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Abstract.   The essential role of phosphorus (P) for agriculture and its impact on water quality has received decades of research 
attention. However, the benefits of sustainable P use and management for society due to its downstream impacts on multiple 
ecosystem services are rarely acknowledged. We propose a conceptual framework—the “phosphorus- ecosystem services 
cascade” (PESC)—to integrate the key ecosystem processes and functions that moderate the relationship between P released 
to the environment from human actions and ecosystem services at distinct spatial and temporal scales. Indirect pathways in 
the cascade via soil and aquatic processes link anthropogenic P to biodiversity and multiple services, including recreation, 
drinking water provision, and fisheries. As anthropogenic P cascades through catchments, it often shifts from a subsidy to a 
stressor of ecosystem services. Phosphorus stewardship can have emergent ecosystem service co- benefits due to synergies 
with other societal or management goals (e.g., recycling of livestock manures and organic wastes could impact soil carbon 
storage). Applying the PESC framework, we identify key research priorities to align P stewardship with the management 
of multiple ecosystem services, such as incorporating additional services into agri- environmental P indices, assessing how 
widespread recycling of organic P sources could differentially impact agricultural yields and water quality, and accounting 
for shifting baselines in P stewardship due to climate change. Ultimately, P impacts depend on site- specific agricultural 
and biogeophysical contexts, so greater precision in targeting stewardship strategies to specific locations would help to 
optimize for ecosystem services and to more effectively internalize the downstream costs of farm nutrient management.

Key words:   agriculture; ecosystem services; phosphorus; sustainability; water quality.

Citation:  MacDonald G. K., H. P. Jarvie, P. J. A. Withers, D. G. Doody, B. L. Keeler, P. M. Haygarth, L. T. Johnson, R. W. McDowell, M. K. 
Miyittah, S. M. Powers, A. N. Sharpley, J. Shen, D. R. Smith, M. N. Weintraub, and T. Zhang. 2016. Guiding phosphorus stewardship for 
multiple ecosystem services. Ecosystem Health and Sustainability 2(12):e01251. 10.1002/ehs2.1251

Introduction

Judicious use of phosphorus (P) is crucial to agricultural 
production and maintaining or enhancing water quality 
(Jarvie et al. 2015). The benefits of P addition to plant 

growth and crop yields have been recognized for about 
200 years (Syers et al. 2008). However, losses of agricul-
tural P can impair water quality, costing society via lost 
recreation opportunities, reduced waterfront property 
values, and increased need to treat drinking water 
(Dodds et al. 2008, Smith et al. 2015a). A key challenge of 
P management is how to maximize the benefits of P for 
agriculture while reducing the negative impacts of P for 
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society, which is particularly important given the finite 
nature of phosphate rock from which mineral P fertiliz-
ers are derived (Cordell and White 2014, Nesme and 
Withers 2016).

Considerable progress has been made in connecting 
anthropogenic nitrogen (N) loading to ecosystem servic-
es, including its cascading economic implications (e.g., 
Moomaw and Birch 2005, Compton et al. 2011, Sobota 
et al. 2015). However, similar frameworks do not exist for 
P, making it difficult to account for the diverse impacts 
P has on terrestrial, freshwater, and coastal ecosystems 
and associated socioeconomic consequences. Beyond 
agricultural production and water quality, linkages be-
tween P and other ecosystem services have not been fully 
explored.

Phosphorus limits primary production in most fresh-
water ecosystems and often co- limits production with N 
in terrestrial and coastal ecosystems (Elser et al. 2007). 
As a result, P transfer and cycling along the land- water 
continuum affects soil ecosystem functions, water quali-
ty, hydrology, and biodiversity. Along with N and carbon 
(C), P is central to soil functions that moderate or support 
hydrologic services (e.g., soil water storage), nutrient cy-
cling (e.g., soil fertility), C storage, and soil biodiversity, 
primarily via its impacts on soil organic matter content 
and quality (Brauman et al. 2007, Haygarth and Ritz 2009, 
Smith et al. 2015b, Orgiazzi et al. 2016). Soil functions, 
often referred to as “supporting services,” indirectly 
benefit society by underpinning provisioning, regulat-
ing, and cultural services (MA 2005, Smith et al. 2015b). 
Phosphorus is a primary contributor to eutrophication in 
freshwater and coastal systems, with impacts on multi-
ple services including water quantity, recreation, aesthet-
ic quality, fisheries, and aquatic biodiversity (Wilson and 
Carpenter 1999, Keeler et al. 2012). Biodiversity can be an 
intermediary that affects ecosystem processes and func-
tions, a final ecosystem service (e.g., pollination), and an 
ecosystem good subject to valuation (e.g., harvest of wild 
species) (Mace et al. 2012). In the context of P use and 
management, we view biodiversity as a regulating ser-
vice, in that changes in P availability can affect the sup-
ply of ecosystem goods and services (e.g., P use affects 
aquatic ecosystem structure, which could in turn affect a 
service such as fisheries).

