
1 
 

Characterising the within-field scale spatial variation of nitrogen in a 1 

grassland soil to inform the efficient design of in-situ nitrogen sensor 2 

networks for precision agriculture 3 

 4 

R. Shawa*, R.M. Larkb, A.P. Williamsa, D.R. Chadwick and D.L. Jonesa 5 

aSchool of Environment, Natural Resources & Geography, Bangor University, Gwynedd, 6 

LL57 2UW, UK 7 

bBritish Geological Survey, Keyworth, Nottingham, NG12 5GG 8 

 9 

*Corresponding author 10 

E-mail address: rory.shaw@bangor.ac.uk: Tel: +44 1248 382579  11 



2 
 

ABSTRACT  12 

The use of in-situ sensors capable of real-time monitoring of soil nitrogen (N) may facilitate 13 

improvements in agricultural N-use efficiency (NUE) through better fertiliser management. 14 

The optimal design of such sensor networks, consisting of clusters of sensors each attached to 15 

a data logger, depends upon of the spatial variation of soil N and the relative cost of the data 16 

loggers and sensors. The primary objective of this study was to demonstrate how in-situ 17 

networks of N sensors could be optimally designed to enable the cost-efficient monitoring of 18 

soil N within a grassland field (1.9 ha). In the summer of 2014, two nested sampling 19 

campaigns (June & July) were undertaken to assess spatial variation in soil amino acids, 20 

ammonium (NH4
+) and nitrate (NO3

-) at a range of scales that represented the within (less 21 

than 2 m) and between (greater than 2 m) data logger/sensor cluster variability.  Variance at 22 

short range (less than 2 m) was found to be dominant for all N forms. Variation at larger 23 

scales (greater than 2 m) was not as large but was still considered an important spatial 24 

component for all N forms, especially NO3
-. The variance components derived from the 25 

nested sampling were used to inform the efficient design of theoretical in-situ networks of 26 

NH4
+ and NO3

- sensors based on the costs of a commercially available data logger and ion-27 

selective electrodes (ISEs). Based on the spatial variance observed in the June nested 28 

sampling, and given a budget of £5000, the NO3
- field mean could be estimated with a 95% 29 

confidence interval width of 1.70 µg N g-1 using 2 randomly positioned data loggers each 30 

with 5 sensors. Further investigation into “aggregate-scale” (less than 1 cm) spatial variance 31 

revealed further large variation at the sub 1-cm scale for all N forms. Sensors, for which the 32 

measurement represents an integration over a sensor-soil contact area of diameter less than 1 33 

cm, would therefore, be subject to further spatial variability and local replication at scales less 34 

than 1 cm would be needed to maintain the precision of the resulting field mean estimation. 35 

Adoption of in-situ sensor networks will depend upon the development of suitable low-cost 36 
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sensors, demonstration of the cost-benefit and the construction of a decision support system 37 

that utilises the generated data to improve the NUE of fertiliser N management. 38 

 39 
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1. Introduction 43 

Improving nitrogen (N) use efficiency (NUE) remains one of the key challenges for 44 

global agriculture (Cassman et al., 2002; Robertson and Vitousek, 2009) and is essential for 45 

the success of sustainable intensification (Tilman et al., 2011). The deleterious environmental 46 

effects and economic costs of diffuse N pollution from farmland in Europe, where N has been 47 

applied in excess of crop requirement, are well documented (Sutton et al., 2011).  48 

One often-cited approach to reduce N losses and improve NUE, is to ensure 49 

synchronicity of N supply with crop demand (Shanahan et al., 2008; Robertson and Vitousek, 50 

2009), although, achieving this in practice is challenging due to the complex nature of the 51 

soil-plant system. Precision agriculture (PA) attempts to address this issue by reducing 52 

uncertainties surrounding the measurement of key variables to determine optimum N 53 

fertiliser management (Pierce and Nowak, 1999; Dobermann et al., 2004). Temporal 54 

variations in growing conditions, both within and between seasons may lead to considerable 55 

differences in optimum N fertiliser requirement and hence, inefficiencies in N fertiliser-use if 56 

temporal variations are not considered (Lark and Wheeler, 2003; McBratney et al., 2005; 57 

Shahandeh et al., 2005; Shanahan et al., 2008; Deen et al., 2014).  However, conventional 58 

soil sampling techniques, coupled with laboratory analysis is expensive, labour-intensive, and 59 

time-consuming and cannot provide real-time data of sufficient resolution to accurately 60 

inform PA management (Sylvester-Bradley et al., 1999; Kim et al., 2009). 61 

A number of different approaches have been used to address this issue. Crop canopy 62 

sensing techniques, for determination of plant N status, are now in commercial use and can 63 

be used to inform variable rate fertiliser application (e.g. wheat, maize; Raun and Johnson, 64 

1999; Diacono et al., 2013). Whilst the advantages of this approach in some situations have 65 

been evidenced (Diacono et al., 2013), plant N status and yield is the product of many 66 

variables and may not always correlate with soil mineral N status. On-the-go soil sampling 67 
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for NO3
-, using electrochemical sensor platforms attached to agricultural vehicles have been 68 

developed (Adsett et al., 1999) and, for the case of pH, commercialised (Adamchuk et al., 69 

1999). The results have been used to develop field nitrate maps (Sibley et al., 2009) which 70 

could be used to define within-field management zones and to calculate variable fertiliser 71 

application rates. On-the-go sampling is generally more spatially intensive than manual field 72 

sampling, allowing better spatial resolution, although key information on how soil mineral N 73 

varies over small spatial scales may not be obtained. This can lead to increased uncertainties 74 

of interpolative predictions, especially if the sample volume is small (Schirrmann and 75 

Domsch, 2011). Furthermore, increasing the temporal resolution of this approach requires 76 

additional economic costs and as both these approaches rely on reactive management, crucial 77 

changes in soil mineral N status may be missed. 78 

One approach, which has yet to be explored, is the use of in-situ sensors capable of 79 

monitoring soil mineral N in real time. At the time of writing, there are no such quasi-80 

permanent field sensors in use commercially. However, potential for the development and 81 

deployment of such sensors exists (Shaw et al., 2014). For example, ion-selective electrodes 82 

(ISEs) have many characteristics suitable for soil sensing networks. They are relatively 83 

cheap, simple to use, require no mains electrical power supply and the concentration of the 84 

target ion can be easily calculated via a pre-calibration. Nitrate (NO3
-) ISEs have previously 85 

been successfully deployed for monitoring streams and agricultural drainage ditches (Le Goff 86 

et al., 2002; Le Goff et al., 2003) as well as for on-the-go soil sampling of agricultural soils 87 

(Sinfield et al., 2010) and on-farm rapid tests for soil NO3
- (Shaw et al., 2013). Similarly, 88 

ammonium (NH4
+) ISEs have been used for water monitoring in a variety of situations 89 

(Schwarz et al., 2000; Müller et al. 2003).  Direct soil measurement, which is essential for the 90 

success of in-situ monitoring, has been shown to be possible (Ito et al., 1996; Adamchuk et 91 

al., 2005), although improvements in accuracy and robustness of the sensing membrane are 92 
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required. Increasing use of nano technologies for the construction of electrochemical sensors 93 

may result in significant advances in sensor performance (Arrigan, 2004; Atmeh and Alcock-94 

