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The historical record of observations of the tem-
perature of water at the “sea surface” is a disparate 
collection of measurements made using different 
methods from different measurement platforms. 
Most measurements come from platforms that move 
(mostly ships and drifting buoys) with relatively few 
providing time series at fixed locations (e.g., ocean 
weather ships, fixed platforms, coastal installations, 
or moored buoys). Adjustment of near-surface air 
temperatures over land, often called homogenization, 

relies on comparisons of a candidate station with 
nearby stations to identify and correct unphysical 
changes (Trewin 2010). The continually evolving, and 
largely mobile, marine observing system means that 
such approaches cannot be easily applied to marine 
observations.

Folland et al. (1984) applied first-order SST bias 
adjustments, adding a constant value of 0.3°C to 
observations made before 1942, based on the differ-
ence between global night marine air temperature 

(NMAT) and SST. By the 
time of the Intergovern-
mental Panel on Climate 
Change (IPCC) First As-
sessment Report (Houghton 
et al. 1990), more complex 
models of SST bias had been 
developed (Jones et al. 1986; 
Bottomley et al. 1990) and 
presently several different 
estimates of SST bias exist. 
Figure 1 shows global-mean 
SST anomalies for the cur-
rent, commonly used, long-
term gridded SST analyses: 
Hadley Centre SST data-
set, version 3 (HadSST3; 
Kennedy et al. 2011a,b); 
Extended Reconstructed 
SST, version 4 (ERSSTv4; 
Huang et al. 2015); and Cen-
tennial Observation-Based 
Estimates of SST, version 
2 (COBE-SST2; Hirahara 
et al. 2014), along with their 
bias estimates and uncer-
tainties.

SST observations and 
gridded datasets underpin 
many thousands of pub-
lished research papers every 
year, including their use as 
boundary conditions for 
atmospheric reanalysis, so 
the benefits of improved 
SST bias estimation are wide 
reaching. However, severe 
challenges arise because 
the observations we have 
are not from a dedicated 
climate observing system. 
Early observers were largely 
concerned with navigation 

Fig. 1. Global-average SST anomaly from HadSST3, ERSSTv4, and COBE-SST2. 
In each panel the shaded region is the approximate 95% uncertainty range, 
and the gray areas are the other two datasets and their uncertainty ranges 
for comparison. Biases and anomalies have been set to average zero over 
the period 1961–90. (top) Time series of global-average SST anomalies from 
HadSST3 (yellow). (top middle) As in (top), but from ERSST v4 (green). 
(bottom middle) As in (top), but for COBE-SST2 (blue). (bottom) Estimated 
bias adjustments and their uncertainties from each dataset using the same 
color scheme.
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and safety. Observations were collated to document 
climatology rather than climate change. Detailed in-
formation on the ships and the different methods of 
measurement, now known to be of immense value to 
assess changes, has been lost (see the sidebar for more 
information about lost datasets). Different measure-
ment methods have different characteristic biases, and 
there are variations peculiar to individual platforms 
and installations. The characteristic biases also depend 
on environmental conditions, such as wind speed, solar 
radiation, and air–sea temperature contrasts, as does 
the real variability of ocean temperature, with fur-
ther real variations due to the depth of measurement. 
Reconciling all of this to make consistent estimates of 
SST changes would be a challenge with good docu-
mentation. The patchy availability of observational 
and platform metadata, and sparse sampling in some 
regions and periods, makes it even harder.

The first-order bias adjustments required to ac-
count for changes in methods of SST observation 
over the past 150+ years are known. We know that 
adjustments are required and the direction and ap-
proximate size of the change at very large scales. 
However, a comparison of the different approaches 
used to estimate SST bias adjustments shows that 
differences remain that are hard to fully explain. 
Unexplained differences occur at smaller scales and 
in periods where measurement methods change 
quickly. This shows the need to better understand the 
biases, to improve adjustment methods, and to refine 
the uncertainty estimates.

Our recommendations to improve the situation 
are in four areas. First is the enhancement of the 

source archive to provide more observations, to pro-
vide more complete metadata, and to improve quality. 
Second is a need to develop better models of SST bias 
and to maintain a range of SST products using differ-
ent approaches to bias adjustment. Third is a need for 
accessible, high-quality, consistent validation datasets 
to be assembled from existing archives and for the 
availability of such data to be established as metrics 
for assessing the observing system. Finally, we would 
like to see more people working in this area and sug-
gest how barriers to getting started might be reduced.

WHAT IS SST AND HOW IS IT MEASURED? 
What is SST? The temperature of the water near the 
sea surface varies on all space and time scales. The 
term SST has typically been used to describe the 
mean temperature of the upper few meters of the 
ocean. Historically measurements taken at depths 
from the surface and down to about 20 m have all 
been assumed representative of the SST. Under well-
mixed conditions this is a good assumption. However, 
there are well-known variations of ocean temperature 
with depth, especially at low wind speeds and sunny 
conditions (Kawai and Wada 2007). Developers of 
long-term datasets have taken a pragmatic approach, 
assuming that either the measurements represent 
well-mixed conditions or the conditions were well 
sampled and therefore representative of the surface 
layer even if it was not well mixed. When considering 
biases, it is necessary to consider spatial differences in 
the depth dependence of temperature. Further discus-
sion on the definition of SST and its uncertainty can 
be found in section S2 of the supplement.

