation of seabird 108 

communities resulting mostly from latitudinal gradients in sea surface temperature (Péron et al., 109 

2010; Krüger & Petry, 2011; Navarro et al., 2015; Quillfeldt et al., 2015). 110 

Environmental variables 111 

Our Species Distribution Models (SDMs) used 10-year average data (from summer, winter 112 

and year-round) for the following oceanographic variables: chlorophyll-a concentration (CHL), 113 

CHL anomaly, CHL gradients, sea surface temperature (SST), SST anomaly, SST gradients, 114 

Sea Surface Height (SSH), SSH anomaly, wind speed, water depth, and minimum distance to 115 

coast (DCOA) (Supporting Information Fig. S1). All variables, except DCOA, anomalies and 116 

gradients, were downloaded as monthly mean composite raster images from NOAA 117 

CoastWatch Browser (http://coastwatch.pfeg.noaa.gov/). SST anomalies and CHL anomalies 118 

for each month were calculated as the difference between the average value for a given month 119 

and year, and the average for that month over a 10-year period in that grid cell. Gradients were 120 

generated by calculating the standard deviation of each cell in relation to the adjacent cell values 121 

(Sidhu et al., 2012; Li et al., 2015). All raster files were processed in ArcMap 10.2. 122 

Species Distribution Models 123 

Tracking data was combined with environmental predictors to generate SDMs from presence-124 

only data using the Maximum Entropy (MaxEnt) software (Oppel et al., 2012; Quillfeldt et al., 125 

2013) on a 1°x1°spatial grid (e.g. Pinet et al., 2011; Ramírez et al., 2013; Missagia et al., 2015), 126 

as the mean error of geolocation tags is usually lower than 1° (Wilson et al., 1992; Phillips et 127 
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al., 2004; Nielsen & Sibert, 2007). Geolocators are useful to detect and model core areas for 128 

animals’ distribution (Quillfeldt et al., 2013; Krüger et al., 2016a, 2016b) and compared to more 129 

accurate methods like GPS or Argos, geolocators tend to slightly inflate home range of animals 130 

(Phillips et al., 2004). To compensate this potential inflation, we were conservative in the next 131 

steps of the analysis by only assuming areas of high importance values (see next section) to 132 

propose the key areas. Furthermore, geolocators are able to collect data for a longer period of 133 

time that is highly limited by battery size in GPS and PTTs, and this may also represent a barrier 134 

to sample distribution data on smaller seabirds like gadfly petrels and prions which can not 135 

carry much weight. The tracking data were divided into training and test data by randomly 136 

setting aside 10% of the tracking dataset for spatial evaluation of the models (Araújo & Guisan, 137 

2006; Austin, 2007). The first step of the modelling consisted of principal component analyses 138 

(PCA) to eliminate any potential effect of multicollinearity. This is a recommended procedure 139 

as our goal was to model species distributions, rather than to verify relationships between 140 

species occurrence and the environment (Merow, Smith & Silander, 2013). We extracted the 141 

scores for components with eigenvalues above 1. With those scores, we ran MaxEnt on the 142 

presence-only positions, 50 times, with a bootstrap procedure to obtain a prediction of the 143 

average distribution (Edrén et al., 2010). We assessed the accuracy of models using the area 144 

(AUC) under the Receiver Operating Characteristic (ROC) curve. The AUC estimates the 145 

likelihood that a randomly selected presence point is located in a raster cell with a higher 146 

probability value for species occurrence than a randomly generated point (Phillips, Anderson & 147 

Schapire, 2006). 148 

Calculating area importance values 149 

The outputs from MaxEnt were used to calculate area importance values for each bird 150 

assemblage using the Zonation software (Moilanen et al., 2005; Moilanen & Wintle, 2006; 151 

Leathwick et al., 2008). Zonation is assumed as one of the best programs to set out conservation 152 

priorities when efforts focus on ecological communities and habitat connectivity (i.e., 153 

Blumentrath, 2011; Delavenne et al., 2012). Zonation generates a raster with pixels representing 154 
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the importance value, taking into account the probability of occurrence of each species given its 155 

weighting (see below) and response to habitat. The final output is scaled from 0-1, representing 156 

the least (0) to most important (1) areas. Each species was weighted by its IUCN conservation 157 

status as follows: Least Concern (LC) = 1; Near Threatened (NT) = 2; Vulnerable (VU) = 3; 158 

Endangered (EN) = 4 and Critically endangered (CR) = 5. Boundary Quality Penalty Curves 159 

(BQPCs; Moilanen & Wintle, 2007), which are measures of species responses to habitat 160 

connection, were constructed empirically based on the IUCN conservation status. We generated 161 

responses with changing slopes for CR = -0.01, EN = -0.008, VU = -0.004, NT = -0.002 and LC 162 

= 0. Thus, the proportion of area occupied by each species decreases with increasing habitat 163 

disconnection (except for LC) and the intensity of the decrease (slope) is proportional to the 164 

level of threat. 165 

We evaluated the sensitivity of the weighting and habitat connectivity response (more 166 

details in Supporting Information SI). Changing the values for these two variables had no 167 

substantial effect on the final output, except for a complete null model considering all species as 168 

equivalent, the output from which was unrealistic and did not match the species distributions 169 

(Supporting Information Fig. S2, S3, S4). Probability of occurrence in a given pixel diminishes 170 

when habitat characteristics differ from those within surrounding cells, using a home range-171 

based grid size (Leathwick et al., 2008). Uncertainty analysis (Moilanen & Wintle, 2006) was 172 

disabled in the computation (Leathwick et al., 2008). The importance value was calculated for 173 

each assemblage during the three specified periods (summer, winter and year-round). We were 174 

conservative to propose key areas due geolocators errors (see previous section) and selected 175 

areas that fell within 1% (90% of importance value) of the distribution threshold (Moilanen et 176 

al., 2005), areas of 0.5% (95%) and 0.1 % (99%) threshold (Oppel et al., 2012), in a nested 177 

design – these areas are within the 1% threshold. The locations of the 0.1 % candidate MPAs 178 

were compared with those of existing MPAs (Marine Conservation Institute 2015), EBSAs 179 

