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Abstract  21 

The Biological Carbon Pump is an important component of the global carbon cycle is (BCP). Particle 22 

Export Efficiency (PEeff), defined as the proportion of primary production (PP) exported as 23 

Particulate Organic Carbon (POC) from the surface ocean, is increasingly used as a metric of the 24 

strength of the BCP. However our knowledge of which factors drive variability of PEeff remains poor. 25 

This is partially because comparisons of PEeff in different regions often overlook the timescale over 26 

which the method used operates in relation to the phase of the plankton bloom. Here we use three 27 

techniques to estimate PEeff in situ in the North Atlantic: the radioactive pairs 238U-234Th and 210Pb-28 

210Po, and neutrally buoyant sediment traps (PELAGRA). 29 
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Order of magnitude discrepancies between values of PEeff obtained from PELAGRA relative to those 30 

obtained when applying both radionuclide techniques. POC export fluxes and satellite-derived PP 31 

suggest that this results from the differing time scales covered by the three methods and the timing of 32 

observations relative to the bloom peak. None of the three techniques are considered inappropriate to 33 

estimate PEeff in situ, but bloom dynamics must be considered in relation to the duration over which 34 

a particular sampling method operates. 35 

Our results suggest a strong seasonal variability in PEeff, most likely controlled by the community 36 

structure and hydrographic conditions. This implies that the methods used (specifically their inherent 37 

timescales) and the phase of the bloom at the time of sampling must be carefully taken into account 38 

to ensure that individual PEeff estimates compiled from different sources to construct global export 39 

algorithms are comparable. 40 

 41 

1. Introduction 42 

The Biological Carbon Pump (BCP) is an important component of the marine carbon cycle (Volk 43 

and Hoffert, 1985). The BCP removes CO2 from the atmosphere by the coupling of production and 44 

export processes. Large amounts of organic carbon are transferred from the upper ocean to the 45 

ocean’s interior through the sinking of biogenic particles constituting a complex mix of 46 

biogeochemical material. Without the BCP atmospheric CO2 concentration relative to preindustrial 47 

levels would be ~50 % higher than it currently is (Parekh et al., 2006; Sanders et al., 2014). Hence, 48 

quantifying the efficiency with which the BCP removes carbon from the upper ocean on both global 49 

and regional scales is fundamental for understanding the carbon cycle. A small fraction of particulate 50 

organic carbon (POC) generated through primary production (PP) in surface waters survives 51 

respiration and leaves the mesopelagic zone, but most of this sinking POC flux is remineralised on 52 

its way to the ocean bottom due to the combined action of bacteria and zooplankton (Giering et al., 53 
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2014). Ducklow et al., 2002 and Poulton et al., 2006 estimated that only around 1% of the total 54 

surface PP reaches the seafloor.  55 

One metric for the strength of the BCP is the Particle Export Efficiency, PEeff, defined as POC export 56 

from the surface layer as a fraction of PP. In this study, PEeff is estimated approximately at 150m (i.e. 57 

flux at 150 m relative to PP) and the reference surface layer is 10 m depth. PEeff is mainly controlled 58 

by (i) the level of primary production (De La Rocha and Passow, 2007); (ii) the sinking velocity of 59 

particles carrying organic carbon (De La Rocha and Passow, 2007); (iii) the rate of surface 60 

remineralisation (Le Moigne et al., 2016); (iv) the ballast content of particles (Banse, 1990; De La 61 

Rocha and Passow, 2007; Le Moigne et al., 2014b); and (v) the variability in zooplankton abundance 62 

and therefore grazing (Cavan et al., 2015; Le Moigne et al., 2015). However the way these variables 63 

shape the seasonal and spatial variability of the strength of the BCP (Henson et al., 2015, 2011; 64 

Kwon et al., 2009) remain imprecisely constrained. 65 

Currently, radionuclide techniques (Buesseler et al., 1998; Le Moigne et al., 2013a; Le Moigne et al., 66 

2013b; Rutgers Van Der Loeff et al., 1997; Stewart et al., 2007; Verdeny et al., 2009), and neutrally 67 

buoyant traps (Buesseler et al., 2008b; Lamborg et al., 2008; Lampitt et al., 2008; Marsay et al., 68 

2015; Owens et al., 2013; Peterson et al., 2009; Valdes and Price, 2000) are widely used to estimate 69 

particle export in situ, while other methods such as the marine snow catcher (Cavan et al., 2015; 70 

Riley et al., 2012) provide additional information (e.g. particle sinking speed and pellet flux). 234Th 71 

and 210Po isotope tracers are commonly used to estimate export since their half-lives (24.1 days and 72 

138.4 days respectively) and particle affinities make them suitable to assess POC export from the 73 

surface ocean (Bacon et al., 1976; Cochran et al., 1993; Stewart et al., 2011; van der Loeff and 74 

Geibert, 2008; Verdeny et al., 2009; Villa-Alfageme et al., 2014). Due to their different 75 

biogeochemical behaviours relative to their parent isotopes (238U and 210Pb), 234Th and 210Po are 76 

scavenged onto particles and removed from the surface ocean as those particles sink. The export flux 77 

of radionuclide is directly obtained from the radioactive disequilibrium between parent and daughter, 78 
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and is converted into POC export by using the POC:radionuclide (POC:R) ratio measured on sinking 79 

particles. Neutrally buoyant sediment traps directly measure the amount of material settling down 80 

through the water column in order to estimate POC flux, with one design being PELAGRA (Particle 81 

Export measurement using a LAGRAngian trap; Lampitt et al. (2008)).  82 

The methods employed for the study of PEeff do not always provide consistent estimates of carbon 83 

export and the differences between approaches are generally overlooked when interpreting 84 

results.  For instance, using in situ observations from the 234Th technique (Henson et al., 2011), or 85 

from the f-ratio (Laws et al., 2000), combined with satellite-derived SST and PP data yielded 86 

estimates of export flux for the North Atlantic ranging from 0.5-1.7 Gt C yr-1 (Sanders et al., 2014). 87 

In contrast using sediment traps, Antia et al. (2001) estimated values of 1.3 Gt C yr-1 in this region. 88 

Not many studies have compared radionuclide techniques traps simultaneously with the exception of 89 

Le Moigne et al. (2013b) (neutrally buoyant PELAGRA traps, 234Th and 210Po), Stewart et al. 90 

(2007a) (moored sediment traps, 234Th and 210Po), Buesseler et al. (2008a) (VERTEX style sediment 91 

traps, 234Th and 210Po), and Stewart et al. (2011) (cylindrical traps, 234Th and 210Po), who carried out 92 

studies at the Porcupine Abyssal Plain (PAP) site, Bermuda Atlantic Time-series Study (BATS), 93 

Mediterranean Sea (MedFlux project) and Sargasso Sea (BATS) respectively. Le Moigne et al. 94 

(2013b) and Stewart et al. (2011) found that 234Th-derived POC fluxes were systematically higher 95 

than 210Po-derived fluxes during low flux periods, and higher or similar to those measured in traps 96 

within the euphotic zone (Ez), while Stewart et al. (2007a) found the same behaviour below the Ez 97 

through three seasons (early spring, late spring, summer).  In contrast Buesseler et al. (2008a) 98 

reported higher 210Po-derived fluxes than 234Th-derived POC fluxes and traps (which were in good 99 

agreement). Such discrepancies highlight the need for a thorough examination of the variables 100 

affecting PEeff estimates when using these techniques in order to guarantee their correct application 101 

and interpretation.  102 
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Here we present a comparison of downward POC fluxes obtained from the simultaneous use of the 103 

three methods, PELAGRA, 234Th and 210Po, in the Irminger Basin (IRB) and the Iceland Basin (IB), 104 

during summer 2010. In addition, we compare our results to PEeff estimates derived from three other 105 

studies in the North Atlantic in which at least one of the three techniques examined here was used. 106 

These studies took place in the IRB and IB in spring 2010, and at the Porcupine Abyssal Plain (PAP 107 

Site) in both spring 2012 (Villa-Alfageme et al., 2016) and summer 2009 (Le Moigne et al., 2013b). 108 

We aim to (i) assess the influence of the technique used on PEeff estimates and obtain new insights 109 

into the interpretation of PEeff estimates from different techniques given their different timescales of 110 

coverage; (ii) examine the variability of PEeff in different bloom phases. 111 

 112 

2. Methods and sampling 113 

2.1. Study area 114 

The North Atlantic is known for its highly productive waters (Sanders et al., 2014). Spring blooms 115 

are thought to be very efficient at exporting POC and transferring it through the mesopelagic 116 

(Sanders et al., 2014). Annually, averaged satellite-derived export efficiency of ~10-15% is high 117 

relative to the 5% observed in the oligotrophic North Atlantic (Henson et al., 2012; Siegel et al., 118 

2014). 119 

The IRB and IB are oceanic basins located in the High Latitude North Atlantic (HLNA) (Figure 1) 120 

defined as the areas north of 58°N with a depth of >1000 m and, respectively, west and east of the 121 

Reykjanes Ridge (Gómez-Guzmán et al., 2013). The IRB and IB have a transient spring period of 122 

high biomass and hence high productivity and export (Nielsdóttir et al., 2009). However, despite 123 

shallow mixed layers, residual nitrate conditions are found in summer in the IB due to iron limitation 124 

that contributes to incomplete utilization of surface macronutrients (Le Moigne et al., 2014a; Sanders 125 

et al., 2005), which highlights an inefficiency of the biological carbon pump (Le Moigne et al., 126 

2014a; Nielsdóttir et al., 2009; Sarmiento and Toggweiler, 1984). 127 
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The PAP site is located within the North Atlantic Drift-province (NADR) at 48.83°N, 16.5°W (Le 128 

Moigne et al., 2013b), at the boundary between the sub-polar and sub-tropical gyres of the North 129 

Atlantic (Henson et al., 2009). The PAP site is characterized by a strong spring bloom in April-May 130 

(Painter et al., 2010). A comprehensive summary of the hydrography, meteorology and upper mixed 131 

layer dynamics of the region can be found in Lampitt et al. (2001). 132 

Both IRB and IB were visited twice in 2010 during cruises on board RRS Discovery: a spring cruise 133 

(D350) from 26th of April to the 9th of May (Day Of Year (DOY) 116-129), and a summer cruise 134 

(D354) from 4th July to 11th August (DOY 185-223) (details in Table 1). A total of 7 stations 135 

distributed over both basins were sampled for 234Th-derived POC fluxes as part of cruise D350 136 

(Figure 1), which coincided with the eruption of the Icelandic Eyjafjallajökull volcano (DOY 104-137 

142, Achterberg et al. (2013)). Later, 15 stations were occupied for 234Th and 210Po during cruise 138 

D354 (Figure 1), which also involved 4 deployments of PELAGRA traps split between the two 139 

basins (details in Table 2.) Radionuclide samples were collected from a stainless steel CTD rosette.  140 

Sampling during the PAP cruises followed a similar methodology and is detailed in (Villa-Alfageme 141 

et al., 2016) and Le Moigne et al. (2013b). The PAP Site was sampled in summer 2009 as part of 142 

cruise D341 on board RRS Discovery. A total of 10 and 9 stations were respectively sampled for 143 

234Th and 210Po analysis, and 3 PELAGRA deployments were carried out during DOY 194 and 220. 144 

In spring 2012, cruise JC071 on board RRS James Cook sampled PAP site for 210Po-derived POC 145 

fluxes between DOY 122 and 129 (Villa-Alfageme et al., 2016). Details of both cruises are given in 146 

Table 1.  147 

 148 

2.2. Total water 234Th analysis 149 

Water samples (4L) were collected for 234Th analysis at 10 depth horizons from the surface to 500 m 150 

