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ABSTRACT 

In their recent paper, Staver and Hansen (Global Ecology and Biogeography, 2015, 24, 985-987) refute 

the case made by Hanan et al. (Global Ecology and Biogeography, 2014, 23, 259–263) that the use of 

classification and regression trees (CARTs) to predict tree cover from remotely sensed imagery (MODIS 

VCF) inherently introduces biases, thus making the resulting tree cover unsuitable for showing alternative 

stable states through tree cover frequency distribution analyses. We here provide a new and equally 

fundamental argument why the published frequency distributions should not be used for such purposes. 

We show that the practice of pre-average binning of tree cover values used to derive cover values to train 

the CART model will also introduce errors in the frequency distributions of the final product. We 

demonstrate that the frequency minima found at tree covers 8 % to 18 %; 33 % to 45 %; and 55 % to 

75 % can be attributed to numerical biases introduced when training samples are derived from landscapes 

containing asymmetric tree cover distributions and/or a tree cover gradient. So it is highly likely that the 

CART, used to produce MODIS VCF, delivers tree cover frequency distributions that do not reflect the 

real world situation.  
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Main body of text: 

The MODIS VCF tree cover product of Hansen et al. (2002b) provides worldwide estimates of 

percentage tree cover derived from MODIS data. Discontinuities in tree cover frequency distributions 

derived from this data have been used to support the hypothesis that the observed distribution of forest, 

savanna and grassland vegetation in the tropical and boreal regions of the world represent alternative 

stable states for equivalent environmental conditions (Hirota et al., 2011; Staver et al., 2011; Favier et al., 

2012; Murphy & Bowman, 2012; Scheffer et al., 2012; Xu et al., 2016).  But recently Hanan et al. (2014, 

2015)   suggested that the adopted classification and regression trees (CART) approach, used to produce 

the MODIS VCF tree cover estimates, introduced a systematic bias which makes the MODIS VCF 

product inappropriate for the analysis of % tree cover frequency distributions. This point was countered 

by Staver and Hansen (2015) arguing (i) that the approach taken by Hanan et al. (2014), using simulated 

EO data and pseudo satellite metrics to demonstrate that an artificial bias is generated by the CART 

approach, does not reflect the complexity and variability of landscapes and vegetation across the globe 

and (ii) that the CART model used by Hanan et al. (2014) was highly pruned with very few nodes (nodes 

= 9) compared to that used for the MODIS VCF product (nodes = 109) resulting in a less smooth gradient 

of % tree cover values. In this analysis we show that the VCF tree cover product likely also contains 

systematic bias which is introduced in the pre-processing of calibration data used to train the CART 

model. Such errors would exacerbate the problem of aggregation in the CART predictions already 

demonstrated by Hanan et al. (2014).  

The VCF product is the result of a continuously developing method which has been documented in a 

succession of publications (DeFries et al., 1999; Defries et al., 2000; Hansen et al., 2002a; Hansen et al., 

2002b; Hansen et al., 2003; Hansen et al., 2005). The most recent version is referred to as MOD44B 

collection 5, it is available at a 250 m resolution and supersedes the previous collections, including the 

500 m MOD44B collection 3. Collection 5 was used in the most recent study of Xu et al. (2016), while 

collection 3 was used in the majority of the publications about discontinuities in tree-cover distributions 

(Hirota et al., 2011; Staver et al., 2011; Favier et al., 2012; Murphy & Bowman, 2012; Scheffer et al., 

2012).  

 

The approach used to create the VCF product relies on two critical components: (i) the creation of 

training samples and (ii) the implementation of a CART model that derives % tree cover from a collection 

of MODIS-based metrics.  The design (number of nodes, the choice of regression variables from the pool 

of MODIS-based metrics, and the regressions) of the CART model is determined by the training samples. 
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In other words, during training, the design of the CART is tailored to best reproduce the % tree cover 

values of the training samples. The method for deriving the samples, that are used to train the CART 

model, has remained the same between collections (DiMiceli et al., 2011; Townshend et al., 2011) and so 

the argument below applies to all VCF versions, including the most recent MOD44B collection 5.  

