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Abstract. This paper describes the first attempt to infer ocean currents from the shapes of

seismic streamers using real data. It demonstrates that it is feasible to infer the ocean currents,

using a total least-squares solution at each shotpoint, when there is no lateral steering. There

are some artifacts in the inferred currents when there is lateral steering, this is believed to be

caused by errors in estimating the streamer velocity. The paper describes the residual equations

that form the cost function and discusses how to choose weights in the cost function based on

physical criteria. Correctly choosing weights is something of an art and requires further research

to make automatic and robust.
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1. Introduction

The ability to infer ocean currents along the length of seismic streamers may lead to several

benefits for marine seismic surveys:

• Knowing the currents along the streamers in real time could lead to improvements in

streamer steering.

• Improving the streamer steering could lead to efficiency and cost savings.

• Improving the streamer steering could allow the receiver positions to better match the

receiver positions from previous surveys, and so improve reservoir monitoring (Kragh

and Christie 2002).

• Inferring the currents could be incorporated into the receiver positioning algorithms to

improve their accuracy.

Additionally, inferring the currents at a length scale that is shorter than the length of the

streamers will provide valuable information on ocean currents to the oceanographic community.

At present, currents on this length scale are poorly observed, being at a smaller scale than is

presently observed using satellite altimetry; it is thought that processes on this smaller scale

may play an important role in energy dissipation in the ocean and the mixing of gases and

nutrients (Grant, Laws and Shuckburgh 2014).

The first paper to describe the possibility of inferring ocean currents from the shapes of

streamers was by Polydorides, Storteig and Lionheart (2008); in this, and subsequent papers

(Polydorides, Storteig and Lionheart 2009, and Polydorides and Storteig 2011) they assumed

that there are tension measurements along the length of each streamer. Polydorides et al. (2008)

show how (if there are no lateral steering devices on the streamers) the problem of inferring

ocean currents can be reduced to differentiating noisy data. The theoretical work was extended

by Polydorides et al. (2009) to include streamers with depth control units (DCUs) that provide

lateral steering (as well maintaining the depths of the streamers). In this case it is not possible

to reduce the problem to differentiating data, so a cost function is defined for the currents that

is solved using a Newton method. Polydorides and Storteig (2011) returned to the problem of

inverting for currents when there are no DCUs. They reformulated the problem of inferring the

ocean currents in terms of Bayesian inference, so that, not only can the most likely solution for

the currents be calculated, but given prior statistics concerning the currents, the probability

density functions for the reconstructed currents can also be calculated. This enables confidence

intervals to be placed on the reconstructed currents. They then discussed the problem of

calculating the angle of attack that a streamer makes with the local currents along its length.

They showed that the angle of attack is not Gaussian. Therefore, to estimate the angle of attack

that the streamer makes with the local currents, they proposed using stochastic simulation.

Given the means and covariances of the reconstructed currents, these distributions can be

sampled to calculate the angle of attack and unbiased estimates of the mean and covariance can

then be calculated.
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Grant et al. (2014) recognized that, in many commercial streamer systems, there are not

tension measurements along the length of the streamers; instead there is typically a single mea-

surement of the tension at the head of the streamer. The lack of tension measurements makes

the inverse problem for the currents fundamentally underdetermined. To overcome this prob-

lem the authors exploited the fact that the vertical current velocities in the ocean are typically

much less than the horizontal currents, so the currents can be considered to be horizontally

divergence-free, therefore if an array of streamers is towed horizontally then it should still be

theoretically possible to infer the currents.

1.1. Objective. The aim of this paper is to extend the work of Grant et al. (2014) by at-

tempting to apply the idea to a real data set and, so, demonstrate that inferring currents is

possible. This is the first attempt (to the author’s knowledge) to infer the ocean currents from

real streamer shape data.

Grant et al. (2014) assumed that the velocity of the streamer and its local angle were the

observed variables. In truth the only available data are the tension at the head of each streamer,

the currents recorded at the vessel by the acoustic Doppler current profiler (ADCP), the posi-

tions along the streamer, determined by an acoustic network at each shotpoint, and the time

of each shotpoint. From these data, the velocities and angle must be calculated and used in

the inverse model. How to do this in the presence of lateral steering is one of the challenges

encountered in this paper.

As discussed, the currents are estimated by minimizing a cost function, and, so, to fulfill

the main objective of inferring the currents, it is necessary to explore how the cost function

should be weighted to obtain realistic currents. Unlike in previous numerical studies where the

true currents are known, with real data we must develop criteria to judge whether the inferred

currents are plausible or not.

The procedure, used in this paper, to infer the ocean currents is displayed in Figure 1.

2. The model for streamer dynamics

To infer the currents from the shape of streamers, it is necessary to have a model of the

streamer dynamics. The large-scale dynamics of a horizontally towed streamer can be modeled

with the following two dimensional model (see Polydorides et al. (2008, 2009) and Grant et al.

(2014) for a derivation of the model), which uses a local coordinate frame along the streamer,

with axes in the tangential and normal directions to each point on the streamer. The indepen-

dent variables are the time, t, and the arc length, s, (which is measured from the head to the

tail of a streamer), and the dependent variables are

• vt and vn are the tangential and normal velocities of the streamer,

• ft is the tension in the streamer,

• θ is the angle the tangential direction, at a point on the streamer, makes with the x

axis.
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Figure 1. The procedure, used in this study, for inferring the currents.

The resulting model is

∂vt
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2ρwdπCt(vt − wt)|vt − wt|+Qt(s, t, vt, vn;wt, wn) =0, (3)

∂θ

∂s
ft − 1

2ρwdCn(vn − wn)|vn − wn|+Qn(s, t, vt, vn;wt, wn) =0, (4)

where the first two equations are kinematic relations and the second two equations express the

force balance in the tangential and normal directions respectively. The functions Qt and Qn

express the forces provided by the DCUs (also referred to as birds). The parameters in the

model are as follows:

• d is the diameter of the streamer,
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• ρw is the seawater density,

• wt and wn are the tangential and normal velocities of the currents,

• Ct and Cn are the tangential and normal drag coefficients.

For the streamer used in this test, d = 0.052 m, and the sea water density (at the depth of

the streamers) was measured at three points during the survey, yielding a best estimate of

ρw = 1024.58 kg.m-3. The boundary conditions for the model are that the velocity of the tow

point is known, that the normal velocity of the tail point is that of the normal current at the

tail, and that the tail buoy is assumed to provide a constant drag force, denoted by TL, if its

speed through the water is 2.57 m/s (5 knots). A mechanic on board the vessel that conducted

the survey suggested that TL = 1500 N is the best estimate of the tail buoy drag at 5 knots.

The tail buoy drag is expressed as

TL
√

(vt − wt)2 + (vn − wn)2|vt − wt|
2.57222

. (5)

In the field test, each of streamers 1 to 4 and 8 to 12 had a front float between the first receiver

position and the tow adapter (where the tension is the streamer is recorded) that contributes to

the recorded tension. The drag caused by the front float is modeled in exactly the same manner

as the tail buoy. Additionally, these same streamers had miniwings (small deflectors designed

to pull the streamers out of the wake caused by the large deflector) between the tow adapters

and first receiver positions; these are assumed to provide a constant drag force, denoted by M ,

at 2.57 m/s (5 knots), and so are modeled using

M
√

(vt − wt)2 + (vn − wn)2|vt − wt|
2.57222

. (6)

The amount of drag produced by the miniwings depends on how they are set up for a given

survey; for this survey the most appropriate value for the miniwing drag is M = 450 N.

2.0.1. The drag coefficients. The model for the streamer dynamics depends on the tangential

and normal drag coefficients, which are not known. In order to calculate the drag coefficients,

the speed of the streamer through the water needs to be known, this was accomplished by using

a crude estimate of the ocean currents based on the ADCP data, and using the position and time

data to calculate the velocity of the streamer. The tangential drag coefficient was then obtained

by fitting the estimated drag to the recorded tension; the normal drag coefficient was estimated

by exploiting a vessel turn, that produced significant curvature in the streamer that was fitted

to the normal hydrodynamic force. The resulting estimates are shown in Table 1. There is

a symmetric pattern in the drag coefficients, about the centre of the streamer spread. This

pattern in the drag on the streamers is believed to be caused by differences in barnacle growth

on the streamers. Therefore it seems appropriate to treat the streamers as having different

drag coefficients. To be accurate, the drag coefficients should be treated as varying along the

length of each streamer because the number of barnacles will change on different sections of

each streamer due to their location and the different times at which sections are cleaned. In this

study, the drag coefficients will be treated as a single constant along each streamer. This is due

to the fact that there is a single tension measurement per streamer, so, it is not clear how to
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Streamer 1 2 3 4 5 6 7 8 9 10 11 12

Ct 0.0036 0.0042 0.0040 0.0034 0.0037 0.0037 0.0037 0.0037 0.0032 0.0039 0.0039 0.0033

Cn 1.3447 1.6017 1.5966 1.3645 1.3425 1.2821 1.3458 1.3397 1.2361 1.4178 1.4367 1.2522

Table 1. The best estimates of the drag coefficients assuming TL = 1500 N and

M = 450 N.

constrain the varying values of the drag coefficients along the streamers if they are allowed to be

functions of arc length. If, instead of solving for the currents at each individual shotpoint, but,

rather, over a long timewindow consisting of many shotpoints (so this would not be a real time

process to aid steering), then by treating the drag coefficients as functions of arc length only,

and not time, it may be possible to estimate them. Instead of a single unknown which we find

at every shotpoint (constrained to be close to our prior estimate) we would gain a number of

unknowns (depending on the spatial sampling of the streamer). This at first seems to make the

problem more underdetermined, however, these unknowns must be the same at every time step.