(details are shown in Table S1 and S2). Measurement of total 234Th was based on the MnO2 151 

precipitation method (Pike et al., 2005; Rutgers Van Der Loeff et al., 1997) in which 234Th, together 152 
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with other radionuclides, is scavenged while its parent 238U is left in the dissolved phase. Seawater 153 

samples were acidified to pH = 1-2 with concentrated HNO3, and spiked with 230Th as a yield 154 

monitor. After 6 hours to allow for homogenization, 7-8 ml of NH4OH (pH up to 8-8.1) were added. 155 

A MnO2 precipitate was formed by the addition of 50 µL of KMnO4 (7.5 g/L), followed by 50 µL of 156 

MnCl2 (7.5 g/L). Samples were shaken between each addition and allowed to stand and settle for 12 157 

hours before being filtered onto 25 mm pre-combusted QMA filters. Finally, filters were dried at 158 

60ºC for 24 hours, wrapped in Mylar and aluminium foil and then counted at sea for beta activity of 159 

the high-energy daughter, 234Pa in a Riso beta counter (Buesseler et al., 2008b; Morris et al., 2007). 160 

Extraction efficiencies for 234Th were 90.6 ± 6.7% (Le Moigne et al., 2014a, 2013a). Beta counter 161 

calibration was carried out in the water column using deep water samples collected from > 1000m 162 

(Morris et al., 2007). Corrections were made for 234Th decay and 234Th in growth from 238U decay. In 163 

addition, background corrections that included long-lived beta impurities were made following 164 

repeated counting after 6-months (> 6 234Th half-lives). For the 234Th recovery measurement a double 165 

spike technique was used. Filtered precipitates were dissolved with H2O2 and HNO3 and an internal 166 

standard of 229Th was added as recommended by GEOTRACES protocol (Maiti et al., 2012). 167 

Samples were purified using anion-exchange chromatography and 230Th/229Th ratios were measured 168 

by ICP-MS to determine the recoveries (Pike et al., 2005).  169 

The 238U results were obtained from calibrated salinity measurements. 238U activity (AU, dpm kg-1) 170 

was calculated as AU  = 0.0686 × salinity (Chen et al., 1986), with a salinity value of 35 used.  171 

 172 

2.3. Total water 210Pb and 210Po analysis 173 

For 210Po-210Pb analysis, 5L water samples were collected from 10 to 13 depths between 0‐1000 m. 174 

The sampling distribution was focused between 0 and 500 m, where the most significant 175 

disequilibrium between 210Po and 210Pb is expected (details in Table S3). We followed the 176 

radiochemical procedure detailed in Le Moigne et al. (2013b), as well as the recommendations given 177 
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in the GEOTRACES protocol (Baskaran et al., 2013; Church et al., 2012). Seawater samples 178 

(5L) were acidified to pH = 2, spiked with radioactive 209Po (T1/2 = 102 y) and stable Pb2+ as yield 179 

tracers, and Fe3+ carrier. After 6 hours of equilibration, the pH was adjusted to 8.5 by adding NH4OH 180 

to allow Fe(OH)3 to co-precipitate and settle 210Pb and 210Po. The supernatant was carefully removed 181 

via siphoning, and the precipitate transferred to 250-mL bottles and stored for later treatment. The 182 

consequent radiochemical analysis of these samples was undertaken at CITIUS (Centro de 183 

Investigación, Tecnoligía e Innovación de la Universidad de Sevilla, Spain) within less than two 184 

months after sampling. In order to isolate 210Po for alpha counting measurement, radiochemical 185 

purification of polonium was conducted. Iron hydroxide was re-dissolved in 1M HCl, and Fe3+ was 186 

reduced to Fe2+ by adding ascorbic acid. Polonium was heated (80 ºC) and stirred for at least 8 hours 187 

allowing its self-deposition onto a silver disk, subsequently measured for 210Po determination. Stable 188 

Pb2+ aliquots were then taken for subsequent 210Pb yield determination (Baskaran et al., 2013). A 189 

second plating was performed to clean 209Po and 210Po from the initial solution (Church et al., 2012).  190 

For 210Pb determination, samples were stored for at least 6 months to allow for 210Po in-growth from 191 

dissolved 210Pb and to allow determination of 210Pb by a second self-deposition of 210Po, following 192 

the same procedure described above. To avoid potential bias in the recovery evaluation, we add 209Po 193 

as second spike in concentrations an order of magnitude higher than the on-board 209Po spike. This 194 

way the effect of the traces 209Po left in the solution after the cleaning becomes negligible. 195 

210Po samples were counted for alpha activity using Canberra PIPS detectors. 210Pb yield was 196 

determined through measurement of stable Pb by ICP-MS. Averaged extraction efficiencies for 210Pb 197 

were 95.9 ± 8.6%.   210Po yield was determined using radioactive 209Po as internal tracer. Extraction 198 

efficiencies for 210Po averaged 66.4 ± 1.2%.  210Po and 210Pb results were obtained by applying the 199 

following corrections: detector background counts, and reagent contamination blanks for both 210Po 200 

and 210Pb. 210Pb activity was inferred from the second measurement of 210Po after the subsequent 201 

decay corrections to the separation date first and to the sampling date afterwards. 210Po uncertainties 202 
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arise from the uncertainty associated with the internal tracer method, namely uncertainties in the 203 

counting of 209Po (1%), 210Po (5%), and 209Po tracer (3%), and from the uncertainty associated with 204 

the measurement of 210Pb after 6 months (7%). Decay corrections were also done to both 210Pb and 205 

210Po before obtaining their activity concentrations in water. The corrections included were: decay of 206 

in situ 210Pb between the sampling and the second plating for 210Pb results; decay of 209Po yield tracer 207 

from the time of last calibration to plating; decay of 210Po and in-growth of 210Po from in situ 210Pb 208 

during the different steps of the procedure (Baskaran et al., 2013). 209 

 210 

2.4. Sampling and analysis of particulate matter using Stand Alone Pumping Systems 211 

To estimate the POC export, POC to particulate 234Th(210Po) ratios (POC:Th(Po) hereafter, in μmol 212 

dpm-1) must be measured. Seven and 15 deployments of in situ pumps (Stand Alone Pumping 213 

Systems–SAPS, Challenger Oceanic ®) were respectively made, with two particle size classes - 214 

small (1-53 µm) and large (>53 µm) - determined by filtering large volumes of sea water (>500 L) 215 

through 53 µm and 1 µm NITEX® nylon mesh filters (293mm diameter) loaded in Challenger 216 

Oceanic filter holders (see Bishop et al. (2012) for a review of large volume in situ filtration 217 

methods).  Pumps were deployed at each station for 234Th and 210Po derived carbon fluxes at 10 and 218 

110 m below the mixed layer (MLD) as defined visually from the CTD displays, and in some 219 

stations at 400 m (stations 20, 22, 28 and 33). The deployments depths for SAPS will be discussed in 220 

section 4. More details can be found in section 4.1. Deployment depths ranged between 40-60 m 221 

(MLD + 10) and 140-200 m (MLD + 110) and were typically 50 m and 150 m respectively. A full 222 

description of SAPS deployments is shown in Tables S4 and S5).  223 

Particles collected on the mesh were resuspended in filtered seawater (0.2 µm GF/F filters) and 224 

quantitatively split for subsequent measurements using a Folsom® splitter (1/4 for POC, 1/4 for 225 

234Th, 1/4 for 210Po, 1/4 for other parameters not considered here). One split was filtered onto pre-226 

combusted 25 mm GF/F filters and stored frozen for subsequent POC analysis as described in 227 
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Poulton et al. (2006). Splits for 210Po and 234Th analysis were filtered onto 25 mm GF/F and GMA 228 

filters respectively.  229 

234Th activity on QMA filters was measured on board. 210Po and 210Pb samples, both on 53 µm and 230 

1-53 µm size fractions were fully digested in a mixture of 65% HNO3, 37% HCl and 40% HF acids 231 

and dried following a similar procedure as for the analysis of seawater samples (see section 2.3).  232 

 233 

2.5. 234Th and 210Po export flux calculation 234 

234Th and 210Po downward fluxes (P) were calculated using a steady state one-box model described in 235 

detail elsewhere (Buesseler et al., 1998; Savoye et al., 2006). Briefly, steady state (SS) conditions are 236 

assumed (i.e. 234Th and 210Po concentrations are constant over time), and physical processes- such as 237 

advection and/or upwelling- and a contribution of atmospheric 210Po flux are ignored. The flux of 238 

234Th and 210Po (dpm m-2 d-1) were calculated by integrating to a given depth (z = h = MLD + 110 m; 239 

typically 150 m) as, 240 

𝑃𝑆𝑆 = 𝜆 ∙ ∫ (𝐴2 − 𝐴1)  ∙  𝑑𝑑  𝑧=ℎ
𝑧=0                                                   (1) 241 

Experimental flux must be obtained from experimental discrete data points as, 242 

𝑃𝑆𝑆 = ∑ (𝐴2 − 𝐴1)  ∙  𝑑𝑑𝑧=ℎ
𝑧=0                                                       (2)                                 243 

Where A1 is the total 234Th or 210Po activity concentration (dpm m-3), A2 is the total parent activity 244 

concentration (dpm m-3) for 238U or 210Pb, and λ is the decay constant of the daughter element (d-1). 245 

To calculate the 234Th- and 210Po-derived POC fluxes, vertical 234Th and 210Po fluxes are used, 246 

together with a conversion factor (POC:R), as: 247 

𝑃𝑃𝑃𝑓𝑓𝑓𝑓 (𝑚𝑚𝑚𝑚 𝑚−2𝑑−1) = 𝑃𝑃𝑃:𝑅 ∙  𝑃𝑆𝑆                                          (3) 248 

where POC:R is the ratio POC to 234Th or 210Po  (μmol dpm-1), measured in sinking particles using 249 

SAPS or PELAGRA at the corresponding integration depth (see sections 2.4, 2.6 and 4.1 for 250 

discussion) and P is the integrated 234Th or 210Po flux (dpm m-2 d-1) obtained from Equation 1.  251 

Uncertainties for all individual measurements were obtained by error propagation of all the variables 252 
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included in the formulas (1) and (2). Both radionuclide fluxes and POC:R ratios contribute similarly 253 

to the total uncertainty. In the case of averaged values, uncertainties given correspond to one 254 

standard deviation (SD) of the values averaged. 255 

 256 

2.6. PELAGRA drifting sediment traps. POC fluxes and POC:R ratios 257 

The PELAGRA sediment trap is built around an APEX float (Webb Research Corporation, USA; 258 

Lampitt et al. (2008)). It is a neutrally buoyant platform with active buoyancy control to maintain the 259 

instrument at a level of constant pressure or density. Horizontal flow of particles across the collection 260 

funnels is presumed to be negligible owing to the fact that the trap is neutrally buoyant (Lampitt et 261 

al., 2008; Salter et al., 2007). During this cruise, PELAGRA traps were deployed at approximately 262 

80, 150 and 400 m in both the IRB and IB (Figure 1 and Table 2). Limitations on sampling strategy 263 

derived from storm damage incurred during transit of cruise D354 along with technical problems 264 

with the shallower (typically 80 m) traps. A full description of the deployment strategy and analysis 265 

procedures used during cruise D354 can be found in Marsay (2012). 266 

PELAGRA were used to directly measure POC fluxes (Marsay, 2012). Additionally, POC:Th(Po) 267 

ratios were estimated during this work for particles collected by PELAGRA. To do this, splits from 268 

the trap samples were analysed for 234Th, 210Po and POC in a similar way to that described in section 269 