 

Summarizing from Hansen et al. (2002b) (also in VCF User Guide), training samples are created as 

follows: 30 m Landsat Thematic Mapper image pixels are assigned one of four discrete % tree cover 

classes (0 %, 25 %, 50 %, 80 %) with their boundaries defined as (0-10 %, 11-40 %, 41-60 %, 61-100 %) 

respectively.  These classified 30 m Thematic Mapper images are then re-gridded to produce 500 m (or 

250 m) training pixels, matching the size of the MODIS pixels. The resulting % tree cover values 

represent the average of the 30 m pixel class values contained within each 500 m pixel. In short, the 

training values represent weighted averages of the discrete values 0 %, 25 %, 50 % and 80 %, with the 

weights defined by the number of 30 m pixels found within the 500 m pixels having one of the respective 

four values. We here evaluated the impact of deriving a % tree cover gradient in this manner, which we 

will henceforth refer to as ‘averaging with pre-average binning’,  by first (i) considering a range of one-

dimensional cover distributions through a semi-analytical experiment and then (ii) evaluating the effect of 

spatial auto-correlation through a two-dimensional Monte Carlo simulation experiment. 

 

The semi-analytical experiment involved simulations using the Beta distributions (Taboga, 2012). The 

Beta distribution enabled us to represent a wide variety of possible continuous tree cover distributions 

found within a training pixel (i.e. 500 m pixel) by varying the shape parameters α and β of the distribution 

(see Fig. S1.1) and the % tree cover range (i.e. 0-100 %, 0-80 %, 20-100 %) (see Appendix S1 in 

Supporting Information for detail). Pre-average binning into bin-classes 0.5 % (~ 0 %), 25 %, 50 % and 

80 % is achieved through a subdivision of the distribution 𝑩(𝛼, 𝛽) into four pieces, using three break 

points z1= 0.1; z2= 0.4 and z3= 0.6 and calculating the inferred mean x̂ : 

 

〈x̂〉 =
∫

z1
2

𝐁(α,β)
z1

0
dx+∫ (z1+

z2−z1
2

)𝐁(α,β) dx
z2

z1
+∫ (z2+

z3−z2
2

)
z3

z2
+∫ (z3+

1−z3
2

)
1

z3
𝐁(α,β)dx

∫ 𝐁(α,β)
1

0
dx

 (1) 

 

where  𝐁(α, β) = x(α−1)(1 − x)(β−1) and α and β are the shape parameters (⪈ 0); the denomenator   

∫ 𝑩(𝛼, 𝛽)𝑑𝑥
1

0
  can be regarded as a normalising factor. Full details of the derivation of Eqn 1 can be 

found in Appendix S1 in Supporting Information. Testing for any bias was undertaken through a 

comparison of the inferred mean x̂ with the true mean 𝑥̅ . Specifically, we tested for many random 
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values of α and β (> 0.5 and  ≤ 6 ) postulating that if there was no bias introduced through binning, the 

inferred mean would match the true mean.  

Results from this semi-analytical experiment clearly demonstrate that binning % tree covers prior to 

averaging must introduce biases in the CART training samples when the original tree cover distribution 

within a tile is asymmetric. It is only when the distribution of % tree cover is perfectly symmetric that no 

error in the binned averages will occur (see Eqn A5 in Appendix S1 in Supporting Information). The 

magnitude of the bias and its location across the % tree cover axis is defined by the shape of the 

distribution and the % tree cover range within the tile, but a consistent tendency is for an overestimation 

in averages near the 20 % to 30 % and 65 % cover values and underestimation in averages near the 10 % 

to 15 % and the 40 % to 50 % cover values (Fig. 1). This pattern, although small, matches the discrepancy 

observed in the validation data for Africa shown in Fig. 1(b) of Staver and Hansen (2015).  