Earley, 2011).  95 

Using in-situ sensor networks may enable a step away from predetermined fertiliser N 96 

recommendations (Defra, 2010) to a more dynamic system that responds in real-time to 97 

changes in growing conditions. It potentially has many benefits compared to on-the-go soil 98 

sampling and crop canopy sensing. The data provided by in-situ sensors will be of 99 

significantly higher temporal resolution, negating the need for repeated sampling surveys 100 

throughout the year, which represent an economic cost to the farmer. Furthermore, this may 101 

enable more accurate timing of fertiliser application, reducing the risk of yield penalties 102 

caused by N-nutrition deficiencies, and the risk of N transfers to water and air as a result of 103 

excessive fertiliser N applications. It is also likely that the data generated at a high temporal 104 

resolution by an in-situ sensor networks will increase knowledge of the controls of soil N 105 

processes and thus enable development of models which allow for a proactive approach to 106 

fertiliser N management. However, there is a trade-off to be made. The increase in temporal 107 

resolution gained from in-situ sensor networks may be offset by the costs of achieving 108 

sufficient spatial resolution. 109 

It is, therefore, important that consideration is made as to how such sensor networks 110 

could be optimally designed to enable sufficiently precise estimates of mean field or 111 

management zone (MZ) soil N at minimum cost. Two factors complicate this.  First, each 112 

sensor must attach to a data logger, over a relatively short distance.  As data loggers cost 113 

more per unit than sensors, and one logger can support several sensors, then feasible 114 

networks will comprise sensor clusters, each associated with a logger.  As such, sensor 115 

networks can be regarded as multi-scale sampling schemes with data loggers (primary units) 116 

and sensors (secondary units) randomly placed in an area around each data logger. Second, 117 
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soil N is variable, at multiple scales. Efficiently designed sensor networks will have sufficient 118 

replication at the most variable scales, achieving this within the constraints of feasible 119 

clustered designs.  As shown by de Gruijter et al. (2006), the optimum configuration of such 120 

a sampling scheme depends on the relative costs of additional primary and secondary units 121 

and the within- and between-primary unit variability. 122 

The primary objective of this study was to address the above problem and to 123 

investigate how the design of a theoretical network of in-situ soil N sensors could be 124 

optimised on a cost-precision basis, to enable monitoring of soil N concentrations in a 125 

grassland field. As seen in the discussion above, the feasibility and optimal design of sensor 126 

networks depends on the variability of the target properties at different within-field scales. An 127 

effective way to collect such information is by spatially nested sampling, which has been 128 

used previously to characterise the spatial variation in a range of soil-related variables (Lark, 129 

2011). In nested spatial sampling, sample sites are arranged in a nested hierarchical design 130 

which allows the partition of the variance of the measured variable into components 131 

associated with a set of pre-determined scales. At the highest level of the hierarchy sample, 132 

points are arranged in clusters associated with “mainstations” which may be at randomly-133 

located sites or on nodes of a grid or transect. Within a mainstation, sample points may be 134 

divided between two or three stations at level 2 which are separated from each other by some 135 

fixed distance. Within each level-2 station, sample points may be ordered at further nested 136 

spatial scales. 137 

As such, spatially nested sampling was performed at a range of scales to characterise 138 

the within-field spatial variability of amino acids, NH4
+ and NO3

-. These results were then 139 

used to explore the optimisation of a NH4
+ and NO3

- in-situ sensor network design on the 140 

basis of both cost and precision. Finally, the potential and challenges of implementing this 141 

approach within a PA framework are discussed. 142 
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 143 

2. Materials and methods 144 

2.1. Field site and soil characteristics 145 

The field used for this study is located within the Henfaes Research Station 146 

Abergwyngregyn, Wales, UK (53°14′N 4°01′W). The site has a temperate, oceanic climate, 147 

receives an average annual rainfall of 1250 mm and has a mean annual soil temperature at 148 

10 cm depth of 11 °C. The field is roughly rectangular with a perimeter of 559 m and an area 149 

of 1.91 ha. It has an average altitude of 12.1 m asl with a slope of 1.5% in a northerly aspect. 150 

It is a semi-permanent sheep-grazed grassland, dominated by Lolium perenne L. The current 151 

ley was established by direct drill in April 2009 using a perennial and hybrid ryegrass mix. 152 

The field has been used for both all year round grazing and silage production since 2009, 153 

receiving an annual inorganic fertiliser input of between 100 – 130 kg N ha-1 in addition to 154 

potassium (K), phosphate (P) and sulphur (S) at recommended rates. Lime has also been 155 

applied when necessary to restore the pH to a target value of 6.5. In 2014, inorganic fertiliser 156 

was applied on 12/5/14 and 11/7/14 at a rate of N:P:K 50:10:10 and 60:4:0 kg ha-1, 157 

respectively. The field was grazed until 9/6/14 and the field remained sheep free until the 158 

2/9/14. The soil is a free draining Eutric Cambisol with a sandy clay loam texture and a fine 159 

crumb structure. 160 

To assess the chemical characteristics of the soil, replicate samples (n = 4) were 161 

collected from 4 randomly located points within the field. For each sample, the vegetation 162 

was removed from an area approximating 30 × 30 cm and soil was collected to a depth of 10 163 

cm, representing the Ahp horizon (an Ahp horizon is an Ah horizon which has been subjected 164 

to cultivation). This sampling design is not related to the spatially nested design described in 165 

section 2.2. The soil was placed in gas-permeable polyethylene bags and transported to the 166 

laboratory in a refrigerated box. All of the following procedures were performed on the same 167 
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day as field sampling. Soil pH and electrical conductivity were determined in a 1:2.5 (w/v) 168 

soil:distilled water suspension using standard electrodes. Moisture content was determined by 169 

drying for 24 h at 105 °C. Total C and N were determined with a TruSpec CN analyser (Leco 170 

Corp., St Joseph, MI, USA). Dissolved organic carbon (DOC) and dissolved organic nitrogen 171 

(DON) were measured in soil extracts (0.5 M K2SO4, 1:5 w:v) using an Analytik Jena Multi 172 

N/C 2100S (AnalytikJena, Jena, Germany). Chloroform fumigation and incubation (t = 7 173 

days) of 2 g (n = 4) of fresh soil was performed to determine microbial biomass C and N 174 

according to Voroney et al. (2008) (KEC = 0.35 KEN = 0.5). Exchangeable cations were 175 

extracted using 0.5 M acetic acid (Sparks, 1996) and the filtered extracts analyzed using 176 

flame emission spectroscopy (Sherwood 410 flame photometer; Sherwood Scientific, 177 

Cambridge, UK). Extractable phosphorus (P) was determined by extraction with 0.5 M acetic 178 

acid with subsequent colorimetric analysis using the molybdate blue method of Murphy and 179 

Riley (1962). Basal soil respiration was determined in the laboratory at 20 °C using an SR1 180 

automated multichannel soil respirometer (PP Systems Ltd., Hitchin, UK) and steady state 181 

CO2 production rates recorded after 24 h. Potentially mineralisable N was determined using 182 

an anaerobic incubation method based on Keeney (1982). Briefly, 5 g field moist soil was 183 

place in a 50 ml centrifuge tube, which was then filled to the top with de-ionized H2O and the 184 

tubes sealed. Soils were subsequently incubated in the dark at 40 °C for 7 d. The difference in 185 

NH4
+ content between t = 0 and t = 7 d was attributed to N mineralization.  186 

Above ground biomass was sampled on 26/6/2014. Replicate 1 × 1 m blocks (n = 4) 187 

were chosen at random from within the field. The vegetation was cut to ground level, stored 188 

in paper bags and subsequently oven-dried at 80 °C to determine dry matter content. A 189 

summary of the results is shown in Table 1. 190 

 191 

2.2. Sampling design and protocol 192 
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Nested sampling for spatial variability: The aim of the sampling was to characterize 193 

the variability of plant-available N forms – amino acid-N, NH4
+ and NO3

- – at a range of 194 

spatial scales relevant to planning the design of an in-situ sensor network. In particular, it was 195 

necessary to examine the relative importance of variance between and within local regions 196 

each of which might be represented by a cluster of soil N sensors deployed around a single 197 

data logger such that the maximum distance between any two sensors is about 2 m. In a 198 

grassland environment it was expected that one of the main sources of variation in soil N 199 

would be the uneven and relatively random distribution of urine patches of linear dimensions 200 

about 40 cm (Bogaert et al., 2000; Selbie et al., 2015). Variation at larger scales may also be 201 

important due to preferential use of certain areas of the field such as tracks, areas of shade 202 

and around drinking troughs (Bogaert et al., 2000), which may be reflected in local gradients 203 

in soil chemistry. The study field is broadly homogenous in terms of its topography and soil 204 

type. Furthermore, a visual inspection of the field revealed no obvious large-scale gradients 205 

in vegetation condition which is likely to reflect the broadly homogenous nature of the soil. 206 

