

Evaluating the use of geomagnetic indices for identifying potential damage to power grids

Gemma Kelly, Alan Thomson

GICs

- Geomagnetically induced currents (GICs) are the main space weather risk to power grids
- We would like a way to categorise GICs, particularly for the UK, to better identify times when the system is at risk.
- Ideally we could then provide a forecast with a focus on GICs
- We generally assume GIC is most closely related to dB/dt – how true is this?

BGS

dH/dt and GIC

March 2012 - Torness GIC data (red) against dH/dt at Eskdalemuir (blue)

dH/dt and known GIC impacts

Problem

- Our earlier GIC data need reprocessing
- dB/dt at individual stations is very hard to predict (at the moment)
- We would like to develop an index to identify when there is a risk of large GIC
- We start by investigating what existing indices GIC (dB/dt) in the UK relates to.

NOAA G scales and Kp

- Widely used and recognised
- We use them to forecast and to categorise past activity
- Based on Kp, the 3-hourly geomagnetic index

Forecast period (noon-to-noon GMT)	Forecast Global Activity level		
	Average	Max	
24 JUN-25 JUN	STORM G2	STORM G3	
25 JUN-26 JUN	STORM G1	STORM G3	
26 JUN-27 JUN	ACTIVE	STORM G1	

For more information about the forecast and activity categories see www.geomag.bgs.ac.uk/education/activitylevels.html

Activity during last 24 hours

Global			Local (UK)			
Date	Average	Max	At time (UT)	Average	Max	At time (UT)
23 JUN-24 JUN	ACTIVE	STORM G1	12:00-15:00	ACTIVE	STORM G1	12:00-15:00

Additional Comments

Average geomagnetic activity has decreased back to ACTIVE over the past 24 hours. The strong southward component of the magnetic field, seen in the interplanetary magnetic field in the hours following the CMTC activation 22 JUNI 2015 has strately advect the past 24 hours.

Кр	BGS categor	ies since 2014	NOAA G-scales	
	Category	Description	Category	Description
<3+	QUIET	Kp < 3+		
3+	ACTIVE	3+ < Kp < 5-		
4-				
40				
4+				
5-	STORM G1	5- < Kp < 5+	G1	Kp = 5
50				
5+				
6-	STORM G2	6- < Kp < 6+	G2	Kp = 6
60				
6+				
7-	STORM G3	7- < Kp < 7+	G3	Kp = 7
70				
7+				
8-	STORM G4	8- < Kp < 9-	G4	Kp = 8
80				
8+				
9-				
90	STORM G5	Kp = 90	G5	Kp = 9

dH/dt and Kp

dH/dt and Kp

- 24 observatories with >16 years data
- Largest dH/dt at Kp = 90 for only 8 of 24 observatories.
- dH/dt > 1000nT/min was measured at 4 observatories: BRW, ABK, ESK and FCC (all > ±57° geomag latitude)

dH/dt and K

E

dH/dt and AE

dH/dt and AL

dH/dt HSD

So how does this help?

- We can try using some thresholds to see if that helps narrow down times of increased GIC, for example:
 - Kp > 8
 - AL > -1000
 - HSD > 100

Selected data

Future work

- Reprocess the GIC data we hold and repeat and expand the process with that
 - do the other indices add value to dB/dt?
 - Build regression relationships between GIC and other variables
 - Better proxy than 'just' dB/dt
 - Forecasts and validation?
- Do something similar with NZ data?
 - Comparative study, similar latitudes
- Investigate whether the dB/dt at Esk is best for UK GIC or whether some combination of data from UK observatories is better

🔆 = GIC measuring

location

Very simple approach => large number of false alarms

All d	ata Points			
		Predicted		
,ed		No storm	Storm	
Observ	No storm	15772076	7433	
	storm	0	8	

Max per day

		Predicted		
Observed		No storm	Storm	
	No storm	10888	66	
	storm	0	4	

Accuracy (fraction correct) = correct/total

=(15772076+8)/15779517=0.9995

False alarm ratio = false alarms/(hits + false alarms)

7433/(7433 + 8) = 0.9989