Over the years there have been 
several studies comparing either 

SST measurements made by different 
methods or detailed wind tunnel– and 
ship-based assessments of temperature 
change from buckets. We have learned 
a lot from the papers and reports 
describing these experiments, but much 
more could be done if we were able to 
track down the original measurements. 
We have tried and failed, but we still 
hope they are out there and that some-
one knows where they are. And, of 
course, if you know the whereabouts 
of any similar measurements, we would 
be delighted to hear from you.

James and Fox (1972): Approximately 
16,000 log entries, each containing at 

least two measurements of SST and 
ancillary data, and metadata collected 
under the auspices of the World Me-
teorological Organization (WMO) and 
analyzed at the U.S. Naval Oceano-
graphic Office in Washington, D.C.

Roll (1951a,b): Wind-tunnel mea-
surements of the temperature change 
of a German SST bucket made at the 
Meteorological Office for northwestern 
Germany, Central Office, Hamburg. 
Also pairs of SST measurements made 
on the Fishery Patrol Vessel Meerkatze 
during 1950.

Ashford (1948): Wind tunnel 
measurements of temperature change 
of a range of SST buckets carried 
out in the Instruments Branch of the 

Meteorological Office, Air Ministry, 
United Kingdom.

Brooks (1926, 1928): Paired mea-
surements of SST made on the Royal 
Mail Ship Empress of Britain and other 
ships in the 1920s. Analysis was at 
Clark University, Worcester, Mas-
sachusetts, and at least a subset of the 
data was filed with the Library of the 
U.S. Weather Bureau in Washington, 
D.C.

We are also on the lookout for 
instructions given to observers, de-
scriptions of how measurements were 
made, photographs, diagrams, and 
other metadata; so again, if you have 
anything that might be useful, please 
get in touch.

LOST DATASETS—CAN YOU HELP?
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How is SST measured? SST has been measured in 
different ways over the past 200 years. The observa-
tions record real variations in temperature but also 
contain an imprint of how they were measured. Both 
the real variations and the biases are affected by the 
ambient environmental conditions, making them 
hard to disentangle.

The earliest observations were probably made by 
sampling seawater in a bucket. Maury (1858) recom-
mended wooden buckets, which were likely used 
around this time. The type of bucket used evolved 
over time, with canvas buckets becoming predomi-
nant, later replaced by better-insulated rubber and 
plastic buckets. Figure 2 (left) summarizes the dif-
ferent factors that can cause bias in observations of 
SST made using buckets.

For measurement, the bucket is thrown into the 
water to collect a sample. The exact depth of sampling 
is unknown, but it is close to the surface, especially 
if the ship is moving fast. If the bucket is at a very 

different temperature from the water, or contained 
water from a past sample, then the time the bucket 
spends in the water to equilibrate is important. We do 
not know how much care the observers took in follow-
ing instructions on sampling protocol in this regard, 
nor in others. Once a bucket leaves the sea, both the 
bucket and the water sample exchange heat with the 
atmosphere in a way that is dependent on their volume, 
thermal properties, and the environmental conditions. 
The temperature continues to change while the ther-
mometer is read; the change is related to the length of 
time taken to get a stable reading and to whether the 
bucket is taken out of the wind and/or into the shade. 
The initial temperature and response time of the ther-
mometer can also influence the reported temperature.

For ships with engines, the temperature of water 
pumped on board to cool the engines can be used as 
an estimate of SST (Fig. 2, right). Sampling is usually 
deep, as the inlet has to be below the surface whatever 
the loading of the ship. The ship may also mix the 
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water, so the effective depth of sampling is ambigu-
ous even if the inlet depth is known. Typically, most 
details of the installation are unknown, so it is hard 
to determine how an observation might be affected 
by heat exchange between the inlet and the point of 
measurement. Historically, there is evidence for inac-
curate thermometers and poor installation (Kent and 
Taylor 2006). An extensive analysis of engine room 
intake (ERI) observations by James and Fox (1972) 
showed ERI SSTs, at that time, were particularly 
warm for large ships with thermometers more than 
3 m inboard from the inlet. Technological develop-
ments have likely resulted in thermometers placed 
nearer to the hull (possible with remote-reading auto-
matic sensors) and farther from the engine room. The 
type of ERI thermometer was also important with 
precision thermometers and thermistors showing 
smaller offsets relative to bucket measurements than 
mercury or other types of thermometers. There is 
some evidence that ERI biases have reduced over time 
(Kent and Kaplan 2006), which could be explained by 
better thermometers or improved siting. Determin-
ing a ship-by-ship estimate of mean ERI bias would 
represent a significant advance, perhaps permitting 
more subtle variations due to greater measurement 
depths or ship speed to be explored.

Hull-mounted sensors (also shown in Fig. 2, right) 
are dedicated SST sensors. Kent et al. (1993) showed, 
for a small subset of ships, that hull sensors were 
more accurate (smaller bias and noise) than ERI, 
but good insulation is required (Beggs et al. 2012). A 
wider analysis of hull sensor accuracy in the field is 
long overdue.

