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Running headline: LDMC and SLA as predictors of primary production. 

 

Summary 

1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a

significant challenge. A promising avenue for improving process models is to include

response and effect trait relationships. However, uncertainties remain over which leaf

traits are correlated most strongly with aNPP.

2. We compared abundance-weighted values of two of the most widely used traits from

the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with

measured aNPP across a temperate ecosystem gradient.

3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA)

was the superior predictor of aNPP (R2=0.55).

4. Directly measured in situ trait values for the dominant species improved estimation of

aNPP significantly. Introducing intra-specific trait variation by including the effect of

mailto:ssma@ceh.ac.uk
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replicated trait values from published databases did not improve the estimation of 

aNPP.  

5. Our results support the prospect of greater scientific understanding for less cost because 

LDMC is much easier to measure than SLA.     

 

 

Key-words: Bayesian modelling, ecosystem, global change, measurement error, ecosystem 

function, intra-specific variation, 

 

Introduction 

Net Primary Production (NPP), defined as the rate at which plants convert CO2 and water 

into dry matter, is the basis for life on Earth and is a fundamental ecosystem function 

supporting food production, soil formation and climate stabilisation. An estimated 28.8% of 

global NPP (Haberl et al. 2007) is appropriated by humans as food, fibre and fuel with 

consumption often spatially far removed from the area of production (Erb et al. 2009). 

Accurate prediction of NPP is therefore critical to ecological and economic assessments of 

the links between land-use change, human well-being and impacts on biodiversity and other 

ecosystem services (DeFries 2002; Haberl et al. 2007). NPP is, however, challenging to 

measure and predict accurately (Cramer et al. 1999; Scurlock et al. 2002; Jung et al. 2007). A 

way forward is to derive regionally applicable relationships between plant traits and NPP 

thereby providing empirical understanding that can potentially be built into global 

ecosystem models to improve their performance (Wright et al. 2006; Van Bodegom et al. 

2012). New empirical predictions of NPP in terms of plant trait abundance also allow 

process models to be tested at fine resolution across a range of ecosystems.  
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Trait-based ecology has become a unifying strand in global change biology because the 

same sets of key plant traits respond to global change drivers while also driving subsequent 

effects on ecosystem function (Tateno & Chapin 1997; Suding et al. 2008; Reich 2014). We 

test the performance of two leaf traits – Leaf Dry Matter Content (LDMC) and Specific Leaf 

Area (SLA) – as predictors of above-ground NPP (aNPP) across a realistically wide 

productivity gradient using comprehensive measurements of aNPP comprising the full range 

of plant functional types that dominate temperate ecosystems.  Our study seeks to resolve 

an outstanding question concerning the relative merits of each trait as a correlate of soil 

fertility and ecosystem productivity (Wilson et al. 1999; Hodgson et al. 2011). LDMC and SLA 

both correlate strongly with nutrient availability but it is not clear which of these is the best 

predictor of aNPP (Wilson et al. 1999; Ordoñez et al. 2009; 2010; Fortunel et al. 2009; 

Hodgson et al. 2011; Pakeman 2011). Given its repeatedly proven alignment with the soil 

available nutrients axis, SLA has become the pre-eminent predictive leaf trait (Reich 2014). 

However, the sensitivity of SLA to light availability means that it is not a reliable partial 

predictor of soil fertility as irradiance changes during succession. Since primary production 

reflects the availability of resources that include light and nutrients it could mean that SLA is 

actually a better predictor of aNPP. To test this relationship requires treating SLA as an 

effect trait rather than as a response trait where variation in abundance-weighted values 

are explained by abiotic factors (Hodgson et al. 2011).  

 

Unlike SLA, LDMC varies independently of leaf thickness (Shipley 1995; Wilson et al. 1999; 

Roche et al. 2004) but is also strongly correlated with resource availability and with relative 

growth rate (Weiher et al. 1999; Garnier et al. 2004; Fortunel et al. 2009). LDMC has been 

recommended as a more reliable correlate of soil fertility at least in biomes not subject to 
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severe water limitation (Vendramini et al. 2002). Here we explore the role of SLA and LDMC 

as predictors of ecosystem function and ask which best predicts aNPP across ecosystems. 