Here, we develop a new conceptual framework for the 
“phosphorus- ecosystem services cascade” (PESC) to ex-
amine the effect of P stewardship on the delivery of mul-
tiple ecosystem services along the land- water continuum. 
Phosphorus stewardship encompasses diverse strategies 
for managing P inputs, losses, recycling, recovery, and 
demand at scales ranging from agricultural fields to the 
global food system (Withers et al. 2015, Shepherd et al. 
2016). Our focus is on stewardship of the agricultural 
uses of P (e.g., fertilizer and manure management), but 
we also identify key gaps and uncertainties regarding 
how broader P stewardship strategies align with ecosys-
tem service management.

The PESC framework complements the “ecosystem 
services cascade model” (Haines- Young and Potschin 
2010, Braat and de Groot 2012), which describes a pro-
duction chain where services form a link between eco-
systems (including ecosystem processes, functions, 
and biodiversity) and benefits that society derives. The 
PESC also builds on the “nitrogen cascade” proposed by 
Galloway et al. (2003). A cascade approach acknowledg-
es that impacts are often decoupled from P sources due 
to spatial discontinuities and time lags associated with P 
transport through catchments (Sharpley et al. 2013), and 
also captures the important role of P cycling for multiple 
ecosystem services. Although we do not discuss econom-
ic valuation of the PESC, P- related services can be val-
ued using integrated biophysical and economic models 
(Brauman et al. 2007, Keeler et al. 2012).

The phosphorus- ecosystem services cascade

The “phosphorus cascade” is a sequential chain of P 
transfers through catchments via successive hydrologic 
and biogeochemical pathways, including intermediate 
landscape, fluvial, and biomass storage pools as P moves 
downstream (Sharpley et al. 2013). The PESC further de-
scribes impacts on ecosystem services related to the addi-
tion, storage, and flow of “anthropogenic” P in soils and 
aquatic ecosystems (Fig. 1). We consider anthropogenic P 
to be any P released to the environment from human ac-
tions or management, including application of mineral P 
fertilizers derived from phosphate rock, recycling of ma-
nure and organic P by- products, use of recalcitrant soil P 
pools, and erosion of P due to soil disturbance. The P cas-
cade begins when water discharge is generated and P is 
mobilized either with eroded sediment or in solution, 
whereas the role of P in the ecosystem services cascade 
starts when anthropogenic P is mobilized or P is applied 
to crops as mineral fertilizer or organic P sources.

We identify 12 ecosystem services relevant to the PESC 
and hypothesize about the mechanisms underlying their 
relationship to anthropogenic P (Table 1). The delivery 
of most P- related provisioning and regulating services is 
moderated by ecological, biogeochemical, and hydrolog-
ic controls on P cycling and transport (Doody et al. 2016). 
The response of crops, other vegetation, and soil biota to 
changes in P use and management in turn affects down-
stream provisioning and cultural services. The same 
atom of P can therefore affect multiple ecosystem ser-
vices as it moves through a catchment (sensu Galloway 
et al. 2003). For example, application of P to the land in-
tended to support a provisioning service (agriculture) 
can in turn result in P losses to water that degrade water 
quality and reduce the supply of other services (e.g., safe 
drinking water); negative impacts on downstream eco-
system services can be partially offset by P retention and 
removal in catchments—a regulating service (Fig. 1). We 
therefore conceptualize three types of ecosystem service 
relationships in the PESC: (1) services directly impacted 
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by P (e.g., agricultural production); (2) services indirectly 
impacted through intermediary linkages between P, soil 
processes, water quality, biodiversity, or hydrology (e.g., 
recreation and water supply); and (3) services that are 
co-benefits of P stewardship interventions that encom-
pass other societal or management goals (e.g., recycling 
of livestock manure and organic wastes in agriculture 
could promote soil C storage). Co- benefits in the PESC 
include any ecosystem services that are unintentionally 
enhanced by P stewardship actions.