2.4 to obtain POC:R (Equation 3) for the sinking material. 270 

 271 

2.7. Satellite data  272 

Chlorophyll a concentration (Chl-a) data from the NASA MODIS satellite at 9 km, 8 day resolution 273 

were downloaded from http://oceancolor.gsfc.nasa.gov/.  A time series of Chl-a for each station was 274 

created by averaging pixels within a 25 km radius of the sampling location.  Chl-a concentration was 275 

converted to PP using the VGPM algorithm (Behrenfeld and Falkowski, 1997) in a consistent way as 276 

done in Henson et al. (2013).  Both PP and Chl-a data are used to assess the bloom phase at the time 277 

http://oceancolor.gsfc.nasa.gov/
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of sampling and as input to calculate PEeff. Here we define PEeff as POC export at 150m/time-278 

integrated PP.  279 

Uncertainties in the satellite-derived estimates of PP arise from the choice of algorithm applied to 280 

satellite Chl-a to estimate PP.  Here we use the most widely-used algorithm (VGPM), which has also 281 

been shown to be among the best PP algorithms for the North Atlantic (Saba et al., 2011).  282 

 283 

3. Results 284 

3.1. 234Th and 210Po fluxes 285 

234Th and 210Po fluxes (Tables S1, S2 and S3) were estimated using parent-daughter disequilibrium 286 

following equation 1.  287 

During cruise D350 (Table S1), 234Th fluxes were on average (± 1SD) 2168 ± 945 dpm m-2 d-1 at IRB 288 

and 1438 ± 197 dpm m-2 d-1 in the IB. During cruise D354 (Table S2 and S3), averaged 234Th fluxes 289 

were: 2162 ± 995 dpm m-2 d-1 at IRB and 1520 ± 379 dpm m-2 d-1 in the IB, while 210Po averaged 95 290 

± 24 dpm m-2 d-1 at IRB and 111 ± 23 dpm m-2 d-1 at IB. Additionally, a complete set of 234Th, 210Po 291 

and 210Pb vertical profiles in depth for cruise D354 can be found in Figure S1 and S2. 292 

One of the most remarkable results are the significant deficits (234Th/238U ratios < 0.90) found for 293 

several stations during D354 (namely stations 18, 20, 22, 24, 27, 28 and 33) between 400 and 500 m 294 

(Figure S2). Similar deficits at deep depths have been previously reported by other studies, such as 295 

Martin et al. (2011), Le Moigne et al. (2013) and Morris et al. (2007), who found disequilibria at 400 296 

m in their studies of the Iceland Basin, the PAP Site and the Southern Ocean respectively. 297 

Furthermore, Pabortsava (2014) reported 234Th deficits as deep as 1000 m in the Equatorial Atlantic. 298 

The reasons of these deep deficits remain unclear and need further investigations. 299 

In the case of 210Po/210Pb profiles, secular equilibrium is not reached above 1000 m, except for 300 

station 27 (Figure S2). Below 1000 m stations 04, 16, 20 and 22 reported 210Po/210Pb ratios ranged 301 

between 0.4 and 0.6. Not many studies have measured 210Po/210Pb profiles below 1000 m and they 302 
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usually reported similar deficits at 1000 m, such as Le Moigne et al. (2013) at the PAP Site (ratios 303 

between 0.5 and 0.8), Rigaud et al. (2015) during the US GEOTRACES GA03 North Atlantic 304 

Section (ratios between 0.5 and 1), Hu et al. (2014) in the Aleutian Basin-Pacific Ocean (ratios 305 

between ~0.5 and 0.8) and Wei et al. (2014) in the SouthEast Asian Time-series Study (ratios 306 

between 0.6 and 0.8). On the other hand, Roca-Martí et al. (2016) and Rigaud et al. (2015) found  307 

secular equilibrium between 210Po and 10Pb below 1000 m in the Artic and over the North Atlantic 308 

continental shelf respectively.  309 

The causes for the 210Po deficits in deep waters have been extensively debated and several 310 

explanations have been proposed, although reasons remain unclear (Church et al., 2012; Rigaud et 311 

al., 2015).This disequilibrium might be associated with a 210Po biochemical behaviour based on high 312 

adsorption combined with negligible desorption rates. However further investigations are needed to 313 

quantitatively define this last hypotheses. 314 

 315 

3.2. Particulate organic matter to radionuclide ratios 316 

The POC:R ratio was obtained from small (1-53 μm) and large (> 53 μm) particles collected using  317 

SAPS for both D350 and D354, and from sinking particles collected in the PELAGRA sediment trap 318 

(see section 2) for D354. 319 

POC:R ratios measured using SAPS are shown in Tables S1, S2 and S3. During cruise D350 (Table 320 

S1), POC:Th ratios were on average (± 1SD) 11 ± 3 μmol dpm-1 at IRB and 15 ± 7 μmol dpm-1 in the 321 

IB for large particles; 5.9 ± 0.7 μmol dpm-1 at IRB and 4.5 ± 1.1 μmol dpm-1 at IB for small particles.  322 

During cruise D354 (Table S2 and S3), averaged POC:Th ratios for large particles were: 5.2 ± 1.7 323 

μmol dpm-1 at IRB and 6.3 ± 1.4 μmol dpm-1 in the IB, while POC:Po averaged 99  ± 41 μmol dpm-1 324 

at IRB and 114 ± 39 μmol dpm-1 at IB. For small particles POC:Th averaged 3.3 ± 0.7 μmol dpm-1 at 325 

IRB and 4.3 ± 1.8 μmol dpm-1 at IB and POC:Po averaged 92  ± 22 μmol dpm-1 at IRB and 113 ± 326 

123 μmol dpm-1 at IB.  327 
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POC to radionuclide ratios measured by PELAGRAs are shown in Table 2. Averaged ratios for the 328 

traps deployed at 150 m depth were: 7.7 ± 7.6 μmol dpm-1 at IRB and 6.0 ± 1.3 μmol dpm-1 at IB for 329 

POC:Th; and 48 ± 15 μmol dpm-1 at IRB and 102 ± 49 μmol dpm-1 at IB for POC:Po.  330 

All of the measured POC to radionuclide rations fall within the range of previously published 331 

measurements. In the mid-Atlantic Ocean (Verdeny et al., 2009) ratios measured with pumps ranged 332 

from 3.9 ± 0.5 μmol dpm-1 to 19.9 ± 1.3 μmol dpm-1  for POC:Th in particles > 53 µm, from 2.5 ± 0.3 333 

μmol dpm-1  to 3.8 ± 0.3 μmol dpm-1  for POC:Th in particles > 0.7 µm, and from 1.4 ± 0.9 μmol 334 

dpm-1  to 8.5 ± 6.9 μmol dpm-1  for POC:Po in particles > 0.7 µm. In the Sargasso Sea (EDDIE) 335 

(Buesseler et al., 2008a) ratios ranged from 1.9 ± 0.8 μmol dpm-1  to 2.5 ± 0.3 μmol dpm-1  for 336 

POC:Th, and from 25 μmol dpm-1  to 89 μmol dpm-1 for POC:Po in particles > 53 µm. In the 337 

Mediterranean Sea (MedFlux) (Stewart et al., 2007) values ranged from 3.4 to 24.6 μmol dpm-1  for 338 

POC:Th, and from 181 to 383 μmol dpm-1 for POC:Po in particles > 70 µm.  339 

Regarding the ratios measured with traps, in the Sargasso Sea (EDDIE) (Buesseler et al., 2008a) 340 

ranged from 1.7 ± 0.4 μmol dpm-1 to 4.1 ± 0.3 μmol dpm-1;and from 1.5 ± 0.2 μmol dpm-1 to 24.2 ± 341 

9.1 μmol dpm-1 for POC:Th, and 23.5 ± 0.7 μmol dpm-1 to 373 ± 47 μmol dpm-1 for POC:Po in the 342 

Mediterranean Sea (MedFlux) (Stewart et al., 2007). 343 

 344 

3.3. SAPS-derived carbon fluxes 345 

Two particle size classes were sampled by SAPS to determine the POC:R ratio. We estimate POC 346 

export using only POC:R from >53 μm particles in order to allow comparison to other studies that 347 

follow the same approach (Le Moigne et al., 2013b; Stewart et al., 2011), among many others, see 348 

(Buesseler et al., 2006) for review on POC:Th ratios). Nonetheless, in section 4.1 we assess the 349 

effect of the exclusion of small particles on the accuracy of our results. 350 

During D350, the particle flux at MLD + 110 m for 234Th- derived POC (Th-POC) averaged (± 1SD) 351 

26 ± 15 mmol m-2 d-1 in the IRB and 21 ± 8 mmol m-2 d-1  in the IB (Table S1).  352 
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During D354, in the IRB, the particle flux at MLD + 110 m for Th-POC averaged 11 ± 7 mmol m-2 d-353 

1 and ranged between 5.0 ± 1.4 mmol m-2 d-1  (station 16) and 26 ± 13 mmol m-2 d-1  (station 24) 354 

(Table S2). 210Po-derived POC (Po-POC) fluxes were of a similar magnitude  (on average 10 ± 4 355 

mmol m-2 d-1 and ranged between 3.3 ± 0.6 mmol m-2 d-1  (station 08) and 15 ± 3 mmol m-2 d-1  356 

(station 20)) (Table S3). POC fluxes from both PELAGRA traps were much lower, ranging from 1.1 357 

± 0.1 to 1.6 ± 0.2 mmol m-2 d-1, with an average value of 1.4 ± 0.1 mmol m-2 d-1 (Table 2).  358 

In the IB, Th-POC fluxes were between 6.3 ± 2.1 mmol m-2 d-1  (station 06) and 12 ± 6 mmol m-2 d-1  359 

(station 27), and the average value was 9 ± 2 mmol m-2 d-1 (Table S2). Po-POC values ranged 360 

between 5.5 ± 1.0 mmol m-2 d-1  (station 02) and 24 ± 4 mmol m-2 d-1  (station 33) and averaged 13 ± 361 

6 mmol m-2 d-1 (Table S3). PELAGRA POC fluxes were 1.0 ± 0.1 and 2.7 ± 0.2 mmol m-2 d-1 362 

(Marsay et al., 2015) with a mean value of 1.9 ± 0.1 mmol m-2 d-1 (Table 2). In the following section 363 

we first discuss the differences between PELAGRA and radionuclide-derived POC flux estimates 364 

found in cruise D354 at MLD + 110 m. Secondly, we investigate potential reasons for the observed 365 

discrepancies between methods, namely the contribution of slow sinking particles to POC export, the 366 

use of instantaneous POC:R ratios for the 234Th(210Po) flux conversion into carbon fluxes and the 367 

timescale covered by the methods. Finally, we combine our results with those obtained in other 368 

studies that used PELAGRA and/or 234Th and/or 210Po to determine POC export, in order to 369 

investigate how PEeff changes with bloom phase. 370 

 371 

4. Discussion 372 

4.1. Comparison of 234Th- and 210Po-derived POC fluxes to PELAGRA POC fluxes 373 

The base of the Ez -taken as the depth of 1% light penetration- extended between 42 and 47 m depth 374 

during spring 2010 (cruise D350), and varied from 33 to 43 m depth during summer 2010 (cruise 375 

D354) (Marsay, 2012). On the other hand, MLD was between 32 and 45 m during D341, and always 376 

< 35 m during D354.  377 
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SAPS deployments were chosen at MLD + 10 m and MLD + 110 m (typically 50 and 150 m) 378 

following the same approach as Le Moigne et al. (2013b), while the shallower PELAGRA traps 379 

(typically at 80 m) were only successfully deployed on two occasions due to technical problems and 380 

storm damage (Marsay, 2012). In order to match all our objectives, MLD + 110 m (~150 m) was 381 

chosen as an integration depth.  382 

Figure 2 shows the POC flux estimates calculated at MLD + 110 m (typically 150 m) using the three 383 

techniques in both IRB and IB. Attenuation of the POC flux is expected between the ~100 m of 384 

separation between the base of the Ez and the ~150 m sampling depth chosen. The choice of this 385 

integration depth was done because of the following reasons  i) to have the same reference depth for 386 

the three PELAGRA, 234Th and 210Po POC derived fluxes; ii) to evaluate the carbon that penetrates 387 

into the mesopelagic zone, rather than the POC flux at the Ez.; and iii) to estimate the PEeff, using the 388 

ratio PP to POC, that is usually defined at the 100-150 m depth (Buesseler, 1998; Henson et al., 389 