Since there has been a growing appreciation of the influence of within-species trait variation 

(Albert et al. 2010; Siefert et al. 2015) we also test whether including intra-specific trait 

variation improves the fitted relationship between traits and aNPP. We investigate the 

performance of each trait as a predictor of aNPP when species of low abundance are 

excluded and when plant species abundance-weighted trait values for the dominant species 

among habitats are based on database values or in situ measurements. 

Our starting point was to compute abundance-weighted trait values based on published UK 

database values. This is the easiest method to apply for constructing trait-derived variables. 

However, if locally measured trait-values differ appreciably from database means and 

correlate with aNPP then database-derived means will be a poorer predictor of local aNPP. 

We tested the importance of intra-specific variation in two ways. First, we substituted mean 

database trait values for the dominant species in each sampling plot with in situ 

measurements of leaf traits for those species. The two most abundant species were 

selected to ensure adequate sampling of the species contributing the most biomass to each 

stand. Secondly, we introduced intra-specific trait variation via its effect on the variance of 

the abundance-weighted mean trait values. Thus, rather than employing one abundance-

weighted mean trait value per sampling plot, a prior distribution of values was calculated 

based on repeated draws of trait values for each individual plant species. The distributions 

of trait values for each species were derived from readily accessible replicated database 

measurements. We then applied a Bayesian measurement error model that allows the 

observed values of aNPP to feedback onto the posterior estimates of the abundance-
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weighted trait values potentially improving the fit between aNPP and trait-based 

explanatory variable.  If successful, this would suggest that better use could be made of the 

variation in trait values that is readily accessible from databases, rather than just utilising 

trait means. 

 

In summary we test the following hypotheses: 

1. Abundance-weighted LDMC is a better predictor of aNPP than abundance-weighted 

SLA. 

2. Estimation of aNPP is improved when trait values for the dominant plant species are 

based on in situ measurements rather than database averages.  

3. Estimation of aNPP is improved when intra-specific trait variation based on 

replicated database values is included in the model.   

 

Materials and Methods 

 

Study region and sampling locations 

Fifteen sites were located in the River Conwy catchment in north Wales, UK. The remaining 

two sites (limestone grassland and upland unimproved hay meadow) were located within 

the Ingleborough National Nature Reserve in North West England in the upper reaches of 

the Ribble catchment (Fig. 1; Table 1). The regional climate for all sites is temperate 

maritime (Peel, Finlayson & McMahon 2007). Annual precipitation lies between 1000 and 

1300 mm at Ingleborough and between 600 and 4700 mm in the Conwy valley. Average 

daily minimum January temperature across the sites is in the range -1 to 3 °C and average 

daily maximum July temperatures from 17 to 21 °C (long term annual averages 1981-2010, 

http://www.metoffice.gov.uk/public/weather/climate/#?region=uk).  

 

http://www.metoffice.gov.uk/public/weather/climate/#?region=uk
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Above-ground NPP was measured in 49 vegetation sampling plots through 2013 and 2014. 

These plots were nested into 17 sites arranged along a productivity gradient from lowland 

grasslands intensively managed for agriculture through to montane heath. Within each site, 

an area of target habitat was selected as a roughly rectangular fraction of the wider habitat 

of interest. In enclosed land this rectangle was defined by field boundaries. In woodlands 

and unenclosed habitats a rectangular area was selected to encompass a large area (0.25-1 

ha) of the target habitat, for example blanket bog, acid grassland and montane heath. 

Sampling locations within each site were then chosen at random.  Together, these sites 

sample all common habitat and land-use types in Britain and thus were intended to 

represent the principal plant biodiversity and productivity gradients in NW Europe. 