(Dunn et al., 2014) and mIBAs (Birdlife International 2015). 180 

Environmental threats 181 



9 
 

We examined spatial risk from five environmental threats: ocean acidification, oil pollution, 182 

floating plastics, shipping and fishing intensity (Supporting Information SII, Fig.S5), which are 183 

environmental stressors largely recognized as stressors to which marine animals, particularly 184 

seabirds, are exposed and vulnerable, by means of spatial overlap and evidence of impact: 185 

acidification (Grémillet & Boulinier, 2009), oil pollution (Camphuysen & Heubeck, 2001; 186 

Wiese & Robertson, 2004; Moreno et al., 2013), plastic (Titmus & Hyrenbach, 2011; Jiménez et 187 

al., 2015; Wilcox et al., 2015), shipping (Hatch et al., 2008), fisheries (Anderson et al., 2011; 188 

Croxall et al., 2012). These variables were standardized to have a mean of 0 and an SD of 1 189 

(Zuur, Ieno & Smith, 2007). 190 

Cost analysis 191 

We evaluated costs for the proposed key areas, using the layers from Fishing Vessels Density 192 

and overall Ship Density (Supporting Information SII and Fig. S5) as cost layers (Dalton, 2004; 193 

Leathwick et al., 2008) in the Zonation software. We are using those layers as ‘costs’ because 194 

both are the most manageable factors from the most widespread human threats affecting marine 195 

fauna worldwide. Impact of fisheries on marine fauna are well described in literature, like food 196 

depletion through overfishing and direct mortality through bycatch (Becker & Beissinger, 2006; 197 

Cury et al., 2011) but the vessel traffic is a potential source of oil (Halpern et al., 2008, 2015; 198 

Hatch et al., 2008) and noise (Morton & Symonds, 2002; Weilgart, 2007; Codarin et al., 2009) 199 

pollution, and birds may collide against vessels during the night (Black, 2005; Glass & Ryan, 200 

2013). 201 

Zonation uses cost layers to reduce the value (importance to conservation based on the 202 

previously specified parameters) of a given cell, thus cost is interpreted as a variable that reduce 203 

the conservation value of a given area. The “cost” variables were used here as a cost/limitation 204 

imposed to human activities, in the perspective that a no-cost represent no changes in the current 205 

activities, and a cost represent restrictions to activities. As our valuing of areas considers no 206 

influence of the human activities, sole the seabirds distribution regarding environmental 207 

variables, this represents the hypothetical value of the area under no constraint by human 208 



10 
 

activities. Then it is possible to measure differences on the conservation value of an area when 209 

comparing different cost scenarios with the previous area valued under no influence of human 210 

activities. We used two cost constraint scenarios to evaluate how the intensity of human 211 

activities may change the conservation value of candidate MPAs (i.e. key marine areas) if 212 

shipping and fishing were not regulated (no-cost, scenario 1) or partially regulated (cost, 213 

scenario 2). Costs constraints were calculated to each time-frame (Summer, Winter and Year-214 

round). The resulting values for each cost model were then subtracted from the respective area 215 

importance value within the 99, 95 and 90 threshold values (the proposed areas based on seabird 216 

distribution only), to evaluate how much each of the human activities change the conservation 217 

values within the proposed key areas. 218 

Statistical Analysis 219 

We used the pixel value of the rasters as point information, and the centroid of longitude and 220 

latitude (N=1697) as the geographic position of each grid cell. To evaluate the degree of 221 

correspondence between the distribution probabilities for the two seabird communities (MaxEnt 222 

outputs) and the distributions of the environmental threats, we used Canonical Correspondence 223 

Analysis (CCA) using‘cca’ function from the ‘vegan’ package (Oksanen et al., 2013) within the 224 

R environment (R Core Team 2015). Species probabilities were arcsine transformed. Species 225 

matrix entered the analysis as dependent matrix, and the threats entered the analysis as the 226 

independent matrix, with geographical coordinates used as covariables to control for spatial 227 

auto-correlation (cca[Species Matrix ~ Threat Matrix + Latitude * Longitude]). Each time-frame 228 

was analyzed in separate. After running the analysis, we quantified the Euclidian distance of the 229 

species from the threats in the CCA bi-dimensional space to compare shifts in group exposition 230 

to threats. 231 

We compared the change of value within the proposed key areas between cost models, 232 

time-frames and assemblages through a Generalized Linear Mixed Model in ‘lme4’ package 233 

within R-environment (Bates et al., 2015). As threshold values for proposed key areas (90%, 234 
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95% and 99% of importance values) are in a nested design, we entered the threshold as a 235 

random factor in the model. 236 

Results 237 

Species Distribution Models 238 

Many of the environmental variables were highly correlated (Supporting Information Table S1). 239 

The power of the models using PC1 and PC2 to predict species distribution was high 240 

(AUC=0.79 ± 0.06), although the models were less accurate for species with large latitudinal 241 

ranges, such as Cory’s Shearwater (Calonectris borealis), Cape Verde Shearwater (Calonectris 242 

edwardsii), Great Shearwater (Ardenna gravis) and Wandering Albatross (Diomedea exulans). 243 

It was clear that dividing the data into two seasons resulted in a slightly more accurate 244 

prediction of distributions than using data from the entire year (AUC summer = 0.80 ± 0.06; 245 

AUC winter = 0.83 ± 0.05; AUC year-round = 0.76 ± 0.06), probably because species occupy 246 

only part of the annual distribution in any one season (Fig. S6, S7, S8). 247 

Assemblages and Environmental Change Factors 248 

Canonical Correspondence Analysis yielded slight different results for each time frame, for 249 

Summer the constrained analysis captured 74.1% of data variability (axis1= 83.0%, axis2= 250 

12.3%), 70.7% for Winter (axis1= 81.9%, axis2 = 15.9%) and 77.2% for all Year (axis1 = 251 

81.9%, axis2 = 14.9%). Probability of occurrence of species (species matrices) was significantly 252 

matched by the distribution of threats for Summer (F8,1638=585.49, P=0.001), Winter  (F8,1638= 253 