Surface drifting buoys (Fig. 2, bottom) measure 
at shallow depths, nominally 10–20 cm. Biases in 
drifter measurements might arise due to error in 
sensor calibration, temperature calibration “drift” 
while deployed, or biofouling on the sensor. Drifting 
buoys presently provide measurements of SST that are 
near-globally distributed and have better accuracy 
than from ships (Kennedy et al. 2012), since problems 
with early drifters were resolved (Bitterman and Han-
sen 1993). Careful quality control is still required to 
identify spurious spikes in reported position or SST 
measurements from when the buoy is out of the water 
(due to predeployment data transmission, beaching, 
or human interference) and instrument failure or 
other causes of erroneous data (Lumpkin et al. 2012; 
Atkinson et al. 2013). Observations made available 
in delayed mode [e.g., by Integrated Science Data 
Management (ISDM) or the Atlantic Oceanographic 
and Meteorological Laboratory] typically have quality 

◀ Fig. 2. Illustrations of factors affecting SST measurements made using different methods. (top left) Bucket 
measurements of SST are affected by ambient conditions (solar radiation, wind speed, temperature, humidity, 
and air–sea temperature difference) that control the thermodynamic forcing. The construction of the bucket is 
important: different materials will insulate the water sample from the external thermal forcing to varying extents; 
the volume and water level affect the heat capacity; a lid may reduce heat exchange from the top. Observing pro-
tocol may prescribe how long the bucket should remain in the sea, whether the sample is to be stirred, whether 
the bucket should be shaded from the sun or sheltered from the wind, how it should be stored, and how long of 
an exposure time should be allowed for the thermometer to reach equilibrium. And, of course, important aspects 
of observing protocol may be either undefined or not followed by an observer. (top right) Both engine intake and 
hull contact sensor measurements of SST are made at depths that may vary with ship loading. The ship may mix 
the water or draw down surface water and this may vary with ship speed. The temperature of the pumped water 
at the measurement site will depend on the flow rate and the properties of any sea chest, the distance inboard, 
the amount of insulation of the pipe, and the temperature difference between the water and the ship interior. The 
type of thermometer and its mounting affect the measurement, and biofouling may build up with certain types of 
installation. How the thermometer is read is important. Remote reading permits thermometer installation near 
the inlet, which may not be easily accessible. The thermometers used may have coarse gradations (particularly 
dial thermometers) and are subject to parallax errors if inconveniently sited. Observations may have been relayed 
from the engine room to the bridge, possibly incurring delay and communication errors. Hull sensor–derived SST 
observations may be affected by the thickness and construction of the hull, by the amount of insulation, and by the 
temperature contrast between the water temperature and the internal temperature of the ship. (bottom) Drifting 
buoys are expected to give the best-quality SST observations overall, but there are still several problems that may 
be encountered, including drift of the calibration over time. Solar radiation on the drifter body may cause errors, 
either through direct heating or through temperature effects on the electronics: the size of any effect will vary 
with buoy design. The depth of measurement may vary: the drogue is designed to keep the drifter sphere largely 
submerged; if the drifter sphere is lost, the measurement will be closer to the surface (Reverdin et al. 2013), and 
the buoy might not remain correctly oriented. Water may be disturbed by the motion of the buoy. Biofouling can 
be significant in some regions and has the potential to affect the temperature measurement. Detailed quality 
control is required to identify predeployment activation, beaching, and degradation over time, especially at the 
end of the drifter life.
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control f lags appended, but checks of the Interna-
tional Comprehensive Ocean–Atmosphere Data Set 
(ICOADS) have revealed additional problematic 
reports in both delayed mode (from ISDM) and real-
time data (Atkinson et al. 2013).

Moored buoys produce continuous measurements 
at fixed locations at a depth of about 1 m or at several 
predetermined depths (Kennedy 2014), typically only 
near coasts or in tropical regions. The mechanisms 
causing their biases are similar to those for surface 
drifters, but it is often possible to recover instrumen-
tation from moored buoys for recalibration, improv-
ing their overall accuracy.

Availability of observations and ancillary information. SST 
observations were first made available in the nine-
teenth century as charts to aid navigation (Rennell 
1832; Maury 1858). Much later, national compila-
tions of marine observations were used to generate 
gridded analyses of SST for scientific applications 
(e.g., Bunker 1976; Bottomley et al. 1990). The U.S. 
national collection developed into a publicly avail-
able databank (Woodruff et al. 1987) that became 
ICOADS, currently release 3.0 (Freeman et al. 2017). 
ICOADS is the preferred source for constructing 
historical SST analyses, providing traceability of the 
data, simpler comparison among derived data prod-
ucts, and access to newly digitized observations (e.g., 
Allan et al. 2011) and observational metadata (Kent 
et al. 2007). Moreover, it enables a dialogue that can 
lead to improvements in ICOADS and in the many 
ICOADS-derived datasets (JCOMM 2015).

Quantifying SST bias ideally requires accurate loca-
tion and time information, platform information, and 
complete information of methods, instruments, and 
protocols used, and of the ambient conditions (Fig. 2). 
ICOADS contains some of the information required 
(described in section S3 of the supplement), but its 
availability is patchy. We make recommendations that 
will enhance the amount of SST data and metadata 
available by digitization of data and metadata from 
ships logbooks (recommendation 1), by reprocessing 
of the existing ICOADS archive (recommendation 2), 
and by improved use of external sources of observa-
tional metadata (recommendation 3).

CURRENT APPROACHES TO SST BIAS ES-
TIMATION. Physics-based bias models. The factors 
affecting bucket SST measurements are well known 
(Fig. 2, top) and have been discussed since the time 
of Maury (1858). The heat exchange experienced by a 
water sample in a bucket can be estimated with a physi-
cal model (Folland and Parker 1995, hereafter FP95). 