So, provided we have more time steps than additional unknowns, we will actually constrain the

model better, leading to better current estimates as well as knowing how the drag coefficients

vary along the streamer. This could then be used as a diagnostic as to determine which sections

of streamers must be cleaned next.1

2.1. Key assumptions about the ocean currents. The ocean currents are inferred along

the streamers by discretizing equations (3) and (4) and fitting the currents and data to them in a

cost function. Grant et al. (2014) showed how the problem of determining the ocean currents is

under-determined due to a lack of tension measurements along the streamer, and so, additional

assumptions about the currents must be made. These are

• The currents should be smooth across and along the streamer array. This assumption

is largely to remove the effects of having noisy position and tension data.

• Structures in the ocean currents should be changing slowly relative to the speed of

the towing vessel, which is traveling at approximately 2.57 m.s-1 (5 knots). This will

primarily be used as a criteria to judge whether the inferred currents are plausible or

not.

• The currents should be close to the average value recorded by the ADCP on the vessel

over the previous hour. The vessel takes about an hour to travel the length of a streamer;

therefore, under the assumption that the ocean currents change slowly in time, the

previous hour’s ADCP record gives a good prior estimate as to what the currents should

be along the streamers. The primary result of this assumption is to cause there to be a

reasonable tension estimate along each streamer. Given a reasonable tension estimate

along each streamer, the curvature of each streamer provides the information needed to

infer the currents flowing across each streamer.

1Suggested by Robert Laws (Schlumberger Gould Research)
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• Finally, it is assumed that the currents should be approximately horizontally divergence-

free because the currents in the ocean are primarily two dimensional; typically, the

velocities of the horizontal currents are at least a couple of orders of magnitude greater

than the velocities of the vertical currents (Thomas, Tandon and Mahadevan 2008; Vallis

2006; Grant et al. 2014). This assumption allows us to infer the in-line currents.

3. Data processing

The data for this work were acquired by the Western Neptune in February 2013, off the coast

of Brazil (near the Iara and Juptier hydrocarbon reserves2), and consists of

• tension measurements from the head of each streamer at each shotpoint (roughly every

10 s),

• calculated receiver positions (12.5 m apart),

• the DCU black box data that describes the roll angle and the port and starboard control

angles of each DCU at each shotpoint,

• ADCP measurements of the currents at the vessel location, every 30 s,

• three conductivity temperature and depth oceanographic probe dips were undertaken

during the study from which the sea water density, at the depth of the streamers, was

estimated.

3.1. Anomalous tension data. Figure 2 shows the raw tension measurements (in blue) for

Streamer 11. There are several instances when the variations in the raw tension are far greater

than normal; this is most obvious after shot 2000 (which, if a true measurement, would suggest

that there is only a very small difference between the in-line velocity of the streamer and the

ocean currents: this is very unlikely). A median filter, with a 25-shot window, was used (on

the tension data from all the streamers) to remove these artifacts without over-smoothing the

data. The red line in Figure 2 shows the result of applying this filter to the tension record. The

filtered tension data are used as the input, in the cost function to infer the currents.

3.2. Problems with calculated receiver positions. Most of the calculated receiver posi-

tions are interpolated from the positions of the hydrophones included in an acoustic network.

If the calculated receiver positions are used to estimate the curvature, then, artifacts appear in

the curvature that move with the streamer; these are unlikely to be due to currents but rather

the effects of the interpolation scheme and further processing. This unwanted signal in the

streamer’s curvature will mask small-scale features in the currents. To alleviate this, only the

calculated receiver positions that were closest to members of the acoustic network (receivers and

transmitters) were used to infer the currents, this is because these are assumed to be the most

accurate locations; the other calculated positions were discarded. This increases the spatial

separation of position data, on a streamer, from 12.5 m to around 70 m.

The tail buoy position is required to infer the currents because it provides the point to impose

the empirical tail buoy relation. However, when calculating the angle along a streamer, there

can be a noticeable jump in the angle at the tail so as to accommodate the tail buoy position.

2No seismic data were acquired during this experiment.
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Figure 2. The raw tension measurements on Streamer 11 (blue) and the pro-

cessed tension using a median filter (red) with a 25-shot window

This suggests that tail buoy position data has be processed differently to the other positions or

that the difference is because the tail buoy is at the sea surface whereas the streamers are being

towed at a depth of 9 m. In either case, the tail buoy positions are not reliable for the purposes

of inferring the currents at the depth of the streamers. So, when inferring the currents, the tail

buoy locations will be treated with a greater degree of uncertainty than the other positions.

Vessel turns and cross currents produce curvature in the streamers. It is the curvature that

provides the signal required to infer the cross currents. The curvature must be calculated

from the position data; errors in the position data will, therefore, lead to errors in the inferred

currents. Therefore, in the inverse scheme the positions are treated as having errors. It is

important to note that these errors are not independent; they are correlated along and across

the streamer array. Therefore, to ensure that these errors are treated correctly, the acoustic

network equations are mimicked in the cost function.

3.2.1. Discrete notation. Having restricted our attention to only the position data that relates

to the acoustic network, let us use the following labeling system. Let us refer to the calculated

receiver positions that are being used to mimic the acoustic network as nodes.

• Let ft
i
j,k, x

i
j,k, y

i
j,k refer to the tension, x and y coordinates respectively, of the kth node

(labeling from the head to the tail of the streamer), on the jth streamer (labeling from

starboard to port) , at the ith shotpoint.

• Let wx
i
j,k, wy

i
j,k, vx

i
j,k and vy

i
j,k be the x and y components of the currents and the

streamer, respectively, at each node. We wish to infer the currents, and the velocity of

the cable must be calculated from the position data at different shotpoints.

• Let there be K positions on each streamer.

• Let ti denote the time of the ith shotpoint.
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Having labeled the data the following differences are defined:

∆ti = ti+1 − ti, (7)

∆xij,k = xij,k+1 − xij,k, ∆yij,k = yij,k+1 − yij,k, ∆sij,k =
√

∆xij,k
2

+ ∆yij,k
2
, (8)

δxij,k = xij+1,k − xij,k, δyij,k = yij+1,k − yij,k, δcij,k =
√
δxij,k

2
+ δyij,k

2
. (9)

The distance of a node along the streamer (arc length) is then given by

sij,k =
k−1∑
l=1

∆sij,k, (10)

and the local angle of the streamer (for ∆xij,k > 0) is given by

θm
i
j,k = tan−1(∆yij,k/∆x

i
j,k). (11)

This is most naturally interpreted as the angle at the midpoint between two nodes. The angle

at the nodes is obtained through averaging at the internal points

θij,k =
∆sij,k−1θm

i
j,k + ∆sij,kθm

i
j,k−1

∆sij,k−1 + ∆sij,k
, k = 2, . . . ,K − 1, (12)

and projecting at the end points (because the data have been processed, jumps in the angle at

the DCUs may have been smoothed out; therefore, the angle at the node either side of a DCU

is calculated by projecting in the same manner as at the end nodes),

θij,1 =2θm
i
j,1 − θij,2, (13)

θij,K =2θm
i
j,K−1 − θij,K−1. (14)

Having calculated the local angle along each streamer, the tangential and normal velocities

of the currents and the streamer are given by

wt
i
j,k =wx

i
j,k cos θij,k + wy

i
j,k sin θij,k, wn

i
j,k = −wxij,k sin θij,k + wy

i
j,k cos θij,k,

vt
i
j,k =vx

i
j,k cos θij,k + vy

i
j,k sin θij,k, vn

i
j,k = −vxij,k sin θij,k + vy

i
j,k cos θij,k,

respectively.

3.2.2. Identifying anomalous points through curvature. Having restricted the position data to

calculated receiver positions close to acoustic network locations, there remains anomalous data.

These are apparent as kinks in the streamer shapes that do not correspond to the position of

a DCU providing significant lateral steering. These questionable points can be automatically

identified as follows (treating each streamer and time step separately):

(1) Calculate the curvature along the the streamer at a given time step by raw differencing,

κij,k =
θm

i
j,k+1 − θmij,k

1
2

(
∆sij,k+1 + ∆sij,k

) , k = 1, . . . ,K − 2. (15)
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Figure 3. An example of identifying an anomalous position by using the cur-

vature. Receiver 98 appears to be out of position (the jump in curvature does

not correspond to a DCU position providing a significant lateral force). This

leads to spuriously high normal currents being inferred near this point, unless

this receiver position is replaced by interpolated data when inferring the currents.

(2) Calculate the mean and standard deviation of the curvature excluding positions asso-

ciated with the DCUs (we can expect to see high curvature here if there is significant

lateral steering) and excluding the tail buoy position (based on the observation descried

in §3.2).

(3) Identify points (excluding those associated with the DCUs) that have a curvature that

deviates from the mean by some threshold; for this work four standard deviations of the

curvature were chosen (see Figure 3 for an example of such a point).