 

Monte Carlo simulations were designed to deliver theoretical two-dimensional landscapes of % tree 

cover, in the form of a 1000 x 1000 grid of values in a similar fashion to the above approach, but in this 

case allowing for spatial auto-correlation effects to be examined.  From these, training pixels % tree cover 

values were derived from averaging 20 x 20 grid cells (e.g. ~30 m Landsat pixels) into larger sized tiles 

(e.g. 500 m MODIS pixels). Tree covers were either binned or kept un-binned prior to the averaging into 

tiles. Again, we reasoned that if there was no bias introduced through binning, the variation in % tree 

cover over the resulting training pixels would be similar without a skew towards specific values of % tree 

cover. We focused on the effects of spatial auto-correlation, which is inherent in most landscapes 

(Gomez-Sanz et al., 2014) and in real tree cover gradients, by modelling and comparing (i) fully random 

Uniform and Beta distributions of tree cover, (ii) a sharp boundary landscape, in which half of the 

landscape was assigned a 100 % tree cover and the remaining half a 0 % tree cover, (iii) a patchy 

landscape of auto-correlated Beta distributions across the 0 % to 100 % tree cover range, (iv) a linear 

gradient of tree cover decreasing from 100 % to 0 % tree cover along the landscape x-axis, and (v) a 

complex gradient representing Beta distributions across the 0 % to 100 % tree cover range. More detail 

about the Monte Carlo simulations with example landscapes is given in Appendix S2 in Supporting 

Information. 

 

Noting first that, when the two-dimensional simulations were set up to produce the same random non-

spatially auto-correlated landscapes as in the semi-analytical experiment, the Monte Carlo approach gives 

almost identical results as the application of Eqn 1 (Fig. S2.4). It further seems that there is the 

introduction of a second strong bias effect in the case of landscapes with a tree cover gradient (Fig. 2). 

This result is considered in more detail in Appendix S2 and shows that in such a situation pre-average 
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binning causes the training pixel values to inevitably converge towards the bin-class averages. In other 

words, in gradually changing landscapes, the binning procedure considerably lowers the variation in % 

tree cover. This results in a dominant proportion of training pixels with bin-class average values of 0 %, 

25 %, 50 % and 80 %. Hence, binning tree cover values before averaging will inevitably underrepresent 

spatial variation and gradual transitions in tree cover. 

 

Having been trained by biased samples, the CART model must necessarily propagate these biases to the 

resulting % tree cover map. However because of (i) the complexity of real landscapes, (ii) the large 

number of nodes in the model, (iii) the introduction of a stepwise regression at each node to deliver a 

more contiguous range of values (Hansen et al., 2002b), and (iv) the variability in the uncertainties of the 

predicted tree cover, this bias will not always be immediately apparent. Of the published data we know of, 

the clearest evidence of a bias can be observed in (Hansen et al., 2005) and explains the 38 %-45 % 

discontinuity shown in Fig.1(b) of Staver and Hansen (2015). Hansen et al. (2005) produced, applying the 

VCF approach, 500 m % tree cover maps for a region in Zambia using 500 m training samples that did 

not undergo pre-average binning at the 30 m Thematic Mapper pixel scale.  Comparison with independent 

validation data show that in this case, the CART variants being tested were able to reproduce the 

continuous tree cover gradient observed in the validation data (Fig. 3(a)). But when the same validation 

data was used to evaluate the MODIS VCF collection 3 created using training samples that had undergone 

pre-average  binning  - Fig. 3(b) and also Fig.1(b) in Staver and Hansen (2015) - a clear reduction in 

values near the 10 % and 40 % cover range is revealed, indicating a bias. Similarly, the scattergram in 

Sexton et al. (2013) that compares the MODIS VCF collection 5 with validation data for 3 sites in 

America and one in Costa Rica suggests there may be a slight frequency minimum around the 60 % tree 

cover range, matching the conditions shown in Fig. 1 (g), (h) and (i). However without  a statistical test 

for unimodality (Hartigan & Hartigan, 1985) the data in this case is inconclusive. 

 

The bias will not always be readily noticeable. Moreover, the bias will not exist over areas where the 

corresponding training samples were derived from areas where there was no gradient and/or the tree cover 

distributions were symmetrical. As an example, the validation VCF scattergrams for the taiga-tundra 

transition zone, shown in Montesano et al. (2009) for the MODIS VCF collection 4, reveal no clear 

clustering of tree covers around the bin-class averages.  