The bucket is represented by a partly closed cylinder 
with appropriate thermal properties: uninsulated for 
canvas buckets, partly insulated for wooden buckets. 
More difficult is applying these models to historical 
measurements made using buckets of unknown di-
mensions and thermal properties in environmental 
conditions that are also not well known. The ap-
proach of FP95 to this problem, as used in HadSST3 
and COBE-SST2, is summarized in section S4 of the 
supplement. Recommendation 4 addresses the need 
for simplified physical models of SST biases from 
buckets and better estimates of the thermodynamic 
forcing required.

Physical models for biases in ERI SSTs have not 
been developed, as the detailed information required 
on individual installations (Matthews and Matthews 
2013) is almost always unavailable (Fig. 2, right). 
Similarly, the estimation of bias in hull sensors has 
not yet been tackled with physically based models.

Although drifter and moored buoy SSTs are usu-
ally considered to be bias free, adjustments for their 
differences relative to ship-derived SSTs are typically 
made (Kennedy et al. 2011b; Hirahara et al. 2014; 
Huang et al. 2015). This choice has been shown to 
have little effect on long-term trends (Kennedy et al. 
2011b).

Physical models for the ocean cool-skin effect and 
for thermal stratification within the upper few meters 
of ocean (which can be significant during the daytime 
if mixing is small) are used to relate satellite SSTs to 
SST at the depths representative of buoys (Merchant 
et al. 2012). The models are driven by weather analy-
sis fields, and have skill in reconciling satellite and 
subsurface measurements (Embury et al. 2012). Such 
models could be used to inform comparisons of in situ 
measurements made at different depths.

Application of physics-based models. The two main 
barriers to the application of physical-correction 
models are uncertainty in the measurement method 
used and in the environmental conditions pertaining 
to individual observations. Section S3 of the supple-
ment describes the information available in ICOADS 
to determine the type of platform and measurement 
method.

Kennedy et al. (2011b) brought together evidence 
from ICOADS, external sources of measurement 
metadata [such as that published by the WMO in 
Publication No. 47 (Publ. 47); Kent et al. 2007], and 
other documentary information, to estimate mea-
surement methods and their uncertainties (Fig. 3). 
They weighted bias estimates for each method to 
produce estimated fields of the unbiased SST. Method 
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weightings, and bias esti-
mates, were varied within 
plausible ranges to produce 
an ensemble of SST fields 
spanning the likely uncer-
tainty. In contrast, Hirahara 
et al. (2014) approached the 
problem by estimating the 
proportions of different 
methods from differences 
in the data. They assumed a 
bias model for each type (in-
sulated bucket, uninsulated 
bucket, or engine intake) to 
adjust observations where 
the method was known. 
Proportions of observations 
with an unknown method 
were then assigned to the 
different methods such that 
global SST averages from 
observations with unknown 
methods agreed with SST 
averages from known meth-
ods when combined with 
the method-dependent bias 
models. These approach-
es show broad agreement 
in inferred measurement 
methods (Fig. 3b). Notable 
discrepancies include esti-
mates of the rate of transition from uninsulated to 
insulated buckets (Kennedy 2014).

Once the measurement method has been assigned, 
the bias adjustment can be calculated using the ap-
propriate bias model. This is presently done simply: 
bucket bias adjustments are applied using the fields 
calculated by FP95 weighted by the proportions of 
observations thought to be made using wooden, 
canvas, or rubber buckets (Kennedy et al. 2011b; Hi-
rahara et al. 2014). The relative biases between ships 
and drifting buoys are fixed. Biases for ERI or hull 
sensors are fixed in the COBE-SST2 analysis and vary 
within an estimated range in the HadSST3 analysis.

Large-scale statistical adjustments using air temperature. 
A statistical approach to bias adjustment of ship 
observations was developed by Smith and Reynolds 
(2002, hereafter SR02) based on large-scale differences 
between SST and NMAT measured from ships. The 
rationale is that biases in NMAT are more straight-
forward to adjust (Kent et al. 2013; section S1 of 
the supplement) and that the large-scale differences 

between SST and NMAT will not vary markedly over 
time (Huang et al. 2015). NMAT, rather than all-hours 
MAT, is used to avoid uncertainty due to daytime 
heating on ships. Details of the SR02 statistical bias 
model and its implementation by Huang et al. (2015) 
are described in section S6 of the supplement.

This method does not need the detailed informa-
tion required by physical models, but there are still 
uncertainties. Any residual biases in adjusted NMAT 
will influence the SST bias estimates (Rayner et al. 
2003; Kent et al. 2013), and uncertainty in NMAT will 
propagate through to the SST estimates. Although 
NMAT variations are representative of SST variations 
on the largest scales (Huang et al. 2015), the relation-
ship is likely to be locally weaker. The computed 
spatial patterns of SST–NMAT differences are critical 
for the estimate, and assuming that the patterns are 
well known and invariant over time also introduces 
uncertainty. SR02 originally used the bias model 
only in the pre–World War II (WWII) period domi-
nated by bucket measurements (Fig. 3). Huang et al. 
(2015) extended the method throughout the record 

Fig. 3. (a) Estimates of measurement method composition for ship data only 
from ICOADS release 2.5 for the period Jan 1930–Jan 2007 after Kennedy 
et al. (2011b). Darker shading represents the measurement method obtained by 
the SST measurement method indicator in ICOADS (SI) or from a match to 
an entry via call sign to Publ. 47. Lighter shading represents the measurement 
method obtained indirectly, either through country preference or inferred 
bucket for the earliest observations. (b) As in (a), but also splitting the bucket 
observations, indicating whether the observation was likely to be taken with 
an uninsulated (canvas) or insulated (rubber or plastic) bucket. The hatched 
area indicates the estimated uncertainty in that assignment. The white area 
represents ERI and measurements of unknown source. The dashed lines show 
the measurement method assignments following (Hirahara et al. 2014) par-
titioning between uninsulated buckets (bottom portion), insulated buckets 
(middle portion), and ERI (top portion).
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and generated an ensemble to explore uncertainty 
(described in section S6 of the supplement).