The effects of phosphorus use on the  
ecosystem services cascade

Altered biogeochemical and hydrologic functioning due 
to agricultural P use and management has distinct out-
comes on the PESC at each scale. Each focal scale in the 
PESC (plant–soil, landscape, and catchment/basin) 
shares common ecosystem services, but these vary in im-
portance based on processes controlling P delivery and 
availability (Fig. 2).

Some ecosystem services are not fully realized at the 
plant–soil scale, but this scale underpins benefits delivered 
at larger scales. The effects of P on soil functions and link-
ages with soil N and C processing through mobilization 
and immobilization mediated by soil microorganisms are 
particularly important. Phosphorus availability affects crop 
root system development and influences N- use efficiency, 
which could subsequently affect crop transpiration and 
water storage in some soils (French and Schultz 1984, IPNI 
1999, Grant et al. 2001). A substantial proportion of applied 
P can be immobilized by abiotic and biotic fixation within 
soils (Rowe et al. 2016). Where P- use efficiency is low due 
to fixation, P can only be remobilized by large changes in 
soil pH, plant root exudates (e.g., carboxylates), or microbi-
al activity (Shen et al. 2013, Zhang et al. 2016), which in turn 
is influenced by C and N availability and soil fauna. For 
example, soil biota in a maize field enhanced plant P up-
take and reduced P leaching losses relative to biota- limited 
treatments (Bender and van der Heijden 2015).

At the landscape scale, agricultural production also 
represents a cultural service with heritage value or 

Fig. 1. Conceptual framework for the P- ecosystem services cascade (PESC). A gradient of soil and aquatic processes (shaded 
in brown and blue, respectively) links P input stewardship to biodiversity and different provisioning, regulating, and cultural 
services. Solid arrows indicate direct relationships between anthropogenic P and ecosystem services, while dotted arrows 
indicate indirect or intermediary linkages through the cascade. These services are influenced by biogeochemical controls on P 
availability (e.g., microbial activity) and hydrology (e.g., farm runoff). Some stewardship strategies operate outside of the 
cascade but are likely to influence P input stewardship and potential co- benefits related to the form of P inputs (e.g., recovery 
of P in urban wastes could influence the degree of P recycling from cities to agricultural land). Ideally, changes in the delivery 
of service benefits or co- benefits should feedback to influence P use and management, but this is often inhibited by systemic P 
disconnects.
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aesthetic significance (MA 2005). Crop and soil man-
agement associated with P use has a direct role in wa-
ter quality (e.g., via cover crops and other measures to 
limit erosion, P mobilization and transport), which can 
cascade to other secondary hydrologic services related 
to water quantity (e.g., via increased soil water- holding 
capacity and infiltration). By influencing water storage, 
routing, and timing of flows, there is a subsequent in-
fluence on downstream P uptake and retention (e.g., in 
riparian areas) (Naiman and Decamps 1997, Jarvie et al. 
2013a).

At the river basin scale, surface waters provide a range 
of cultural and economic values for society (Wilson and 
Carpenter 1999). On entering surface waters, further 
 opportunity for P recycling and retention depends on 
a variety of factors, including water and sediment resi-
dence times (Withers and Jarvie 2008). The degree of P 
enrichment will govern the direction, magnitude, and 
types of ecosystem services that are affected. For exam-
ple, a small increase in P concentrations can increase fish 

catches (Stockner et al. 2000), yet further P enrichment is 
likely to have negative impacts, such as loss of dissolved 
oxygen and fish kills, or toxic algal blooms that are harm-
ful to human health (Smith and Schindler 2009). In many 
cases, the impacts of P vary according to the supply of P 
relative to N (Elser et al. 2007). For example, reductions 
in P loading due to regulatory efforts have contributed 
to an increase in the N:P ratio of river water draining to 
European seas, which exacerbates coastal eutrophication 
problems (Grizzetti et al. 2012, Burson et al. 2016).