 

We have demonstrated here that through the combined semi-analytical and two-dimensional Monte Carlo 

simulations and through data published by Hansen et al. (2005) that tree cover frequency minima and 

maxima could be caused by a bias in the samples used to train the CART model. This bias will be present 
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in all MODIS VCF collections, in areas where the majority of the corresponding training samples were 

derived from landscapes that have an asymmetric tree cover distribution, contain a tree cover gradient, or 

a combination of both.  This effect is likely to be further enhanced by the CART through the inherent 

aggregation of predicted values around nodal means. In support of Hanan et al. (2014), we argue that the 

MODIS VCF tree cover product should not be used to detect discontinuities in tree cover as, although 

landscapes vary across the globe, a majority will contain local tree cover distributions that are asymmetric 

and some will contain tree cover gradients.  
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Figure 1.   (a), (d) and (g) Scatter plots of training sample values (e.g. 500 m pixel) derived from 

averaging across smaller units (e.g. 30 m pixels) with (Inferred mean) and without (True mean) pre-

average binning; (b), (e) and (h): the histogram counts of the sample values; (c), (f) and (i) the difference 

in histogram counts.  The inputs are 1000 simulated Beta distributions made to fit a tree cover range of 0 

% - 80 % (a, b and c); 0% - 100 % (d, e and f) and 20 % - 100 % (g, h and i) respectively, with the Beta 

shape variables α and β varying between 0.5 and 6. 
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Figure 2.  (a) Histograms of the original tree cover values; and the training samples values (e.g. 500 m 

pixel) acquired through averaging (b) without pre-average binning or (c) with pre-average binning. The 

original values are from Monte Carlo simulated theoretical 2 dimensional landscapes showing a complex 

gradient defined using Beta distributions (See Appendix S2 for more detail). 
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Figure 3  (a) Fig. 7(d) of Hansen et al. (2005) showing the validation results for tree cover estimates 

predicted by one of the four CART variants that were tested for Zambia; all four variants used training 

sample values representing averages without pre-average binning, which resulted in very similar 

validation plots, one of which is shown here. (b) Fig. 12 of Hansen et al. (2005) showing the validation 

results for the tree covers of the MODIS VCF collection 3 product using the same Zambia reference data 

as in (a); here a CART was using training sample values representing averages with pre-average binning. 
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APPENDIX S1 

 

SEMI-ANALYTICAL SIMULATIONS 

For our simulation we utilise the Beta Distribution.  Examples of the Beta distribution with the shape 

variables α  and β  varying between 0.5 and 6 are given in Fig. S1.1.  

 

 

Figure S1.1   Examples of the Beta distribution for α and β varying between 0.5 and 6 

 

 

We can evaluate the impact of binning by subdividing the continuous Beta distribution  B(𝛼, 𝛽)  and 

comparing the inferred mean 〈𝑥〉 with the true mean 𝑥̅ . First taking the simple case of subdividing the 

continuous distribution into two, we calculate the inferred mean x̂ : 

〈𝑥̂〉 =
∫

𝑧1
2 𝐵(𝛼, 𝛽)

𝑧1 

0
𝑑𝑥 +  ∫ (𝑧1 +

1 − 𝑧1
2 ) 𝐵(𝛼, 𝛽)

1

𝑧1
𝑑𝑥

∫ 𝐵(𝛼, 𝛽)
1

0
𝑑𝑥

                                                   (A1) 

 

which can also be written as  

 

〈𝑥〉 =
∫

𝑧1
2 𝐵(𝛼, 𝛽)

𝑧1 

0
𝑑𝑥 + ∫

𝑧1
2 𝐵(𝛼, 𝛽)𝑑𝑥 + 0.5 ∫ 𝐵(𝛼, 𝛽)

1

𝑧1

1

𝑧1
𝑑𝑥

∫ 𝐵(𝛼, 𝛽)
1

0
𝑑𝑥

                                                   (A2) 

 

As is evident from the symmetries in Fig. S1.1  

 

𝑃𝑟[(𝐵: 𝛼, 𝛽) ≤ 𝑥] = 1 − 𝑃𝑟[(𝐵: 𝛼, 𝛽) ≤  (1 − 𝑥)]                                                                               (A3)    
 

from which it then follows that 

 

〈𝑥〉 =
∫

𝑧1
2 𝐵(𝛼, 𝛽)

𝑧1 

0
𝑑𝑥 +  ∫

𝑧1
2 𝐵(𝛼, 𝛽)𝑑𝑥 + 0.5 ∫ 𝐵(𝛽, 𝛼)

(1−𝑧1)

0

1

𝑧1
𝑑𝑥

∫ 𝐵(𝛼, 𝛽)
1

0
𝑑𝑥

                                           (A4) 

 

which reduces to (and using a slightly altered notation for convenience)  
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〈𝑥〉 = 0.5𝑧1 + 0.5
𝐵[(1 − 𝑧1), 𝛽, 𝛼]

𝐵(1, 𝛼, 𝛽)
                                                                                                              (𝐴5) 

    

Equation (A7) shows that unless z1 = 0.5 and β = α (i.e. the distribution is symmetrical) then 〈𝑥〉 ≠ 𝑥̅ . 