494.48, P=0.001) and all Year (F8,1638= 691.34, P=0.001). 254 

There was a clear segregation between assemblages within the bi-dimensional space of 255 

the CCA which showed that Northern species were more exposed with plastic pollution and 256 

acidification, while Southern species were associated with Fisheries and Ship Traffic (Fig. 257 

1a,b,c). However, such trend was not obvious in Winter (Fig.1b) as the two Northern species 258 

(TA and TP) were highly pelagic and occurred in areas of low cumulative threat occurrence (see 259 

Supporting Information Fig. S5, Fig. S7). In Winter two sub-groups of Southern seabirds were 260 
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differentially exposed to Acidification and Plastic Pollution (AP, GHA, WA) or to Fisheries and 261 

Ship Traffic (BBA, NGP, SGP). Two species were displaced from threat influence in two cases 262 

(MS and WCP) which seem to be caused by their wide latitudinal distribution. This was 263 

reflected in the bi-dimensional distance of each group from threats, where Northern seabirds 264 

increased their distance from threats in Winter comparing to Summer and all Year, but Southern 265 

seabirds decreased their distance from threats in Winter comparing to Summer and all Year, 266 

with exception of WCP (Fig. 1d-i). 267 

Proposed key marine areas 268 

The areas of highest value for Southern species did not vary seasonally, and were off the 269 

southern tip of South America and near the Falkland Islands (Fig.2). In contrast, results for 270 

Northern species were highly seasonal: a) during summer, the highest value areas were off the 271 

central coast of Brazil, whereas in the winter, these extended to oceanic waters in the mid-south 272 

Atlantic, b) considering the whole year, the highest value areas were coastal and pelagic waters 273 

off northern Brazil (Fig.2). The zonation value increased with the species occurrence probability 274 

(Fig. 3a,c,e) and with increased number of species (Fig. 3b,d,f). It means the high valued areas 275 

are a good representation for the occurrence of species. 276 

The candidate protected areas based on the Southern assemblage were concentrated in 277 

the same area during summer, winter and year-round (Fig.4). The three temperate areas were 278 

located south of Isla de los Estados and northwest of the Yaghan Basin. The candidate MPAs 279 

for Southern seabirds overlapped in the north with the current Isla de los Estados MPA 280 

(Argentinean Ecological and Provincial Reserve) and IBA (proposed to protect BBA and Sooty 281 

Shearwater Ardenna grisea)  and in the south with Southwest 33 IBA (proposed for GHA), but 282 

most areas of high value for Southern seabirds lacked any protection under current regimes 283 

(Fig.4). On the other hand, the candidate protected areas for Northern seabirds were completely 284 

different among time-frames. The candidate summer area on North overlapped with part of the 285 

proposed EBSA off southern Brazil (proposed due to occurrence of a strong upwelling) and the 286 

IBA on Arquipélago dos Alcatrazes (proposed based on the occurrence of Magnificent 287 
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Frigatebirds Fregata magnificens and the Brown Boobies Sula leucogaster). Only a small 288 

fraction of a designated MPA overlapped the key area identified for Northern seabirds in the 289 

summer: the Litoral Centro Environmental Protection Area. During winter, the key area for 290 

Northern seabirds was in pelagic waters, over the gyre northeast of the Rio Grande Rise, where 291 

there is a large elevation of the seabed. Currently no EBSA or IBA has been proposed in this 292 

region. Finally, the year-round key area for Northern seabirds was on the shelf slope and pelagic 293 

waters off northern Brazil, reaching as far as an oceanic ridge, where there is a strong upwelling 294 

from the Amazon River (Fig.4). Roughly, one-third of this area overlapped with the 295 

Amazonian-Orinoco EBSA, proposed due to the enhanced marine productivity occurring within 296 

this area (Fig.4). The overlap of our proposed key areas with existing MPAs was minimal (less 297 

than 1% Table 2). The percentage of mIBAs and EBSAs overlapped by our key areas was also 298 

minimal, however overlap of Northern areas with EBSAs was substantially greater than 299 

Southern areas, while Southern Areas were more overlapped by proposed mIBAs than Northern 300 

areas (Table 2). 301 

Cost analysis 302 

The use of cost constraints for Southern seabirds resulted in few spatial differences of values 303 

when using Fishing Density as a cost layer, but higher conservation values in pelagic areas 304 

shifted north when using Ship Density as a cost layer (Supporting Information Fig. S9). On the 305 

other hand, using Fishing Density as a cost layer for Northern seabirds displaced the zones of 306 

high values to spread south, and to spread to pelagic areas when Ship Density was the cost layer 307 

(Supporting Information  Fig. S10). 308 

The differences of both cost models were significant among Time-Frames (χ2
26,6222= 309 

4143.9, P<0.001). The higher changes in values for Southern occurred when we used Fishing 310 

Density as a cost layer during summer, for both No Cost and Cost models, for winter when 311 

using Ship Density No Cost model and for year when using Ship Density Cost model (Fig.5, 312 

Supporting Information Table S2). On the other hand, the change in values for Northern were 313 

higher for year-round for both No Cost and Cost models and for both Fishing and Ship Density 314 
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cost layer, despite using Ship Density there was also a high change of value during summer for 315 

both cost models (Fig.5, Supporting Information Table S2). 316 

Discussion 317 

In our study, we considered a modelling approach that distinguishes between ecological groups 318 

and accounts for seasonality in distribution of pelagic seabirds, with a view to identify a more 319 

representative network of key sites that would be more effective year-round MPAS. This 320 

approach located areas where currently there are few designated or proposed MPAs, suggesting 321 

that a community integrated approach can be an effective way to propose new pelagic MPAs 322 

(Yorio, 2009; Ronconi et al., 2012; Thaxter et al., 2012) in addition to proposals which use one 323 

or few attributes of one area, such as the presence of seamounts, reefs, or the occurrence of one 324 

focal species (Arcos et al., 2012; Grecian et al., 2012; Dunn et al., 2014). 325 

High Valued Areas, Threats and Benefits 326 

We placed the most important area for Southern seabird species within the southwest Atlantic at 327 

the southern Argentina shelf slope, and around the Falkland Islands. This area has long been 328 

recognized as important for marine predators and conservation of biodiversity (Croxall & 329 