There is general consensus that either too little P or 
too much P exerts negative pressure on biodiversity 
globally (MA 2005, Vörösmarty et al. 2010, Teste et al. 
2016). Society’s reliance on a relatively limited range of 
agricultural crops and regular inputs of agrochemicals 
negatively influences terrestrial biodiversity (Aktar et al. 
2009). This could represent a tradeoff between more 
 P- fertile soils for agricultural productivity and lower P 
fertility that may support higher species richness in near-
by ecosystems. For example, agricultural P enrichment 

Table 1. Summary of key P- related ecosystem services in the cascade.

Ecosystem service  
(ES) impacted Main linkage

Hypothesized mechanism linking service  
to P use and management

ES relationship to P use 
and management

Agricultural production 
Provisioning

Soil processes Enhanced soil P fertility and modified 
 rhizosphere processes improve crop 
growth (+)

Strong, direct link to soil 
processes

Safe drinking water 
Provisioning

Water quality Algae/phytoplankton blooms and 
 cyanobacteria toxins (e.g., microcystin) 
increase water treatment costs (−)

Strong, direct link to 
water quality

Swimming and recreation 
Cultural

Water quality Reduced water clarity decreases 
 recreational demand; toxic cyanobacteria 
can make water unsafe for contact (−)

Strong, indirect; social 
context dependent

Waterfront property 
Cultural

Water quality Reduced water clarity lowers waterfront 
property values (−)

Strong, indirect; social 
context dependent

Inland fisheries and angling 
Provisioning Cultural

Water quality Small increases in P concentrations may 
stimulate production of some species, 
but eutrophication results in fish kills due 
to loss of dissolved oxygen (+/−)

Strong, indirect; re-
sponse is species 
dependent

Aquatic biodiversity 
Regulating

Ecosystem processes Dominance of nutrient tolerant species and 
reduced aquatic biodiversity (−)

Strong, indirect; 
 thresholds could vary

Belowground C storage 
Regulating

Soil processes Organic amendments (e.g., manure) to 
promote C and P/N retention maintain 
soil C (+)

Strong, indirect; de-
pends on 
management

Soil biodiversity 
Regulating

Soil processes Promoting soil biodiversity (e.g., with 
 organic amendments) enhances  crop- soil 
diversity and P availability (+/−)

Strong, indirect; de-
pends on 
management

Terrestrial biodiversity 
Regulating

Ecosystem processes Soil weathering during pedogenesis 
 determines patterns of P availability, 
plant diversity, and plant growth (−/+)

Strong, indirect; 
 determines baseline 
fertility

Water supply and flow attenuation 
Regulating

Hydrology Nature of P use affects crop transpiration 
and soil water balance via root systems 
(+/−); may also reduce peak runoff (+)

Mixed, indirect; depends 
on biomass response 
to added P

Aboveground C storage 
Regulating

Ecosystem processes Nature of P use can directly or indirectly 
(e.g., via N- use efficiency) affect net 
 primary production (+/−)

Mixed, co- benefit; 
 pathways are 
ambiguous

Landscape heritage 
Cultural

Cultural context P use affects agricultural mosaic; nutrient 
management forms part of agricultural 
tradition (+)

Theoretical, co- benefit; 
social context 
dependent

Notes: For hypothesized effects, (+) indicates where “good” P stewardship can enhance the service, while (−) indicates where “poor” P stewardship can 
 degrade the service. Services are ordered from the strongest and most direct linkage to P (at the top) to those with more indirect linkages through inter-
mediaries or co- benefits of management (at the bottom).
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Fig. 2. Key relationships between anthropogenic P inputs, biodiversity, and ecosystem services at three distinct spatial scales 
of the PESC. As scale increases, the capacity for direct P input stewardship decreases, while the complexity of P stewardship 
interventions increases due to, for example, spatial discontinuities, time lags, and unfavorable economies of scale (sensu Haygarth 
et al. 2005). With increasing scale, the number of stakeholders and the need to coordinate multiple processes required for any 
given P stewardship strategy will also increase. Vector graphics were derived from the Integration and Application Network, 
University of Maryland Center for Environmental Science (see Acknowledgments).
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of semi- natural grasslands in Europe appears to drive a 
gradient of reduced species richness (Ceulemans et al. 
2014). Excessive fertilizer application also reduces soil 
biodiversity and potentially the resilience of agricul-
tural systems to future stresses, such as climate change 
(Chagnon and Bradley 2013).