 

 

Measurement of above-ground Net Primary Production 

 

Above-ground NPP (g dry mass m-2 yr-1) was measured using a variety of methods according 

to the plant functional types present. These types comprised C3 graminoids (Poaceae, 

Junaceaa, Cyperaceae), broad-leaved and needle-leaved trees, dwarf shrubs, forbs and 

bryophytes (Table 1). All plots were visited in early January at the start of each 

measurement year. Any green herbaceous material was removed by clipping to 1 cm 

vegetation height. Standing litter was, as far as possible, not removed nor disturbed. In 

sheep and cattle-grazed systems (grasslands and mires), livestock exclosures were installed 

and the vegetation cut twice throughout the growing season; first at estimated peak 

biomass and a second time to capture late summer and autumn regrowth. These two values 

were then summed. While this method does not overcome possible issues with negative 

and positive compensatory growth as a result of grazing, uncertainty over the importance 

and direction of these effects is great and no clearly superior method appears to exist that 
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accounts for these effects whilst also excluding grazers (McNaughton et al. 1996; Pontes et 

al. 2007). 

 

The biomass fractions attributable to functional types within woodland and peatland 

ecosystems were measured using differing methods. In peatlands, growth of Sphagnum 

species was measured over two years using the cranked wire method (Clymo 1970; Kivimäki 

2011). Peatland graminoids were measured by harvesting annual biomass accumulation in 

livestock exclosures over one year using the same methods applied to grazed grasslands.  

 

In woodlands, different methods were used to measure annual production of trees. Leaf 

litter was collected using 20 randomly placed buckets (26cm in diameter) per 200m2 

sampling plot. These were installed in September before litterfall and visited and emptied 

every two to four weeks until no leaves were visible in the canopy. Annual woody mass 

increment was measured by combining tree-coring, DBH (tree diameter at 1.3 m height), 

wood density and tree height measurements. Herbaceous understorey growth was 

harvested in spring and summer after cutting back in January. Where present, annual 

production of the bryophyte layer was measured by harvesting the moss mat that had 

grown through coarse plastic meshes of known size pegged securely to the substrate in 

early January and harvested after one year.  

 

Measurement of aNPP was carried out using plots of varying dimensions scaled to the size 

of the plant types present, but then expressed as production per m2 across all vegetation 

types (Table 1). Full details of all the methods used for measurement of aNPP on each site 

are described in Supplementary Material. 
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Plant species abundance 

 

In each plot in which aNPP was measured, all vascular plant species and bryophytes were 

identified and cover was estimated in intervals of 5 % except for species recorded at ≤1 % 

cover which were given a value of 1. Percentage cover was based on horizontal leaf 

projection over the plot so that total cover over all species was allowed to exceed 100, for 

example, where the understorey comprised a bryophyte layer, a fern layer and a tree 

canopy. Only species recorded with ≥5 % cover were used in the calculation of mean 

abundance-weighted trait values.  

        

Plant traits 

 

In situ measurements of SLA and LDMC were carried out by focussing on the dominant 

vascular plant species in each plot defined as the two species contributing maximum 

standing biomass in the year of sampling (Table 1).  LDMC (g dry mass g-1 fresh mass) was 

measured by weighing fresh material consisting of 10 to several hundred mature but non-

senescent leaves from different plants depending on leaf size. Leaves were weighed fresh, 

then dried for 24 hours at 80 oC, and weighed again. SLA (mm2 mg-1 dry mass) was measured 

by sampling 10 leaves from different plants. Leaf area was calculated based on scanned 

photographs analysed using the Image J software v1.46r (http://imagej.nih.gov/). Dry 

weight was measured as for LDMC (Pérez-Harguindeguy et al. 2013).  

  

http://imagej.nih.gov/
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Database values for SLA and LDMC for all vascular plant species encountered in the sample 

were extracted from LEDA (Kleyer et al. 2008) and ECPE (Grime et al. 2007). Only values for 

UK material were included except in four instances where German values were included 

because no UK data were available. These were Carex bigelowii, C.nigra, Agrostis canina and 

Anthoxanthum odoratum. None of these species were dominant in any of the sample plots. 