Wood, 2002). This is reflected in the large number of proposed BirdLife International mIBAs 330 

(BirdLife International 2015), and several designated coastal MPAs, including the large reserves 331 

of Namuncurá and Isla de losEstados (Argentine National Parks; Marine Conservation Institute 332 

2015). These waters are used by several and abundant seabird species during the breeding and 333 

non-breeding seasons, including birds from Patagonia (Yorio et al., 1999; Yorio, 2009), 334 

Falkland Islands (Grémillet et al., 2000; White et al., 2002), South Georgia (Croxall & Wood, 335 

2002; Croxall et al., 2005; Phillips et al., 2006a; Navarro et al., 2015), Tristan da Cunha and 336 

Gough (Ronconi, Ryan & Ropert-Coudert, 2010; Reid et al., 2013), and New Zealand (Nicholls 337 

et al., 2002). Marine mammals also rely on this area during part of the year, including Fin 338 

(Balaenoptera physalus), Sei (B. borealis), Minke (B. acutorostrata), Sperm (Physester 339 

macrocephalus), Southern Bottlenose (Hyperoodon planifrons) and Long-finned Pilot 340 

(Globicephala melas) whales, Hourglass (Lagenorhynchus cruciger), Peale’s (L. australis) and 341 
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Commerson’s (Cephalorhynchus commersonii) dolphins, Fur Seals (Arctocephalus spp.) and 342 

Southern Elephant Seals (Mirounga leonina) (White et al., 2002). The attractiveness of this area 343 

for marine top predators results from the extensive, year-round upwelling that extends from sub-344 

Antarctic to temperate waters, which supports a rich food web, including diverse communities 345 

of abundant squid and fishes (Acha et al., 2004; Miloslavich et al., 2011). As a consequence of 346 

such rich communities, both fishing vessels and seabirds target those areas (Grémillet et al., 347 

2000, 2008; Wakefield, Phillips & Belchier, 2012). In fact we found a higher “exposition” of 348 

seabird to fisheries, which is well-known for the study area (Xavier et al., 2004; Bugoni et al., 349 

2008; Jiménez et al., 2010, Krüger et al., 2016a), and elsewhere (Anderson et al., 2011; 350 

Lewison et al., 2014). In the other hand, the vessel traffic is a potential source of threat for 351 

marine fauna, by oil (Halpern et al., 2008, 2015; Hatch et al., 2008) and noise (Morton & 352 

Symonds, 2002; Weilgart, 2007; Codarin et al., 2009) pollution. 353 

The different time-frame approaches resulted in completely different value outputs for 354 

Northern seabird species, which reflects the seasonality of species present in the area throughout 355 

the year. This is mostly a consequence of migratory species such as Deserta’s Petrel, Trindade 356 

Petrel and Cory’s Shearwater. It also reflects the different types of habitats targeted by these 357 

species. The highly valued area during summer supports a highly diverse coastal ecosystem, 358 

including corals reefs (Roberts et al., 2002) and mangroves (Polidoro et al., 2010), and a 359 

relatively narrow shelf with several seamounts (Miloslavich et al., 2011), supporting several 360 

taxa, particularly sharks, cetaceans and euphausiids (Tittensor et al., 2010), and is intensively 361 

used by the species in this study, as evidenced by other authors (Dias et al., 2011; Catry et al., 362 

2013; Dias, Granadeiro & Catry, 2013; Ramírez et al., 2013; Missagia et al., 2015; Krüger et 363 

al., 2016a). During winter, the most important areas matched with an area of low biodiversity 364 

(Tittensor et al., 2010) and low productivity near the South Atlantic tropical gyre. Short-term 365 

decreases in chlorophyll concentration within gyres due to climate shifts are a potential issue of 366 

concern, with implications for management (Gregg, Casey & McClain, 2005; Polovina, Howell 367 

& Abecassis, 2008; Irwin & Oliver, 2009). This area also overlaps with the non-breeding 368 
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distribution of the Critically Endangered Tristan Albatross (Reid et al., 2013), and the at-sea 369 

distribution during the breeding season and immediate post-breeding period of the Vulnerable 370 

Trindade Petrel (Krüger et al., 2016b). The important areas year-round matched the upwelling 371 

where the Amazon and Orinoco river plumes reach seamounts and islands, such as Fernando de 372 

Noronha and São Pedro and São Paulo (Kitchingman et al., 2008; Miloslavich et al., 2011). It is 373 

important to emphasize that the high valued (99%) year-round areas reflected more the suitable 374 

habitat for the species than the bulk of species distribution (i.e. Gonzáles-Solís et al., 2009, 375 

Ramírez et al., 2013, 2015), despite the lower values (0.90) embraced those areas presented by 376 

those authors. However the 99% valued area is recognized as biologically important for the 377 

intense upwelling, which supports a biodiverse ecosystem (Tittensor et al., 2010; Miloslavich et 378 

al., 2011; Selig et al., 2014), so highliting the value of this area for conservation, which is used 379 

less frequently by the seabird species in this study 380 

Many of our study species ingest large amounts of plastic debris (Petry & Fonseca, 381 

2002; Jiménez et al., 2015), and the sensitivity of the Northern species to Plastic pollution 382 

evidences that. The drifting model used in this study (Van Sebille et al., 2012) assumes that 383 

plastic particles are carried by currents and accumulate in zones of lower current speed, mainly 384 

gyres (Van Sebille, 2015). Titmus & David Hyrenbach (2011) found that some seabird species 385 

target those same areas of plastic concentration, because they tend to be characterised by a high 386 

occurrence of squid and flying fish (Titmus & Hyrenbach, 2011; Wilcox et al., 2015). Our 387 

results provide circumstantial supporting evidence, but highlight the need for more studies to 388 

evaluate the overlap of seabird distribution with floating plastics, and the associated risk. 389 