Previously, the field has received uniform management in terms of its fertiliser and lime 207 

inputs and grazing regime. Because of these factors, it was decided to treat the field as 208 

singular management unit with a singular mean rather than subdivide the field into separate 209 

management zones.  210 

Given these considerations, a nested sampling protocol was designed with length 211 

scales within each mainstation of 1 cm, 10 cm (intermediate between the fine scale and urine 212 

patch scale), 50 cm (urine patch scale) and 2 m (upper bound on the "within-region served by 213 

a sensor cluster" scale). To assess spatial variation at larger scales, mainstations were 214 

distributed by stratified random sampling with the target field divided into four quarters 215 

(strata) of equal area. Four mainstations were established at independently and randomly-216 

selected locations within each quarter (stratum), giving a total of 16 mainstations. The design 217 
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of the sampling scheme within each mainstation, was obtained by the optimization procedure 218 

of Lark (2011) on the assumption of a fractal or quasi-fractal process in which the variance is 219 

proportional to the log of the spatial scale. The objective function was the mean estimation 220 

variance of the variance components. With 12 samples per mainstation the total sample size 221 

was 192. The sample sites were then selected at each mainstation by randomizing the 222 

direction of the vectors between the substations at each level of the design shown in Figure 1, 223 

while keeping the lengths of the vectors fixed. For practical purposes, sampling was split over 224 

2 successive days, with 2 strata sampled on day 1 and two on day 2, giving a total of 8 225 

mainstations and 96 samples per day. No duplicate sampling took place as each sample site 226 

was visited only once over the 2-day period.  227 

An initial nested sampling campaign was performed over 2 days on the 4th and 5th 228 

June, 2014. Following this, all sheep were removed and the field remained ungrazed until 2nd 229 

September, 2015. A further nested sampling campaign was performed on the 31st July and 1st 230 

August, 2014, 3 weeks after the field received a N fertiliser input of 60 kg N ha-1. These are 231 

subsequently referred to as the June nested sampling and the July nested sampling 232 

respectively. Sample site locations were set up the day before sampling took place. At each 233 

sampling location a soil corer, of diameter 1 cm, was used to sample soil. A 5 cm soil core 234 

from between depths of 5 -10 cm was sampled and placed in gas-permeable plastic bags, and 235 

stored in a refrigerated box. This depth was chosen as it represents the middle of the rooting 236 

zone and would make installation of any in-situ sensor a straight forward process. Following 237 

the sampling event, the samples were transferred immediately to the laboratory where they 238 

were refrigerated at 4 °C. Extraction of soluble N from soil was performed on the soil cores 239 

on the same day as sampling as described below. During the second nested sampling event, 240 

duplicate sub-sampling and chemical analysis were performed on 4 out of the 12 samples 241 
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from each mainstation in order to make an assessment of the error variance attributable to 242 

subsampling and analytical error.  243 

Soil properties are also likely to vary at sub-core (less than 1 cm) scales (Parkin, 244 

1987; Stoyen et al., 2000). As such, a further sampling design and protocol was developed 245 

and performed on the 25th June, 2014 to investigate how this micro-heterogeneity affected the 246 

spatial variability of N forms at the “aggregate scale” (less than 1 cm). Two sampling 247 

locations were chosen at random within each of the 4 strata. At each location, a pair of 248 

samples were taken, using the protocol described above, with a distance of 1 cm between 249 

each sample. This resulted in a total of 16 core samples. On return to the laboratory the cores 250 

where broken apart and 4 “aggregates” of weight 60 – 80 mg were collected (diameters ca. 1-251 

2 mm). These aggregates were then extracted for soluble N and analysed using the protocol 252 

described below. 253 

 254 

2.3. Extraction and chemical analysis of soil samples 255 

All soil extractions were performed on the same day as sample collection, according 256 

to the following protocol. Samples were crumbled by hand, in order to prevent sieving 257 

induced N mineralisation (Jones and Willett, 2006; Inselsbacher, 2014). Large stones, roots 258 

and vegetation were removed prior to gentle mixing of the sample. To further reduce 259 

mineralisation of organic N forms, sub-samples of field-moist soil (2 g) were extracted on ice 260 

(175 rev min-1, 15 min) using cooled (5 °C) 0.5 M K2SO4 at a soil: extractant ratio of 1:5 261 

(w:v) (Rousk and Jones, 2010). The extracts were centrifuged (4,000 g, 15 min), and the 262 

resulting supernatant collected and frozen (-18°C) to await chemical analysis. The protocol 263 

differed slightly for the soil aggregate samples. Each aggregate, of weight 60 – 80 mg, was 264 

placed in a 1.5 ml Eppendorf® micro-centrifuge tube and crumbled gently using a metal 265 

spatula. The soil was then extracted in 500 µl of 0.5 M K2SO4 as described above. Total free 266 
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amino acids (referred to as amino acids) were determined by the o-phthaldialdehyde 267 

spectrofluorometric method of Jones et al. (2002). NH4
+ was determined by the salicylate-268 

nitroprusside colorimetric method of Mulvaney (1996) and NO3
- by the colorimetric Griess 269 

reaction of Miranda et al. (2001) using vanadate as the catalyst. 270 

 271 

2.4. Statistical analysis 272 

Nested Sampling: The aim of the statistical analysis was to compute the variance 273 

components attributable to each of the spatial-scales in order to inform the optimisation of the 274 

sensor network design. After Box-Cox transformations (see section 2.5 for details of 275 

transformations), the n data from the nested sampling may be analysed according to the 276 

following statistical model (Webster and Lark, 2013).  An n × 1 vector of observations, y, is 277 

regarded as a realization of a random variate, Y, where 278 

Y = Xβ+ Usηs + Umηm+ U2η2+ U0.5η0.5+ U0.1η0.1+ U0.01η0.01+ Urηr. 279 

 (1) 280 

X is a n × p design matrix which represents fixed effects in the model (e.g. p levels of a 281 

categorical factor, or p continuous covariates) and β is a length-p vector of fixed effects 282 

coefficients. In this analysis the fixed effects were different means for data collected on two 283 

successive days, as it was not possible logistically to sample on one day.  Strata were 284 

randomly allocated to days (two strata per day) so between-stratum variation is not 285 

confounded with any temporal effect. There are 4 strata in the sampling design, and Us is a n 286 

× 4 design matrix for the strata.  If the ith observation is in stratum j then Us [i, j] = 1 and all 287 

other elements in the ith row are zero. The design matrix associates each observation with 288 

one of 4 random values in the random variate ηs. These values are assumed to be independent 289 

and identically distributed Gaussian random variables with a mean of zero and a variance σ2
s 290 

which is the between-stratum variance component.  Similarly, Um is a n × 16 design matrix 291 
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for the mainstations, and the variance of ηm is the between-mainstation variance component.  292 

The terms with subscripts 2, 0.5. 0.1 and 0.01 represent the design matrices and random 293 

effects for the components of variation associated with the 2-m, 0.5-m, 0.1-m and 0.01-m 294 

scales respectively.  If duplicate material from some or all of the soil specimens is analysed 295 

then the random effect ηr which represents the variation due to subsampling and analytical 296 

variation can be estimated, otherwise it is a component of the variation estimated for the 297 

finest spatial scale. 298 

Under the linear mixed model Y has covariance matrix H where 299 

H =  σ2
sUsUs

T
 + σ2

mUmUm
T

 + σ2
2U2U2

T
 + σ2

0.5U0.5U0.5
T

 + σ2
0.1U0.1U0.1

T
 300 

+ σ2
0.01U0.01U0.01

T
 + σ2

rUrUr
T,     301 

 (2) 302 

and the superscript T denotes the transpose of a matrix. The parameters of this matrix are 303 

therefore the variance components, and these can be estimated by residual maximum 304 

likelihood (REML), see Webster and Lark (2013). Once this has been done then the fixed 305 

effects coefficients in the model can be estimated by generalized least squares (see Lark and 306 