Recommendation 5 calls for the extension of 
statistical-based modeling of SST biases beyond large-
scale adjustments based on NMAT.

COMPARISON AND EVALUATION OF 
ESTIMATES OF SST BIAS. Comparison of bias 
estimates. The first test of the different bias adjust-
ments is whether the estimates agree within their 
uncertainty ranges. Figure 4 compares the bias adjust-
ments from HadSST3 and ERSSTv4. In these datasets 
the sensitivity of the bias estimates to assumptions 
and values chosen for internal parameters (paramet-
ric uncertainty; Kennedy 2014) has been quantified 
through making plausible perturbations to each of 
these choices to create an ensemble of bias estimates 
spanning the known uncertainty in the method (the 
calculation of the ensembles is described in sections 
S4 and S6 of the supplement). Figure 4 illustrates 
the differences between the bias adjustment in the 
context of the range of the uncertainty ensembles 
and shows that, by this measure, we do not yet fully 
understand the biases and their uncertainties at all 
times throughout the record. Maps showing the 
average spatial variation of the biases averaged over 
1890–1919 (Figs. 4a,c) show differences that exceed 
the range of their combined uncertainty ensembles 
over large regions (Fig. 4e). Even in the more recent 
period of 1995–2004 (Figs. 4b,d), there are regions 
where the difference exceeds the ensemble range 
(Fig. 4f). Zonal-mean (Fig. 4g) and global-average 
differences (Fig. 4h) show that during these periods 
the large-scale biases are relatively well understood, 
albeit with compensating bias differences with 
latitude giving global-average agreement within 
uncertainty in the earlier period. Differences in the 
bias adjustments fall outside the ensemble range in 
two periods: at the start of the record (before about 
1880) and around the 1980s. In the early period both 
SST and NMAT data are sparse, so it is not surprising 
that our understanding is limited. The later period 
is when the proportion of SST observations made 
by ERI is increasing (Fig. 3), and the buoy observing 
system for SST is not yet well established. Figure 4h 
suggests that the discrepancy is likely to arise from 
an underestimate in uncertainty during this period. 
However, improving our understanding of in situ SST 
bias during this period is necessary if the data are to 
be used with confidence to produce adjustments or 
validation for satellite-derived estimates of SST. The 
period around WWII is known to be problematic 
(e.g., Thompson et al. 2008), as making observations 

became dangerous, especially at night, when the use 
of lights could attract an attack. During WWII a 
greater proportion of observations are made during 
daylight hours, engine intake measurements were 
preferred to buckets, and buckets may have been 
carried inside: all tending to give a warm bias. The 
WWII period shows rapid variations in the differ-
ence between the bias estimates (Figs. 4g,h) but also 
a large ensemble range, so by this metric these differ-
ences are understood, albeit very uncertainly. Such 
comparisons can help to focus attention on periods 
and regions where differences are large (e.g., prior to 
about 1880 or in tropical and high-latitude regions 
prior to the mid-1990s), when uncertainties are large 
(e.g., during WWII), or where the uncertainty may be 
underestimated (e.g., during the 1980s).

The comparison shows we are yet to fully reconcile 
the biases in all types of SST observations throughout 
the historical record. It also shows that improvements 
in uncertainty estimation must go hand in hand with 
improvements in bias estimates. Nevertheless, uncer-
tainties in the bias adjustments are not thought to be 
large enough to alter the conclusion that global SSTs 
have increased over the historical record (Hartmann 
et al. 2013). However, confidence in regional ad-
justments is lower than for the global mean, as the 
spatial patterns predicted by the different methods 
do not agree well (Figs. 4e–g; also Huang et al. 2015; 
section S7 of the supplement). Uncertainty due to 
undersampling can be large in some regions and pe-
riods (Kennedy 2014), particularly early in the record 
(Hirahara et al. 2014) and outside major shipping 
lanes prior to the extension of coverage provided by 
drifting buoys (Zhang et al. 2009).

Such comparisons of different estimates of the 
bias, or (less directly) datasets adjusted in different 
ways, are a good first step toward understanding 
uncertainty in bias adjustments. A range of different 
approaches to bias estimation should be maintained 
and compared (recommendation 6). However, more 
is learned by disagreement than by agreement, and in 
order to evaluate the estimated biases an independent 
reference is needed.

Evaluation by comparison with independent data. 
Comparisons with validation data should cover a 
range of diagnostics, including mean bias and vari-
ance relative to validation data evaluated across a 
range of locations and throughout the annual and 
diurnal cycles. Attention should be paid to differences 
arising from the depths of the measurements.