Similarly, direct evaluations of the effects and implications of spatial variation in rates of ocean 390 

acidification for seabirds are lacking. Acidification is linked to enhanced levels of CO2 in the 391 

atmosphere released by human activities (Cao & Caldeira, 2008). Severe decreases in pH may 392 

affect lower trophic levels in food webs (Cao & Caldeira, 2008; Pörtner & Peck, 2010; Hale et 393 

al., 2011), with consequent impacts on top predators (Grémillet & Boulinier, 2009). 394 
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The assemblage approach to identify candidate MPAs revealed important areas missed in 395 

previous efforts to define both EBSAs (Dunn et al., 2014) and BirdLife International mIBAs 396 

(Lascelles et al., 2012; Ronconi et al., 2012), although in other respects there was some overlap. 397 

As the currently designated MPAs are all coastal (Marine Conservation Institute 2015), our 398 

analyses of tracking data from pelagic seabirds showed almost no overlap with areas that are 399 

presently protected by national legislation. 400 

Potential Costs 401 

We found an assemblage and time-frame differential change in costs that suggests that the use 402 

of seasonal protected areas could mean less impact on human activities to achieve high 403 

conservation value as proposed by Hyrenbach, Forney & Dayton (2000). For instance, by 404 

changing the fishing density by half, the changes for values within the key Southern areas did 405 

not change substantially in relation to the no-cost model. On the other hand, for Northern areas, 406 

the changes in value were relatively higher when applying cost layers, and for all the cost 407 

models the non-seasonal approach always resulted in a higher change in values. That’s probably 408 

a result of the higher seasonality for the species occurrence in the northern areas, whereas the 409 

occurrence of species in the south off Patagonia and subantarctic waters is more constant 410 

throughout the year. Leathwick et al. (2008) also showed that changes in conservation value of 411 

an area compared between models with and without use of cost layers can vary from 5% to 412 

10%, but in our case the mean differences could reach as high as 50% for Northern seabirds. 413 

Conclusions 414 

By assigning seabirds to different assemblages, we were able to detect additional candidate 415 

areas for protection not recognised in previous marine spatial planning initiatives for FAO 416 

Region 41 in the southwest Atlantic Ocean. Hence, our results help guiding conservation 417 

decisions at both national and international levels, in terms of potential new MPAs and 418 

implementation of those already designated or proposed as EBSAs or mIBAs. Our analysis 419 

support the network of areas proposed as mIBAs in sub-Antarctic waters; the ultimate goal of 420 

BirdLife International is that these areas receive statutory protection (BirdLife International 421 
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2015). We also call attention for the need to delineate protected areas in pelagic tropical waters 422 

both within the Brazilian EEZ, and in international waters. Those unprotected regions are 423 

important seasonally or year-round, and are subject to a wide array of Human-related threats. 424 

While in most cases the establishment of MPAs is aimed at improving management of 425 

fishing activities (Pitchford et al., 2007; Stevenson et al., 2013) several other factors may 426 

threaten species and ecosystems. Human activities, such as fishing, ship traffic and oiling, may 427 

be controllable to a large extent if there is a means of enforcing compliance with effective 428 

management regimes, but other threats associated with dynamic features of natural systems, 429 

such as ocean acidification and plastic pollution, present considerable challenges in the design 430 

and implementation of MPA networks (Conroy et al., 2011). 431 

The application of our approach to other oceans should reveal new areas to be 432 

incorporated in conservation networks. The benefits elsewhere would be highly dependent on 433 

the degree of seasonality in predator distributions, but it seems likely there are parallel situations 434 

where areas are only used for part of the year by migratory species. We envisage that this 435 

technique can be used on finer temporal (e.g. incubating versus chick rearing periods) and 436 

spatial (e.g. by the use of GPS or PTT devices) scales. 437 
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Table 1 Seabird species included in the study. Smoothing cell size corresponds to the number of grid cells used for distribution smoothing in Zonation 
software for the analysis of habitat connectivity, and reflects the minimum area of habitat required for a species to occur. Cell sizes differ according to body 
size, following the approach of Leathwick et al (2008). Each species was assigned to one of two assemblages based on its core distribution relative to the 
mean position of the northern boundary of the Subtropical Front (Burls and Reason 2006): Temperate (TE) and tropical (TR) species. IUCN Status: LC=Least 
Concern, NT=Near Threatened, VU=Vulnerable, EN=Endangered, CR=Critically Endangered. Colony of the tracked animals is presented. Number of tracked 
individuals (N), tracked years and source of the tracking data. 
 
 

CommonName Species 
Abbreviatio

n 
Size Range 

(cm) 
Assemblag

e 
IUCN 
Status 

Colony N Years Source 

Tristan Albatross 
Diomedea 
dabbenena 

TA 110 Northern CR Gough Island 34 
2004, 
2005, 
2006 

Reid et al 
(2013) 

Wandering Albatross Diomedea exulans WA 120-135 Southern VU Bird Island (South Georgia) 18 2003 
Mackley et 
al (2010) 

Black-browed 
Albatross 

Thalassarche 
melanophris 

BBA 80-96 Southern NT 
Bird Island (South Georgia), New Island 

(Falklands) 
57 

1996, 
1997, 
2002, 
2003 

Grémillet et 
al (2000), 

Mackley et 
al (2010) 

Grey-headed 
Albatross 

Thalassarche 
chrysostoma 

GHA 70-85 Southern EN Bird Island (South Georgia) 35 
2003, 
2006 

Croxallet al 
(2005) 

Northern Giant Petrel Macronectes halli NGP 80-95 Southern LC Bird Island (South Georgia) 25 
1999, 
2001 

González-
Solís et al 

(2008) 

Southern Giant Petrel 
Macronectes 
giganteus 

SGP 85-100 Southern LC 
Bird Island (South Georgia), Elephant Island 

(South Shetlands) 
40 

1999, 
2001, 
2011 

González-
Solís et al 

(2008), 
Krüger et al 

(2016) 

White-chinned Petrel 
Procellaria 
aequinoctialis 

WCP 51-58 Southern VU South Georgia 11 
2003, 
2004 

Phillips et 
al (2006) 

Antarctic Prion Pachyptila desolata AP 25-27 Southern LC South Georgia 10 
2009, 
2010 

Quillfeldt et 
al (2013) 

Deserta's Petrel Pterodroma deserta DP 35 Northern VU Bugio Island 24 
2007, 
2008, 
2009, 

Ramírez et 
al (2013) 
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2010 

Trindade 
Petrel 

Pterodroma 
arminjoniana 

TP 37-40 Northern VU Trindade Island 4 
2013,201

4 
Krüger et al 

(2016.) 