2012).  390 

234Th and 210Po deficits persist considerably below the Ez. Nevertheless, as long as 234Th and 210Po 391 

deficits still persist in the water column the radioactive pair techniques can be successfully applied. 392 

According to Figure 2, there is no statistically significant difference between Th-POC and Po-POC 393 

fluxes in both regions (ANOVA test, p = 0.11 in the IB, and p = 0.31 in the IRB). However, 394 

PELAGRA-POC (Pe-POC) values are significantly different from both Th-POC and Po-POC fluxes 395 

(ANOVA test, p = 0.05 in the IB, and p = 0.02 in the IRB). Radionuclide-derived POC fluxes agree 396 

within uncertainties for most of the stations (as reported in previous studies, e.g. Le Moigne et al. 397 

(2013b),  Stewart et al. (2011) and Wei et al. (2011)), with the exception of 5 specific stations: 398 

station 33 in the IB (Figure 2b); and stations 08, 15, 16 and 24 in the IRB (Figure 2c). Averaged Pe-399 

POC values are one order of magnitude lower than averaged Th-POC and Po-POC in the two basins, 400 

in contradiction with previous studies that have reported good agreement between traps and 401 

radioanalytical techniques in both oligotrophic (e.g. Owens et al., (2013) at BATS using drifting trap 402 
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NBST and 234Th;  Stewart et al. (2011) also at BATS employing cylindrical traps, 234Th and 210Po; 403 

and Maiti et al. (2016) in the northern Gulf of Mexico sampling with surface-tethered drifting traps, 404 

234Th and 210Po) and temperate regions (e.g. Le Moigne et al. (2013b) at the PAP Site using 405 

PELAGRA traps, 234Th and 210Po) . We will further analyse these discrepancies in section 4.2. 406 

Large variations in 234Th export fluxes were observed in the IRB (up to a factor of 2-3) during the 407 

spring cruise (D350, Table S1), while in the IB fluxes calculated at 4 stations were remarkably 408 

constant. The same feature is observed for the summer cruise (D354, Table S2). We consider that the 409 

differences between basins arise because the values correspond to very different regions in terms of 410 

both expanse and circulation and dynamics and the IRB is larger and more complex than the IB 411 

(Krauss, 1995). For 210Po fluxes, only data during summer cruise are available and large variations 412 

are observed in both basins (Table S3). Note that that due to the combination of the currents flow and 413 

the half-life of both techniques, more especially for 210Po, these results should not be ascribed to the 414 

specific station sampled, since the deficit collected might be originated elsewhere. 415 

For this reason, we prefer not to refer our results to a particular station and we compare average 416 

results obtained within basins (Irminger/Iceland) or season (spring/summer). This is tightly related to 417 

the assumption of SS conditions that we address in section 4.2.1. 418 

POC flux results are likely determined by two main factors: (1) the time scale associated with the 419 

method (Le Moigne et al., 2013b) and (2) the assumptions used to employ that method as a proxy for 420 

POC flux and PEeff. We assume that PELAGRAs collect all the material sinking down, while for 421 

234Th and 210Po, we normally consider that only large particles (>53 µm) contribute to the POC flux 422 

and assume SS conditions. These assumptions entail several implications that may alter the 423 

estimations of export presented in this study. In the following sections we assess the influence of 424 

these factors on PELAGRA-, Th- and Po-derived POC results, in order to investigate the differences 425 

in POC fluxes found in summer 2010. 426 

 427 
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4.1.1. Contribution of small particles 428 

As previously explained, 234Th and 210Po fluxes are converted into carbon flux using the ratio POC:R 429 

in the settling particles. Traditionally, large particles are used to calculate POC:R as it was assumed 430 

that only large particles contributed significantly to the downward flux, with most of the small 431 

particles assumed to be remineralised in the euphotic zone (Bishop et al., 1977). However, recent 432 

studies have demonstrated that this assumption is not always valid (Alonso-González et al., 2010; 433 

Durkin et al., 2015; McDonnell and Buesseler, 2010; Riley et al., 2012; Villa-Alfageme et al., 2014). 434 

Therefore, to estimate the export, ideally POC:R from both large and small particles, and 435 

proportional to their contribution to the flux, should be used (Cavan et al., 2015; Le Moigne et al., 436 

2013b). Therefore, equation 3 should be reformulated as  437 

𝑃𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑇ℎ/𝑃𝑃𝑓𝑓𝑓𝑓 ∙ � 𝜌𝑙𝑙𝑙𝑙𝑙 ∙ (𝑃𝑃𝑃:𝑇ℎ/𝑃𝑃) 𝑙𝑙𝑙𝑙𝑙 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+  𝜌𝑠𝑠𝑠𝑠𝑠 ∙ (𝑃𝑃𝑃:𝑇ℎ/𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 �   (4) 438 

being ρlarge  and ρsmall the contributions of both pools to the flux. In this case, unfortunately, we do not 439 

have information about relative flux contributions (ρlarge/small). For this reason, we can only 440 

qualitatively assess the influence of the unaccounted for small particles in the Th- and Po-POC 441 

derived flux estimates.  442 

Figures 3a and 3b show POC:Th and POC:Po ratios in the small and large fractions of particles 443 

collected from SAPS. On one hand, Figure 3b shows that (POC:Po)small and (POC:Po)large ratios are 444 

very similar in most of the stations sampled (except for stations 28 and 33). Hence, Po-POC flux will 445 

not change significantly if there is contribution of small particles and ρsmall ≠ 0, because POC:Po ratio 446 

is approximately constant.  On the other hand (POC:Th)small and (POC:Th)large ratios are different for 447 

small and large sinking particles. Thus, if the contribution of small particles to the flux were 448 

significant, the Th-POC flux from Figure 2 would not be accurate, since we only consider that POC 449 

flux = Th flux ·ρlarge(POC:Th)large particles. Furthermore, since (POC:Th)large ratios are systematically 450 



19 
 

higher than those in small particles for the vast majority of stations (Figure 3a), if there is a 451 

contribution of small particles, the Th-POC fluxes presented here will be overestimated.  452 

At MLD + 110 m, POC:Th ratios were found to be higher in large particles than in the small ones in 453 

most of the stations, except for 15, 16, 27 and 28 -where ratios agreed within uncertainties- (Figure 454 

3a and Table S5). At MLD + 10 m, ratios agreed within uncertainties for stations 08, 16 and 28 and 455 

were found to be higher in small particles than in large for stations 06, 22 and 27 (Table S5). In the 456 

remaining stations, ratios in large particles were found to be higher than in the small ones. On a basin 457 

scale, POC:Th ratios in the IB and IRB were higher in large particles than in the small ones by 4% 458 

and 26% respectively at MLD + 10 m and by 36% and 46% respectively at MLD + 110 m.   459 

Higher POC:Th ratios with increasing particle size have been previously reported by several studies 460 

(see review by Buesseler et al. (2006)) in contrast to the higher POC:Th ratios found in smaller 461 

particles by Buesseler et al. (1995), Jacquet et al. (2011), Le Moigne et al. (2013b), Maiti et al. 462 

(2016) and Puigcorbé et al. (2015). POC:Th ratios are significantly influenced by the structure of 463 

plankton and particles composition, in some cases authors have claimed that greater POC:Th ratios 464 

in small particles than in large particles are associated to a plankton community dominated by 465 

smaller particles (Maiti et al., 2016; Puigcorbé et al., 2015). Unfortunately, we do not have the 466 

required data of community structure to further investigate the reasons of the POC:Th ratios found. 467 

To assess the amplitude of the potential overestimation, we consider two limit situations: (1) if POC 468 

flux were equally divided between large and small particles, POC flux = Th flux · [0.5 · 469 

(POC:Th)small particles + 0.5 · (POC:Th)large particles], according to equation 4, Th-POC fluxes would be 470 

overestimated by 20% for both basins; (2) in the unlikely case of POC being exported exclusively by 471 

small particles, the overestimation of Th-POC flux would be around 45%.  472 

The overestimation is consistent with Verdeny et al. (2009) (several regions: Southern Ocean, South 473 

and mid- Atlantic Ocean, Sargasso Sea, Mediterranean Sea and Equatorial Pacific) and Le Moigne et 474 

al. (2013b) (PAP Site), which found that Th-POC fluxes were systematically higher than both Po-475 
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POC and Pe-POC fluxes at 150 m. One of the potential explanations proposed by Le Moigne et al. 476 

(2013b) was the non-inclusion of small particles, which in case it would result in an underestimation 477 

of Po-POC fluxes (since in that region POC:Po were lower for the large size fraction than for the 478 

small). When small particles contribute to export, this could partially explain the differences found 479 

between Th- and Po-POC derived fluxes (Figure 2). However, the one order of magnitude 480 

differences found between radionuclide-POC and Pe-POC estimates remain unexplained. 481 

 482 

4.1.2. Influence of variable 234Th:POC and 210Po:POC ratios 483 

In the IB, POC:Th ratios for large particles in the spring cruise increased significantly with depth 484 

(~51%), while in the summer cruise they remained approximately constant (Tables S4 and S5). On 485 

the contrary, in the IRB basin, POC:Th ratios decreased with depth by a similar amount  (~30%) 486 

(Table S4 and S5). POC:Po ratios decreased in both basins in the summer cruise (13% in the IB and 487 

32% in the IRB), but no data from the spring cruise are available for comparison. 488 

Figure 3a shows that POC:Th ratios for the large fraction of particles decreased in both basins 489 

between the spring and summer cruises (D350 and D354 respectively). During this period there were 490 

shifts in the zooplankton and phytoplankton community structures, most likely as a consequence of 491 

changes in nutrient availability and mixing regimes. Cruise data suggests that coccolithophores were 492 

a significant component of the phytoplankton community in the IB (Daniels et al., 2015; Poulton et 493 

al., 2010), and in particular Coccolithus pelagicus were unusually dominant in the IRB during spring 494 

(Henson et al., 2013).  495 

Nonetheless, changes in community structure are not a determinant fact in the observed changes in 496 

the POC:R ratios since two different species may play similar ecological functions and are not 497 

necessarily responsible for the differences found between the two sites. Nonetheless, seasonal 498 

changes in community structure are expected to generate variations in POC:R ratios through changes 499 

in particle sinking velocity, particle shape, size, density, and aggregation rates, along with variations 500 
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in carbon assimilation rate by particles. It is difficult to specifically name and quantify the 501 

mechanisms involved; ultimately all the changes alter POC:R ratios (Buesseler et al., 2006) and 502 

many reasons propelled the clear shift in POC:Th ratios from spring to summer (Figure 3a).  503 

Temporal changes in POC:R ratios might influence our estimates of radionuclide-derived POC 504 

fluxes by almost one order of magnitude (Figure 3a). If the POC:R ratio varies over time, there 505 

might be a discrepancy between the time scales covered by the ratio (which is approximately 506 

instantaneous on the day of sampling) and the 234Th or 210Po flux (which cover periods of weeks to 507 

months due to their half-lives), i.e. the ratios correspond to instantaneous measurements whereas Th 508 

and Po fluxes might be influenced by past events. Hence, measured ratios might not be fully 509 

representative of the ratios of sinking particles that created the measured flux. The maximum 510 

uncertainty induced by this can potentially be assessed by the change in the POC:Th ratios between 511 

the spring and summer cruises: on average 36% in the IRB and 41% in the IB. 512 

 513 

4.2. Influence of  time scale on POC flux estimates and the steady state approach 514 

The distribution of 234Th and 210Po activities in the water column is mainly controlled by radioactive 515 

decay, scavenging rate by particulate material and by physical processes. The sinking of particles 516 

carrying 234Th and 210Po creates a deficit of these radionuclides relative to their parents, 238U and 517 