(4) Replace the positions of these points by interpolating the position data using the arc

length, s, as the independent variable. In this study I used cubic spline interpolation.

3.3. Estimating the velocity. Calculating the velocity of a streamer from the position data

is the problem of differentiating noisy data. Following Hanke-Bourgeois and Scherzer (2001)

and Chartrand (2011) a cost function method is used to find the velocity of each individual

node. The cost of fitting the time integral of the velocity to the position data is minimized

subject to the constraint that the acceleration must be small.

Let xj,k and yj,k denote column vectors of the x and y locations of the kth node on the

jth streamer over all the time steps. The discrete integral operator and difference operator

are defined below. The discrete integral operator here uses the trapezoidal rule, so, the cal-

culated velocities coincide with the same times as the position data; if the midpoint rule was

used instead, then the calculated velocities would naturally be at the mid-time points and the
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difference operator would require adjusting.

A =



0 0 0 0 . . .
∆t1

2
∆t1

2 0 0 . . .
∆t1

2
∆t1+∆t2

2
∆t2

2 0 . . .
∆t1

2
∆t1+∆t2

2
∆t2+∆t3

2
∆t3

2 . . .
...

...
...

...
. . .


, (16)

D =



− 1
∆t1

1
∆t1

0 0 0 . . .

0 − 1
∆t2

1
∆t2

0 0 . . .

0 0 − 1
∆t3

− 1
∆t3

0 . . .

0 0 0 − 1
∆t4

1
∆t4

. . .
...

...
...

...
...

. . .


. (17)

Letting x̂ij,k = xij,k − x1
j,k and ŷij,k = yij,k − y1

j,k, the cost function to calculate the velocities is

J(vyj,k) = (Avyj,k − ŷj,k)
T (Avyj,k − ŷj,k) + w(Dvyj,k)

T (Dvyj,k), (18)

where w is a weight we are free to choose. Thus, the velocities are

vxj,k = (ATA + wDTD)−1AT x̂j,k, vyj,k = (ATA + wDTD)−1AT ŷj,k. (19)

How the weight is chosen is somewhat subjective. A sensible criteria is to increase the weight

(for a given node) until some signal is apparent in the calculated acceleration, as can be seen

in Figure 4. Increasing the weight beyond this may cause signal to be lost in the velocity data.

This is easiest to see in the right hand column of Figure 4, note that the y acceleration, in the

bottom panel, is noisy but we can discern a signal that corresponds to the smoothed velocity, in

the top panel. For smaller weights the acceleration signal cannot be distinguished from noise,

and for greater weights the acceleration data looks smoother but the amplitudes of the smoothed

velocity data is reduced near the minimum and maximum values. Having chosen the weight,

the procedure is repeated for all the other nodes. Despite treating each node separately, the

resulting velocities appear smooth in space (Figure 5). To speed up the process of calculating

the velocities, the data were windowed and the overlapping portions were experientially chosen

so that jumps due to the windowing did not occur in the acceleration.

By applying the discrete integral operator to the velocities, positions that are consistent with

the smoothed velocities are obtained (i.e., the positions that, by differencing in time, would

produce the smooth velocities). Whilst these smoothed positions are not used to infer the

currents, they are, nevertheless useful. Examining the changes in position,

ATvxj,k − x̂j,k, ATvyj,k − ŷj,k, (20)

can indicate where signal in the velocity may have been lost. Figures 6 and 7 show these

differences. Clearly, the magnitude of the changes is generally greatest near the centre of the

streamer spread. This is consistent with the positioning errors from the acoustic network being

greatest near the centre of the array. However, Figure 7 shows an example when this is not the

case; it indicates that when sudden lateral steering is applied the expected jump in velocity of
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Figure 4. The calculated velocity of a node from raw differencing (blue) and

the cost function method (red), where the weight was chosen so that a signal

was apparent in the estimated acceleration.

the streamer is smoothed out. This error may affect the processed streamer velocities before and

after the lateral steering is applied. Because it is apparent that the processed velocities contain

errors, when inverting for the ocean currents, the velocities should be treated as unknowns

which are constrained to be close to the processed values.
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Figure 5. The calculated velocities (m/s) along a streamer by raw differencing

(top row) and the cost function method (bottom row). Note the change in the

colour scale between the raw and the processed velocities.
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Figure 6. The change in position (m) required to obtain the smooth velocities

for streamer 6. Note that the largest changes generally occur near the centre of

the streamer, this is where there is the greatest uncertainty in the position data.
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Figure 7. The change in position (m), at a single shotpoint, required to obtain

the smooth velocities. Note that, at this shot the maximum changes are at the

tail of the streamers rather than at the centre of the streamers (where there is the

greatest position uncertainty). At this shot the rear DCUs suddenly provided

a large amount of lateral steering on Streamers 2 - 12. The change in position

near the tail suggests that the expected jump in velocity due to this steering

may have been lost in the processing.
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4. Inverting for currents

The currents are inferred using a total least-squares solution (Wunsch, 2006) at each shot-

point. The residual equations for the cost function incorporate our knowledge of the system

and beliefs about the errors in the data we have.

The curvature and velocity of the streamer are caused by the vessel’s motion and the ocean

currents. Therefore the currents are found by fitting them to the model of the streamer dynam-

ics, given by equations (1) to (4). However, the velocity and position data for the streamers

contain errors, so, in the cost function, the velocity and position are treated as unknowns, and

residual equations are included that constrain these variables to be close to the best estimates

we have for them. Also, the model for the streamer dynamics depends on parameters of which

we are uncertain, such as the drag coefficients, so, these too are treated as unknowns that extra

residual equations force to be close to their prior values, and additional equations enforce any

relations between them. Finally, as the problem is under-determined, to regularize it, discrete

versions of the assumptions about the ocean currents (§2.1) are included as residual equations in

the cost function. Section 4.1 describes the discrete equations that form the residual equations

and how they are combined and weighted in the cost function.

4.1. Assembling the cost function. The discrete residual equations, that form the cost func-

tion, are presented below. The Jacobian for the residual equations is constructed by repeated

applications of the chain rule.

4.1.1. The single streamer residuals.

• The main equations.

The DCU forces

To infer the currents, we must be able to calculate the forces provided by the DCUs, for

a given set of control angles and currents. The DCUs used in this field test consist of

two fins, lying in the same plane, which are able to rotate around the streamer. There

are three control angles that are recorded at each shotpoint: ψroll, the roll angle (if

the roll angle is 0 rad then the fins are horizontal and provide only a vertical force; if

the roll angle is ±π/2 rad then the fins are vertical and provide only a lateral force),

ψport and ψstbd, which are control angles that determine the angle of attack for the port

and starboard fins. The force per unit length that each DCU produces depends on the

diameter of the fins φ and three confidential parameters, Clift, Cdrag and Ccon, which

have been determined in laboratory experiments.

Adapting Polydorides et al. (2009), who assumed that the DCU fins were vertical

or horizontal only, the fin forces are modelled as follows (assuming that there are no

vertical currents). If the roll angle is zero, the fins are horizontal and the flow across

the fin is purely due to the tangential currents. If however the fins are vertical the

(horizontal) normal currents contribute to the flow across the fins. The component of

the flow, in the direction perpendicular to the plane the DCU’s fins are lying in, is

vperp = (vn − wn) sin(ψroll). (21)
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The flow makes an angle with the DCU fins

ψflow = tan−1

(
vperp
vt − wt

)
, (22)

hence the angle of attack, for each fin, is the sum of the angle the flow makes with the

fins and the control angle:

αport = ψport + ψflow, αstbd = ψstbd + ψflow. (23)

The lift and drag force are then calculated using the angles of attack and flow speed

QL =
ρw
2
φClift (αport + αstbd)

(
v2
perp + (vt − wt)2

)
, (24)

QD =
ρw
2
φ
(
Cdrag

(
α2
port + α2

stbd

)
+ 2Ccon

) (
v2
perp + (vt − wt)2

)
. (25)

The lift and drag are in the normal and tangential directions to the flow respectively

(Lighthill 1986). So the fin forces are

qt =QD cos(ψflow)−QL sin(ψflow), (26)

qn = sin(ψroll)(QD sin(ψflow) +QL cos(ψflow)), (27)

qb = cos(ψroll)(QD sin(ψflow) +QL cos(ψflow)), (28)

where qt and qn are, respectively, the tangential and normal forces, and qb is the force

in the binormal (vertical) direction which is not used in this study.

The force equations depend on the relative velocity between the streamers and the

ocean currents between the nodes. These are given by

vrt
i
j,k+1/2 =

(
vx
i
j,k + vx

i
j,k+1

2
−
wx

i
j,k + wx

i
j,k+1

2

)
cos(θm

i
j,k)+

+

(
vy
i
j,k + vy

i
j,k+1

2
−
wy

i
j,k + wy

i
j,k+1

2

)
sin(θm

i
j,k), (29)

vrn
i
j,k+1/2 =−

(
vx
i
j,k + vx

i
j,k+1

2
−
wx

i
j,k + wx

i
j,k+1

2

)
sin(θm

i
j,k)+

+

(
vy
i
j,k + vy

i
j,k+1

2
−
wy

i
j,k + wy

i
j,k+1

2

)
cos(θm

i
j,k). (30)

We are now in a position to describe the discrete force equations.