Cullis, 2004). Note that there is an explicit assumption that the data are a realization of a 307 

Gaussian random variable with mean Xβ dependent on the fixed effects and coefficients.   308 

Because all sampling could not be done in one day the sampling day was randomized 309 

within strata, so as not to be confounded with the spatial variance components of interest. For 310 

this reason, it is regarded as a fixed effect in the model. The significance of the between-day 311 

effect was tested with the Wald statistic as discussed in Lark and Cullis (2004). 312 

The significance of a random effect in the model can be tested by comparing the 313 

residual log-likelihood for a model with the term dropped (L–) with the residual log-314 

likelihood for the full model (all random effects, L). Any variance accounted for by a term 315 

which is dropped will contribute to variance at lower levels in the hierarchy (finer spatial 316 
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scales) for the dropped model. For this reason the ultimate component of the model (ηr when 317 

there are duplicate analyses and η0.01 otherwise) cannot be dropped. Dropping a term from 318 

the model will usually reduce the log-likelihood (and will not increase it). Whether the 319 

reduction in likelihood is strong enough evidence that the inclusion of the term in the full 320 

model is justified can be assessed by computing Akaike's information criterion (AIC), A, for 321 

each model: 322 

A = −2L + 2P        (3) 323 

where P is the number of parameters in the model.  The AIC penalizes model complexity, by 324 

selecting the model with smaller AIC, one minimises the expected information loss through 325 

the selection decision (Verbeke and Molenberghs, 2000). 326 

Aggregate scale sampling: After Box-Cox transformations (see section 2.5 for details 327 

of transformations) the n data collected to investigate variation within cores were analysed 328 

according to the following statistical model.  An n × 1 vector of observations, y, is regarded 329 

as a realization of a random variate, Y, where 330 

Y = Xβ+ Usηs + Upηp+ Ucηc+ Uaηa,      331 

 (4) 332 

As in Equation (1), X is a design matrix for fixed effects and β is a vector of fixed effects 333 

coefficients (here just a constant mean).  Again, as in Equation (1), Us is a n × 4 design 334 

matrix for the strata and ηs is assumed to be an independent and identically distributed 335 

Gaussian random variate with a mean of zero and a variance σ2
s. In the same way Up and ηp 336 

are the design matrix and the random variate for the between-pair within-stratum effect, with 337 

variance σ2
p; Uc and ηc are the design matrix and the random variate for the between-core 338 

within-pair component, with variance σ2
c and Ua and ηa are the design matrix and the 339 

random variate for the between-aggregate within-core component, with variance σ2
a. This 340 

latter component is effectively the residual as there are no duplicate measurements on any 341 



16 
 

aggregate.  The same method based on the AIC was used to assess the evidence for including 342 

each term in the model above the between-aggregate effect. 343 

 344 

2.5. Data transformations 345 

The REML estimator for random effects parameters makes an explicit assumption that the 346 

random variation in the model is normally distributed. This assumption is of particular 347 

importance in the model with nested random effects, because these must be modelled as 348 

independent additive components. This is plausible for normal random variables, but not in 349 

general otherwise. For this reason, it was necessary to transform the data so that the residuals 350 

from any fixed effects could be regarded as normal.  To this end, a Box-Cox procedure from 351 

the MASS package in R (Venables and Ripley, 2002) was used to apply the Box-Cox 352 

transform.  Under this transform the variable x is transformed to a normal variable y by 353 

finding a maximum likelihood estimate of the parameter λ such that 354 

𝑦𝑦 = �
𝑥𝑥𝜆𝜆−1
𝜆𝜆

, 𝜆𝜆 ≠ 0
ln(𝑥𝑥) , 𝜆𝜆 =  0

.      (6) 355 

Note that the log-transformation is a special case of the Box-Cox, with λ=0.   In this study, 356 

the log-normal transformation was used for cases where the 95% confidence interval of λ 357 

included 0. Where this was not the case, the Box-Cox transformation with the maximum 358 

likelihood estimate of λ was used. 359 

A disadvantage of transformation is that the results are not on familiar scales, and that 360 

the relative and absolute magnitudes of the variances depend on the transformation and the 361 

mean.  Section 2.6 describes how the variance components estimated on the transformed 362 

scales were used to calculate the width of confidence intervals for estimates of field means 363 

for forms of N estimated from different sensor arrays by a simple back-transformation of 364 

confidence limits on the transformed scale.  However, it is not possible to perform a 365 
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comparable simple back-transformation of variance components for general interpretation of 366 

the variability at different scales.  This would be true of any Box-Cox transformation.  367 

Two sets of results have been presented.  The first are the variance components on the 368 

transformed scale, the scale of measurement on which each data set can most plausibly be 369 

modelled as an additive combination of random components at different scales (Panel A, 370 

Figs. 2 & 3; tables 3, 5 & 7). For the different scales, percentages of the total accumulated 371 

variances have been calculated, and these values are referred to in the results section to aid 372 

comparison between the different N forms and sampling events. Secondly, a non-parametric 373 

statistic was computed on the original scales of measurement for each nested analysis.  Using 374 

the estimated variance components on the transformed scale, 10,000 data values in a nested 375 

configuration were simulated with, in the case of the spatially nested sample, pairs of points 376 

in contrasting strata, pairs of points at different locations within a stratum and pairs of points 377 

within strata separated by 2 m, 0.5 m, 0.1 m and 0.01m respectively.  Each simulated value 378 

was then back-transformed to the original scale of measurement by inverting the Box-Cox 379 

transformation.  All these pairs of observations were then examined on the original scale, 380 

computing a non-parametric and robust measure of the variability of the differences.  This is 381 

the median absolute deviation from the median (MAD). If one considers all pair comparisons 382 

over 2 m, for example, the median difference is first computed and then the absolute 383 

difference between this median difference and each individual pair difference is computed, 384 

and the median of all these values is extracted.  The MAD is a measure of variability on the 385 

original scale of measurement (like the standard deviation).  These were extracted for all 386 

variables and plotted alongside cumulative plots of the variance components on the 387 

transformed scale to aid the interpretation of these latter plots and give an indication of the 388 

magnitude of variation that can be expected for measurements on the original scale (panel B, 389 

Figs 2 & 3). The same process was followed after the analysis of aggregate-scale variation to 390 
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compute the MAD of comparisons between two aggregates within a core, between two cores 391 

in a pair, between two sites within a stratum, and between pairs of strata, these are presented 392 

in Table 8. MAD values are also explicitly reported in the results section with units of µg N 393 

g- 1. 394 

2.6. Optimising the design of an in-situ sensor network 395 

The transformed variance components derived from the nested sampling and 396 

subsequent statistical analysis were used to examine the theoretical performance of different 397 

designs of in-situ soil NH4
+ and NO3

- sensor networks. When considering the optimal design, 398 

two factors must be considered. Firstly, what is the required level of precision for the 399 

estimation of the field mean and how many sensors and data loggers are required to achieve 400 

this? Secondly, how can the design be optimised in-terms of achieving a desired level of 401 

precision at minimum cost? Alternatively, it may be useful to explore how to design the 402 

network to achieve the highest precision possible given a certain budget restriction. 403 