Cory's Shearwater Calonectris borealis CS 46 Northern LC Berlenga, Azores and Canary Islands 41 

2002, 
2003, 
2004, 
2011, 
2012 

González-
Solís et al 

(2009), 
Missagia et 
al (2016) 

Great Shearwater Ardenna gravis GS 46-51 Southern LC Gough Island 37 
2008-
2012 

González-
Solís 

Manx Shearwater Puffinus puffinus MS 30-35 Southern LC Heimeaey, Iceland 10 
2006,200

7 

González-
Solíset al 

(2009) 

Cape Verde 
Shearwater 

Calonectris 
edwardsii 

CVS 34 Northern NT Cape Verde Isalnds 26 
2006,200

7 

González-
Solíset al 

(2009) 



  28

Table 2 Percentage of proposed key areas overlapping and overlapped by the IBAs, EBSAs and 
current MPAs. 

Assemblage 
 

IBA 
confirmed 

IBA 
proposed 

EBSA MPAs 

South Overlap with 0.058 1.195 0.000 0.000 
North 0.000 0.382 3.559 0.002 
South Overlapped by 0.053 8.397 0.000 0.026 
North 0.000 1.139 15.345 0.037 
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List of Figures 
 
Figure 1 Canonical Correspondence Analysis bi-plots presenting the position of Northern 
species (red labels), Southern species (blue labels) and environmental – threats and coordinates 
– (black labels) for Summer (a), Winter (b) and all Year (c). Boxplots presenting the distribution 
frequency of the bi-dimensional distance of species from threats for Northern species during 
Summer (d), Winter (e) and all Year (f), and Southern species during Summer (g), Winter (h) 
and all Year (i). Top outliers in ‘h’ and ‘i’ are White-chinned Petrel values. 
 
Figure 2 Zonation outputs in proportion to value based on the probability of occurrence of 
species given their weight and response to fragmentation for Summer (a), Winter (b) and year-
round (c). Also shown the Official Marine Protected Areas (MPAs, red lines), Ecologically or 
Biologically Significant Areas (EBSAs; green lines; https://www.cbd.int/ebsa/) and confirmed 
(light blue lines) or proposed (dark blue lines) BirdLife marine IBAs 
(http://maps.birdlife.org/marineIBAs/default.html). 
 
Figure 3 The zonation calculated area value in relation to the Species Occurrence Probability 
(a,c,e) and number of species occurrence (b,d,f). Linear trend for Southern (solid line) and 
Northern (dashed line) seabird assemblages. 
 
Figure 4 Key marine areas for 99% value threshold overlapped with Confirmed (light grey) or 
Proposed (dark grey) IBAs (http://maps.birdlife.org), Ecologically or Biologically Significant 
Marine Areas (EBSAs; dashed line; https://www.cbd.int/ebsa/) and designated MPAs (black 
line; http://www.mpatlas.org). Southern (1), Northern (2 and 3) seabirds during summer (red 
line), winter (blue line) and all year (green line). 
 
Figure 5 Change in values (proportion of reduction) within the proposed marine areas 
(thresholds 90%, 95% and 99%) when using Fishing and Ship Densities as cost layers to 
calculate importance values in Zonation. Southern (a) and Northern (b) seabirds. 
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Figure S1 Environmental variables used for the Species Distribution Modelling: (a) depth in 
meters; (b) Distance to coast (COAD) in degrees; chlorophyll-a concentration (CHL) in mg/m3, 
during (c) summer and  (d) winter; chlorophyll-a concentration anomaly CHLAN in decade 
variability of mg m-3, during (e) summer and (f) winter; CHL gradient (CHLGR) in percentage 
of mgm-3 variation per meter during (g) summer and (h) winter; sea surface height SSH in 
meters during (i) summer and (j) winter; sea surface height anomaly (SSHAN) in variability of 
meters per decade during (k) summer and (l) winter; sea surface temperature SST in °C during 
(m) summer and (n) winter; sea surface temperature anomaly (SSTAN) in variability of °C per 
decade during (o) summer and (p) winter; sea surface temperature gradients in percentage of °C 
change per meter during (q) summer and (r) winter; wind speed in meters per second during (s) 
summer and (t) winter. Year variables were the average of both summer and winter. 

 



SI Sensitivity analysis of the Zonation outputs when using different weighting values 

The aim of this section is to provide an analysis of the method we used to weight 
species distribution by the IUCN conservation status, and the habitat connectivity response (in 
Zonation software called as Boundary-Quality Penalty Curves BQPCs). We used the full weight 
method that is in the main text to give value to the year-round distribution of all species. 

Full model: Each species was weighted by its IUCN conservation status as follows, 
least concern (LC) = 1; near threatened (NT) = 2; vulnerable (VU) = 3; endangered (EN) = 4 
and critically endangered (CR) = 5. Boundary Quality Penalty Curves, which are measures of 
species responses to habitat connection, were constructed empirically based on the IUCN 
conservation status. We generated linear responses with changing slopes for CR = -0.01, EN = -
0.008, VU = -0.004, NT = -0.002 LC = 0.0.  

We also generated three other different weight methods: a null model where the weight 
given for all species is the same (1) and the response to habitat connection (βh) is constant; a 
model where LC weights 1 with βh constant and the other levels (NT, VU, EN, CR) weights 2 
with βh = -0.002 (weight model #1), a model where LC weights 1 with βh constant, NT weights 
2 with βh = -0.002, and other levels (VU, EN, CR) weight 3 with βh = -0.004 (weight model #2). 
Then we tested via simple regression how these three methods are similar to the full model and 
tested how the probability of species occurrence is related to those weighting outputs through 
cubic regression. 