The tangential force equation

Rt
i
j,k =

ft
i
j,k+1 − ftij,k

∆Sij,k
− ρwdπ

2
Ct

i
j(vrt

i
j,k+1/2)|vrtij,k+1/2|+

Qt(sj,k+1/2, t
i−1, vrt

i
j,k+1/2, vrn

i
j,k+1/2). (31)

The function Qt describes the DCU drag. It depends explicitly on s because the DCUs

are only at a few locations along the streamer. It depends explicitly on the time because

the control angles are updated at each shot; these control angles will change the forces

produced by the DCU and, hence, the shape of the streamer at the next shotpoint. The
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drag given by a DCU between two nodes is given by equation (26) using the velocities at

the midpoints between the node, Qt is then given by dividing the force by the distance

between the nodes.

The normal force equation

Rn
i
j,k =

ft
i
j,k+1 + ft

i
j,k

2

θij,k+1 − θij,k
∆Sij,k

− ρwd

2
Cn

i
j(vrn

i
j,k+1/2)|vrnij,k+1/2|+

Qn(sj,k+1/2, t
i−1, vrt

i
j,k+1/2, vrn

i
j,k+1/2). (32)

The function, Qn, describes the DCU horizontal steering force. If there is significant

lateral steering applied then there may be a significant change in angle before and after

the DCU. Because the DCU is only about 1 m long and the distance between nodes may

be around 70 m, the estimated drag across the streamer is adjusted to account for the

change in angles. Based on the described setup, the approximate3 location of the DCU

between the nodes is known. Therefore, it is assumed that the drag before the DCU is

caused by the velocities and angle at the front node; the DCU forces and cross-flow drag

is caused by the midpoint angles and velocities and, after the DCU, the drag is caused

by the velocities and angle at the rear node.

Currents smooth along the streamers

As the position data have errors, that will lead to errors in the curvature, the first key

assumption required to estimate the currents is that they are smooth in space. For a

single streamer, this means that the currents are smooth along the streamer

Rsx
i
j,k =

wx
i
j,k+1 − wxij,k

∆Sij,k
, (33)

Rsy
i
j,k =

wy
i
j,k+1 − wy

i
j,k

∆Sij,k
. (34)

Currents close to the ADCP average

The vessel takes approximately one hour to travel the length of the streamers. During

this time the ADCP on the vessel records the currents; therefore, this record provides

the best prior information we have on the currents in the region the streamers occupy.

As we expect the currents to vary in time and space, we assume that the mean recorded

value of the ADCP currents, over the previous hour, gives the best prior estimate of the

currents along the entire length of the streamers. Let us denote these means using wadcp.

The standard deviation of this record gives an estimate of the expected variability in

the currents, and is denoted by σadcp. The ADCP residual equations are

Radcpx
i
j,k

= wx
i
j,k − wadcpx

i, (35)

Radcpy
i

j,k
= wy

i
j,k − wadcpy

i. (36)

3The streamer may have extended slightly and the streamer may have a slightly vertical profile.
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• Streamer position equations

The position (possibly processed) data contain errors. These lead to errors in the cur-

vature, which, in turn, lead to errors in the inferred currents. Therefore, in the cost

function, the positions are treated as unknowns that are constrained to be close to the

data. These errors are correlated as they are calculated through the GPS positions on

the floats and the acoustic ranges; however, to save computational cost, one may choose

to pretend that this is not the case. Instead, one assumes that the position errors are

independent of each other (assuming that there is just a small amount of error is suffi-

cient to obtain smooth currents). If this simplifying assumption is made, the residual

equations are

Rx
i
j,k = xij,k − x̃ij,k, (37)

Ry
i
j,k = yij,k − ỹij,k, (38)

where a tilde denotes the data.

• Streamer velocity equations

The reason for treating the streamer velocities as unknowns is because, when processing

the data, to remove the noise as discussed in §3.3, the small jumps in the velocity when

the DCUs suddenly provide lateral steering, are removed. The sudden small change in

velocity is smoothed out - corrupting the velocity before and after the steering is turned

on. Hence, the velocities contain errors. Because the x and y velocities of each node

were processed separately in exactly the same way, it seems appropriate to treat the

errors of the processed velocities as independent. Let us assume that the velocities are

close to the processed values, so, the velocity residuals are

Rvx
i
j,k = vx

i
j,k − ṽxij,k, (39)

Rvy
i
j,k

= vy
i
j,k − ṽy

i
j,k, (40)

where a tilde denotes the processed velocities that are input into the cost function.

Currents are smooth in time in the earth reference frame

Despite treating the velocities as unknowns, when inferring the currents, there remain

problems when the DCUs are providing lateral steering (see §4.3). Therefore, to attempt

to overcome this problem let us assume that the ocean currents are only changing slowly

in the earth reference frame. Because the streamer is moving, the time derivative of a

variable, w, described in terms of the arc-length, s, and time, t, is given by

Dw(s, t)

Dt
=
∂w(x(s, t), y(s, t), t)

∂t
+ vx(s, t)

∂w(x(s, t), y(s, t), t)

∂x
+

+ vy(s, t)
∂w(x(s, t), y(s, t), t)

∂y
. (41)

Hence, the time derivative of w in the earth reference frame is

∂w

∂t
=
Dw

Dt
− vx

∂w

∂x
− vy

∂w

∂y
, (42)

≈Dw
Dt
− vt

∂w

∂s
, (43)
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where the approximation is due to neglecting the normal velocity of the cable because

it is small and, if considering the currents along a single streamer only, it is not possible

to calculate the rate of change in the currents across the streamer. The discrete version

of equation (43) forms a set of residual equations

Rxt
i
j,k =vt

j
j,k+1/2

wx
i
j,k+1 − wxij,k

∆Sij,k
−
wx

i
j,k+1/2 − wx

i−1
j,k+1/2

∆ti−1
, (44)

Ryt
i
j,k =vt

j
j,k+1/2

wy
i
j,k+1 − wy

i
j,k

∆Sij,k
−
wy

i
j,k+1/2 − wy

i−1
j,k+1/2

∆ti−1
. (45)

These residuals include the inferred currents at the previous shot time. Therefore, if

these residual equations are included in the cost function, it is no longer possible to infer

the currents at one shotpoint independently of the other shotpoints.

• The head constraints

The boundary conditions at the head of the streamer are that the tension at the head of

the streamer should match the recorded tension (this is the only direct measure of the

tangential currents along each streamer), allowing for drag caused by floats, miniwings

and DCUs between the first node and the tow adapter where the tension is recorded.

Let T̃ ij denote the recorded tension on each streamer at each shotpoint, and let ∆Hj

denote the distance between the first node and where the tension is recorded (obtained

from the towing configuration / survey design), then the tension residual is

Rheadtension
i

j =T̃ ij − ftij,1 + ρwdπ
2 Ct

i
j∆Hjvrt

i
j,1

∣∣vrtij,1∣∣+
+
TLj +Mj

2.57222
vrt

i
j,1

√
vrtij,1 + vrnij,1 −Qt(t

i−1, vrt
i
j,1, vrn

i
j,1). (46)

The function, Qt, describes the drag caused by a DCU just before the first node. If

there is no miniwing on a streamer, then Mj = 0, and if there is no front float TLj = 0.

The other constraint is that the currents at the head of the streamer should not be

too far from the currents recorded on the ADCP on the vessel. Because the vessel is

about 500 m in front of the first node on each streamer, the actual condition used is

that the currents are close to the mean recorded value of the ADCP currents, over the

previous 200 s, denoted by wadcp200.

Rheadadcpx

i

j
=wx

i
j,1 − wadcp200x

i, (47)

Rheadadcpy

i

j
=wy

i
j,1 − wadcp200y

i. (48)

• The tail constraint

The tail constraint is a discrete form of the tail buoy drag parameterization

Rtail
i
j := ft

i
j,K +

TL
2.57222

vrt
i
j,K

√
vrtij,K + vrnij,K . (49)

• Parameter assumptions

The force equations and boundary conditions depend on the drag coefficients and param-

eters for the tail buoy, front float, and miniwing drags. The values for these parameters
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are not certain; therefore, they are treated as unknowns, at each time step, constrained

to be close to the prior estimates (denoted with a tilde),

RCt
i
j = Ct

i
j − C̃tj , (50)

RCn
i
j = Cn

i
j − C̃nj , (51)

RM
i
j = M i

j − M̃j , (52)

RTL
i
j = TL

i
j − T̃L. (53)

• Possible extra constraints

Small tension perturbation

By constraining the currents to be close to the average recorded by the ADCP, the

tension should remain close to the initial tension guess; however, if there are no ADCP

data then the tension must be constrained to be close to the initial guess for the tension.

This guess can be a linear guess using the recorded tension at the head of the streamer

and the tail buoy assumption. Provided the inferred tension does not move far from

this guess, it should be possible to infer the normal currents.

Kinematic equations

As we are considering the streamer velocity as an unknown that is close to the processed

value, it may be necessary to add additional constraints to the problem. The most

appropriate constraints on the streamer velocities are discrete forms of the kinematic

equations (1) and (2). These equations are derived using the assumption that the

streamer is inextensible; however, in the data, the length of the streamer varies by a

few meters over the data set. This is either due to the fact that the streamer shape is

actually three-dimensional (it does not quite lying in a horizontal plane), or due to the

streamer stretching. To date, I have not found using these equations to be helpful in

the inverse method.