To estimate the level of precision associated with a particular sensor network design, 404 

the between-sensor within-logger component of variance, where a cluster of ne sensors are 405 

randomly located within a region of 2 m diameter around each of nl data logging hubs, which 406 

are located by simple random sampling, can be approximated by  407 

σ2
sensor = σ2

2 + σ2
0.5 + σ2

0.1 + σ2
0.01,       (6) 408 

 and the between-logger variance by  409 

σ2
logger = σ2

s + σ2
m.         (7)  410 

As such, the standard error of the field mean soil N concentration derived from the sensor 411 

network can be estimated as follows: 412 

σmean = {(σ2
logger / n l) + (σ2

sensor / nlne)}½ .     (8) 413 

This allows the 95% confidence interval of the field mean estimations to be calculated, given 414 

the variance components calculated from the nested sampling, for particular combinations 415 
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and numbers of data loggers (n l) and sensors (ne). These calculations were performed on the 416 

transformed scale prior to back-transformation of the 95% confidence interval to the original 417 

scale of measurement. 418 

In order to demonstrate how the design may be optimised on a cost basis it was 419 

necessary to decide on a unit cost for a data logger and a sensor. Given the potential of 420 

electrochemical sensors for in-situ monitoring, it was decided that the unit cost for the sensor 421 

would be £200, based on the cost of a commercially available NH4
+ or NO3

- ISE (ELIT 422 

8021, ELIT 003, Nico2000, Harrow, UK) and £2000 for the data logger, based on the cost of 423 

a commonly used data logger (DL2e DeltaT, Cambridge, UK). Whilst these costs are 424 

somewhat arbitrary, it does allow useful comparison between designs to be made. It would 425 

also be possible to change these unit costs to explore how using different sensors and loggers 426 

may affect the optimisation of the network. 427 

The 95% confidence intervals were computed for sensor network designs that 428 

consisted of 1 to 10 data loggers with 2 to 15 sensors distributed equally among the loggers, 429 

15 being the maximum number of sensor ports on the data logger (DL2e DeltaT, Cambridge, 430 

UK). This allowed construction of graphs (Fig. 4) which illustrate the total cost for each 431 

design plotted against the resulting 95% confidence interval of the estimated field mean. 432 

 433 

3. Results 434 

3.1. June nested sampling - evaluating the spatial variation of soluble N in soil prior to 435 

application of N fertiliser 436 

The mean concentrations of amino acid, NH4
+ and NO3

- were found to be fairly 437 

similar with values of 1.44, 1.87 and 1.71 respectively (Table 2). All of the N-forms had a 438 

positively skewed distribution. This was especially the case for NH4
+, which had a skewness 439 

value of 12.82 and a maximum value of 80.49 µg N g-1 (histograms of distributions can be 440 
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viewed in the supplementary information, Fig. S1). The Box-Cox parameter, λ, for each 441 

variable had a 95% confidence interval which excluded zero, so the maximum likelihood 442 

estimate of λ (Table 2) was used to transform each variable.  Plots of the profile likelihood 443 

for λ, with the 95% confidence interval can be viewed in the supplementary information, Fig. 444 

S2. 445 

The different forms of N showed slightly different scale-dependencies, although in 446 

general, short-range variance dominated (Fig. 2 and Table 3). On the original units, the MAD 447 

for comparisons where all sources of variation contributed were largest for NO3
- (0.92 µg N 448 

g- 1), followed by NH4
+ (0.75 µg N g-1), and amino acids with (0.51 µg N g-1). For amino 449 

acids, the 1-cm scale had the largest variance component, constituting 59% of the total 450 

accumulated variance. The 10-cm and the between-mainstations within-strata term were also 451 

considered important spatial components (as judged by AIC; see Table 3 and Table S1). For 452 

NH4
+

, the 1-cm scale had the largest variance component, constituting 63% of the total 453 

accumulated variance. However, for spatial scales greater than 1 cm, only the between-454 

mainstations within-strata term was considered important. For NO3
-, the relative importance 455 

of variation at scales coarser than 1cm was larger than for other forms of N (Fig 2) with the 456 

10-cm scale having the largest variance component, constituting 28% of the total 457 

accumulated variance on the transformed scale.  A comparable pattern was seen with the 458 

MAD values. Furthermore, all the spatial scales, with the exception of the 2-m scale, 459 

exhibited variance that was considered important. Short-range scale variation still dominated 460 

though, with 70% of the variance occurring at spatial scales up to 50 cm. It should be noted 461 

that the 1-cm scale component will also include any measurement error. 462 

 463 

3.2. July nested sampling - evaluating the spatial variation of soluble N in soil after 464 

application of N fertiliser 465 
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The mean concentrations of amino acid, NH4
+ and NO3

- were found to be fairly 466 

similar with values of 1.25, 1.96 and 1.36 respectively (Table 2). All of the N-forms had 467 

slight positively skewed distributions. NH4
+ displayed the largest positive skew, with a 468 

skewness value of 3.28 and a maximum value of 9.88 µg N g-1 (histograms of distributions 469 

can be viewed in the supplementary information, Fig. S3). The Box-Cox parameter, λ, for 470 

each variable had 95% confidence interval which excluded zero, so the maximum likelihood 471 

estimate of λ (Table 4) was used to transform each variable.  Plots of the profile likelihood 472 

for λ, with the 95% confidence interval can be viewed in the supplementary information, Fig. 473 

S4. 474 

The different forms of N showed slightly different scale-dependencies, although in 475 

general short-range variance dominated (Fig. 3 and Table 5). On the original units, the MAD 476 

for comparisons where all sources of variation contributed were largest for NH4
+ (0.88 µg N 477 

g-1), followed by NO3
- (0.64 µg N g-1) and amino acids with (0.41 µg N g-1). For amino acids, 478 

the between mainstations within-strata had the largest variance component, constituting 36% 479 

of the total accumulated variance, although 58% of the total accumulated variance occurred at 480 

scales up to 10 cm. The 1-cm, 10-cm and the between-mainstations within-strata term were 481 

considered important spatial components (as judged by AIC; see Table 5 and Table S2). For 482 

NH4
+, the 1-cm scale had the largest variance component, constituting 55% of the total 483 

accumulated variance. Spatial scales greater than 10 cm accounted for only 13% of the total 484 

accumulated variance. Only the 1-cm and the between-mainstations within-strata terms were 485 

considered important spatial components. For NO3
-, the between-mainstations within strata 486 

scale was the largest variance component, constituting 39% of the total accumulated variance. 487 

The 1-cm, 10-cm and the between-mainstations within-strata term were considered important 488 

spatial components. Short-range scale variation still dominated though, with 61% of the 489 

variance occurring at spatial scales up to 50 cm. 490 
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Duplicate measurements on 4 samples from each mainstation allowed the 1-cm spatial 491 

variance component to be resolved from the subsampling and measurement error. As this 492 

residual term formed the ultimate term in the model, it allowed an assessment of the 493 

importance of the 1-cm spatial component. For all of the N forms, the 1-cm scale was 494 

considered an important spatial component, and was larger than the residual variance. 495 

However, the residual variance, which was similar for all N forms, constitutes a substantial 496 

component of the accumulated variance and was, for all N forms, larger than the variance at 497 

50 cm and 2 m. 498 

 499 

3.3. Aggregate-scale variability of soluble N in soil  500 

In the case of the aggregate-scale data, the 95% confidence interval for the Box-Cox 501 

parameter, λ, for each variable included zero (see supplementary material Fig. S6), so the log-502 

transformation was applied. 503 

In all cases, the largest variance component was found to be the between-aggregate 504 

within-core scale (table 7 & 8). For NH4
+ and NO3

-, 91% and 80% respectively of the total 505 

accumulated variance occurred at this scale, which was an order of magnitude higher than the 506 

variance at the between core scale. The variance at the aggregate scale for amino acid-N was 507 

lower at 66%. It should be noted that any analytical error that occurred will also appear in this 508 

variance component. The between-core component, which represents the 1-cm spatial scale, 509 

was considered important (as judged by AIC; see Table 7 and Table S3) for amino acids and 510 

NO3
-, but not NH4

+. Neither the between-pair component, which is similar to the between-511 

mainstations scale, nor the between-strata component, were considered to be important 512 

spatial components. However, the stratum and mainstation scale in this analysis were based 513 

on limited replication. The focus of this particular sampling exercise was on the aggregate 514 

and core scale, so general conclusions from these results about the importance of coarser-515 
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scale variation are not made. 516 