 

It is relatively straight forward to extend this analysis to the case of three breaks (to create four bins as in 

Hansen et al. (2002b)):    

〈𝑥〉 =
∫

𝑧1

2
𝐵(𝛼, 𝛽)

𝑧1 

0
𝑑𝑥 + ∫ (𝑧1 +

𝑧2 − 𝑧1

2
) 𝐵(𝛼, 𝛽)

𝑧2

𝑧1
𝑑𝑥 + ∫ (𝑧2 +

𝑧3 − 𝑧2

2
) 𝐵(𝛼, 𝛽)𝑑𝑥

𝑧3

𝑧2
+ ∫ (𝑧3 +

1 − 𝑧3

2
) 𝐵(𝛼, 𝛽)𝑑𝑥

1

𝑧3

∫ 𝐵(𝛼, 𝛽)
1

0
𝑑𝑥

         (A6) 

 

which then becomes 

〈𝑥〉 =
∫ 0.5𝑧1𝐵(𝛼, 𝛽)

𝑧1 

0
𝑑𝑥 + ∫ (0.5𝑧1 + 0.5𝑧2)𝐵(𝛼, 𝛽)𝑑𝑥 + ∫ (0.5𝑧2 + 0.5𝑧3)𝐵(𝛼, 𝛽)𝑑𝑥

𝑧3

𝑧2

𝑧2

𝑧1
+ ∫ (0.5𝑧3 + 0.5)𝐵(𝛼, 𝛽)𝑑𝑥

1

𝑧3

∫ 𝐵(𝛼, 𝛽)𝑑𝑥
1

0

         (A8) 

 

expressed alternatively as, 

〈𝑥〉 =
∫ 𝑧1𝐵(𝛼, 𝛽)

𝑧2 

0
𝑑𝑥 +  ∫ 𝑧2𝐵(𝛼, 𝛽)𝑑𝑥 + ∫ 𝑧3𝐵(𝛼, 𝛽)𝑑𝑥

1

𝑧2

𝑧3

𝑧1
+ ∫ 𝐵(𝛼, 𝛽)𝑑𝑥

1

𝑧3

2 ∫ 𝐵(𝛼, 𝛽)
1

0
𝑑𝑥

                                            (A9) 

 

which in terms of incomplete beta functions we express as   

〈𝑥̂〉 =
𝑧1𝐵(𝑧2, 𝛼, 𝛽) + 𝑧2[𝐵(𝑧3, 𝛼, 𝛽) − 𝐵(𝑧1, 𝛼, 𝛽)] + 𝑧3𝐵[(1 − 𝑧2), 𝛽, 𝛼] + 𝐵[(1 − 𝑧3), 𝛽, 𝛼]

2𝐵(1, 𝛼, 𝛽)
                                 (A10) 

 

With the incomplete Beta distribution easily solved numerically, using for example the pbeta function in 

R and introducing the same break points as Hansen et al. (2002b) (i.e. 0.1 for bins 0-10% and 10-40%; 

0.4 for bin 40-60% and 0.6 for bin 60-100%), we can now investigate how x̂  varies typically with x . 

The simulations of 1000 random values of α  and β (with α  and β  varying between 0.5 and 6)  reveal 

that, near the outer breakpoints (0.1 and 0.6), the inferred mean x̂ values tend to be similar to the true 

mean 𝑥̅ (Fig. 1). Near the 0.6 break point however, many x̂ values are lower than the true mean 𝑥̅, 

which matches the discrepancy observed in the validation data for Africa. This becomes even more 

apparent when we compare the simulated histograms of the inferred and true means (Fig. 1). The R code 

that was used to implement the simulations has been stored in the Zenodo repository and can be 

downloaded from the following link http://doi.org/10.5281/zenodo.240916  . 