4.1.2. The coupling residuals.

• Currents smooth across the streamers

Having assumed that the currents are smooth along the streamers, when treating mul-

tiple streamers, we should, also, assume that the currents are smooth in the crossline

direction

Rcx
i
j,k =

wx
i
j+1,k − wxij,k
δcij,k

, (54)

Rcy
i
j,k =

wy
i
j+1,k − wy

i
j,k

δcij,k
. (55)

• Currents are horizontally divergence free

Without tension measurements along the streamer, the key assumption to infer the
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inline currents is that the currents are approximately horizontally divergence-free,

RDiv
i
j,k =

1

2

(
wx

i
j,k+1 + wx

i
j,k

wy
i
j,k+1 + wy

i
j,k

)
·

(
−∆yij,k
∆xij,k

)
+

1

2

(
wx

i
j,k+1 + wx

i
j+1,k+1

wy
i
j,k+1 + wy

i
j+1,k+1

)
·

(
−δyij,k+1

δxij,k+1

)
+

1

2

(
wx

i
j+1,k + wx

i
j+1,k+1

wy
i
j+1,k + wy

i
j+1,k+1

)
·

(
∆yij+1,k

−∆xij+1,k

)
+

1

2

(
wx

i
j,k + wx

i
j+1,k

wy
i
j,k + wy

i
j+1,k

)
·

(
δyij,k
−δxij,k

)
.

(56)

• Acoustic network equations

Errors in the streamer curvature and velocity are due to errors in the hydrophone posi-

tions. Therefore, to obtain smooth currents, the position data are treated as unknowns

in the cost function that are close to their recorded values. Because the positions are

calculated from an acoustic network, the errors in the positions are correlated. To ensure

that the errors are correctly correlated, the acoustic network equations are mimicked

in the inverse scheme following code provided by Ken Welker (private communication,

2014).

The front floats and tail buoys provide a GPS location that has an error of around 1

m; this anchors the locations of the head and tail of the streamer. The acoustic signal

from each acoustic transmitter can be recorded by each acoustic receiver within a certain

distance of the transmitter (that varies according to the conditions), providing a set of

ranges (based on the travel time) with an error comparable to the GPS error. The

positions of each transmitter and receiver are then calculated by solving a cost function,

and the greatest uncertainty in the positions is at the centre of the array.

The data provided were not the raw range data, but, rather position data. We wish

to treat the positions as unknowns so that we can obtain a smooth curvature estimate.

Therefore, we wish to perturb the positions; this will change the ranges. Let us therefore

calculate the ranges of the input data and treat these as the recorded range data from

which the positions must be calculated. Because we do not have the front float locations,

let us treat the first node on streamers with a front float, as if they had a GPS location

(provided by the given position data). As has been mentioned, there is a noticeable

change in angle to incorporate the tail buoy that is not thought to be due to currents at

the depth of the streamers. So, to avoid artifacts in the inferred currents, we assume that

the transmitter at the tail of the streamer has the GPS location (provided by the given

position data); also, there is a transmitter at the tail buoy, so, we greatly increase the

uncertainty of the tail buoy ranges. The effect of this will be to allow the currents to be

smooth near the streamer array tail by adjusting the tail buoy location. The outputted

tail buoy location will (probably) not be correct. Because the GPS locations do not

actually occur where they would in the actual system we increase their uncertainty to

2.5 m. To weight the acoustic network equations in the cost function, we divide each

equation by the expected standard deviation of the error (whether that is a range or a

GPS error).
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Residual Weight Description

Rt λt The tangential force equation.

Rn λn The normal force equation.

Rsx λs The x currents are smooth along a streamer.

Rsy λs The y currents are smooth along a streamer.

Rcx λc The x currents are smooth across the streamers.

Rcy λc The y currents are smooth across the streamers.

RDiv λDiv The currents are horizontally divergence-free.

Rxt λst The x currents are smooth in time, in the earth frame.

Ryt λst The y currents are smooth in time, in the earth frame.

Radcpx λadcpx The currents are close to the average recorded currents at the vessel.

Radcpy λadcpx The currents are close to the average recorded currents at the vessel.

Racoustic λacoustic The acoustic network (positioning) equtations.

Rx λx The error in the x positions.

Ry λy The error in the y positions.

Rvx λvx The error in the x velocities.

Rvy λvy The error in the y velocities.

Rhead
tension λten The tension at the head of the streamer matches the recorded tension.

Rhead
adcpx λadcpx The x currents, at the head of the streamer, are close to the currents at the vessel.

Rhead
adcpy λadcpy The y currents, at the head of the streamer, are close to the currents at the vessel.

Rtail λtail The tail buoy drag equation.

RCt λCt The tangential drag coefficient is close to its estimated value.

RCn λCn The normal drag coefficient is close to its estimated value.

RTL λTL The tail buoy drag parameter is close to its estimated value.

RM λM The miniwing drag parameter is close to its estimated value.

Rhead
TLcouple λTL The tail buoy drag parameters should be the same for all the streamers.

RMcouple λM The miniwing drag parameters should be symmetric across the steamer array.

Table 2. The residuals, and their weights, that form the cost function.

Mimicking the acoustic solver produces a large number of equations, so, let us index

the residual equations using l and denote each equation by Racoustic
i
l.

• Parameter assumptions

Becasue we are treating the parameters on the streamers as unknowns, when dealing with

streamer arrays we can incorporate extra assumptions about the towing configuration to

reduce the uncertainty. For example, although the miniwings have the same set control

angle, due to the configuration, they may be providing slightly different drags, but as

the towing configuration is symmetric, we should expect

RMcouple
i
j = M i

j −M i
12−j+1. (57)

Similarly, the drag coefficients may be different on each streamer due to barnacles, but

the drag caused by the front floats and tail buoys should be the same, so

RTLcouple
i
j = TL

i
j − TLij+1. (58)

4.1.3. The cost function. The cost function, at each shot, is assembled from the residual equa-

tions, which are summarized in Table 2,
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J i(x, y, vx, vy, wx, wy, ft, Ct, Cn, TL,M) =

12∑
j=1

K−1∑
k=1

(
λt[Rt

i
j,k]

2 + λn[Rn
i
j,k]

2 + λs

(
[Rsx

i
j,k]

2 + [Rsy
i
j,k]

2
)

+

+ λst

(
[Rxt

i
j,k]

2 + [Ryt
i
j,k]

2
))

+

12∑
j=1

(
λten[Rheadtension

i

j ]
2 + λheadadcpx [Rheadadcpx

i

j
]2 + λheadadcpy [Rheadadcpy

i

j
]2 + λtail[Rtail

i
j ]

2+

+λCt [RCt
i
j ]

2 + λCn [RCn
i
j ]

2 + λTL [RTL
i
j ]

2 + λM [RM
i
j ]

2
)

+ λacoustic
∑
l

Racoustic
i
l+

6∑
j=1

λMcouple[RMcouple
i
j ]

2 +
11∑
j=1

λTLcouple[RTLcouple
i
j ]

2+

11∑
j=1

K∑
k=1

λc

(
[Rcx

i
j,k]

2 + [Rcy
i
j,k]

2
)

+
11∑
j=1

K−1∑
k=1

λDiv[RDiv
i
j,k]

2+

12∑
j=1

K∑
k=1

(
λadcpx [Radcpx

i
j,k

]2 + λadcpy [Radcpy
i

j,k
]2 + λx[Rx

i
j,k]

2 + λy[Ry
i
j,k]

2 + λvx [Rvx
i
j,k]

2 + λvy [Rvy
i
j,k

]2
)
,

(59)

where the λs are weights that we are free to choose.

4.1.4. Choosing the weights. The main focus of this paper is to demonstrate that it is feasible

to infer the ocean currents from the shapes of seismic streamers. The main difficulty of doing

this is correctly choosing the smoothness and divergence weights in the cost function. We,

therefore, must fix the other weights4 in the cost function. It seems best to base the weights on

the expected errors in the different residuals.

For simplicity, let us assume that there is very little error in the drag coefficient estimates;

let us assume that the errors have a standard deviation of 1% of the mean prior values. So,

appropriate weights are

λCt =

(
100

C̃t

)2

, λCn =

(
100

C̃n

)2

, λTL =

(
100

T̃L

)2

, and λM =

(
100

M̃

)2

. (60)

Let us put large weights on the symmetric assumptions so,

λMcouple =

(
106

M̃

)2

, and λTLcouple =

(
106

T̃L

)2

. (61)

The author suspects that, by essentially fixing the unknown parameters that have errors, this

will require a greater degree of smoothness in the inferred currents than would have been the

case if the unknown parameters were known exactly.

The currents are inferred from the model equations. Therefore, we wish to give these a large

weight and treat everything else as a form of regularization. Because the discretization is first

order in space (it would be second order if the nodes were equally spaced), we use the order of

4Note that the variables and, hence, these weights, were scaled in the cost function used by the author. The

values of λs, λDiv and λst discussed later in this paper correspond to the scaled equations.
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the discretization error to weight the equations

λt =

(
L

∆s

)2

, λn =

(
L

∆s

)2

, (62)

where ∆s is the average/representative step sized used and L is the average length of the

streamers.