Out of a total pool of 136 vascular plant species recorded in the 49 aNPP plots all had 

database trait values. The ranges of trait values, including measured and database values, 

were 57.2 for SLA (4.81, Picea sitchensis to 62.1, Oxalis acetosella) and 0.45 for LDMC (0.08, 

Stellaria media to 0.53, Sesleria caerulea).  

 

 

Analysis 

 

Mean abundance-weighted trait values (   ) for SLA and LDMC were computed for each 

NPP sampling plot j within each site k as follows; 

 

 

 

      
        
      

 

 

 

 

where (pijk) was either the raw percentage cover or square-root transformed cover value for 

species i in each sample plot j within site k (e.g. Manning et al. 2015). The trait values (    ) 
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for each species i in each sample plot j and within site k were based either on replicated in 

situ measurements on the two plant species with the highest cover in each plot, or mean 

values of each trait extracted from the databases described above. 

 

Two values of the mean abundance-weighted trait (SLA or LDMC) were derived for each plot 

based on either trait values derived solely from UK databases or supplemented by in situ 

trait measurements for the dominant species in each plot where this value substituted for 

the database average for those species (Table 1). Abundance-weighted values for SLA and 

LDMC were used as covariates in regression models designed to test the three hypotheses 

by determining which model best predicted measured aNPP.   

 

Statistical modelling 

 

Model building was carried out using the ‘lm’ and ‘lmer’ functions in the lme4 R package 

(Bates et al. 2015). Initial data exploration and preparation followed the steps outlined in 

Zuur et al. (2010) and Crawley (2013). We identified outliers using the outlierTest function in 

the ‘lm’ R package. The boxcox function in the ‘mass’ R package was used to assess 

homogeneity of variance and the nature of any transformation required to aNPP.  

 

Tests of hypotheses 1 to 3 were carried out by comparing models where each model was of 

the form, 

 

yik = mik + γk + εik ,                                         1) 
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mjk= a + b.xik           2) 

 

γk ~ N (0, σγ
2) 

 

εik ~ N (0, σε
2). 

 

Where yjk was the natural log transformed aNPP for plot j in site k, xjk was the abundance-

weighted trait variable and γk was a random intercept for each site k.  

 

Model performance was evaluated by likelihood ratio test and the difference in AICc values 

between pairs of models. The AICc statistic was used in light of the small sample size 

(Burnham & Anderson 2002).  

 

To test whether estimation of aNPP was improved by the inclusion of intra-specific trait-

variation (Hypothesis 3), a Bayesian measurement-error model was constructed in 

OpenBUGS ver 3.2.2 rev 1063 (Lunn et al. 2013). We modelled the variation in abundance-

weighted trait values in each plot by adjusting equation 2) to become, 

 

mjk= a + b.zjk           3) 

 

xjk ~ N(zjk, σx
2). 

  

Here, we now assume that the observed abundance-weighted mean xjk is an imperfect 

measure of the true abundance-weighted mean zjk with its variance being a function of the 
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distributions of species’ trait values contributing to the abundance-weighted trait value for 

each aNPP plot. These distributions were derived from published replicated database 

measurements of the trait for each species present. The variance of each species trait value 

is, therefore, likely to be part measurement error and part ecologically meaningful intra-

specific variation in the trait. Thus, σx
2 conveys the variance in the trait-derived predictor of 

aNPP that is attributable to known variation in the trait for each contributing species in each 

plot. An estimate of σx
2 was generated by first calculating the mean and standard deviation 

of the database measurements for each plant species which had replicate measurements in 

the database. Then 1000 random draws of trait values were made based on the parameters 

of each species’ trait distribution. At each draw, a new dataset of abundance-weighted trait 

values was computed for each of the aNPP plots. An estimate of σx
2 was then derived by 

drawing bootstrap samples of increasing size from this dataset until its value stabilised (Fig. 

S1). Note that this approach implicitly assumes that measurement errors are independent 

between species and plots. Since we did not derive the trait distributions from measured 

values from all the species populations within each plot, we cannot directly test this.  