Phosphorus disconnects alter the supply  
of ecosystem services

The episodic nature of P cascades (e.g., the timing of fer-
tilizer use and major runoff events) gives rise to spatially 
and temporally disjointed impacts at locations geograph-
ically distant from the original P source (Sharpley et al. 
2013). As scale increases, the relationship between P 
stewardship and ecosystem services is increasingly com-
plex due to dependencies on other ecosystem processes 
(C and N cycling, hydrology, and biodiversity) (Fig. 2; 
Haygarth et al. 2005). With increasing distance from the 
anthropogenic P source, ease of implementation (e.g., 
cost- effectiveness) of stewardship strategies decreases 
due to the number of stakeholders involved and in-
creased diversity of farming systems, soils, and hydrol-
ogy over the landscape mosaic (McDowell et al. 2016). 
Addressing P stewardship at the plant–soil scale with 
input management (timing, source, rate, and placement 
of P fertilizers) before P is lost from targeted cropping 
systems is therefore more efficient and cost- effective than 
mitigating P impacts downstream or restoring systems 
after they have been degraded (McDowell and Nash 
2012, Jarvie et al. 2013b).

There can be extensive lag times between P stew-
ardship and its outcomes on downstream ecosystem 
services (Meals et al. 2010). This disconnect occurs 
due to abiotic and biotic immobilization and gradual 
accumulation of P applied to the soil over many years 
(legacy soil P), and cascading effects may not be real-
ized for days to decades after the initial P applications 
as hydrologic processes transport legacy soil P offsite 
(McDowell et al. 2001, Sharpley et al. 2013, Barrow and 
Debnath 2014). These processes may slow P movement 
across the landscape, effectively enhancing P buffering 
capacity in catchments if soil biota and biogeochemi-
cal function are intact (Fraterrigo and Downing 2008, 
Doody et al. 2016).

Urbanization, agricultural intensification, globali-
zation, and dietary change pose further challenges to 
P stewardship for ecosystem services. Under-  or over- 
application of P at the field scale is a manifestation of 
broader societal facets of the built environment, econ-
omy, and policies that results in regional P imbalances 
(MacDonald et al. 2011). At the landscape scale, segre-
gation of crop and livestock production can concentrate 
manure P use on nearby croplands, often leading to 
excess P application when manure is applied to match 
crop N requirements due to its typically low N:P ratio 

(Heathwaite et al. 2000, Li et al. 2011b, Nesme et al. 2015). 
Urban areas are major sinks for P consumed in import-
ed foods and industrial products, with potentially large 
magnitudes of P land- filled or discharged via munici-
pal waste streams to surface waters (Metson et al. 2015). 
Large quantities of P also move internationally in traded 
livestock feed grains linked to growing demand for an-
imal products, contributing to manure P imbalances in 
feed- importing nations and compounding the challenge 
of P recycling on domestic farmlands (Schipanski and 
Bennett 2012). In contrast, economic and sociopolitical 
factors limit access to P fertilizers in many lower income 
countries (Nziguheba et al. 2016).

As a result of these systemic disconnects, there can be 
immense distances (from tens of kilometers for local food 
to many thousands of kilometers for imported foods) be-
tween on- farm P use and ecosystem service outcomes 
(e.g., food consumption or degraded water quality). 
Legacy P retention and remobilization, combined with 
the temporal dynamics of P in soils and surface waters, 
could also “lock- in” future ecosystem service outcomes. 
Ideally, net downstream ecosystem service impacts 
should feedback to encourage P input stewardship up-
stream, but this is obfuscated by systemic disconnects 
(Fig. 1). A key obstacle is that disconnects and steward-
ship strategies do not scale linearly and are compounded 
at larger scales. For example, N and P inputs from ag-
riculture and cities hundreds of kilometers upstream in 
the Mississippi River Basin drive seasonal hypoxia in the 
Gulf of Mexico (Jacobson et al. 2011).