We found that a null model with equal weight and no βh variation means that the 
software will give more value to pixels isolated from the edges of the study area, without being 
realistic nor reflecting any oceanographic process intrinsic to the species distribution, but 
probably embracing the edges of most species distribution (Fig. S5). It means that high values in 
this case were concentrated in the middle of the study area (Fig. S5) and were completely 
opposed to the output we proposed (F1,1652 = 3.29, β = -0.14, P=0.07). On the other hand, one 
single differentiation on the weights in two (F1,1652 = 31.18, β = 0.18, P<0.001) and three (F1,1652 

= 1556.6, β = 0.8, P<0.001) groups was enough to approximate the values to the full model 
output (Fig. S6).The null model weakly reflected the overall distribution of species (R2=0.04, 
F1,1652 = 24.55, P = 0.09), while the other weight models #1 (R2 = 0.53, F1,1652 = 613.6, P<0.001), 
#2 (R2 = 0.63, F1,1652 = 952.2, P<0.001) and the full model  (R2 = 0.69, F1,1652 = 1238.0, P<0.001) 
did significantly explained the species distribution (Fig. S7).  

 



  

Figure S2 Zonation output showing the how much the values attributed to each pixel change by 
the weighting method used in building the (a) null model, (b) weight model #1, (c) weight  
model #2 and (d) the full model. 

 

Figure S3 Regression between the full model and the new weight models. Lines are linear 
trends ±SE. 



 

 

Figure S4 Relation between the overall species probability of occurrence and zonation value for 
each of the four models. Lines are cubic trend ± SE. 



SII Mehods for calculating environmental threat variables. 

A total of five threat variable were used:  ocean surface acidification, oil pollution risk, 

plastic accumulation, ship density and fishing intensity (Fig. S8). All environmental variables 

were standardized to have a mean of 0 and an SD of 1 due to differing ranges of variables. Such 

standardization was executed by dividing each absolute value by the respective maximal value 

of the environmental variable (Zuur, Ieno & Smith, 2007). 

Ocean surface acidification was measured in terms of normalized changes in aragonite 

saturation state between pre-industrial and modern times, which is a compound that enhances 

when Ph decreases (Halpern et al., 2008). The acidification image was generated by Halpern et 

al.(2008), and we are using it as it is in the publication. 

For risk of oil pollution we used the areas of oil accumulation proposed by Halpern et 

al.(2008). A Nearest Natural Neighbor Interpolation was used to calculate a risk based on the 

distance from these pollution areas, being the cells presented by Halpern et al.(2008) with value 

1.0, and decreasing according to the distance. 

Plastic accumulation was estimated using a dynamic particle flotation model based on 

movement of buoys (van Sebille, England & Froyland, 2012; van Sebille et al., 2015; van 

Sebille, 2014). The model takes in account the coastal population density as a proxy for source 

of pollution, and predicts the probability of the movements of those particles due to ocean 

currents for each two month periods along a 1°x1° spatial grid. As there are different outputs if 

we use different periods of the year as the start of the modeling, we run models for all the two 

month periods along ten years. Each 2 month period output images were used to calculate an 

average image. This means that for cells with higher values there is a greater probability of 

plastic accumulation accounting for all possible scenarios. Thus the final images accounted also 

for the movement of the particles instead of only the final destination of the particles at the end 

of the 10-year period. We also considered a model with a constant particle release and a single 

release in time, to make the model more realistic, and calculated a mean of both. 

Ship density was computed from the ship density shapefiles made available by the 

PASTA-MARE project (LuxSpace, 2010) which takes in account three month Satellite 

Automatic Identification System S-AIS movement of 62000 vessels on a global scale. The 

technical report (LuxSpace, 2010) shows a similarity between their results and two longer term 

data bank of the Voluntary Observing Ship from the World Meteorological Organization 

WMO-VOS (Halpern et al., 2008) which uses one year data of 3374 commercial and research 

vessels, and Automated Mutual-assistance Vessel Rescue system AMVER that uses 3809 

commercial vessels. We believe that the PASTA-MARE project is more accurate in terms of 

characterizing the ship density per area in relative terms because it uses all the available data for 



any type and flag of vessels, while the more long-term data for VOS and AMVER are probably 

biased for the more representative types of vessels. We correlated the  Halpern et al. (2008) with 

the PASTA-MARE results using a spatial correlation analysis on Spatial Analysis in 

Macroecology SAM software (Rangel, Diniz-Filho & Bini, 2010), and found a significant 

adjustment between both (R=0.61, F=28.8, P<0.001) meaning that the short term data from 

PASTA-MARE is a fair approximation for a year-long data bank. Fishing intensity was 

measured as the fishing vessel density from the PASTA-MARE data (LuxSpace, 2010). 
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Figure S5 Environmental change variables: (a) ocean surface acidification (ACID) measured in 
terms of normalized changes in aragonite saturation state between pre-industrial and modern 
times (see Halpern et al 2008); (b) Risk of oil pollution (OIL) measured as a distance 
probability given the known points of oil spills or oil platforms from Halpern et al (2008) as 
value 1; (c) 10-year mean percentage of plastic pollution (PLASTIC) based on the particle drift 
model (Van Sebille et al 2012 2015); (d) ship density (SHIP) as the average abundance of 
vessels per grid cell (LuxSpace 2010); (e) fishing intensity (FISH) is a measure of density of 
fishing vessels. 

 



Table S1 Loadings from the PCA. The values represent the proportion of each variable that is 
explained by each of the PCA axis, and the signal (- or +) indicates the relation of the variables 
with the axes. Variables with higher correlation on the same axis are not independent from each 
other, meaning that they vary together. Table presents results from the axis whose eigenvalues 
were above 1.0. Higher values for each variable by season are presented in bold. Chlorophyll 
(CHL), CHL anomaly (CHLAN), CHL gradient (CHLGR), coast distance (COAD), Depth 
(DEPTH), Sea Surface Height (SSH), SSH anomaly (SSHAN), Sea Surface Temperature (SST), 
SST anomaly (SSTAN), SST gradient (SSTGR), wind speed (WIND). 