How to weight the prior information from the ADCP data is not clear. The ADCP data

provide a record of the currents in time, which we have interpreted as along a line in space

because the currents are only changing slowly in time. We wish to infer the currents over an

area, so if there is a significant shear in the currents across the streamer spread then placing

too high a weight on the ADCP data may bias the solution against detecting this. Therefore

let us use5

λadcpx =

(
1

σadcpx
i

)
, and λadcpy =

(
1

σadcpy
i

)
. (63)

In fact, it is still possible to obtain plausible inferred currents choosing λadcpx = λadcpy = 0.

However, because there are problems inferring the currents when there is lateral steering, it

seems wise to use the ADCP data to help constrain the currents. Because the head of each

streamer is around 500 m behind the vessel, the weights for the currents at the head of the

streamers are weighted in terms of the smoothness weight

λheadadcpx = λs

(
1

500σadcp200x
i

)
, and λheadadcpy = λs

(
1

500σadcp200y
i

)
. (64)

If we choose to imitate the acoustic network λacoustic = 1 and λx = λy = 0. If we do not

choose to imitate the acoustic network in the cost function, then λacoustic = 0 and to give

the positions freedom to move independently (so as to provide smooth curvature and hence

currents) we set σx = 0.1 m and σy = 0.5 m, so

λx =

(
1

σxi

)2

, and λy =

(
1

σyi

)2

. (65)

We do not know the error in the processed velocities, but we assume that when the DCUs

are steering, there may be an error in the currents of the order of centimeters per second; thus

we initially assume σvx = σvy = 0.01 and, so

λvx =

(
1

σvx

)2

, and λvy =

(
1

σvy

)2

. (66)

The head and tail tension conditions are important as they provide information on the total

drag along the streamer and, so, we give them large weights

λten =

(
1

σ2
ten

)
, λtail =

(
1

σ2
tail

)
, (67)

5The most sensible choice would actually be the square of these values; however, when doing this, the inferred

x currents tended to never move far from the initial guess regardless of the value of λDiv. This could be because

the boundary conditions and smoothness assumptions are already forcing the currents to be close to the ADCP

values.
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where σten = 10 N (because there is clearly some noise in the tension measurement, see Figure

2) and σtail = 1 N.

The weight λst reflects how smooth we expect the currents to be in time. We do not have

any prior knowledge about this and so we initially set λst = 0. This has the benefit that the

currents are inferred independently at each shotpoint, allowing us to judge the plausibility of

the inferred currents based on the appearance of any coherent structures in time. The reason for

imposing that the currents are smooth in time is to help constrain the inferred currents when

there are errors in streamer velocity due to a sudden change in the lateral steering. Clearly,

if estimating the velocity of the streamer with lateral steering could be done accurately then

Rxt and Ryt could be neglected from the cost function, and smoothness in time could be used

solely as a criteria (see §4.2 and equation (68)) for judging whether plausible currents have been

estimated.

The weight λs reflects how smooth we expect the currents to be in space along the streamers.

We do not have any prior knowledge about this and, so, we must find it by experimenting. How

to do this is discussed in §4.2. The weight λc reflects how smooth we expect the currents to be

in space across the streamers. The most sensible value for this is that λc = λs, however one

might wish to set λc = 0 and then use smoothness in space across the streamers as a criteria

for selecting λs (see equation (69)).

Finally, we do not have any prior knowledge on how to choose λDiv and so this too is found

by experimentation.

4.1.5. Minimizing the cost function. The cost function was minimized using matlab’s nonlin-

ear least-squares solver lsqnonlin. This solver, when provided with an overdetermined system

of residual equations and their Jacobian uses a trust-region-reflective algorithm (MathWorks

2014a).

4.2. Inferring the currents without lateral steering. There are two weights that have not

yet been determined: λs and λDiv. Appropriate values are found by attempting to estimate the

currents (whilst imitating the acoustic network) with different choices of weights, in a portion of

the data where there is no significant steering. The results of doing this are shown in Figures 8,

9, 10 and 11. So what is the best choice of weights? In all the experiments, the currents at each

time have been inferred independently (except for how the data were processed); therefore,

any structures that occur in time provide a diagnostic tool. By assumption, currents in the

ocean change slowly in time compared with the speed of the vessel; therefore, any coherent

vertical structures in Figures 10 and 11 are likely to be physical structures. However, diagonal

structures (moving from bottom right to top left) are features moving at the speed of the vessel

and, so, are very unlikely to be physical (they are probably artifacts of how the data were

acquired and processed) and, so, indicate that the smoothness weight is not large enough. If,

however, the smoothness weight is increased too much, then the amplitude of any signal in the

ocean currents is suppressed and the currents tend to a constant value along each streamer at

each step. This suggests a criteria for choosing an appropriate smoothness weight (for a given

divergence weight). Choose the minimum of a cost function formed by the time derivative of the
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inferred currents in the earth reference frame using (45), scaled by the inferred velocity range,

JT imeEarth(λs;λDiv) =

(
1

maxi,j,k(wy
i
j,k)−mini,j,k(wy

i
j,k)

)2∑
i,j,k

[Ryt
i
j,k]

2. (68)

This cost function, for each choice of λDiv, is shown in the right panel in Figure 12. This

indicates that the best choice of λs is between 100 and 101 (depending on the choice of λDiv),

however, by eye, looking at Figures 10 and 8 some features of the currents are being smoothed

out when λs > 100 and so, because I do not wish to over-smooth any inferred currents, I think

that a better choice for λs may be found between 10−1 and 100. This judgement is supported

by the fact that when λs = 101 none of the divergence weights produces a noticeable signal

in wx in Figures 11 and 9. It also fits with the general observation that, as λs increases, the

required value of λDiv needed to see possible x currents increases.

If λc = 0 then the smoothness of the currents in space across the streamers can also be used

to evaluate the choice of λs. In this case we would look for the minimum of the cost function

Jacross(λs;λDiv) =

(
1

maxi,j,k(wy
i
j,k)−mini,j,k(wy

i
j,k)

)2∑
i,j,k

[Rcy
i
j,k]

2. (69)

When λDiv=0 the inline currents cannot be inferred. The inferred inline currents remain close

to the initial guess so as to satisfy the tension and ADCP data. The inline currents can only

be inferred by increasing the divergence weight. When the weight is sufficiently large, coherent

structures for wx appear in both the spatial (Figure 9) and the time domains (Figure 11). If x

currents are being inferred then, in the streamer frame, ∂wx
∂t should be noticeably larger than

when λDiv is not high enough and the currents are close to constant. This suggests another

cost function

JT imeStreamer(λDiv;λs) =

(
1

maxi,j,k(wx
i
j,k)−mini,j,k(wx

i
j,k)

)2∑
i,j,k

[
wx

i
j,k − wx

i−1
j,k

∆ti−1

]2

, (70)

which, rather than the minimum, we seek where it suddenly jumps. In the middle panel of

Figure 12 notice that this jump occurs later the greater the value of λs. When λs = 10−1 this

change takes place when λDiv is between 108 and 109, and when λs = 100 this change takes

place when λDiv is between 109 and 1010.

If the divergence weight is too high, then we suspect that the inferred wy will be noticeably

perturbed from the λDiv = 0 case (which we believe, provided the inferred wx stays close to

the ADCP data, should be reasonably accurate). This is apparent in the first two columns of

Figures 8 and 10 where the λDiv = 0 (top row) solution is visibly different from the λDiv = 1011

(bottom row) solution. This difference is measured using

Jchange(λDiv;λs) =
∑
i,j,k

[
wy

i
j,k(λDiv;λs)− wy

i
j,k(0;λs)

]2
. (71)

The left panel of Figure 12 shows how this cost increases with λDiv. It also shows that the

greatest increases occur at approximately at the same time as the jump in JT imeStreamer.

Using these cost functions and making subjective judgments, the author believes that the

best range of weights is found for λs ∈
(
10−1, 100

)
and λDiv ∈

(
108, 109

)
. The same experiment
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Figure 8. The inferred y currents for different choices of smoothness and di-

vergence weights. The colour scale is from -0.0061 m/s (blue) to 0.2819 m/s

(yellow): the minimum and maximum estimated values. For small λs, increas-

ing λDiv pulls the inferred y currents aways from the currents inferred without

a divergence-free assumption.

can be repeated, focusing on this parameter region; however, it remains a subjective choice

about how smooth the currents should be. Therefore, I shall use λs = 0.5 and λDiv = 1010

when considering data with lateral steering (I have chosen the higher value of λDiv to ensure

that there is signal in wx).