210Pb respectively. Theoretically, half of this deficit persists for at least 1 and 3 months respectively 518 

in the water column as a consequence of 234Th and 210Po half-lives (24.1 d and 138.4 d). This implies 519 

that the vertical distribution of 234Th and 210Po in the water column reflects processes of particle 520 

dynamics that occurred on a time scale of several weeks (234Th) to months (210Po) before sampling. 521 

On the other hand, PELAGRA traps directly catch the sinking material while they are deployed (~ 50 522 

hours). This means that PELAGRAs only record recent export events. Therefore, the export flux 523 

calculated by the three techniques will depend on the past and/or present phase of the bloom and the 524 
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three methods will only agree if a period of low temporal variability in export is sampled (Le Moigne 525 

et al., 2013b). 526 

During cruise D354, biogeochemical conditions were atypical. Satellite-derived Chl-a in the IRB 527 

typically depicts a short, intense bloom in spring, followed by a summer minimum (Henson et al., 528 

2006). For the region of the IB, the typical annual phytoplankton bloom starts in early April and 529 

peaks in late June (Achterberg et al., 2013). However, satellite-derived bloom timing indicated a later 530 

bloom in the Central IRB than elsewhere in the IB and the Western IRB in summer 2010 (Ryan-531 

Keogh et al., 2013). Figures 4a and 4b show that in the IRB, the bloom started in early May (western 532 

basin: DOY ~135), but instead of rapidly reaching a peak in spring before dying out in summer, Chl-533 

a concentration continued to rise, finally peaking in mid-July (central basin: DOY 192, 1.9 mg Chl-a 534 

m-3). These Chl-a concentrations were anomalously high (2-3 times higher than typical for this 535 

region) and elevated concentrations persisted through autumn 2010 (Henson et al., 2013). In the IB, 536 

satellite-derived Chl-a seems to indicate a peak from early April through to late May. During July, 537 

both regions usually present post-bloom conditions (Nielsdóttir et al., 2009; Sanders et al., 2005; 538 

Waniek and Holliday, 2006). However in 2010 the bloom was unexpectedly long and persisted into 539 

the summer, especially in the Central IRB (Henson et al., 2013; Ryan-Keogh et al., 2013).  540 

Our hypothesis is that the approximately order of magnitude difference between POC fluxes reported 541 

by PELAGRA and the radioanalytical techniques is because the three methods account for export 542 

occurring over very different timeframes and portions of the bloom period.  543 

We believe that the decisive factor is that PELAGRAS and 234Th and 210Po deficits are associated to 544 

different events of export and carbon flux. When PELAGRA were released (between DOY 194 and 545 

216) there was a peak in the PP (around DOY 195, Figure 4b), yet the export in the mesopelagic was 546 

low, likely as a result of high remineralization rates due to higher temperatures than in spring and 547 

strong zooplankton reworking and repackaging (Marsay et al., 2015; Villa-Alfageme et al., 2016). 548 

This resulted in a relatively low POC fluxes recorded by PELAGRAS.  549 
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On the contrary, the higher POC fluxes reported by both 234Th and 210Po suggest that both techniques 550 

recorded a previous event of higher export when PP was also high (~1500 mmol m-2 d-1). 551 

To support this hypothesis, we present Th-POC results from cruise D350, which sampled the area 552 

~70 days before cruise D354 (see section 2.1). Th-POC averaged values of 26 ± 15 mmol m-2 d-1 in 553 

the IRB and 21 ± 8 mmol m-2 d-1 in the IB, Table S1) confirm a previous high export in both basins. 554 

234Th results shows that the spring POC export flux is more than twice as large as than the Th-POC 555 

measured in summer in both basins, despite the fact that PP peak was reached in DOY ~195. Similar 556 

high POC flux values in the first stages of the spring bloom have also been reported at the PAP Site 557 

by (Villa-Alfageme et al., 2016), who measured Po-POC averaged values of 25 ± 7 mmol m-2 d-1 in 558 

2012 as part of cruise JC071 (see section 2.1 and Table 1 for more details).  559 

This suggests that events of high export happen in the first stages of blooms and POC export in 560 

spring can be maximum, despite the relatively low PP. This way, export events during the persisting 561 

spring/summer bloom of 2010 (Henson et al., 2013; Ryan-Keogh et al., 2013) created a large and 562 

long lasting deficit of 234Th and 210Po that had not fully decayed by the time of sampling (Figures S1 563 

and S2) and resulted in the high Th- and Po-POC fluxes measured. Thus, despite the fact that in mid-564 

July PP reached its peak and started declining, the 234Th and 210Po deficits were still representative of 565 

high export associated with the earlier bloom (Figure 4a and 4b). 566 

Note that 234Th and 210Po cover different time scales backwards due to the different half-lives; their 567 

deficits persist in water, governed by their half-lives. The similar POC results reported by both 234Th 568 

and 210Po techniques suggest that the timeframe covered by both radionuclides overlapped. 569 

According to Equation 1, deficits do not accumulate over time so we do not expect Po-POC fluxes 570 

higher than Th-POC fluxes (Le Moigne et al., 2013b; Stewart et al., 2011; Verdeny et al., 2009). 571 

Therefore, Th-POC and Po-POC fluxes coincide when the station is sampled shortly after the export 572 

event that creates both deficits. Th-POC and Po-POC would report different POC fluxes if, for 573 

instance, the station is sampled after the 234Th deficit decayed but the 210Po deficit still persists, i.e. 574 
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respectively more than one month and less than three months after the export event started and 575 

ended. This will depend on the kind of bloom, the sampling moment, and the bloom progress since 576 

the beginning of the export to the sampling moment. In our sampling cruise, the events recorded by 577 

234Th-238U and 210Po-210Pb deficit took place within the timeframe of both techniques. This means 578 

more than ~30 days for 234Th, and ~200 days for 210Po, with the 210Po timeframe presumably limited 579 

by the lack of 210Pb-210Po disequilibrium before the bloom started (see section 4.3 for more details).  580 

 581 

4.2.1. Steady state approach assessment. 582 

Steady state conditions are generally assumed when using 234Th and 210Po techniques as a proxy for 583 

POC flux (Bacon et al., 1976; Buesseler et al., 1998, 2001; Le Moigne et al., 2013b; Nozaki and 584 

Tsunogai, 1976; Owens et al., 2015; Stewart et al., 2011, 2010; Thomalla et al., 2006). Under this 585 

assumption, it is considered that 234Th and 210Po activities remain invariant over time, i.e. an 586 

equilibrium between the nuclear decay of parent and daughter radionuclides and the removal of 234Th 587 

and 210Po by particles has been reached. Since both 234Th and 210Po disequilibrium persist in the 588 

water column according to their half-lives, the SS assumption provides an estimation of the real flux 589 

of the moment only when the export is in a relatively long lasting plateau. On the contrary, in 590 

situations of high export variability, the persistence of the deficits over time results in an estimation 591 

of the real flux delayed in time proportionally to the radionuclide half-life when applying the SS 592 

approach.   593 

Situations of stable export occur when production, sinking of carbon and attenuation reach an 594 

equilibrium. Such conditions are expected in well-established post-bloom conditions, and also likely 595 

along the bloom for blooms with a gradual progression of the production. 596 

POC export in the mesopelagic was evaluated using PELAGRA, 234Th and 210Po methods in post-597 

bloom condition at the PAP Site during summer 2009 by Le Moigne et al. (2013b). The bloom 598 

associated with this cruise was significantly different to the bloom in the IRB and IB (Figure 4c and 599 
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4d). Stations were occupied during cruise D341 (Table 1) between DOY 194 and 220, several weeks 600 

after the Chl-a and PP started to decline after the spring peak (DOY ~160; Figure 4c and 4d). 601 

Averaged POC flux estimates integrated at MLD+ 110 m, and only considering large particles, were: 602 

7.9 ± 4.7 mmol m-2 d-1 for Th-POC, 3.2 ± 1.6 mmol m-2 d-1 for Po-POC, and 2.3 ± 1.8 mmol m-2 d-1 603 

for Pe-POC (Le Moigne et al., 2013b). In contrast to our IRB/IB 2010 results, estimates of export 604 

flux from the three techniques agree within uncertainties. We believe that this is because conditions 605 

were in a well-developed post-bloom state and therefore, export was in a plateau situation. Chl-a and 606 

PP time series (Figure 4c and 4d) show that, at the PAP site, the time gap between the decline of the 607 

bloom and the start of sampling (~ 34 d, Figures 4c and 4d) is sufficiently long to allow both 234Th 608 

and 210Po deficits to decay. In conclusion, at the PAP Site, PELAGRA, 234Th and 210Po were all 609 

recording the same export event -the declining phase of the bloom- and the SS approach was proved 610 

to be valid to predict the real export flux at the sampling moment in a post-bloom situation.  611 

Similarly, in oligotrophic regions -approximately in steady state conditions (Maiti et al., 2016)- 612 

export results in a persisting plateau even during bloom periods and the three techniques record the 613 

same export events. Therefore, good agreement between trap-derived, 234Th-derived and 210Po-614 

derived POC fluxes is usually found, as reported by several studies (e.g. Maiti et al. (2016),  Owens 615 

et al. (2013) and Stewart et al. (2011)). 616 

Radionuclide techniques are able to detect increments in export by means of increments in their 617 

deficits but instantaneous reductions in the export might be masked by a previous, relatively recent, 618 

persisting deficits.  619 

In contrast with PAP site, in our summer sampling (D354) there is an export variability as a 620 

consequence of the bloom progression. Therefore, when we applied the radionuclide techniques to 621 

the present time, the low export at time of the sampling (accurately recorded by PELAGRAs) was 622 

masked by the larger deficits generated by a higher previous export. As a result, both 234Th and 210Po 623 

techniques misreported the present declining phase of the export and, on the contrary, reported 624 
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higher POC values that corresponded to a previous phase of the bloom. In conclusion, under 625 

situations of high export variability, the SS approach is not valid to predict the real export flux at the 626 

sampling moment, but provides an accurate delayed estimation of the POC export previous to the 627 

sampling. The bloom progress and the stage of bloom must be analysed in relation to the sampling 628 

moment to correctly identify the export event associated with the radionuclide-derived export 629 

estimates.  630 

 631 

4.3. Effect of seasonal variability on PEeff estimates 632 

In this section we compare the PEeff obtained using PELAGRA, 234Th and 210Po-derived fluxes and 633 

discuss implications for interpretation of PEeff. 634 

To estimate PP, we integrate satellite-derived PP over the period of time represented by the 635 

technique (see methods). For the PELAGRA export efficiency (PeEi) estimation, Pe-POC flux is 636 

associated with the PP averaged over the 8 days previous to the PELAGRA recovery along the path 637 

of the PELAGRA trajectories, assuming that traps travelled in a straight line and at constant speed 638 

between deployment and recovery. For Th- and Po-derived export efficiencies (ThEi and PoEi 639 

respectively), Th-POC and Po-POC fluxes are associated with the PP averaged over the period that 640 