Overcoming disconnects to promote a more benefi-
cial and direct cascade of ecosystem services warrants 
a broader stewardship approach that tackles P inputs, 
losses, recycling, recovery, and consumer demand. To 
illustrate this, we matched the diverse P stewardship 
strategies proposed by Withers et al. (2015) to different 
social–ecological system components that could affect 
the PESC—primarily by altering the magnitude, source, 
and nature of P use in the agricultural system (Fig. 3). 
Achieving more efficient P use through careful appli-
cation, combined with measures to enhance retention 
and recycling at every opportunity, entails changes 
to agricultural management, technology, and policy 
(Withers et al. 2015). Such changes could indirectly 
result in broader co- benefits for ecosystem services in 
the cascade (Fig. 1). However, P stewardship is chal-
lenged by global change pressures, particularly climate 
change, which can increase rates of P cycling in soil, risk 
of P transfer to surface waters, and alter the response of 
aquatic ecosystems to eutrophication (Ockenden et al. 
2016).

Research priorities for the PESC

Quantifying how P use and management functionally 
enhance or degrade specific services, including via indi-
rect pathways, is a key research priority. Although 
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indirect or co- beneficiary links between P and ecosys-
tems services in the cascade (e.g., hydrologic services 
and carbon storage) are unlikely to become primary 
drivers of policy and practice related to P, understanding 
synergies between P stewardship and other management 
goals could help to reduce tradeoffs among competing 
ecosystem services (Bennett et al. 2009). Applying the 
PESC framework, we outline six research priorities to 
help move toward this goal, grouped according to the 
management of P in soils (Box 1) and aquatic ecosystems 
(Box 2). These research priorities include the need for 
consideration of legacy soil P and climate change  impacts 
(Fig. 3).

The outcomes of the PESC are scale dependent and 
ultimately depend on regional biophysical and socio-
economic context that determine fertilizer use, waste 
flows and management, hydrologic fluxes, and recycling 
(Garnier et al. 2015). Managing P for ecosystem services 
requires an understanding of the historical factors that 
affect how much P has accumulated in catchments as 
a result of past anthropogenic activities (Powers et al. 
2016) and what social–ecological factors drive P fluxes 
and the demand for ecosystem services in different plac-
es (Metson et al. 2015). Examining and synthesizing case 
studies from different locations worldwide would help 

to guide local P stewardship strategies that account for 
socioeconomic, agricultural, and biogeophysical factors 
(e.g., Magliocca et al. 2015).

Summary and conclusions

Societal changes to the P cycle, driven largely by use of 
mineral fertilizers for ever increasing crop demand, im-
pact multiple ecosystem services through linkages be-
tween agriculture, water quality, soil functions, 
hydrology, and biodiversity. Guiding P stewardship for 
multiple ecosystem services should help to balance 
tradeoffs among different landscape management prior-
ities (Jarvie et al. 2015). Internalizing downstream costs 
of P use into management practices could incentivize 
cross- scale solutions, such as prioritizing effective use of 
existing P sources including organic by- products and 
legacy soil P resources in agriculture rather than “new” 
anthropogenic P derived from phosphate rock.

The PESC interacts with C and N cycling that links it 
to broader co- benefits (e.g., carbon storage and hydrolo-
gy). Co- benefits associated with ecosystem services are 
considered, but seldom emphasized in management or 
policy. The collective impact of co- benefits, such as those 
linked to P stewardship strategies, could ultimately 

Fig. 3. Socioeconomic setting, ecosystem processes, phosphate rock availability and prices, climate change, and legacy soil P 
are “macro” controls on the PESC that underpin ecosystem service outcomes across scales. We classify the 15 P stewardship 
strategies proposed by Withers et al. (2015) into four spatial management components relevant to the PESC (light green, brown, 
blue, and gray boxes): soil systems, surface waters, agricultural production, and cities. Cities and towns are key to broader P 
stewardship as centers of food consumption, waste generation, and research and development. Important challenges related to 
each system component are shown (i.e., phosphate rock availability and prices, legacy soil P, urbanization, and climate change). 
PUE refers to phosphorus- use efficiency.