 517 

3.5. Optimisation of a within-field sensor network for monitoring soluble N in soil 518 

The optimisation of the design of an in-situ network of NO3
- and NH4

+ sensors can be 519 

explored using the graphs in Fig. 4. The graphs show how increasing both the number of 520 

sensors per data logger, and increasing the number of data loggers, reduces the width of the 521 

95% confidence interval of the estimated field mean derived from the sensor network. There 522 

are differences in the results between NO3
- and NH4

+ and between sampling events. For 523 

example, to achieve a 95% confidence interval width of no more than 1 µg N g-1 for a NO3
- 524 

sensor network, given the spatial variation observed in the June sampling event, would 525 

require 3 data loggers each with 11 sensors at a cost of £8200. For the July sampling, 2 data 526 

loggers each with 7 sensors would be sufficient, at a lower cost of £5400. For a NH4
+ sensor 527 

network, given the spatial variation observed in the June sampling event, 2 data loggers each 528 

with 6 sensors, at a cost of £5200 would be required to achieve a 95% confidence interval 529 

width of no more than 1 µg N g-1. For the July sampling, 2 data loggers each with 8 sensors, 530 

at a slightly higher cost of £5600, would be required. Reducing the width of the 95% 531 

confidence interval substantially below 1 µg N g-1 dry soil would result in a large cost 532 

increase, with small marginal improvement on increasing the size of the network. For a NO3
- 533 

sensor network, given the spatial variation observed in the June sampling event, reducing the 534 

width of the confidence interval to less than 0.5 µg N g-1 would require 10 loggers each with 535 

12 sensors, at a cost of £22400. 536 

An alternative approach is to optimise the sensor network design within the 537 

constraints of a fixed budget. A budget of £5000 for a NO3
- sensor network could provide a 538 

single data logger with 15 sensors or 2 data loggers each with 5 sensors. This could be used 539 

to provide a single logger with 15 sensors on each, or two loggers with 5 sensors on each. 540 
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The width of the confidence interval for these two options is 2.12 and 1.70 µg N g-1 dry soil 541 

respectively, so the second option is the rational choice. 542 

 543 

4. Discussion 544 

4.1. Spatial variation of soluble N at within-field scales 545 

The dominance of short range variation (i.e. less than 2 m) for all the N forms may be 546 

attributed to the relatively random and uneven deposition of N from sheep excreta within the 547 

context of a broadly homogenous field. The proportion of the total accumulated variance 548 

attributed to the 1-cm scale was much larger for amino acid-N and NH4
+-N than NO3-N 549 

which may be related to their relative diffusion coefficients, interactions with the solid phase 550 

(Owen and Jones, 2001) and the rapid rate of amino acid turnover and mineralisation in this 551 

soil (Jones et al., 2004; Wilkinson et al., 2014).. Similar small-scale variation of NO3
- in 552 

grazed pastures has been identified in previous studies, with semi-variograms exhibiting the 553 

range of spatial dependency of  less than 5 m (White et al., 1987; Broeke et al., 1996; Wade 554 

et al., 1996; Bogaert et al., 2000), and a nugget variance of 60% (Bogaert et al., 2000). These 555 

results contrast with similar studies performed on arable soils, which were characterised by 556 

ranges of spatial dependencies for NO3
- of greater than 39 m (Van Meirvenne et al., 2003; 557 

Haberle et al., 2004). The observed variation at larger spatial-scales, especially NO3
-, could 558 

be due to the habit of sheep to frequent certain areas of the pasture such as paths, a drinking 559 

trough and areas of shade (Bogaert et al., 2000). 560 

It is unlikely that the observed variation at the “aggregate” scale is driven by the 561 

deposition of sheep excreta. Previous studies of spatial variation in soil N, in the context of 562 

within-field scales, have not investigated variation over such small scales. This small-scale 563 

variation is likely due to the inherent micro-heterogeneity of soil properties, for example, the 564 

abundance of plant roots and mycorrhizal hyphae (Stoyan et al., 2000), availability of labile 565 
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organic matter (Parkin, 1987; Wachinger et al., 2000), earthworm channels and the 566 

composition and abundance of the microbial community (Grundmann and Debouzie, 2000; 567 

Nunan et al., 2002), which in turn will affect biogeochemical processes controlling soil N 568 

concentrations.  569 

There was also some suggestion of a spatio-temporal interaction as evidenced by 570 

small differences in the spatial dependencies of the N forms between the June and July nested 571 

sampling events. In the case of NO3
-, the total accumulated variance was lower, with more of 572 

the observed variance attributed to scales greater than 2 m for the July sampling. This change 573 

may be attributed to the removal of sheep and the associated local inputs of N, combined with 574 

N fertilisation of the field (60 kg N ha-1) that occurred 3 weeks prior to the second nested 575 

sampling event.  576 

 577 

4.2. Optimisation of designing a within-field soil N sensor network 578 

This study clearly demonstrates how nested sampling combined with geostatistical 579 

analysis can be used to optimise the design of an in situ sensor network. Furthermore, given 580 

knowledge of logger and sensor costs it is possible to rationalise planning decisions on a cost-581 

precision basis. Essentially, the shape of the curves within the optimisation graphs (Fig. 5) 582 

reflects the observed spatial variation. The largest observed accumulated variance was for 583 

NO3
- from the June nested sampling. Consequently, a NO3

- sensor network based on this 584 

spatial variation would require a greater number of data loggers and sensors (with a resultant 585 

cost increase), to achieve a desired level of precision when compared to a NO3
- sensor 586 

network based on the July nested sampling results and a NH4
+ sensor network based on either 587 

the June or July nested sampling results.  The distribution of variance across the spatial scales 588 

also affects the most efficient use of a specific budget, in terms of the choice of number of 589 

data loggers and sensors used and the resulting width of the 95% confidence interval. For 590 
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example, a budget of £7000 could be used to purchase either 2 data loggers with 15 sensors 591 

on each or 3 data loggers with 5 sensors on each. Given the observed variation from the June 592 

nested sampling, the former of the above choices gives the most efficient design for NH4
+ 593 

and the later for NO3
-. This reflects the fact that, compared to NO3

-, a greater proportion of 594 

the total accumulated variance for NH4
+, is attributed to scales less than 2 m.  595 

 It is important to note that the data used for these calculations were derived from the 596 

nested sampling which used a soil corer of 1 cm diameter. As such, these calculations are 597 

based on the assumption that any given sensor used for the in-situ network would have a 598 

similar sized zone of influence. Results derived from the aggregate-scale sampling exhibited 599 

large variation at the sub 1-cm scale, which for NH4
+ and NO3

- was an order of magnitude 600 

larger than the 1-cm scale. This will have significant implications when using sensors, for 601 

which the measurement represents an integration over a sensor-soil contact area of diameter 602 

less than 1 cm, as they will be affected by the observed “aggregate” scale variation. If this 603 

variation is not considered when designing the sensor network, it is likely that the precision 604 

of the estimated field mean would be overestimated. To compensate for this, more local 605 

replication at the sub 1-cm scale and hence an increase in the size of the sensor network 606 

would be required for an acceptable level of precision to be achieved, resulting in increased 607 

costs. To explore optimisation of a network of such sensors, further sampling at the sub 1-cm 608 

scale would be required. Ideally this would involve a similar level of replication, across all 609 

scales, to that which was used in the July nested sampling campaign. This evidence may also 610 

be quite instructive for optimising sensor design, as sensors with larger sampling areas will 611 

encompass more of this small-scale variation. 612 

Within this optimisation, no consideration has been made to the observed depth 613 

effects. The resulting estimate of the field mean derived from the sensor network would 614 

therefore, only be applicable to the 5-10 cm depth. Rooting depth, and therefore, nutrient 615 



27 
 

uptake, in fields adjacent to the study site has previously been observed to a depth of 30 cm 616 