 

The fitted Bayesian measurement error model allows feedback from the aNPP data such 

that model fit can potentially be improved. Thus the posterior distribution of the slope b 

(Equation 3) is also a function of new updated posterior distributions for the abundance-

weighted means that optimise the fit between these and aNPP. Without feedback, the 

effect of intra-specific variation on the abundance-weighted trait means would simply 

increase the uncertainty around the estimated slope. Measurement error models with 

feedback are common in pharmacokinetic studies (see Lunn et al (2009; 2013) for further 

details and discussion).  
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Hypothesis 3 was tested by comparing models with or without intra-specific variation 

(Equations 2 versus 3). We computed the marginal R2 (m) value of Nakagawa & Schielzeth 

(2014) for each model within our BUGS code. This quantifies the explanatory power of the 

fixed effects (abundance-weighted trait values) as a proportion of the sum of all the 

variance components; fixed effects plus random effects plus residual. Tests of the difference 

in R2 (m) between models were carried out by inspecting the 95 % credible interval (2.5 % 

and 97.5 % quantiles) of the distribution of differences between 1000 values of R2 (m) 

drawn randomly from the posterior distribution of the variable for each model to see 

whether or not it contained zero. This was achieved in an R script applied to the converged 

MCMC output for R2 (m).   

 

The percentage variance attributable to the random effect of site was also calculated with 

and without the fixed trait effect. This firstly conveys the amount of variation in aNPP 

between versus within sites and then estimates the extent to which these differing 

components of variation in aNPP were explained by the abundance-weighted trait (Crawley 

2013). 

 

Results 

Initial data exploration showed that aNPP should be transformed to achieve normally 

distributed residuals and a linear response to abundance-weighted traits. The boxcox 

function (R package MASS) was applied, confirming that a natural log transformation was 

most appropriate. Models were also fitted with either untransformed, or square-root 

transformed plant species cover values in an attempt to reduce the influence of recording 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

error associated with small differences in % cover. Seven out of eight models based on 

square-root transformed cover had lower AICc values than the respective model with 

untransformed cover. In three cases, including the final best fitting model, the difference 

was greater than the rule-of-thumb value of 2 (Table S2). Thus all subsequent modelling was 

performed using abundance-weighted trait variables calculated from square-root 

transformed cover.  

 

Across the 49 plots nested into 17 sites, measured aNPP ranged from 99 g dry mass m-2 yr-1 

in montane heath to a maximum of 1481 g dry mass m-2 yr-1 in intensively-managed lowland 

improved grassland (Fig. 2).  Overall, 91 % of the variation in aNPP occurred between sites.  

AICc values for models based on abundance-weighted LDMC were all lower than for models 

including only SLA (LDMC: 25.6 for a model based on in situ trait measurements for the 

dominants and 30.7 for a model derived from database values only. SLA: 44.8 for a model 

based on in situ trait measurements for the dominants and 42.1 for a model derived from 

database values only) and differed significantly from these models based on likelihood ratio 

tests. Thus LDMC was the better trait for predicting aNPP and the best model included in 

situ measurement of LDMC on the dominant species. Hypotheses 1 and 2 were, therefore, 

supported.  

 

When intra-specific variation in LDMC was included, the model with the highest R2 (m) 

included in situ trait measurements and the effect of variation in LDMC derived from 

replicate values in the database. This model explained 55% of the variation in ln(aNPP) with 

a 95% credible interval of 0.34-0.71, but its R2 (m) value was not significantly different from 

a model without database-derived intra-specific variation when their differences were 
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bootstrapped. The model with the highest R2 (m) explained 63 % of the within-site, 

between-plot variation and 34 % of the between-site variation. 

 

Discussion 

 

LDMC versus SLA? 

 

We show that LDMC is a superior predictor of aNPP compared to SLA. Our result is novel 

since we tested SLA and LDMC as effect traits across a gradient comprising all major 

terrestrial ecosystems in the temperate zone. This contrasts with the large number of 

studies that have explored their role as response traits expressing inter- and intra-specific 

trait variation as a function of environmental gradients such as climate and soil conditions. 