Before doing so, it is instructive to see how much the velocities and positions have changed

from their input values. These changes are shown in Figures 15, 16, 13 and 14. There are

features in the changes in the velocities that are moving back along the streamer, this suggests

that some signal in the currents is being lost and is being attributed to errors in the processed

velocities. This is consistent with the changes in velocity increasing as λs increases. Figure 14

clearly shows that, if the smoothness weight is too high then the adjustments to the position

data become unrealistic, and so, looking at the changes in the position data, provides another

means of restricting the choice of weights.
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Figure 9. The inferred x currents for different choices of smoothness and di-

vergence weights. The colour scale is from -0.0607 m/s (blue) to 0.1957 m/s

(yellow): the minimum and maximum estimated values. As λs increases, λDiv

must increase to see a signal in the x currents.
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Figure 10. The inferred y currents for different choices of smoothness and

divergence weights, for Streamer 6 at successive time steps. The colour scale

is from 0.0539 m/s (blue) to 0.2922 m/s (yellow): the minimum and maximum

estimated values. For small λs, increasing λDiv pulls the inferred y currents

aways from the currents inferred without a divergence-free assumption.
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Figure 11. The inferred x currents for different choices of smoothness and

divergence weights, for Streamer 6 at successive time steps. The colour scale is

from -0.0460 m/s (blue) to 0.2328 m/s (yellow): the minimum and maximum

estimated values. As λs increases, λDiv must increase to see a signal in the x

currents.
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Figure 12. Normalized cost functions to help choose appropriate weights by

fixing one of the weights. For a fixed value of λs we seek the point where ∂wx
∂t

suddenly increases and where wy has not changed much from the λDiv=0 case.

For a given λDiv we seek the minimum of
∂wy

∂s in the earth reference frame.



INFERENCES OF OCEAN CURRENTS FROM STREAMERS 33

Figure 13. The change in the x location of each node along Streamer 6. The

colour scale is from -0.8841 m (blue) to 0.4475 m (yellow), which are the minimum

and maximum changes in x. Note that when λs ≥ 101 the change in x moves

down the streamer in time, suggesting that the smoothness weight is too high,

and that curvature caused by currents is being flattened out.
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Figure 14. The change in the y location of each node along Streamer 6. The

colour scale is from -2.0245 m (blue) to 19.2807 m (yellow), which are the min-

imum and maximum changes in y. Note that when λs ≥ 101 the change in y

moves down the streamer in time, suggesting that the smoothness weight is too

high, and that curvature caused by currents is being flattened out.
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Figure 15. Change in vx from the input value for each node along Streamer 6.

The colour scale is from -0.0021 m.s-1 (blue) to 0.0011 m.s-1 (yellow), which are

the minimum and maximum changes in vx. Note the features that move down

the streamers, this suggests that signal is being lost in the currents and being

attributed to velocity errors.
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Figure 16. Change in vy from the input value for each node along Streamer 6.

The colour scale is from -0.0255 m.s-1 (blue) to 0.0089 m.s-1 (yellow), which are

the minimum and maximum changes in vy. Note the features that move down

the streamers, this suggests that signal is being lost in the currents and being

attributed to velocity errors.
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4.3. Inferring the currents with lateral steering. Let us fix λs = 0.5 and λDiv = 1010

and now look at a region of data in which there is significant lateral steering: the middle three

DCUs are instructed to provide maximum lateral steering. We now discover that when there is

significant steering, artifacts appear in the inferred currents. I believe that these artifacts are

caused by there being errors in the velocity introduced by the processing.

The streamer curvature informs us of the relative streamer velocity to that of the water. If

there is an error in the normal (approximately y) velocity of the streamer, this will lead to an

error in the inferred normal current, even if the relative velocity is correctly inferred. However,

it is unlikely that the relative normal velocity of the streamer to the water is inferred correctly at

the DCUs. This is because, if there is a large error in the normal velocity of the streamer, then

in-order to obtain a correct relative normal velocity it will require a large change in the normal

currents, which our smoothness and prior assumptions about the magnitude of the currents may

not allow. Therefore, assuming the position data do not have much freedom to change and so

affect the curvature, the normal force equation is made to balance by adjusting the DCU force

estimate. This can be achieved through adjusting the speed of the streamer through the water;

this largely affects the in-line currents, or through the angle of attack that the streamer makes

with the water, this is primarily achieved through adjusting the cross-line current estimate.

To overcome this problem, we assume that the streamer velocity is an unknown in the cost

function. The hope is that the jump in the normal streamer velocity, when lateral steering is

applied, is restored. To aid this, we assume that the currents are smooth in time. The idea is

that at the previous time step, the inferred currents away from the DCUs should be reasonably

accurate, so, when the portion of streamer with the DCU reaches this location, the currents

should not have changed much. Therefore, any large changes in the inferred relative velocity

should be attributed to the velocity of the streamer rather than to changes in the currents.

The danger in doing this is that the inferred currents at the head of the streamer (dependent

on the head boundary condition) are simply advected along the streamer, and the information

contained in the curvature is ignored. Therefore, let us investigate the effects of increasing our

uncertainty in the processed velocities and the value of the smoothness in time weight, λst.

The top row in each of Figures 17 to 22 show the results of not imposing any smoothness

in time on the currents (λst = 0). In Figure 17 there is a clear jump apparent in the inferred

cross currents when the steering is turned on. The effect on the inferred x currents is less clear;

however, it is still visible as a small step in the currents in Figure 18. If the DCUs providing

the steering are near the tail of the streamer, the effect is far more dramatic. I believe this is

because, when the steering is near the centre of a streamer, the smoothness in space constraint

aids in restoring the inline currents to realistic values downstream of the steering. When the

steering is at the tail of the streamer there are no realistic inferred currents downstream of the

steering to restrain the error in wx so the error is far worse.

The good news is that, by just increasing λst a small amount (looking at the second row in

the figures, in which λst = 0.2) the worst effects of the steering are mitigated. Rather than the

error in wx being smeared across the whole length of the streamer, the error in all the cases is

restricted to the location of the DCUs. In fact, the local anomaly in wx is not noticeable when
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the assumed error in the velocities is 0.03 m/s or greater (Figure 18), and is not noticeable in

the final column of Figure 18. However, when the velocity error is assumed to be 0.01 m/s, the

step in wx near the fins is visible for all values of λst.

Removing artifacts in the inferred y currents requires a greater degree of smoothness in time.

Unlike the x currents, the more problematic case is when the middle three fins are steering

(Figure 17) rather than when the steering is at the tail of the streamers. This could be because,

unfortunately, there appears to be a jump in the currents (before the steering is applied) that

seems to coincide with the location of the central fins. Thus, the smoothness is space constraint

seeks to match the currents either side of the fins, and has difficulty placing the jump in a

consistent location. The best parameter choice for removing this jump is σvx = σvy = 0.05 and

λst = 1, yet the presence of the DCUs is still discernible. In the first two columns of Figure

17, after the initial jump when the DCUs start steering, there are features in the currents that

move with the streamer suggesting that the assumed error in the currents is not large enough.

In the middle column these features are barely visible once λst = 0.6, and in the final column

they are barely visible once λst = 0.2.

Because we do not wish to lose too much signal in the currents by allowing too much freedom

to change the velocities, or by imposing that the currents are smooth in time, it is probably best

to choose weights so that (at the least) the artifacts caused by the steering are localized about

the DCUs and not spread along the streamer. Beyond that, it is desirable that features in wy

that move with the streamer when the DCUs are steering are eliminated. In our examples, this

requires σvx = σvy ≥ 0.03. However, imposing a value of λst great enough to entirely remove

the jump in wy when the DCUs are turned on probably risks losing too much signal elsewhere.

Therefore, in §4.4, when inferring the currents over the entire data, I use σvx = σvy = 0.03 and

λst = 0.5.

It is interesting to see the changes in the velocities that have been inferred. These are shown

in Figures 19 and 20. For the weight values that eliminate the worst artifacts of the steering,

there seems to be a change of about 0.01 m/s in vx and 0.1 m/s in vy, when the DCUs start

steering from the processed velocities. Similarly, looking at the changes in the position data,

in Figures 21 and 22 is instructive. The more accurate we assume the velocity data to be, the

worse the effect of imposing that the currents are smooth in time is on the position data is.

This is the case in the bottom left plots in Figures 21 and 22; to minimise the cost functions,

unrealistic perturbations to the position data have been enforced.
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Figure 17. The inferred y currents for different choices of velocity errors and

smoothness in time weighting, for Streamer 6 at successive time steps. The

colour scale is from 0.1147 m/s (blue) to 0.3226 m/s (yellow): the minimum and

maximum estimated currents.

Figure 18. The inferred x currents for different choices of velocity errors and

smoothness in time weighting, for Streamer 6 at successive time steps. The

colour scale is from 0.0299 m/s (blue) to 0.1338 m/s (yellow): the minimum and

maximum estimated currents.
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Figure 19. The change in vy from the input value, for different choices of

velocity errors and smoothness in time weighting, for Streamer 6 at successive

time steps. The colour scale is from -0.1036 m.s-1 (blue) to 0.1554 m.s-1 (yellow),

which are the minimum and maximum changes in vy.

Figure 20. The change in vx from the input value, for different choices of

velocity errors and smoothness in time weighting, for Streamer 6 at successive

time steps. The colour scale is from -0.0163 m.s-1 (blue) to 0.0120 m.s-1 (yellow),

which are the minimum and maximum changes in vx.
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Figure 21. The change in y from the input value, for different choices of velocity

errors and smoothness in time weighting, for Streamer 6 at successive time steps.

The colour scale is from -18.9600 m (blue) to 30.5117 m (yellow), which are the

minimum and maximum changes in y.

Figure 22. The change in x from the input value, for different choices of velocity

errors and smoothness in time weighting, for Streamer 6 at successive time steps.