Th/U and Po/Pb deficits persist in the water column (i.e. 30 days for ThEi and 90 days for PoEi). In 641 

calculating integrated PP, the pre-bloom period should be excluded, because the radionuclide deficit 642 

only starts to develop when significant biological activity and export occur, i.e. with the start of the 643 

spring bloom.  644 

Note that, due to the long 210Po half-life and the deepening of the MLD during winter, 210Po-210Pb 645 

deficit might persists during the winter and previous to the bloom. This initial deficit is usually 646 

unaccounted for and would result in an overestimation of both 210Po and Po-POC flux. Nonetheless, 647 

the good agreement between Th-POC and Po-POC in our case of study suggests that this deficit is 648 

negligible.  649 
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Thus, for PoEi, PP must be integrated only from the time when the bloom started to the time of 650 

sampling in order to not underestimate PoEi estimates. The start of the bloom was determined 651 

according to the criteria proposed by Siegel et al. (2002) (i.e. date on which the Chl-a concentration 652 

exceeded a threshold value more than 5% of the annual median) and was calculated as DOY 121 in 653 

IB and DOY 145 in IRB (Figure 4a). In the case of our cruise D354, this means ~3 months and 654 

therefore, 90 days were chosen for PP integration. 655 

Table 3 shows averaged PEeff values obtained by this approach during cruise D354 in the HLNA. 656 

Averaged estimates (with 1SD) are: i) 0.7 ± 0.3% for PeEi, 9 ± 4% for ThEi and 11 ± 5% for PoEi in 657 

the IRB; and ii) 1.1 ± 0.6% for PeEi, 6.2± 1.5% for ThEi and 11 ± 5% for PoEi in the IB. On a basin 658 

scale, PeEi is approximately one order of magnitude lower than ThEi and PoEi, while the 659 

radionuclide techniques agree within uncertainties.   660 

Average PP for the two basins over eight days, one month and three months prior to sampling is 183, 661 

139 and 108 mmol m-2 d-1 respectively. Despite being significantly different (ANOVA test, p < 662 

0.01), these differences in PP are an order of magnitude smaller than the discrepancies in PEeff. 663 

Hence, discrepancies in PEeff are expected to be driven by the differences in the POC flux, as a 664 

consequence of the method used and the bloom conditions, rather than PP. 665 

This is confirmed by the analysis of the PEeff in the three additional cruises that employed at least one 666 

of the three techniques compared in this study (Table 1): those occupied in spring/early summer 667 

(D350 in the HLNA, and JC071 in the PAP Site; see section 2.1) and the one occupied in summer at 668 

the PAP site (D341, see section 2.1). Chl-a concentration and PP time series for these cruises are 669 

shown in Figures 4a-4b, 4e-4f and 4c-4d respectively. 670 

Figure 5 compiles all the PEeff estimates, as a function of the sampling time, location and technique 671 

employed (summary in Table 1). Average ThEi values for IRB and IB in spring (D350) are 52 ± 39% 672 

and 50 ± 18% respectively, which are significantly higher than the ThEi measured in summer 673 

(D354), 9 ± 2 % and 6.2 ± 1.6% respectively. Similarly PoEi decreases from 55 ± 13% at the PAP 674 
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site in spring (JC071), to 2.7 ± 1.4% in mid-July (D341). These results show that both at the PAP site 675 

and in the HLNA, there is a pronounced decrease in PEeff from the formation of the bloom (early 676 

spring) to the late stages of the bloom (Figure 5). Average values for PEeff estimated with the two 677 

other techniques during the D341 are: 2.1 ± 1.6% for PeEi and 5.6 ± 3.3% for ThEi.  As previously 678 

stated (section 4.2.1), the post-bloom period was sample in this cruise. In this scenario, the results do 679 

not differ significantly within techniques, likely because they sampled the same export event, i.e. the 680 

declining bloom, and therefore POC fluxes (and PEeff) are similar. Furthermore, PEeff in this post-681 

bloom stage of the bloom were very similar at both PAP site (~4%) and the IRM the IB (~7%). 682 

Which suggest that the low export flux detected by PELAGRA at the IRB and IB is not an isolated 683 

case 684 

Therefore, results of Figure 5 suggest that export efficiency varies along the bloom and it decreases 685 

as the bloom progress. We propose that the observed decline in PEeff from spring to summer is 686 

probably due to evolution of the surface plankton community structure and changes in the 687 

hydrographic conditions (mainly temperature, (Marsay et al., 2015; Yvon-Durocher et al., 2012)) in 688 

the upper mesopelagic during the bloom, which affect the export efficiency. High export efficiencies 689 

at the beginning of the bloom would be associated to lower remineralization and higher aggregation 690 

rates, while lower export efficiencies, and lower POC export would be associated to higher 691 

remineralization (due to higher temperatures) (Marsay et al., 2015) and repackaging and reworking 692 

by zooplankton (Villa-Alfageme et al., 2016).  693 

Martin et al. (2011) found that the spring diatom bloom in the HLNA was associated with fast-694 

sinking diatom aggregates that contained transparent exopolymer particles. Additionally, it is often 695 

assumed that in highly seasonal high latitude regions, zooplankton grazing (and packaging function) 696 

is not able to keep pace with phytoplankton growth during the initial stages of the bloom (Lam et al., 697 

2011). Surface remineralisation rates, likely dependent on temperature as shown in Marsay et al. 698 
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(2015), would be lower in spring than in summer. As a result, particles would be exported very 699 

efficiently in the early phases of the bloom. 700 

A decrease in PEeff in post-bloom conditions is likely associated with higher surface particle 701 

recycling rates. Higher water temperatures may lead to higher metabolic rates of particle attached 702 

bacteria and thus higher remineralisation. Piontek et al. (2015) showed that changes in the type of 703 

dissolved organic matter may counteract the increase of remineralisation rates by the increase of 704 

temperature. This may be also valid for particles but, unfortunately, it is not possible to test here. In 705 

addition, strong zooplankton grazing control of phytoplankton biomass is typical of developed 706 

blooms (Calbet, 2001; Calbet and Landry, 2004). Furthermore, sinking particles at MLD + 110 m in 707 

late summer were found to be smaller and slower settling (Villa-Alfageme et al., 2016), making them 708 

more prone to be consumed by bacteria and zooplankton.  709 

Our conclusions have important implications for using in situ measurements to derive algorithms to 710 

estimate the annual and/or global carbon exported. Such estimates generally assume that the 711 

instantaneous PEeff estimate is representative of the annual mean and can thus be applied to annual 712 

total PP to obtain annual total export (Henson et al., 2011; Laws et al., 2000). Therefore, when 713 

compiling data from multiple different studies to derive global-scale PEeff algorithms using large 714 

databases (Le Moigne et al., 2013a), particular attention should be paid to the methods used 715 

(specifically their inherent timescales) and the phase of the bloom at the time of sampling. 716 

 717 

5. Summary and conclusions  718 

POC fluxes using three different techniques, PELAGRA traps, 234Th and 210Po, estimated during 719 

summer 2010 in two regions of the HLNA (IB and IRB) revealed discrepancies of over one order of 720 

magnitude. Neither the contribution of small particles, nor the variations in POC:Th and POC:Po 721 

ratios accounted for the differences in the POC flux estimates. The seasonal variability of PEeff was 722 
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analysed through the comparison of PELAGRA, and/or 234Th, and/or 210Po-derived fluxes in two 723 

locations from the temperate North Atlantic and in different bloom phases.  724 

 Our key findings are: 725 

1. Differences between PELAGRA, 234Th and 210Po techniques in estimating POC fluxes are 726 

due to a combination of the different time scales covered by the techniques and the stage of 727 

the bloom at the time of sampling. Therefore we recommend to characterise the bloom phase 728 

(e.g. through study of satellite-derived PP time series), to correctly interpret the information 729 

provided by the techniques.  730 

2. The steady-state assumption approach provides an estimation of the real flux of the moment 731 

only when the export is in a relatively long lasting plateau. In situations of high export 732 

variability, it results in an estimation of the real flux delayed in time proportionally to the 733 

radionuclide half-life and the bloom progress and the stage of bloom must be analysed in 734 

relation to the sampling moment in order to correctly identify the export event associated to 735 

the radionuclide-derived export estimates. 736 

3. PELAGRA, 234Th and 210Po are expected to provide similar values of PEeff if the three 737 

methods are used in a clear post-bloom situation and presumably at the start of a bloom or a 738 

long time after it, when the system is temporally invariant. Conversely, PEeff estimates from 739 

different methods will differ strongly when sampling occurs during a period of rapid change 740 

in export, e.g. during the declining phase of the bloom. In this case, PELAGRA-derived 741 

estimates of PEeff will be lower than Th- or Po-derived estimates. 742 

4. Comparison of the three techniques suggest a strong seasonal variability in PEeff in the North 743 

Atlantic. Export efficiency is greatest in the first stages of the bloom and declines as the 744 

season progresses (from ~ 50% in spring to ~ 3% in summer). Formation of aggregates, lower 745 

remineralisation rates and reduced zooplankton grazing are all equally valid reasons for 746 

higher export efficiency at the beginning of the bloom. 747 
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5.  When compiling in situ data for the purposes of developing algorithms to estimate annual 748 

export flux, we must ensure that individual POC flux or PEeff estimates are comparable. For 749 

that, we have to take into account the phase of the bloom and the technique used 750 
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Tables  

Table 1. Sampling site and dates for the four cruises considered, and number of stations sampled for each of the three techniques and for SAPS deployments 

(with measurements made on SAPS samples). 

 
 

Location 
 

Dates 
 

Cruise number 
 

234Th 
 

210Po 
 

PELAGRA 
 

SAPS 

 

Irminger Basin (IRB) 
Spring 2010 
26/04-09/05 

sampled in IRB 
D350 4 stations  0 stations  0 stations  4 stations  

POC, 234Th 

Irminger Basin (IRB) 
Summer 2010 
04/07-11/08 

sampled in IRB 
D354 8 stations 8 stations 2 stations 

8 stations 
POC, 234Th, 210Po, 

210Pb 

Iceland Basin (IB) 
Spring 2010 
26/04-09/05 

sampled in IB 
D350 3 stations 0 stations 0 stations 3 stations 

POC, 234Th 

Iceland Basin (IB) 
Summer 2010 
04/07-11/08 

sampled in IB 
D354 7 stations 7 stations 2 stations 

7 stations 
POC, 234Th, 210Po, 

210Pb 
Porcupine Abyssal 

Plain (PAP) 
Summer 2009 
13/07-08/08 

sampled in PAP 
D341 10 stations 9 stations 3 stations 

10 stations 
POC, 234Th, 210Po, 

210Pb 
Porcupine Abyssal 

Plain (PAP) 
Spring 2012 
01/05-08/05 

sampled in PAP 
JC071 0 stations 4 stations 0 stations 4 stations 

POC, 210Po, 210Pb 

 

 

Table 2. PELAGRA trap numbers, sampling start and ending date and time details, depths and sampling durations during cruise D354 and measured POC 

fluxes, POC:Th and POC:Po ratios (propagated uncertainties are also indicated).  

PELAGRA trap 
numbers 

Deployment depth 
(m) 

Sampling start 
date/time 

 
Sampling end 

date/time  
 

Sampling duration 
(h) 

POC flux 
(mmol m-2 d-1) 

POC:Th 
(μmol dpm-1) 

POC:Po 
(μmol dpm-1) 

P6-1 156 ± 5 13/07/10 01:00 14/07/10 07:22 30 1.02 ± 0.06 5.0 ± 0.5 67 ± 8 
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P6-2 152 ± 6 19/07/10 01:30 21/07/10 08:54 54 1.14 ± 0.05 13 ± 1 58 ± 8 

        
P4-3 84 ± 5 26/07/10 08:00 28/07/10 04:00 44 2.0510 5.4 ± 0.4 51 ± 5 
P6-3 154 ± 4 26/07/10 08:30 28/07/10 10:54 50 1.56 ± 0.08 2.3 ± 0.2 37 ± 5 
P7-3 402 ± 4 26/07/10 07:30 28/07/10 03:30 44 0.45 ± 0.05 2.4 ± 0.2 25 ± 3 

        
P4-4 82 ± 5 04/08/10 008:30 06/08/10 00:30 404 4.36 ± 0.19 10 ± 1 120 ± 13 
P6-4 152 ± 5 04/08/10 09:00 06/08/10 07:23 46 2.66 ± 0.15 6.9 ± 0.6 136 ± 24 
P7-4 402 ± 6 04/08/10 08:00 06/08/10 00:00 40 1.37 ± 0.07 5.1 ± 0.5 54 ± 7 

 

 

Table 3.  PELAGRA-, Th- and Po- derived particle export efficiency (PeEi, ThEi, PoEi) in % (uncertainties and standard deviation of the spatial average are 

also indicated) for D354, the associated PP and the resulting averaged PEeff (standard deviation of the spatial average is also indicated). Stations without 

results for some of the variables are denoted by nan.  