(Jones et al., 2004) and a decrease in plant-available with depth has been observed in the 617 

study field (see supplementary information, Fig. S4). As such, any quantification of plant-618 

available N derived from the sensor network should be adjusted for observed depth effects. In 619 

the case of cereals, which may root to depths in excess of 1.5 m, both topsoil and subsoil 620 

sensors will probably be required to avoid bias and gain a representative pattern of soluble N 621 

within the field. Logistically, however, the deployment of sensors in subsoils represents a 622 

significant challenge.    623 

 624 

4.3. Potential for use of in-situ sensor networks within precision agriculture 625 

Adoption of in-situ networks not only relies on the development of suitable sensors 626 

but also on evidence of the cost-benefit. Given the results of the sensor network optimisation, 627 

it is probable that uptake of this approach will incur significant costs; especially if a high 628 

level of precision is required. As such, it is likely that this approach will be limited initially to 629 

high value horticultural crops. As the cost of sensor and data logging technology continues to 630 

fall, adoption by arable and pastoral agriculture may increase. One key factor that will affect 631 

the cost of a sensor network is the required precision of the resulting estimated mean and this 632 

in turn may depend on how the generated data is used to improve fertiliser management. The 633 

creation of a decision support tool that will bring about improved NUE, and hence reduce 634 

input costs and/or increase profits, requires significant future research and is not an 635 

insignificant challenge.  636 

It is important to consider how the approach used in this study could be applied to 637 

field exhibiting significant random and non-random (i.e. a gradient) large-scale variation. It is 638 

possible that the field could be split into management zones each with their own sensor 639 

network. These management zones could be delimitated on the basis of a priori knowledge of 640 
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variables that may affect or indicate soil N status such as topography (Kravchenko and 641 

Bullock, 2000), soil type (Moral et al., 2011), yield variability (Diker et al., 2004) and 642 

farmers knowledge (Fleming et al., 2000). Alternatively, proximal or remote sensing, such as 643 

electromagnetic induction, may allow rapid and cost effective identification of large scale 644 

heterogeneity of soil physical properties (Hedley et al., 2004; King et al., 2005). However, 645 

the extent to which these variables correlate to soil N concentration is likely to be site specific 646 

and so may require some ground truthing. A further broad question which needs to be 647 

addressed with respect to management zones, is at what point does the magnitude and the 648 

spatial-scale of soil N variation become sufficiently large enough to justify site-specific 649 

agriculture? 650 

The success of the approach used here to optimise a sensor network requires temporal 651 

stability of spatial variation (Sylvester-Bradley et al., 1999; Shi et al., 2002). Given 652 

significant spatio-temporal interaction, the results from any sensor network could no longer 653 

be considered accurate or precise. In this study there was evidence of a slight spatio-temporal 654 

interaction which was related to the removal of sheep from the field and the application of N 655 

fertiliser. An alternative approach to that advocated here, would be the implementation of a 656 

grid network, with sensor arrays at each node to account for small-scale soil variation. This 657 

would enable temporal, large-scale spatial variation and their interaction to be monitored. 658 

Kriging techniques could then be used to produce dynamic maps of soil N concentrations 659 

which could be used to inform variable-rate fertiliser management. However, this approach is 660 

likely to require significantly more sensing units and data loggers with a resulting cost 661 

increase. 662 

 663 

5. Conclusions 664 
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This study demonstrates how a network of in-situ soil N sensors could be efficiently 665 

designed and optimised on the basis of cost and precision. To achieve this, the spatial 666 

variation of plant available N – amino acids, NH4
+ and NO3

- – within the soil of a grazed 667 

grassland field was investigated using a nested sampling approach and geo-statistical 668 

analysis. Variation of all N forms at small scales (less than 2 m) was shown to be dominant, 669 

with further large variance evident at scales less than 1 cm. The observed variation was 670 

considered in line with previous work and was attributed to the random input of N to the soil 671 

via sheep excreta and the inherent heterogeneity of soil at the aggregate scale. Based on the 672 

observed spatial variance observed in the June nested sampling, and given a budget of £5000, 673 

the NO3
- field mean could be estimated with a 95% confidence interval width of 1.70 µg N g-674 

1 using 2 randomly positioned data loggers each with 5 sensors. Achieving a 95% confidence 675 

interval width substantially lower than 1.70 µg N g-1 would require significant extra cost. 676 

Adoption of in-situ sensor networks will depend upon the development of suitable low-cost 677 

sensors, demonstration of the cost-benefit and the construction of a decision support system 678 

that utilises the generated data to improve the NUE of fertiliser N management. 679 
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Figure legends 866 

Figure 1. The optimised sampling design of a mainstation used to perform spatial nested 867 

sampling in a 1.9 ha grassland field. Distances between sampling points were fixed but 868 

angles were randomized, with the exception of the 2 m vectors. 869 

Figure 2. Accumulated variance components of the Box-Cox transformed data (Panel A) 870 

from the finest to coarsest spatial scale, derived from the June nested sampling results 871 

(before fertiliser addition). Panel B shows median absolute deviation from the median 872 

(MAD) of differences over the nested spatial intervals on the original scale of 873 

measurement. Source is the spatial-component in meters, with M and S representing the 874 

between-mainstation and between-strata components respectively. 875 

Figure 3. Accumulated variance components of the Box-Cox transformed data (Panel A) 876 

from the finest to coarsest scale, derived from the July nested sampling results (after 877 

fertiliser addition). Panel B shows median absolute deviation from the median (MAD) 878 

of differences over the nested spatial intervals on the original scale of measurement. 879 

Source is the spatial-component in meters, with M and S representing the between-880 

mainstation and between-strata components respectively. 881 

Figure 4. Width of the 95% confidence interval for alternative sensor network designs of 882 

different cost computed to facilitate monitoring of soil N in a 1.9 ha grassland field. 883 

Values are computed from variance components from nested sampling of nitrate in (a) 884 

June (before fertiliser addition) and (b) July (after fertiliser addition) and of ammonium 885 

in (c) June (before fertiliser addition) and (d) July (after fertiliser addition) and on the 886 

basis of unit costs for a sensor and a data logger of £200 and £2000 respectively. Note 887 

that the arrays comprise 1-10 loggers and a maximum of 15 sensors per logger. To 888 

allow a common range of values on the ordinates of these graphs, and to facilitate 889 

interpretation, arrays with fewer than five sensors in total have been excluded from 890 
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Figure 4(a) and arrays with fewer than three sensors have been excluded from Figures 891 

4(b-d). 892 



Table 1 

Background properties of the agricultural grassland Eutric Cambisol used in the study. 

Values represent means ± SEM (n = 4). All soil values are expressed on a dry weight soil 

basis. 

Site property Mean ± SEM 
pH 6.57 ± 0.05 
EC (µS cm-1) 26.5 ± 1.0 
Basal soil respiration (mg CO2 kg-1 h-1) 12.61 ± 1.04 
Total soil C (g C kg-1) 25.35 ± 1.47 
Total soil N (g N kg-1) 2.95 ± 0.06 
Soil C:N 8.62 ± 0.64 
DOC (mg C kg-1) 70.08 ± 2.57 
DON (mg N kg-1) 10.48 ± 1.07 
Mineralisable N (mg N kg-1 d-1) 3.92 ± 0.54 
Microbial C (g C kg-1) 1.03 ± 0.10 
Microbial N (g N kg-1) 0.16 ± 0.01 
Exchangeable Ca (mg Ca kg-1) 501 ± 122 
Exchangeable K (mg K kg-1) 46.05 ± 12.61 
Exchangeable Na (mg Na kg-1) 25.43 ± 5.13 
Available P (mg P kg-1) 7.38 ± 2.02 
Above ground biomass (t DM ha-1) 1.56 ± 0.14 

 

 

  



Table 2  

Summary statistics describing the spatial variability of soluble N (µg N g-1) derived from the 

nested sampling of a grassland soil prior to the application of N fertiliser. Alongside the raw 

data, an estimate of the Box-Cox transformation parameter (λ) is also provided. 