In the modern period—since the mid-1990s—
there are multiple sources of validation data for 
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Fig. 4. Comparison of SST bias adjustments used in HadSST3 and ERSSTv4 (°C). (a) Averaged bias adjustment 
from HadSST3, 1890–1919. (b) Averaged bias adjustment from HadSST3, 1995–2004. (c) As in (a), but for ERSSTv4. 
(d) As in (b), but for ERSSTv4. (e) Bias adjustment difference (HadSST3 minus ERSSTv4), 1890–1919; hatching 
indicates 5°C areas where the difference exceeds half the sum of the full range of the ensemble estimates of bias 
uncertainty. (f) As in (e), but for 1995–2004. (g) As in (e), but the zonal mean is smoothed with a 12-month running-
mean filter. Gray shaded areas in (a)–(g) are unsampled. (h) Global-mean bias adjustment difference (black) and 
full range of ensemble differences (gray).
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estimation of biases in SST observations from ships. 
Drifting and moored buoys take measurements of 
better accuracy and stability than is routinely ob-
tained by shipboard measurements. Argo floats (Argo 
2000) provide accurate data, but low sampling rates, 
and can be used for validation after about 2005. Some 
satellite datasets covering the 1990s to the present are 
of the desired accuracy and are largely independent 
of the in situ record (Merchant et al. 2012, 2014); 
therefore, they are suited to validation or independent 
assessment of SST bias adjustments applied to ship 
observations. Validating over longer time scales is 
more difficult. Drifting buoys can be used back to the 
early 1990s, before which there was no standardized 
design. Oceanographic measurements are available 
(Gouretski et al. 2012), but they are also affected by bi-
ases (Cheng et al. 2016) and seldom numerous. Ocean 
weather ships and underway observations from re-
search vessels are potential sources of validation data. 
Although they may be affected by biases, there is a 
greater chance of obtaining a full set of high-quality 
marine meteorological variables and metadata. Work 
is ongoing to extend independent satellite SST records 
back to the early 1980s, but the achievable stability of 
observation is as yet unknown. Careful consideration 
must be given to the uncertainty inherent in all these 
data sources.

Extending validation to a wider range of com-
parison datasets would be valuable. Careful analysis 
is required if comparisons are made with different 
parameters (such as air temperature), with coastal 
observations (which might not be fully representative 
of open-ocean conditions), or with observations that 
may have their own biases. Records with consistent 
instrumentation over the several decades when the 
observing system was in f lux could be valuable—
perhaps records from harbor logs, lighthouses, or 
atolls should be considered. Land station air tem-
perature data from other regions could also be used 
indirectly via experiments with climate models run 
with prescribed SST biases adjusted in different ways 
(e.g., Folland 2005). An overview of potential valida-
tion data is given in section S8 of the supplement. 
Recommendation 7 outlines the need for improved 
accessibility and management of existing potential 
sources of validation data. Recommendation 8 con-
siders how the need for consistent and high-quality 
observations can be built into observing-system 
adequacy requirements.

Evaluation using measures of internal consistency. The 
different types of bias can leave their own character-
istic fingerprint on the SST record. For example, FP95 

showed that there were signals in the data, related 
to the seasonal cycle, that could be explained by the 
characteristic biases in bucket measurements. In this 
case a measure of the effectiveness of the bucket bias 
adjustment would be the removal of spurious signals 
in the seasonal cycle of SST. Kennedy et al. (2011b) 
showed that adjustments applied to ERI and bucket 
measurements improved agreement between these 
two subsets of data from the 1950s onward.

Separating data into two datasets, one used for 
estimation and training and the other for validation, 
is a good general approach. This is widely used in as-
sessing statistical techniques and might be applied to 
existing statistical methods of bias estimation (e.g., 
SR02). The method also can be applied more generally 
by setting aside a subset of data for validation, prefer-
ably a subset of known high quality that is not used in 
the estimation or correction of biases. Unfortunately, 
the data most suitable for validation also have great 
value for estimating biases. The price paid for having 
a dataset with credible, validated uncertainty esti-
mates might be a slightly higher overall uncertainty; 
the alternative is a lower overall uncertainty that was 
impossible to assess fairly. Research vessel data and 
Argo data, which are not yet widely used in historical 
SST datasets, might be used to validate modern peri-
ods. Newly digitized data could be used for historical 
assessments. A degree of independence should also be 
maintained between the institutions producing bias 
adjustments and those performing validation. This 
could be achieved if validation were carried out by an 
organization independent of the dataset developers, 
or by using a standard set of widely agreed criteria 
and comparisons.

To date, the evaluation of bias adjustments using 
measures of internal consistency has been limited. 
The development of bias adjustment methods to be 
applied to individual observations or to data from 
individual ships would enable the extension of this 
type of evaluation to other metrics including perhaps 
a consistent representation of diurnal variations or a 
minimization of ship-to-ship differences.

PRIORITIES FOR THE FUTURE. Improvements 
to data and metadata. Fundamentally, there is scope 
for improvements to ICOADS. Although ICOADS 
is often thought of as “raw” data, it is derived from 
a larger, more heterogeneous underlying databank 
from diverse sources. Further reprocessing of the 
databank could help to better resolve duplicate ob-
servations, incomplete ship identifiers, scale conver-
sions, missing metadata, and positional errors among 
other basic problems (recommendation 2). The recent 
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addition (release 2.5.1 and later) of unique identifica-
tion (UID) to each report in ICOADS is tremendously 
helpful. Tying quality control information and meta-
data studies back to ICOADS via the UID and sharing 
code and methods will improve traceability, promote 
collaboration, and help new researchers enter the field 
(recommendation 9).