 
 

PELAGRA 
PP 8 days 
average 

(mmol m-2d-1) 

PeEi 
% Station 

PP 30 days 
average 

(mmol m-2d-1) 

ThEi 
% 

PP 90 days 
average 

(mmol m-2d-1) 

PoEi 
% 

IB P6-1 153.4 0.7 ± 0.1 02 126.8 nan 96.3 5.7 ± 3.1 
 P6-4 176.6 1.5 ± 0.1 04 147.4 6.7 ± 2.9 120.2 8.0 ± 2.1 
    06 146.0 4.3 ± 1.4 115.4 8.4 ± 4.0 
    27 148.8 8.3 ± 4.1 128.1 11 ± 6 
    28 138.2 6.5 ± 2.4 133.7 11 ± 3 
    31 203.9 nan 146.1 9.5 ± 2.1 
    33 153.0 5.3 ± 2.2 113.6 21 ± 6 

average   1.1 ± 0.6   6.2 ± 1.5  11 ± 5 
IRB P6-2 230.2 0.5 ± 0.1 08 125.5 10 ±  1 83,6 3.9 ±  1.7 

 P6-3 176.0 0.9 ± 0.1 10 91.1 11 ± 4 68,1 9.4 ± 3.2 
    15 133.1 4.3 ± 1.3 92,1 13 ± 4 
    16 105.4 4.6 ± 1.3 85,5 14 ± 7 
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    18 169.1 7.5 ± 1.4 119,5 11 ± 5 
    20 103.4 13 ± 3.7 79,9 19 ± 8 
    22 111.5 6.0 ± 2.2 104,2 4.9 ± 2.2 
    24 163.5 16 ± 8 127.4 9.0 ± 3.2 

average   0.7 ±  0.3   9 ± 4  11 ± 5 
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Figure 1. Map of the sampling area for cruises D350 and D354 in the Irminger Basin (IRB) and Iceland Basin 

(IB) and the Reykjanes Ridge (RR). PELAGRA deployment locations during D354 (large black dots) and the 

first recorded locations of the traps upon resurfacing (small black dots) are also included. Deployment and 

resurfacing locations are linked by a dashed line. Note that only traps used in the discussion were plotted (i.e. 

PELAGRA deployed at MLD + 110 m (typically 150m): P6-i, where P6 is trap ID number and i = deployment 

number {1, 4}).  

 



 

Figure 2. (a) PELAGRA-derived (Pe-POC) fluxes for the four trap deployments; and 234Th-, 210Po-derived 

POC fluxes in both (b) IB and (c) IRB at MLD + 110m (typically 150 m). The error bars indicate the 

propagated uncertainty. The horizontal dashed lines show the average value of the POC flux in the region for 

the three methods.  

 



 

Figure 3. POC:radionuclide ratios (μmol dpm-1) in > 53 μm versus 1-53 μm size-fractions measured in 

particles collected by SAPS at MLD + 110 m (typically 150 m) are shown for (a) Th; and (b) Po 

distinguished by basin. The 1:1 line is indicated in the figure.  

 

 

Figure 4. (a) MODIS satellite-derived chlorophyll a concentrations and (b) primary production (calculated 

using the VGPM algorithm (Behrenfeld and Falkowski, 1997)) derived from MODIS satellite-derived 



chlorophyll a concentrations for 2010 in the IRB and IB. The timing of cruises D350 and D354 are shown 

by the green and orange shaded areas between days 116-129, and 185-223 respectively (Marsay et al., 

2015). Also shown are corresponding plots (c) and (d) for the Porcupine Abyssal Plain site in 2009, with the 

timing of cruise D341 shown by the shaded area between days 194 – 220; and plots (e) and (f) for the 

Porcupine Abyssal Plain in 2012, with the timing of cruise JC071 shown by the shaded area between days 

122-129. 

 

 
Figure 5. Averaged PEeff (POC flux at MLD + 110 m relative to PP) values (with one standard deviation 

of the spatial average) during cruises D350 and D354 in both the IRB and IB, and during D341 and JC071 at 

the PAP site, obtained for PeEi, ThEi and PoEi as a function of the relative timing of sampling and the 

sampling region. Results from 4 different cruises were employed in order to analyze the seasonal variability 

in PEeff. 



Table S1. Station ID, sampling dates, positions and depth ranges for samples taken in both basins for 234Th measurements during cruise D350. Also 

detailed by station, with associated uncertainties, are Th fluxes, POC:Th ratios measured by SAPS for large (> 53 μm) and small size particles (1-53 

μm) and Th-derived POC fluxes calculated using only large particle data integrated at MLD + 110 m . 

 Station ID Sampling date Latitude 
(°N) 

Longitude  
(°W) 

Depth range 
for 234Th  

(m) 

Number of 
samples for 

 234Th 

Th flux (150 m) 
(dpm m-2 d-1) 

POC:Th (150 m) 
(µmol dpm-1) 

(> 53 µm) 

POC:Th (150 m) 
(µmol dpm-1) 

(1- 53 µm) 

Th-POC 
(mmol m-2 d-1) 

IRB 2 01/05/2010 60º58’78’’ 34º59’27’’ 10-400 10 2474 ± 618 12 ± 7 5.3 ± 0.9 30  ± 17 
 3 02/05/2010 60º01’40’’ 34º57’61’’ 10-400 10 2921 ± 599 13 ± 9 6.6 ± 2.4 38  ± 21 
 4 03/05/2010 60º00’17’’ 31º58’82’’ 10-300 10 1108 ± 684 8 ± 7 5.9 ± 0.9 9  ± 7 

IB 5 04/05/2010 59º59’41’’ 28º59’73’’ 10-300 10 1268 ± 582 14 ± 15 5.5 ± 2.4 17  ± 12 
 6 05/05/2010 59º56’65’’ 26º12’67’’ 10-400 10 1544 ± 609 9 ±14 4.0 ± 1.6 14  ± 9 
 7 06/05/2010 60º50’78’’ 21º45’06’’ 10-600 10 1662 ± 562 14 ± 32 3.3 ± 0.8 23  ± 14 
 8 07/05/2010 61º59’95’’ 19º59’96’’ 10-400 10 1276 ± 708 25 ± 12 5.4 ± 2.7 32  ± 24 

 

 

Table S2. Station ID, sampling dates, positions and depth ranges for samples taken in both basins for 234Th measurements during cruise D354. Also 

detailed by station, with associated errors, are Th fluxes, POC:Th ratios measured by SAPS for large (> 53 μm) and small size particles (1-53 μm) and 

Th-derived POC fluxes calculated using only large particle data integrated at MLD + 110 m . Stations without results for some of the variables are 

denoted by nan. 

 Station ID Sampling date Latitude 
(°N) 

Longitude  
(°W) 

Depth range 
for 234Th  

(m) 

Number of 
samples for 

 234Th 

Th flux (150 m) 
(dpm m-2 d-1) 

POC:Th (150 m) 
(µmol dpm-1) 

 (> 53 µm) 

POC:Th (150 m) 
(µmol dpm-1) 
 (1- 53 µm) 

Th-POC 
(mmol m-2 d-1) 

IB 02 11/07/2010 60º00’09’’ 19º59’90’’ 10-400 10 nan 7.3 ± 0.6 4.3 ± 0.3 nan 
 04 13/07/2010 61º48’68’’ 21º02’38’’ 10-400 10 1210 ± 514 8.1 ± 1.0 2.8 ± 0.3 10 ± 4 
 06 15/07/2010 60º00’07’’ 23º37’70’’ 10-300 10 1604 ± 435 3.9 ± 0.8 1.8 ± 0.1 6.3 ± 2.1 
 27 03/08/2010 62º06’56’’ 24º18’56’’ 10-400 10 2139 ± 1000 5.8 ± 0.9 6.2 ± 0.5 12 ± 7 
 28 04/08/2010 61º15’48’’ 20º45’84’’ 10-400 10 1398 ± 486 6.4 ± 0.8 6.1 ± 0.5 8.9 ± 3.3 



 31 05/08/2010 61º55’15’’ 26º16’63’’ 10-500 10 nan nan nan nan 
  33 07/08/2010 60º18’19’’ 20º58’67’’ 10-400 10 1250 ± 509 6.5 ± 0.4 4.8 ± 0.7 8.1 ± 3.2 

IRB  08 17/07/2010 60º00’25’’ 34º59’46’’ 10-300 10 1710 ± 108 7.5 ± 0.9 4.9 ± 0.4 13 ± 2 
  10 19/07/2010 59º56’48’’ 41º24’32’’ 10-400 10 1859 ± 486 5.4 ± 1.4 3.1 ± 0.2 10 ± 4 
  15 21/07/2010 59º59’53’’ 34º59’31’’ 10-600 10 1962 ± 176 3.0 ± 0.2 3.0 ± 0.4 5.8 ± 1.7 
  16 22/07/2010 63º00’01’’ 34º59’70’’ 10-400 10 1408 ± 386 3.5 ± 0.3 3.3 ± 0.4 5.0 ± 1.4 
  18 24/07/2010 62º59’08’’ 29º54’13’’ 10-400 10 2644 ± 445 4.8 ± 0.5 3.3 ± 0.3 13 ± 2 
  20 26/07/2010 58º08’32’’ 35º02’12’’ 10-400 10 1728 ± 505 7.5 ± 0.5 3.3 ± 0.4 13 ± 4 
  22 28/07/2010 63º49’46’’ 35º05’51’’ 10-400 10 1538 ± 426 4.4 ± 1.0 2.0 ± 0.1 6.7 ± 2.5 
  24 01/08/2010 62º28’43’’ 28º21’86’’ 20-500 10 4447 ± 323 5.7 ± 0.3 3.3 ± 0.3 26 ± 13 

 

 

Table S3. Station ID, sampling dates, positions and depth ranges for samples taken in both basins for 210Po measurements during cruise D354. Also 

detailed by station, with associated errors, are Po fluxes, POC:Po ratios measured by SAPS for large (> 53 μm) and small size particles (1-53 μm) and 

Po-derived POC fluxes calculated using only large particle data integrated at MLD + 110 m.  