While LDMC was the superior trait, low variance was explained. In particular, abundance-

weighted LDMC only explained a relatively small proportion of the between-site variance 

that dominated the dataset. It is possible that other plant species-derived predictors could 

be usefully included in the analysis to increase explanatory power. Leaf traits exhibit 

differences between plant functional types that are linked to phylogenetically-conserved 

patterns of biomass allocation (Shipley 1995; Wilson et al. 1999; Wright et al. 2005; Poorter 

et al. 2012). Therefore, introducing proportional cover of each plant functional type might 

be worthwhile. However, such categorical units have reduced information content because 

they do not express continuous variation in plant properties that influence ecosystem 

function (Van Bodegom et al. 2012). This is especially critical for our study. Because we 

included a range of successional stages across sites and because our sites were located in 

the oceanic western edge of Europe, the most obvious additional axes of functional 
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variation across our dataset are plant height and bryophyte cover. In forest ecosystems, 

aNPP may poorly correlate with lower SLA or higher LDMC because lower production per 

mass of leaf is compensated by higher absolute foliage mass (Wright et al., 2005; Garnier et 

al., 2004). When we included abundance-weighted canopy height alongside abundance-

weighted LDMC, it failed to explain significant variation in aNPP (see Supplementary 

Material; Text S1, Table S1, Fig. S3). Because a number of bryophyte genera, including 

Sphagnum, are capable of fixing atmospheric nitrogen (Cornelissen et al. 2007), the 

inclusion of bryophyte cover was also tested as an additional predictor alongside LDMC and 

SLA but this was also not significant (see Supplementary Material; Text S1, Table S1, Fig. S3). 

It is quite possible that the addition of climate variables could have explained further 

variation in aNPP. We did not explore this because (a) we expect considerable collinearity 

between climate and abundance-weighted trait means (e.g. Ordoñez et al 2009) and (b), our 

principal aim was to explore the ability of each trait to explain variation in aNPP rather than 

to develop a full, empirical predictive model for aNPP. While an advantage of our study is in 

the breath of ecosystem variation sampled, this also trades-off against our ability to 

measure and model ecosystem-specific factors and their interactions that are likely to have 

more fully explained observed aNPP (e.g. Minden & Kleyer 2015). 

 

There are a number of possible reasons why LDMC outperformed SLA in our analysis. SLA 

exhibits a plastic response to irradiance via changes in leaf thickness such that values can 

vary significantly with canopy depth even on the same tree (Hollinger 1989). Thus thin 

shaded leaves have high SLA because they optimise light capture rather than being 

associated with high soil fertility and therefore higher aNPP (Hodgson et al. 2011). These 

erroneous SLA signals may well have contributed to the variation in published database 
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values and so to poorer performance of SLA in our analysis of database-derived means. 

However, if intra-specific trait variation is partly an adaptive response to local conditions, 

then one might have expected LDMC to perform less well because it appears to be 

somewhat less plastic than SLA across environmental gradients (Siefert et al. 2014; but see 

Roche et al. 2004). Our result is consistent with other evidence. In a study investigating the 

response of leaf plant traits to cutting frequency and nitrogen supply among temperate 

grass species, many of which also dominated our grassland samples, Pontes et al. (2007) 

found that within-species, between treatment-variation in SLA and LDMC was around 14 % 

and that LDMC but not SLA was correlated with aNPP. Even where significant intra-specific 

variation has been observed, it has proved difficult to explain by abiotic factors (Ordoñez et 

al. 2009; Laughlin et al. 2012) often ending up as residual variance rather than predicting 

local coupling between trait values and environmental (Albert et al. 2010; Jung et al. 2010). 

This suggests that we might not expect a major jump in predictive power by including intra-

specific variation alongside inter-specific variation especially when derived from replicated 

database measurements rather than in situ plant populations. 