Much is to be gained from improvements to 
metadata (recommendations 1–3). Ship tracking—
the association of individual reports into coherent 
voyages (Carella et al. 2017)—will enable the better 
characterization of ship-by-ship biases and other er-
rors. Bringing together known sources of metadata 
into a single repository would be a step toward a more 
holistic synthesis. A start has been made on inferring 
absent metadata (Kent et al. 2007, 2010; Kennedy et al. 
2011b; Hirahara et al. 2014; Carella et al. 2017) and 
resolving conflicts that arise when different sources 
present inconsistent information, but more needs to 
be done.

A barrier to the use of recent marine data from 
ships is the decision by some countries to anonymize 
ship reports. The reasons often given are that the 
information has commercial value, or that there are 
concerns about security. Whatever the reason, it pre-
vents the matching of ships to the relevant metadata 
in Publ. 47. We hope that a solution can be found to 
provide this information in a way consistent with the 
safety of the vessels, if not in real time, then after an 
appropriate delay.

There is also a need for existing sources of high-
quality independent validation data to be collated. 
While such compilations exist for, for example, Argo 
and drifting buoy observations, complete authoritative 
archives of data and metadata do not exist for moored 
buoys, ocean weather ships, or research vessels. Land-
based coastal observations are difficult to identify in 
global and regional archives, and multivariate records 
are often fragmented (Thorne et al. 2017). A consistent 
approach to the management of such high-quality 
observations, quality assured by experts in each data 
type, would be valuable for the validation of SST biases 
(recommendation 7). The need for such consistent ob-
servations, and their appropriate management should 
be recognized in climate observing-system require-
ments (recommendation 8).

Improvements to physically based models of SST bias. 
Development of the physical models used to estimate 
bucket biases should continue. Models will be most 
valuable if independently tested in well-designed 
experiments under controlled laboratory conditions 
and at sea. Well-validated physical models will give 

improved estimates of the expected mean biases and 
their uncertainties, and allow for the possibility of 
estimating biases for each observation individually. 
Careful experimental design is needed before under-
taking expensive and time-consuming measurements 
at sea. Simplified parameterizations of the bucket 
models are needed for application to a wider range of 
bucket designs, including modern insulated buckets 
(recommendation 4).

To drive physical models, we need to understand 
the inputs to those models and their uncertainties. 
Estimates of air temperature, humidity, cloud, and 
wind speed and direction are all needed and all are 
affected by biases comparable in magnitude to those 
affecting SST (Berry et al. 2004; Willett et al. 2008; 
Berry and Kent 2011; Eastman et al. 2011; Thomas 
et al. 2008). Reanalyses may prove a valuable tool for 
understanding the expected spatiotemporal vari-
ability of bucket-related SST biases and could reveal 
components of bias variability related to weather and 
longer-term effects (recommendation 4). It might be 
expected that as our understanding of these depen-
dencies increases, the estimated random error of the 
measurements, which is partly an aggregation of 
many unresolved systematic processes, will decrease. 
Improved bias estimates will consequently need to 
go hand in hand with revisions to estimates of other 
components of the uncertainty.

Some other biases are not easily modeled. It may 
be impossible to derive meaningful physically based 
estimates of bias for an individual ERI installation 
(Fig. 2, right), so these ship-specific biases may need 
to be characterized statistically.

Improved statistical approaches. SST biases are sta-
tistically and computationally challenging. There 
are several hundred million in situ observations in 
ICOADS. This amount of data is modest by modern 
standards, but complexity arises because the data 
are from diverse sources representing reports from 
perhaps hundreds of thousands of individual ships 
and buoys, some uniquely identified, some not. The 
data are of varied quality. Metadata are sometimes 
incomplete or conflicting. Reference observations 
are few and not always of unimpeachable quality. 
Improved statistical methods are required to advance 
and capitalize fully on the improvements in the basic 
data and modeling described above. Progress is likely 
to come from working more closely with statisticians, 
data scientists, and computational experts to develop 
state-of-the-art analysis systems. It may also be pos-
sible to adapt methods developed for the homogeniza-
tion of land station data (Venema et al. 2012).
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It is possible to write a system of equations 
encapsulating a full statistical description of the 
problem of estimating spatially complete unbiased 
fields, and their uncertainty, from sparse, noisy, and 

biased measurements of 
SST. In practice, however, 
the terms in these equations 
are subject to the same ef-
fects causing uncertainty 
in the current approaches. 
For example, the form of 
the method-dependent bias 
model must still be speci-
fied. Solving even a sim-
plified version at coarse 
resolution is presently com-
putationally challenging. 
The goal is to include all 
we know about SST biases 
into a holistic, statistically 
rigorous Bayesian analysis 
framework. The framework 
should embed method-
dependent physically based 
bias models within a full 
description of the correla-
tion structure of the vari-
ability of SSTs and their 
biases (recommendation 5).

Elements of such a ho-
listic statistical approach 
are now being developed. 
The Met Office is develop-
ing methods to generate 
SST fields using estimates 
of the correlation struc-
tures of variability associ-
ated with both real changes 
in SST and biases. In this 
approach, individual ship 
biases and their uncer-
tainties can be identified 
(Fig. 5). This relat ively 
simple implementation, 
described in more detail 
in section S9 of the supple-
ment, is able to identify 
biased measurements made 
by individual ships and 
could reduce the obvious 
SST artifacts related to 
“ship tracks” often present 
in SST analyses.