  

http://doi.org/10.5281/zenodo.240916
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APPENDIX S2 

MONTE CARLO SIMULATIONS 

We used theoretical landscapes of tree cover, to evaluate the variation of cover in a map created from 

averaging over units (cells) into larger sized tiles. We specifically looked at the effects of spatial auto-

correlation created by a tree cover gradient. The theoretical landscapes consisted of a 2 dimensional grid 

of a million cells (1000 x 1000), each cell representing “virtual true” tree covers between 0% and 100%. 

As in Hansen et al. (2002b), 20 x 20 cells where spatially merged into tiles resulting in a total of 2,500 

tiles (i.e. in Hansen et al. (2002b) cells represent 30 m TM pixels and tiles represent 500 m Modis pixels). 

The % tree cover for the tiles was calculated using (1) the Hansen et al (2002b) method, which we refer to 

as ‘averaging with pre-average binning’ and (2) the ‘direct averaging’ method. Averaging with pre-

average binning involves a binning of the cells’ based on their “virtual true” cover value prior to the 

merging. Each cell is assigned to one of 4 bin-classes: 0-10%; 10-40%; 40-60% and 60-100% and as in 

(Hansen et al., 2002b) is then given the representative value of the bin-class it belonged to, i.e., 0%, 25%, 

50% or 80%. The % tree cover of the individual tiles is the average of these allotted values. Direct 

averaging calculates the tile values by averaging the original “virtual true” cover values of the cells. The 

comparison between ‘averaging with pre-average binning’ and ‘direct averaging’ is done through 

histograms showing the distribution of the respective tile cover values (Note that we do not consider 

spatial distributions but only statistical distributions). 

We carried out simulations for six landscape types, implementing the two approaches ‘averaging with 

pre-average binning’ and ‘direct averaging’, and producing their respective histograms (i.e. 2 x 25,000 per 

land scape type) with histogram bins set to 1% cover intervals.  The ensuing histograms were averaged to 

produce a single histogram per approach and landscape type by taking the average of each bin.  

Landscape types 1 and 2 contains no spatial autocorrelation, while 3, 4, 5 and 6 do. Renditions of 

landscape types 1, 2, 4 and 6 were generated through Monte Carlos simulations. Landscape types 3 and 5 

was represented through a single deterministic simulation.           

 Landscape type 1, the ‘Random Uniform Tree Cover’, represents a fully random distribution of forest 

cover values. Each of the 25,000 Monte Carlo runs fills up the 1000 x 1000 grid with values drawn 

randomly from a uniform distribution of cover values ranging between 0% and 100%. 

 Landscape type 2, the ‘Random Beta Tree Cover’, represents a fully random Beta distribution of 

forest cover values and is a 2-dimensional rendition of our semi-analytical simulations (see 

supplement 1). Each of the 25,000 Monte Carlo runs fills up the 1000 x 1000 grid with values drawn 

randomly from a Beta distribution of cover values ranging between 0% and 100%. The Beta-

distribution parameters α and β are chosen randomly from the range between 0.5 and 6. An example 

is shown in Fig. S2.1(a).  

 Landscape type 3 is the ‘Sharp Boundary Landscape’. Here the 1000 x 1000 grid is split into two to 

show a single sharp boundary running parallel with the y-axis of the grid. Cells left of the boundary 

are assigned a 100 % tree cover, cells right of the boundary a 0 % tree cover.  

 Landscape type 4, the ‘Auto-correlated Beta Tree Cover Distribution’ is a patchy distribution of auto-

correlated Beta distributions. Here the 1000 x 1000 grid is subdivided into 2500 tiles of 20 x 20 grid 

cells. For each tile an α and β value is chosen at random from the range between 0.5 and 6.  The tree 

cover for each cell within this tile is then drawn from the Beta distribution defined by the α and β 

pair.  The resulting landscape shows tree cover values that are auto-correlated within each tile, but 

randomly different from tile to tile, producing a patchy tree cover landscape (Fig. S2.1(b)) 

 Landscape type 5, the ‘Linear Tree Cover Gradient’ has a linear gradient of decreasing forest cover 

from 100% to 0% along the x-axis of the 1000 x 1000 grid.  