8

MACDONALD ET AL. Phosphorus and ecosystem services

Volume 2(12) v Article e01251Ecosystem Health and Sustainability

outweigh the benefits of nutrient management approach-
es focused individually on P, N, or C. Integrating P, N, 
and C stewardship could therefore help to improve the 
resilience and functional integrity of multiple ecosystem 
services.

The PESC provides a new framework for recognizing, 
understanding, and accounting for a fuller range of co- 
benefits arising from sustainable P use and management. 
Further exploration of the PESC with empirical data is a 
next step to test cascade pathways, inform management 
priorities, and assess costs and benefits of P stewardship 
for society. Such studies could aid in developing new 
policy mechanisms for P sustainability that internalize 
the downstream costs of excess P in fertilizer prices, 

optimize agronomic recommendations, or inform gov-
ernment nutrient management protocols.
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Box 1.
Research priorities in the phosphorus- ecosystem services cascade related to soils and agricultural  
uses of P
Assess the cumulative, downstream impacts of plant–soil system P stewardship. Biological and abiotic soil 
processes have a vital role in nutrient cycling and water storage, but the long- term and broader impli-
cations for downstream ecosystem services are rarely considered. Phosphorus stewardship at the plant–soil 
interface could help to optimize soil nutrient cycling and water management to balance competing 
demands between food production and water quality (Doody et al. 2016). Soil and fertilizer P availability 
can be highly dependent on soil water status, so a tighter coupling of P with improved soil water 
management could promote improved crop yields with more efficient P use and less P loss (Liu et al. 
2011, Shen et al. 2013). Managing soil biodiversity and root/rhizosphere interactions can also help to 
improve P- use efficiency in agriculture (Zhang et al. 2016).

Incorporate multiple ecosystem services into agri- environmental P indices. In the past two decades, there has 
been extensive development and refinement of regional agri- environmental P indices (Osmond et al. 
2012, Sharpley et al. 2012, Bai et al. 2013). Agronomically optimum P input rates for different soils and 
regions are typically calibrated to crop response or in some cases risk of P loss to aquatic systems. 
There is currently little research on which to base P management guidelines for managing a broader 
set of services, such as maintenance of drinking water quality, fisheries, and access to swimming. Despite 
targeting agronomically optimum soil P, water quality targets may not be achieved due to persistent 
losses of legacy P (Cassidy et al. 2016). Many interacting factors contribute to water quality. For exam-
ple, river quality in New Zealand is commonly judged as “poor” when periphyton covers more than 
30% of the stream bed, which is linked to land use practices and in turn P, but is also impacted by 
flow, shade, N inputs, and the innate response of the river (McDowell et al. 2016). Socioeconomic factors 
further moderate demand for water quality improvements depending on individual preferences, expected 
fisheries benefits, population density, and demand for recreation (Keeler et al. 2015).

Assess the implications of increased organic P recycling and use for multiple ecosystem services. Effective recy-
cling of livestock manure and municipal waste is consistently identified as a priority to balance tradeoffs 
between agriculture and water quality (Metson et al. 2016). Yet, the effects of widespread substitutions 
of mineral P fertilizers for recycled organic P resources on agricultural provisioning and water quality 
services are uncertain. At the plant–soil scale, recycling of manure to croplands can improve nutrient 
availability, water- holding capacity, and soil structure (Chambers et al. 2003, Li et al. 2011a, b), poten-
tially altering farmland water discharge pathways and volumes. Use of organic amendments, along with 
method of application and other management practices, can increase soil C storage in agricultural lands 
(Fornara et al. 2016), representing a co- benefit of P stewardship that favors manure amendments over 
mineral fertilizers. Enhanced soil organic matter is also expected to improve soil biodiversity (Pimentel 
et al. 2005). However, P availability to crops can vary depending on the organic source and time ho-
rizon after application (Hao et al. 2015), and there could be incidental losses of P in farmland water 
discharge due to increased amendments (Zhang et al. 2015). The low N:P of manure can also lead to 
excess P inputs when manure is applied to match crop N demands (Heathwaite et al. 2000).
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