The colour scale is from -3.1665 m (blue) to 2.2465 m (yellow), which are the

minimum and maximum changes in x.
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4.4. Inferring the currents for all the data. Having performed experiments on small sec-

tions of the data, let us now attempt to infer the currents for all the available data. I have

not seen a major difference between assuming that the position errors are independent and

that they are correlated through the acoustic network; therefore, to reduce computational time,

the acoustic network is not imitated and the position errors are treated as independent (i.e.,

λacoustic = 0). The weights used in this section (based on our experimentation) are λs = 0.5,

λDiv = 1010, λst = 0.5 and σvx = σvy = 0.03.

Figure 23 shows the currents inferred along Streamer 6. The results seem to be plausible

currents that are slowly varying in time. Imposing smoothness in time has not resulted in the

currents being fixed at each location. However, there are some noticeable artifacts. At the

very tail of the streamer, between 21 and 23 hours, there is a noticeable line, moving with the

streamer, in the y currents that is caused by lateral steering at the tail. In §4.3, we accepted

this as a price for not over-smoothing the currents. Of more concern, is that there is a dip in the

y currents, moving with the centre of streamer, after the central three DCUs are turned on just

after 26 hours. This was not apparent in the small section of data examined in §4.3. Therefore,

it seems that we are still struggling to infer the currents when there is steering. Figure 29 show

the inferred forces produced by the DCUs when the middle fins are turned on. It is noticeable

that the inferred horizontal forces are much less than the recorded forces. This is partly due to

the fact that the recorded forces are actually calculated from the DCU angles, assuming that

the speed of the streamer through the water is 2.57 m/s (5 knots); whereas, the true speed is

less than this. The speed through the water is predominantly the difference between vx and

wx, which, as there are no apparent artifacts in wx, is probably reasonably accurate. However,

errors in the relative y velocity between the streamers and the current will affect the angle of

attack that the DCU makes, and, so, may well, be affecting the estimated force.

Despite our lack of faith in the estimated currents when there is steering, we can compare the

inferred currents with the ADCP data. This is done in Figure 26 where the currents are shown

at individual shotpoints, and Figure 25 where the currents (at each shot) are interpolated to the

vessel location and then averaged over the available data (roughly one hours worth of inferred

currents at each location - except at the start and end of the data). Noting that the ADCP

data were used in the inverse scheme, there is a general consistency between the inferred wy

and the ADCP data. Towards the end of the data set (left of the figures) the inferred y currents

seem consistently lower than ADCP currents, this is when the three DCUs are steering; and

we have previously noted problems. The estimated wx seems to be generally lower than the

ADCP currents throughout the experiment. This could be evidence of the fact that the inferred

currents are at a later time than the ADCP currents, or it could be evidence of over smoothing.

Figure 24 shows the mean inferred currents, at a grid of points that the streamer array passes

through, rather than just the vessel locations. From this figure we can see that there is variation

in the currents across the streamers, and that the smoothness assumptions have not resulted in

identical currents being inferred along each streamer.

Another check on the self consistency of the method is the estimated tension. Figure 27

shows that the inferred tension at the head of Streamer 11 closely follows the data and remain
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Figure 23. The inferred x and y currents at every time step along Streamer

6, plotted against the x location they were inferred at. Note that the vessel is

traveling in the negative x direction.

realistic at the tail end (for some choices of weights the tension can become negative near the

tail end indicating that something is wrong). Looking at the estimated angle along a streamer

in Figure 28 does not provide a self-consistency check, but the jumps in the angle are clearly

visible when there is lateral steering which is as we would hope.
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Figure 24. The mean inferred currents over the time that the streamer array

covers that location.
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Figure 25. The mean inferred currents at the location the ADCP was recorded.

Each light grey dot is the inferred current at a shot; the mean of these is given

by the red line.
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Figure 26. The inferred currents at different shotpoints (the array is traveling

from right to left) compared with the currents recorded by the ADCP on the

vessel. The inferred currents along each streamer have been plotted in different

colours so that they can be distinguished.
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Figure 27. The inferred tension at the head and tail of Streamer 11 (top and

bottom blue lines respectively), compared with the recorded tension (red). Note

that, on this streamer, there is a miniwing and a front float between the head of

the streamer and where the tension is recorded.

Figure 28. The inferred local angle inferred along Streamer 6. Note the jumps

in the angle, that occur at the tail of the streamer around shots 600 and 1800,

and near the centre of the streamer around shot 2000, that correspond to DCUs

providing lateral steering.
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Figure 29. The inferred drag, horizontal force and vertical force (blue) for each

DCU along Streamer 6 at a given shot, compared with the recorded force (red).

The ‘recorded force’ is greater because the formula to calculate the force assumes

a speed through the water of 2.57 m/s (5 knots), the true speed is less than this.

There also may be errors in the inferred currents which will affect the calculated

force.
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5. Discussion

This paper demonstrates that it is possible to infer plausible ocean currents from the shapes of

streamer arrays when there is no lateral steering. Estimating the crossline currents only requires

a reasonable tension estimate and a sufficient smoothness weighting. The inline currents were

estimated by increasing the divergence-free weight until coherent structures were detected in

time. Using this method enables one to determine the minimum necessary divergence-free

weight to estimate inline currents for a given smoothness weight (Figures 8 to 12 show that, as

the smoothness weight is increased the greater the divergence-free weighting required to observe

realistic inline currents). If the divergence-free weight is increased beyond this threshold, then

the inline and crossline currents are slightly affected; hence, there remains a degree of uncertainty

in the currents. Clearly, if a small error in the currents is acceptable, one could choose an

arbitrarily large divergence-free weight, and, so just assume that the divergence-free assumption

must be satisfied exactly (i.e. that there is no vertical motion detectable) and, so, the problem

is reduced to just choosing the smoothness weight, which could be done by minimising equation

(68). At the time of writing, choosing the weights is somewhat subjective (based on assumptions

about the errors in the input variables and how smooth the currents should be in space and

time), so, an important question is whether the choice of weights can be made automatic? A

possible starting point might be found by treating the various weights as nuisance parameters6

(Golub and Pereyra 2003, Aravkin and Leeuwen 2012).

The greatest problem to inferring the currents is when there is significant steering. This is

caused by errors estimating the velocity of the streamer and, possibly, errors in the position data

leading to a reduced curvature. The problem is partly mitigated by assuming that the currents

are smooth in time and that the velocity data have errors. However there remain problems

in inferring the normal currents. To balance the normal force equation, the relative normal

velocity of the streamer to the current is altered which affects the estimated DCU forces. If

the position data show too small a change in angle, then the DCU force must be reduced from

the actual force, leading to an error in the current. Similarly, if the velocity of the streamer is

wrong then the inferred normal current will also be wrong so as to maintain the correct relative

velocity. Therefore, if the currents are to be inferred using the methodology described, the

velocity of the streamer needs to be reliably calculated to include jumps when the DCUs are

turned on. This might be achieved by using a non-smooth form of regularization such as total

variation regularisation when processing the velocities. Doing this would enable the smoothness

in time criteria to be neglected from the cost function enabling it be used, solely, as a criteria for

judging the plausibility of any inferred currents. More generally, knowing the velocities more

accurately will mean that their residual weighting can be increased in the cost function and so

signal is less likely to be lost from the currents and attributed to velocity errors.

This paper, whilst showing that it is possible to infer current-like structures from streamer

position data, has not provided evidence that the inferred structures are indeed currents. The

only measure of the currents available was the ADCP data that was used in the inversion

6Suggested by James Rickett, (Schlumberger Gould Research).
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process, and, so, all that has been shown is that the method is self-consistent. Therefore this

analysis should be repeated on some streamer data that have independent measurements of

the currents. This could be work boats with ADCPs placed at the tail and sides of the array,

wave-gliders with current meters, drifters, or coastal radar7.

When repeating this work it would be better to work with the raw range and GPS data

to infer the currents, or the output positions of the acoustic network, rather than using the

calculated receiver positions and trying to undo the effects of the interpolation and processing.

If the inferred currents are consistent with the independent observations, this suggests that

the recalculated position data (whilst imitating the acoustic network) for the streamers may

be more accurate than the original position data, and, so, leads to the question: do the new

positions makes a difference to the seismic image or not?

If the new position data affects the seismic image then this may motivate inferring the currents

as an off-line process rather than a real-time process (motivated by benefits to steering the

streamers). This then opens up alternative methods for inferring the currents, along with new

position data. Rather than solving the currents at each shotpoint the currents and positions

could be inferred over a time window. This will greatly increase the computational cost (it may

be possible with an adjoint method) but it should be possible to better handle the velocity jumps

at DCUs because the velocity of the streamer would be calculated as part of the inversion and not

be required as an input. Another benefit might be to treat the drag coefficients as unknowns

(that are fixed in time) along each section, to reflect the different amounts of barnacles on

each section. This could possibly be constrained slightly using the logs of when each streamer

section was last cleaned. At present, there is some uncertainty in the inferred currents due

to uncertainties in the drag coefficients, this probably forces us to search for currents that are

smoother than would otherwise be necessary. This could then lead to more accurate currents

and a diagnostic tool for determining which sections of streamer require cleaning next8. If both

the off-line and real time inverse procedures can be made to work then they could be used in

tandem: the inferred currents from the real time process could be used as an intial guess for

the off-line inversion, and the estimated drag coefficients from the off-line process can then be

used the next time the real time process is run.
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