 Station 
ID Sampling date Latitude 

 (°N) 
Longitude  

(°W) 

Depth range 
for 210Po/210Pb 

(m) 

Number of 
samples for 
210Po/210Pb 

Po flux (150 m) 
(dpm m-2 d-1) 

POC:Po (150 m) 
(µmol dpm-1) 

(> 53 µm) 

POC:Po (150 m) 
(µmol dpm-1) 

(1-53 µm) 

Po-POC 
(mmol m-2 d-1) 

IB    02    11/07/2010 60º00’09’’ 19º59’90’’   10-800   13    65 ± 35  84 ± 14 94 ± 16 5.5 ± 1.0 
 04 13/07/2010 61º48’68’’ 21º02’38’’   10-1000    13    135 ± 35  71 ± 13 62 ± 10 9.6 ± 1.9 
 06 15/07/2010 60º00’07’’ 23º37’70’’      10-600 10 109 ± 52          88 ± 14 74 ± 11 9.7 ± 2.2 
 27 03/08/2010 62º06’56’’ 24º18’56’’ 10-1000 11 100 ± 52 135 ± 18 417 ± 57 14 ± 2 
 28 04/08/2010 61º15’48’’ 20º45’84’’      10-500 10 122 ± 54 114 ± 34 200 ± 28 14 ± 4 
 31 05/08/2010 61º55’15’’ 26º16’63’’      10-500 10 115 ± 82 119 ± 18 124 ± 21 14 ± 2 
 33 07/08/2010 60º18’19’’ 20º58’67’’ 10-2000 12 130 ± 35 187 ± 31 127 ± 17 24 ± 4 

IRB 08 17/07/2010 60º00’25’’ 34º59’46’’ 10-600 10 49 ± 21 66 ± 10 81 ± 13 3.3  ± 0.6 
 10 19/07/2010 59º56’48’’ 41º24’32’’ 10-500 10 92 ± 31 69 ± 11 88 ± 11 6.4 ± 1.0 



 15 21/07/2010 59º59’53’’ 34º59’31’’ 10-600 10 116 ± 32 102 ± 13 112 ± 13 12 ± 2 
 16 22/07/2010 63º00’01’’ 34º59’70’’ 10-1500 11 93 ± 45 132 ± 30 130 ± 22 12 ± 3 
 18 24/07/2010 62º59’08’’ 29º54’13’’ 10-500 12 108 ± 43 122 ± 16 91 ± 12 13 ± 2 
 20 26/07/2010 58º08’32’’ 35º02’12’’ 10-2150 14 124 ± 51 120 ± 19 77 ± 11 15 ± 3 
 22 28/07/2010 63º49’46’’ 35º05’51’’ 10-1000 13 73 ± 32 69 ± 11 58 ± 7 5.1 ± 0.8 
 24 01/08/2010 62º28’43’’ 28º21’86’’ 20-700 10 103 ± 36 111 ± 14 100 ± 106 11 ± 2 

 

Table S4. Station ID, SAPS sampling details and POC and 234Th fractions measured in SAPS for large (> 53 μm) and small size particles (1-53 μm) for 

cruise D350.  

 Station 
ID 

Sampling 
date 

Depth  
(m) 

POC  
(µmol L-1) 

x10-3 
(> 53 µm) 

POC  
(µmol L-1) 

x10-3 
(1- 53 µm) 

234Th 
(dpm L-1)  

x10-3 
(>53 µm) 

234Th 
(dpm L-1)  

x10-3 
(1-53 µm) 

IRB    2    01/05/2010 50  264 ± 32 277 ± 70 15 ± 1 43 ± 8 
   150 223 ± 19 217 ± 54 19 ± 1 41 ± 7 
 3 02/05/2010 50 334 ± 46 275 ± 87 16 ± 1 43 ± 9 
   150 244 ± 24 190 ± 98 19 ± 1  29 ± 10 
 4 03/05/2010 60 867 ± 63 413 ± 66 111 ± 5 65 ± 7 
   160 105 ± 13 229 ± 51 13 ± 1 40 ± 6 

IB 5 04/05/2010 50 nan nan 15 ± 2 43 ± 8 
   150 124 ± 19 90 ± 58 9 ± 1 16 ± 8 
 6 05/05/2010 50 482 ± 10 39 ± 69 52 ± 8 29 ± 4 
   150 92 ± 21 96 ± 56 10 ± 2 24 ± 10 
 7 06/05/2010 50 194 ± 12 372 ± 151 21 ± 9 32 ± 10 
   150 95 ± 32 109 ± 41   7 ± 1 34 ± 9 
 8 07/05/2010 50 35 ± 4 28 ± 6 38 ± 3 10 ± 2 
   150 52 ± 14 61 ± 12 2 ± 4 11 ± 2 

 

 



 

 

Table S5. Station ID, SAPS sampling details and POC, 234Th and 210Po and 210Pb fractions measured in SAPS for large (> 53 μm) and small size 

particles (1-53 μm) for cruise D354.  

 Station 
ID Sampling date Depth  

(m) 

POC  
(µmol L-1) 

x10-3 
(> 53 µm) 

POC  
(µmol L-1) 

x10-3 
(1- 53 µm) 

234Th 
(dpm L-1)  

x10-3 
(>53 µm) 

234Th 
(dpm L-1)  

x10-3 
(1-53 µm) 

210Po 
(dpm L-1) 

 x10-3 
(>53 µm) 

210Po 
(dpm L-1)  

x10-3 
(1-53 µm) 

210Pb 
(dpm L-1)  

x10-3 
(>53 µm) 

210Pb 
(dpm L-1)  

x10-3 
(1-53 µm) 

IB    02    11/07/2010 50  392 ± 20 195 ± 9 115 ± 7 164 ± 6 1.6 ± 0.3 3.3 ± 0.4 3.9 ± 0.4 4.8 ± 0.4 
   150 167 ± 8 145 ± 7 23 ± 2 33 ± 1 2.0 ± 0.3 3.7 ± 0.5 2.1 ± 0.2  2.4 ± 0.3 
 04 13/07/2010 50 129 ± 6 149 ± 8 26 ± 9 47 ± 7 3.0 ± 0.3 1.7 ± 0.3 1.7 ± 0.2 2.1 ± 0.2 
   150 114 ± 6 184 ± 9 14 ± 2 65 ± 7 1.6 ± 0.3 5.7 ± 0.8 2.3 ± 0.3  3.3 ± 0.4 
 06 15/07/2010 40 480 ± 24 462 ± 23 110 ± 4 81 ± 5 1.7 ± 0.3 2.5 ± 0.4 5.0 ± 0.4 6.7 ± 0.4 
   140 132 ± 7 127 ± 06 34 ± 6 71 ± 4 1.5 ± 0.2 3.6 ± 0.4 2.4 ± 0.3 2.6 ± 0.3 
 27 03/08/2010 50 705 ± 35 485 ± 24 85 ± 9 25 ± 2 1.6 ± 0.3 1.3 ± 0.3 6.7 ± 0.6 3.0 ± 0.4 
   150 311 ± 16 656 ± 32 54 ± 8 106 ± 6 2.3 ± 0.3 8.3 ± 0.9 3.3 ± 0.3 5.6 ± 0.4 
 28 04/08/2010 40 465 ± 23 516 ± 26 67 ± 5 76 ± 5 2.4 ± 0.3 2.2 ± 0.3 4.8 ± 0.4 3.7 ± 0.3 
   140 458 ± 22 487 ± 25 284 ± 1 80  ± 6 1.6 ± 0.4 2.1 ± 0.2 2.3 ± 0.5 5.6 ± 0.5 
   400 390 ± 39 nan 11 ± 2 nan 2.1 ± 0.3  1.7 ± 0.2 1.7 ± 0.2 2.5 ± 0.3 
 31 05/08/2010 50 242 ± 12 242 ± 12 nan nan 3.1 ± 0.3 1.7 ± 0.2 1.7 ± 0.2 3.5 ± 0.3 
   150 288 ± 14 385 ± 19 nan nan 2.4 ± 0.3 2.0 ± 0.3 4.1 ± 0.4 2.5 ± 0.3 
 33 07/08/2010 50 345 ± 17 333 ± 17 28 ± 2 110 ± 1 2.2 ± 0.3 5.1 ± 0.8 2.0 ± 0.3 4.5 ± 0.5 
   150 206 ± 10 275 ± 14 32 ± 1 57 ± 7 1.1 ± 0.2 1.6 ± 0.3 1.7 ± 0.2 2.8 ± 0.3 
   400 180 ± 18  140 ± 14 10 ± 2 15 ± 2 1.0  ± 0.2 2.1 ± 0.3 3.6 ± 0.4 1.3 ± 0.2 

IRB 08 17/07/2010 50 293 ±  15 583 ± 29 89 ± 6 168 ± 5 3.0 ± 0.4 3.0 ± 0.5 4.8 ± 0.5 4.2 ± 0.5 
   150 99 ± 5 86 ± 43 13 ± 5 18 ± 3 1.5 ± 0.2 1.0 ± 0.2 2.3 ± 0.3 3.8 ± 0.4 
 10 19/07/2010 50 552 ± 28  562 ± 28 94 ± 5 174 ± 4 4.0 ± 0.4 4.1 ± 0.4 4.7 ± 0.4 9.7 ± 0.5 
   150 192 ± 10 353 ± 18 35 ± 9 115 ± 4 2.8 ± 0.4 4.0 ± 0.4 2.2 ± 0.2  5.4 ± 0.4 



 15 21/07/2010 50 480 ± 24 604 ± 30 71 ± 7 181 ± 5 2.5 ± 0.4 5.7 ± 0.5 4.6 ± 0.4 4.6 ± 0.3 
   150 360 ± 18 356 ± 18   122 ± 6 120 ± 5 3.5 ± 0.4 3.2 ± 0.3 4.6 ± 0.3 5.5 ± 0.4 
 16 22/07/2010 40 206 ± 10 408 ± 20 86 ± 8 149 ± 6 4.5 ± 0.6 2.6 ± 0.4 4.1 ± 0.5 6.0 ± 0.6 
   140 100 ± 5 310 ± 15 29 ± 6 94 ± 9 7.6 ± 0.2 2.4 ± 0.4 3.5 ± 0.4 3.6 ± 0.4 
 18 24/07/2010 40 767 ± 38  451 ± 23 56 ± 5 55 ± 3 4.5 ± 0.6 2.8 ± 0.4 5.3 ± 0.6 6.2 ± 0.5 
   140 357 ± 18 282 ± 14 75 ± 6 86 ± 5 3.0 ± 0.4 3.1 ± 0.4 3.6 ± 0.3 3.2 ± 0.3 
 20 26/07/2010 50 492 ± 25 730 ± 36 32 ± 4 135 ± 7 1.7 ± 0.4 4.4 ± 0.6 2.6 ± 0.4 6.7 ± 0.6 
   150 189 ± 94 197 ± 98 26 ± 4 59 ± 6 1.6 ± 0.3 2.6 ± 0.3 2.1 ± 0.2 2.5 ± 0.3 
   400 210 ± 21  250 ± 25 12 ± 2 7.6 ± 0.2  1.6 ± 0.2 2.2 ± 0.3 1.5 ± 0.2 1.7 ± 0.2 
 22 28/07/2010 50 341 ± 17 477 ± 24 58 ± 8 320 ± 6 2.7 ± 0.3 3.2 ± 0.4 4.4 ± 0.4 3.5 ± 0.3 
   200 123 ± 62 237 ± 12 28 ± 6 116 ± 5 1.8 ± 0.3 4.1 ± 0.5 2.3 ± 0.3 3.8 ± 0.3 
   400 310 ± 31 180 ± 18 21 ± 2 38 ± 2 4.7 ± 0.6 6.0 ± 0.7 4.9 ± 0.5 5.3 ± 0.5 
 24 01/08/2010 40 491 ± 25 571 ± 29 122 ± 7 182 ± 6 3.0 ± 0.3 2.8 ± 0.3 4.3 ± 0.3 6.0 ± 0.3 
   140 276 ± 14 326 ± 16 48 ± 5 96 ± 9 2.5 ± 0.3 3.2 ± 0.3 3.7 ± 0.3 4.3 ± 0.3 

 

 



 

Figure S1. (a) 234Th activity (in dpmL-1) and (b) 234Th/238U ratio versus depth for cruise D350.  Symbols are given in panel (a) of the figure. 



 



 

Figure S2. (a) 234Th activity (in dpmL-1), (b) 210Po activity (in dpm100L-1), (c) 210Pb activity (in dpm100L-1), (d) 234Th/238U ratio and (e) 210Po/210Pb 

ratios versus depth for cruise D354.  Symbols are given in panel (a) of the figure. 
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