Variable Mean Median Minimum Maximum Skewness λ 

Nitrate 1.71 1.10 0.29 22.51 5.41 -0.426 
Ammonium 1.87 1.27 0.29 80.49 12.82 -0.541 
Amino acid 1.44 1.39 0.65 5.20 3.37 -0.492 
 

  



Table 3 

Variance components for the (Box-Cox transformed) variables and associated Wald tests 

describing the spatial variability of soluble N derived from the nested sampling of a grassland 

soil prior to the application of N fertiliser. The Wald statistic and associated p-value describe 

differences between the two sampling days. Those variance components marked with an 

asterisk are ones which caused an increase in AIC if they were dropped from the model 

(finest scale cannot be dropped).  

Variable 
Variance component Wald 

statistic p-value 
σ2

s σ2
m σ2

2 σ2
0.5 σ2

0.1 σ2
0.01 

Nitrate 0.0629* 0.0362* 0.0 0.0795* 0.0937* 0.0628 0.001 0.974 
Ammonium 0.0087 0.0121* 0.0078 0.00008 0.0153 0.0751 6.8 0.009 
Amino acid 0.0058 0.0035* 0.0 0.0 0.0124* 0.0307 1.89 0.17 
 

  



Table 4 

Summary statistics describing the spatial variability of soluble N (µg N g-1) derived from the 

nested sampling of a grassland soil after the application of N fertiliser. Alongside the raw 

data, an estimate of the Box-Cox transformation parameter (λ) is also provided. 

Variable Mean Median Minimum Maximum Skewness λ 

Nitrate 1.36 1.25 0.26 3.45 0.89 0.302 
Ammonium 1.96 1.71 0.26 9.88 3.28 -0.424 
Amino acid 1.25 1.18 0.56 4.40 2.58 -0.481 

 

  



Table 5  

Variance components for the (Box-Cox transformed) variables and associated Wald tests 

describing the spatial variability of soluble N derived from the nested sampling of a grassland 

soil after the application of N fertiliser. The Wald statistic and associated p-value describe 

differences between the two sampling days. Those variance components marked with an 

asterisk are ones which caused an increase in AIC if they were dropped from the model 

(finest scale cannot be dropped). 

Variable 
Variance component Wald 

statistic  p-value 
σ2

s σ2
m σ2

2 σ2
0.5 σ2

0.1 σ2
0.01 σ2

ε 
Nitrate 0.0 0.0638* 0.0 0.0052 0.049* 0.031* 0.0131 7.89 0.005 
Ammonium 0.0039 0.0069* 0.0 0.0 0.015 0.045* 0.0109 15.43 8.60×10-15 
Amino acid 0.002 0.0241* 0.0025 0.0 0.0086* 0.0199* 0.0103 0.708 0.4 
 

  



Table 6 

Summary statistics describing the aggregate-scale variability of soluble N (µg N g-1) within a 

grassland soil.  

Variable  Mean Median Minimum Maximum Skewness  

Nitrate 1.20 1.04 0.19 3.13 0.80  
Ammonium 2.00 1.78 0.30 5.85 1.24  
Amino acid 1.56 1.50 0.77 2.69 0.49  

 

  



Table 7  

Variance components for the (log-transformed) variables describing the aggregate-scale 

spatial variability of soluble N in a grassland soil. Those variance components marked with 

an asterisk are ones which caused an increase in AIC if they were dropped from the model 

(finest scale cannot be dropped). 

Variable 
Variance component 

σ2
s σ2

p σ2
c σ2

a 

Nitrate 0.0 0.0 0.072* 0.295 
Ammonium 0.0 0.0293 0.003 0.3074 
Amino acid 0.0 0.0031 0.0132* 0.0321 

 

  



Table 8  

Median absolute deviations from the median (MAD) describing the aggregate-scale spatial 

variability of soluble N (µg N g-1) in a grassland soil.  Comparisons are nested, so the 

stratum-scale MAD includes the pair, core and aggregate-scale. 

 

Variable 
MAD (µg N g-1) 

Aggregate 
 

Core 
 

Pair 
 

Stratum 
 

Nitrate 0.75 0.85 0.85 0.85 
Ammonium 1.27 1.30 1.34 1.35 
Amino acid 0.39 0.45 0.46 0.46 

 



 

Key

Length of a line
joining two sample
points

2 m
0.5 m
0.1 m
0.01 m

Sample
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S1. Histograms of the absolute (µg N g-1) and Box-Cox transformed units of soil nitrate, 
ammonium and amino acid concentrations from the June nested sampling prior to fertiliser addition 
sampling (n = 192 for each N form). 
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S2. Profile likelihood plot for the λ parameter of the Box-Cox transformation for soil nitrate, 
ammonium and amino acid concentrations from the June nested sampling prior to fertiliser addition.    
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S3. Histograms of the absolute (µg N g-1) and Box-Cox transformed units of soil nitrate, 
ammonium and amino acid concentrations from the July nested sampling following fertiliser 
addition sampling (n = 192 for each N form).  
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S4. Profile likelihood plot for the λ parameter of the Box-Cox transformation for soil nitrate, 
ammonium and amino acid concentrations from the July nested sampling prior to fertiliser addition. 
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S5. Histograms of the absolute (µg N g-1) and Box-Cox transformed units of soil nitrate, 
ammonium and amino acid concentrations from the aggregate-scale sampling (n = 192 for each N 
form). 
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S6. Profile likelihood plot for the λ parameter of the Box-Cox transformation for soil nitrate, 
ammonium and amino acid concentrations from the aggregate-scale sampling. 
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Figure S7. Variability of soil nitrate, ammonium and amino acid with soil depth. Data points 
represent means ± SEM (n = 12) of soil N concentrations (µg N g-1) for each 5 cm depth increment. 
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Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Table S1. Akaike’s information criterion (AIC) values for the full model used to describe the 
spatial variation of soil N forms in a grassland soil derived from the June nested sampling 
event. The resulting AIC values when each variance component is dropped in turn from the 
full model are also shown. Where the variance for variance components is zero, no AIC value 
is reported. Variance components refer to distances in meters, with m and s representing the 
between-mainstation and between-strata components respectively. 

 

Variable AIC value for full 
model 

AIC value if variance component is dropped from model 

σ2
s σ2

m σ2
2 σ2

0.5 σ2
0.1 

Nitrate –88.35 –86.78 –87.19 — –85.85 –72.06 
Ammonium –217.59 –218.44 –216.81 –219.12 –219.59 –218.91 
Amino Acid –369.1 –370.01 –368.81 — — –368.21 
 

  



Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Table S2. Akaike’s information criterion (AIC) values for the full model used to describe the 
spatial variation of soil N forms in a grassland soil derived from the July nested sampling 
event. The resulting AIC values when each variance component is dropped in turn from the 
full model are also shown. Where the variance for variance components is zero, no AIC value 
is reported. Variance components refer to distances in meters, with m and s representing the 
between-mainstation and between-strata components respectively. 

 

Variable 
AIC value 

for full 
model 

AIC value if spatial component is dropped from model 

σ2
s σ2

m σ2
2 σ2

0.5 σ2
0.1 σ2

0.01 
Nitrate –412.87 — –395.20 — –414.69 –400.52 –376.95 
Ammonium –461.87 –463.08 –460.95 — — –462.02 –408.89 
Amino Acid –560.68 –562.60 –547.14 –562.11 — –560.48 –533.60 
 

  



Supplementary information for Shaw et al. 2016, “Characterising the within-field scale spatial 
variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor 
networks for precision agriculture”. 
 
 
Table S3. Akaike’s information criterion (AIC) values for the full model used to describe the 
aggregate-scale spatial variation of soil N forms in a grassland soil. The resulting AIC values 
when each variance component is dropped in turn from the full model are also shown. Where 
the variance for variance components is zero, no AIC value is reported. The variance 
components s, p and c representing the between-strata, the between-pair and between core 
components respectively. 

 

Variable Full model 
Term dropped from model 

σ2
s σ2

p σ2
c 

Nitrate 10.71 — — 11.8 
Ammonium 7.27 —    5.82 5.28 
Amino Acid –123.0      — –124.9 –121.0 
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