Variables 
Summer Winter Year 

AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 

CHL 0.12 -0.64 0.10 -0.17 -0.03 0.60 0.00 0.57 0.01 -0.65 -0.06 -0.48 

CHLAN 0.11 0.05 0.01 -0.98 0.09 -0.21 0.04 -0.77 0.12 0.22 0.01 0.85 

CHLGR 0.43 -0.70 0.07 -0.01 0.57 0.67 0.06 -0.07 0.46 -0.74 -0.03 0.15 

COAD 0.24 0.72 -0.03 0.02 0.25 -0.73 -0.10 0.34 0.31 0.70 0.03 -0.35 

DEPTH -0.13 0.87 -0.07 -0.08 -0.17 -0.83 -0.08 0.11 -0.08 0.86 0.04 -0.11 

SSH -0.03 0.09 0.99 0.01 -0.01 -0.09 0.99 0.05 -0.01 0.06 -0.95 0.00 

SSHAN -0.04 0.10 0.99 0.01 -0.01 -0.10 0.99 0.05 -0.01 0.07 -0.95 0.03 

SST -0.94 -0.03 -0.01 -0.08 -0.94 0.00 -0.02 0.05 -0.93 0.06 0.00 -0.02 

SSTAN 0.75 0.16 0.01 -0.04 0.26 -0.16 -0.06 0.42 0.72 0.12 -0.03 -0.11 

SSTGR 0.84 -0.03 0.00 0.09 0.85 0.08 0.01 -0.10 0.83 -0.12 0.01 0.09 

WIND 0.83 0.23 0.00 0.00 0.78 -0.41 -0.03 0.10 0.82 0.29 0.01 -0.10 

 



 

 



 

Figure S6 Summer probability of occurrence of Black-browed Albatross (BBA), Cory’s 

Shearwater (CS), Cape Verde Shearwater (CVS), Deserta’s Petrel (DP), Grey-headed Albatross 

(GHA), Great Shearwater (GS), Manx Shearwater (MS), Northern Giant Petrel (NGP), Southern 

Giant Petrel (SGP), Tristan Albatross (TA), Trindade Petrel (TP), Wandering Albatross (WA), 

as estimated by MaxEnt models. Probability varies from 0 (dark blue) to 1 (dark red). 



 

Figure S7 Winter probability of occurrence of Antarctic Prion (AP), Black-browed Albatross 

(BBA), Grey-headed Albatross (GHA), Northern Giant Petrel (NGP), Southern Giant Petrel 

(SGP), Tristan Albatross (TA), Trindade Petrel (TP), Wandering Albatross (WA), White-

chinned Petrel (WCP), as estimated by MaxEnt models.Probability varies from 0 (dark blue) to 

1 (dark red). 

 



 

Figure S8 Year-round probability of occurrence of Antarctic Prion (AP), Black-browed 
Albatross (BBA), Cory’s Shearwater (CS), Cape Verde Shearwater (CVS), Deserta’s Petrel 
(DP), Grey-headed Albatross (GHA), Great Shearwater (GS), Manx Shearwater (MS), Northern 
Giant Petrel (NGP), Southern Giant Petrel (SGP), Tristan Albatross (TA), Trindade Petrel (TP), 
Wandering Albatross (WA), White-chinned Petrel (WCP), as estimated by MaxEnt models. 
Probability varies from 0 (dark blue) to 1 (dark red). 



 

 

Figure S9 Zonation value for the different cost models, for southern seabirds. 



 

 

Figure S10 Zonation value for the different cost models models, for northern seabirds. 



Table S2 Generalized Linear Mixed Model results comparing change in values for the proposed 
key marine areas between seabird assemblages (Southern and Northern) and time-frames 
(summer, winter, year) when using different cost models (no cost and cost for Fishing Density 
and Ship Density). 

Models β SE t 

(Intercept) 0.0913 0.0142 6.44 

Assemblage:Northern 0.0966 0.0113 8.58 

Time-Frame:Winter -0.0441 0.0113 -3.92 

Time-Frame:Year -0.0460 0.0113 -4.09 

Cost-Model:Fishery Cost -0.0078 0.0113 -0.7 

Cost-Model:Ship No Cost 0.0015 0.0113 0.13 

Cost-Model:Ship Cost 0.0014 0.0113 0.13 

Assemblage:Northern* Time-Frame:Winter 0.1936 0.0162 11.93 

Assemblage:Northern:* Time-Frame:Year 0.5585 0.0159 35.06 

Assemblage:Northern* Cost-Model:Fishery Cost 0.0667 0.0159 4.19 

Assemblage:Northern* Cost-Model:Ship No Cost 0.3094 0.0159 19.42 

Assemblage:Northern* Cost-Model:Ship Cost 0.3206 0.0159 20.13 

Time-Frame:Winter* Cost-Model:Fishery Cost 0.0083 0.0159 0.52 

Time-Frame:Year* Cost-Model:Fishery Cost 0.0105 0.0159 0.66 

Time-Frame:Winter* Cost-Model:Ship No Cost 0.1292 0.0159 8.11 

Time-Frame:Year* Cost-Model:Ship No Cost 0.0502 0.0159 3.15 

Time-Frame:Winter* Cost-Model:Ship Cost 0.0513 0.0159 3.22 

Time-Frame:Year* Cost-Model:Ship Cost 0.0694 0.0159 4.36 

Assemblage:Northern* Time-Frame:Winter* Cost-Model:Fishery Cost -0.0509 0.0229 -2.22 

Assemblage:Northern* Time-Frame:Year* Cost-Model:Fishery Cost -0.0847 0.0225 -3.76 

Assemblage:Northern* Time-Frame:Winter* Cost-Model:Ship No Cost -0.5062 0.0229 -22.07 

Assemblage:Northern* Time-Frame:Year* Cost-Model:Ship No Cost -0.4450 0.0225 -19.76 

Assemblage:Northern* Time-Frame:Winter* Cost-Model:Ship Cost -0.4255 0.0229 -18.55 

Assemblage:Northern* Time-Frame:Year* Cost-Model:Ship Cost -0.4885 0.0225 -21.69 
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