Everything we have learned from the existing ap-
proaches can feed into new statistical models. Every 
scrap of information about the structure of expected 
biases can be used to constrain and inform statistical 

Fig. 5. (a) SST anomalies (°C) relative to 1961–90 for Aug 2014 based on an 
ICOADS real-time extension based on data for ships, drifting and moored 
buoys, quality controlled and gridded according to Rayner et al. (2006). Gray 
areas indicate regions with no observations. (b) SST anomalies for Aug 2014 
after interpolation using a local optimal interpolation with varying length 
scales and successively assimilating buoy and ship measurements. (c) Estimated 
average biases in gridded engine room measurements assessed using the 
residual of the interpolation scheme from (c). Details on the method used 
can be found in the supplement.
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analyses. Further constraints also could be applied, 
such as a large-scale consistency with NMAT. The 
development of improved statistical models should 
proceed in tandem with efforts to better characterize 
the observations and their biases.

Maintaining research effort and extending the com-
munity. Huge progress has been made since the first 
estimates of SST bias were published in 1984. There 
are currently three families of SST datasets available 
that take different approaches to bias adjustment 
[HadSST/Hadley Centre Sea Ice and Sea Surface 
Temperature dataset (HadISST), ERSST, and COBE]. 
However, all still use approaches that are essentially 
adaptations of methods originally developed decades 
ago. We now need to develop new approaches to bias 
adjustment that take advantage of recent advances 
in statistical methods and computing power (rec-
ommendation 5) while maintaining a diversity of 
different methods (recommendation 6). Diversity of 
methods helps quantify structural uncertainty: the 
spread between datasets arising from fundamental 
choices in analysis method and assumptions un-
derlying them that are difficult and, in many cases, 
impossible, to capture by varying the parameters or 
modules within a single analysis system (Thorne 
et al. 2005).

Progress has been slower than we would like, as 
the number of researchers active in the area is small 
and fresh perspectives would be welcome. There are 
many barriers to new researchers entering this area; 
presenting the data and metadata in accessible ways 
and providing a range of different types of documen-
tation are essential to engage a wider community in 
assessment and validation (recommendation 9).

Recommendations. Recommendation 1: Add more data 
and metadata to ICOADS. Additional observations of 
SST and associated variables such as air temperature, 
humidity, wind, cloud, pressure, and weather infor-
mation recovered from logbook digitization will help 
improve estimates of SST and SST bias. Every effort 
should be made to retain observational metadata and 
to keep multivariate observations together.

Recommendation 2: Reprocess existing ICOADS re-
cords. Older ICOADS acquisitions are often lacking 
metadata and are compromised by legacy deficien-
cies in data management and storage formats. A 
full reprocessing of ICOADS legacy data, alongside 
improvements to data formats, would improve SST 
bias adjustment through improved ship tracking, 
recovery of information on platform identity, better 

identification of mispositioned and duplicate reports, 
better quality control, and recovery of additional data 
and metadata from the existing reports. A critical 
review of all input ICOADS data sources should be 
carried out to ensure that ICOADS contains the best 
available data, metadata, and quality information.

Recommendation 3: Improve information on observa-
tional methods. A comprehensive review of documen-
tary sources will better constrain the uncertainty in 
methods and protocols for historical observations. 
ICOADS call-sign recovery and reprocessing of 
WMO Publ. 47 metadata will help link observations 
to metadata from individual ships.

Recommendation 4: Improve physical models of SST bias. 
Simplified and validated physically based models of 
SST bias are required along with better estimates of 
ambient conditions and understanding of how to use 
those estimates to drive the models.

Recommendation 5: Improve statistical models of SST 
bias. More holistic and powerful statistical approaches 
to the problem of estimating SST biases and their 
uncertainties are needed, especially to study presently 
unknown causes for inhomogeneities.

Recommendation 6: Maintain and extend the range 
of different estimates of SST bias. SST datasets and 
gridded analyses will continue to improve, but they 
will never become identical. A wider range of bias 
estimates taking different approaches to adjustment 
will enable improved understanding of structural 
uncertainty. Carefully designed comparisons, includ-
ing all the developers of bias-adjusted SST analyses, 
will improve our understanding of biases and their 
uncertainties.

Recommendation 7: Expand data sources for validation 
and extend use of measures of internal consistency in 
validation. Resources for validating SST bias adjust-
ments include SST from satellites and ocean reanaly-
ses, as well as observed air temperatures, albeit with 
their own uncertainties. Collating, assembling, and 
extending consistent datasets providing validation 
sources will enable more thorough validation of 
SST bias adjustments. Such sources include ocean 
weather ships, research vessels, moored buoys, land-
based coastal stations, and independent satellite SST 
records. A more imaginative approach is required to 
make the best use of available validation data and to 
widen the use of measures of internal consistency in 
SST bias validation.
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Recommendation 8: Ensure adequacy and continuity 
of the observing system. It is important that the chal-
lenges we have encountered in understanding the 
historical SST record do not persist into the future. 
Requirements for consistency, metadata, subsets of 
high-quality validation data, and appropriate curation 
for climate applications should be integrated into the 
metrics for assessing observing-system adequacy and 
performance (e.g., GCOS 2010).

Recommendation 9: Improve openness and access to infor-
mation. Despite the complexity of the problem, SST bias 
adjustment has been tackled by only a small number of 
small groups producing SST products. Many aspects of 
the problem are potentially of much wider interest to 
physicists, metrologists, historians, computer scientists, 
and statisticians, among others. Providing modular 
software tools and improved access to data, metadata, 
and historical documentation will help to widen the 
range of approaches to the important, complex, and 
interesting problem of SST bias adjustment.
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