 

Field measurements versus database values 

 

Our results indeed showed that including in situ field measurements increased explanatory 

power to a greater extent than introducing intra-specific variation via replicated database 

values. In situ measurements ought to be a better physiological reflection of the 

performance of the particular vegetation stand than database averages, and this was indeed 

found to be the case. It is likely that the residual error associated with our best model was in 

part attributable to low in situ trait measurement effort. For example Baroloto et al. (2010) 
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recommended sampling each species at least once in every plot. Even this level of effort 

may under-represent the variation that can occur in trait values between leaves on the 

same plant (Shipley, 1995), between individuals of the same species (Albert et al. 2010) and 

throughout the growing season (Pierce et al. 1994;  Gunn et al. 1999; Jagodziński et al 

2016). Thus sampling a few individuals in a site at one point in time may lead to 

unrepresentative trait values poorly coupled to prevailing conditions. Evidently our level of 

in situ sampling effort was sufficient to improve model fit even though our best model still 

explained just over 55% of the variation in aNPP.  

 

The extent to which in situ sampling should focus on capturing inter- or intra-specific 

variation depends upon the relative importance of each source of variation. Intra-specific 

variation appears to be greater in less species-rich ecosystems and towards the more 

extreme end of environmental gradients (Huslof et al. 2013; Siefert et al. 2015; Baroloto et 

al. 2010). In the absence of any in situ measurements, trait means must be calculated from 

existing databases. Cordlandwehr et al. (2013) showed that for less variable traits such as 

LDMC, database values could satisfactorily approximate ecosystem averages but would be 

less sensitive to between-patch variation within an ecosystem. Relying solely on database 

measurements may therefore only weakly capture trait-environment relationships 

(Manning et al. 2015). However, our results indicated that even when derived as database 

means, LDMC outperformed SLA in prediction of aNPP.  
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Conclusions  

 

Using finely-resolved plant trait measurements across a representative vegetation 

productivity gradient, we show that LDMC was the superior predictor of aNPP compared to 

SLA. Intra-specific variation, as expressed by in situ trait measurements of the two highest 

abundance species in each plot, led to improved estimation of aNPP but including trait 

variation as expressed in published database trait values did not. Thus, including database-

derived intra-specific variation and allowing this to improve model fit is not an effective 

substitute for in situ trait measurements. However, since LDMC is much easier to measure 

than SLA, our results suggest that for prediction of aNPP, the burden of data collection can 

be reduced significantly, thereby offering the prospect of greater scientific understanding 

for less cost.     
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Figure 1: Maps showing the sample sites in (a) North West England and (b) North Wales. 

a)                                                                                       b)  
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Figure 2: Measured above-ground NPP (aNPP) values across temperate ecosystem types 

sampled in 2013 and 2014. The median is shown as a black point. Boxes indicate the 

interquartile range and the whiskers the range of the measurements. 
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Figure 3: Best fitting model of ln(aNPP) predicted by cover-weighted Leaf Dry Matter 

Content incorporating the effect of database-derived intra-specific variation and including in 

situ trait measurements. R2(m)=0.55. y=x line is shown. 
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Table 1: Details of study sites and plots in which aNPP was measured. Sampling methods are fully described in Supplementary Material. 

Nomenclature for vascular plants follows Stace (1997) and Hill et al. (2008) for bryophytes.  

Site Habitat type Mean 

soil pH 

(0-15cm) 

Management 

status 

Dominant plant 

species 

Number of plots (plot 

size) 

aNPP 

methods 

Beryl’s Wood Broadleaved 

woodland 

4.62 Unmanaged Quercus 

petraea/robur, 

Fraxinus excelsior, 

Betula pendula 

2 (200m2 tree canopy),  

3 (1m2 understorey) 

Understorey 

biomass 

harvest.  

Bryophyte 

mesh. 

Litter buckets. 

Annual woody 

increment 

from tree ring 

core, tree 

height & DBH.  