Landscape type 6, the ‘ Random Beta Sorted Tree Cover’ is a ‘noisy’ gradient that represents a Beta 

distribution from 100% to 0% tree cover, matching the distributions of our semi-analytical simulation (see 

supplement 1). The 25,000 Monte Carlo runs produced a range of gradients along the x-axis of the 1000 x 
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1000 grid. The gradients were defined by the Beta-distribution parameters α and β chosen randomly from 

the range between 0.5 and 6. These min/max values for α and β were chosen to represent realistic 

landscape gradients. An example is shown in Fig. S2.1(c). The Matlab code (v7.14.0.739) for this 

complex gradient has been stored in the Zenodo repository and can be downloaded from the following 

link http://doi.org/10.5281/zenodo.240916  . 

RESULTS 

Without spatial auto-correlation: ‘Random Uniform Tree Cover’ and ’Random Beta Tree Cover’ – 

Figs. S2.2 and S2.3 

For the ‘Random Uniform Tree Cover’ scenario, the results from both averaging methods are near-

identical. As expected, the ‘Random Beta Tree Cover’ scenario shows the same bias as seen in the results 

from the semi-analytical simulations with a 0-100 % tree cover range (Fig. S2.4). ‘Averaging with pre-

average binning’ results in a larger number of tiles with values greater than 60 % and fewer tiles with 

values between 40 % and 55 %.  

With spatial auto-correlation: ‘Sharp Boundary Landscape’ 

The result from the ‘Sharp Boundary Landscape’ simulation, displays no difference between both 

averaging methods, with the resulting histograms showing two peaks at the minimum (0 %) and 

maximum (80 %) tree cover values (not shown).   

With spatial auto-correlation: ‘Auto-correlated Beta Tree Cover Distribution’ – Fig. S2.3. 

The patchy landscape represented through the ‘Auto-correlated Beta Tree Cover Distribution’ shows near 

identical results as the ‘Random Beta Tree Cover’ simulation. Hence, no further bias is introduced when 

the auto-correlation is confined within the tiles.  

With spatial auto-correlation: ‘Linear Tree Cover Gradient’ (not shown) and ‘Random Beta Sorted Tree 

Cover’ Gradient – Fig. 2. 

The addition of gradients does not alter the outcome for the whole landscape average and standard 

deviation values, which remain near-identical between the ‘averaging with pre-average binning’ and 

‘direct averaging’. However, for both the simple ‘Linear Tree Cover Gradient’ and the complex ‘Random 

Sorted Beta Tree Cover’ gradient the histogram of the resulting tile values skews substantially towards 

the bin-class values (0, 25, 50 & 80) when ‘averaging with pre-average binning’ is implemented. 

Mechanistically the skew is caused by auto-correlation among cells within tiles that is inherently in 

gradients. As a result, after binning, tiles would often contain cells with identical values, which decreases 

the variation among tiles and the range in tile values considerably.  

 

Figure S2.1  Examples of the landscapes generated by the Monte Carlo simulations: (a) Linear Tree 

Cover Gradient; (b) Auto-correlated Beta Tree Cover; and (c) Beta Tree Cover Gradient.  

http://doi.org/10.5281/zenodo.240916
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Figure S2.2  Histogram of calculated tile values from theoretical landscapes with no spatial auto-

correlation: ‘Random Uniform Tree Cover’: (a)  tile values resulting from ‘direct averaging’; (b) tile 

values resulting from ‘averaging with pre-average binning’.  
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Figure S2.3  Histogram of the calculated tile values from theoretical landscapes with no spatial auto-

correlation: ‘Random Beta Tree Cover ’ (a and b)  and spatial auto-correlation:  ‘Auto-correlated Beta 

Tree Cover’ patchy distribution (c and d). Tile values resulting from ‘direct averaging’ (a and c);  and 

from ‘averaging with pre-average binning’ (b and d).  

 

 

Figure S2.4  A comparison of the histograms count of means obtained through one-dimensional semi-

analytical simulations and two-dimensional spatially random Monte Carlo simulations of Beta 

distributions. The plot shows the difference in histogram counts of means between averaging with and 

without pre-average binning.  
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