Red Kite Wood Broadleaved 

woodland 

4.19 Unmanaged Acer pseudoplatanus 1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 

Coed 

Dolgarrog 

Broadleaved 

woodland 

3.98 Unmanaged Quercus 

petraea/robur 

1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 

Glasgwm Conifer 

plantation 

4.2 30 year old 

Sitka subject to 

past thinning 

Picea sitchensis 1 (200m2 tree canopy), 

2 (1m2 understorey) 

As above. 
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Nant-y-Coed Improved 

grassland 

5.68 Highly 

intensive cattle 

grazing. Cattle 

rotated 

fortnightly 

across heavily 

fertilized 

paddocks.  

Lolium perenne 4  (1m2) Two biomass 

harvests per 

year. 

Blaen-y-Coed Soligenous 

mire 

4.56 Low intensity 

sheep grazing 

with periods 

unmanaged 

Molinia caerulea 2  (1m2) As above. 

Migneint Ombrogenous 

mire 

3.82 Last burnt 30+ 

years ago. Very 

light sheep 

grazing. 

Sphagnum 

capillifolium, 

Eriophorum 

vaginatum 

16 cranked wires 

among 4 patches of 

Sphagnum 

Wire length 

measurements 

over two 

years. 

Nant-y-Brwyn Ombrogenous 

mire 

4.26 Last burnt 30+ 

years ago. Very 

light sheep 

grazing. 

Sphagnum fallax, 

Juncus effusus 

4 (1m2) 

6 cranked wires among 

3 patches of Sphagnum 

Two biomass 

harvests per 

year. 

Wire length 

measurements 

over two 

years. 

Llyn Serw Ombrogenous 

mire 

3.82 Last burnt 30+ 

years ago. Very 

Calluna vulgaris 3  (1m2 in each of 5, 11, 

30 year old Calluna)  

Total biomass 

harvest for 
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light sheep 

grazing. 

growth curve 

construction. 

Capel Curig VB Soligenous 

mire 

4.07 Very light 

sheep and 

cattle grazing. 

Molinia caerulea, 

Sphagnum 

papillosum 

4  (1m2), 

12 cranked wires 

among 4 patches 

Two biomass 

harvests per 

year. 

Wire length 

measurements 

over two 

years. 

Capel Curig AG Acid 

grassland 

4.81 Light sheep 

and cattle 

grazing. 

Deschampsia 

flexuosa, Nardus 

stricta 

4  (1m2) Two biomass 

harvests per 

year. 

Carneddau Montane 

heath 

4.40 Light sheep 

grazing. 

Empetrum nigrum, 

Salix herbacea 

3  (0.25m2) One biomass 

harvest per 

year. 

Juniper Gill Calcareous 

grassland 

7.46 Wild deer and 

rabbit grazed. 

Sesleria caerulea 2  (0.25m2) Two biomass 

harvests per 

year. 

Scar Close Calcareous 

grassland 

- Wild deer and 

rabbit grazed. 

Sesleria caerulea, 

Pteridium aquilinum 

2  (0.25m2) Two biomass 

harvests per 

year. 

Colt Park Unimproved 

grassland 

5.07 Traditional hay 

meadow; cattle 

and sheep in 

Trifolium pratense, 

Anthoxanthum 

odoratum 

4  (0.25m2) Two biomass 

harvests per 

year. 
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spring then 

shut up for 

summer hay 

growth, then 

aftermath 

grazed. 

Hiraethlyn Improved 

grassland 

4.59 Intensive 

sheep grazing. 

Lolium perenne, 

Holcus lanatus 

4  (1m2) Two biomass 

harvests per 

year. 

Ysbyty-Ifan IG Improved 

grassland 

5.67 Intensive cattle 

and sheep 

grazing. 

Lolium perenne, Poa 

trivialis 

4  (1m2) Two biomass 

harvests per 

year. 

Ysbyty-Ifan SG Semi-

improved 

grassland 

5.58 Intensive cattle 

and sheep 

grazing. 

Lolium perenne, 

Holcus lanatus 

4  ( 1m2) Two biomass 

harvests per 

year. 
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