
Wind-driven mixing at intermediate depths in an
ice-free Arctic Ocean
Ben J. Lincoln1, Tom P. Rippeth1, Yueng-Djern Lenn1, Mary Louise Timmermans2,
William J. Williams3, and Sheldon Bacon4

1School of Ocean Sciences, Bangor University, Bangor, UK, 2Department of Geology and Geophysics, Yale University, New
Haven, Connecticut, USA, 3Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada,
4National Oceanography Centre, Southampton, UK

Abstract Recent seasonal Arctic Ocean sea ice retreat is a major indicator of polar climate change. The
Arctic Ocean is generally quiescent with the interior basins characterized by low levels of turbulent mixing
at intermediate depths. In contrast, under conditions of reduced sea ice cover, there is evidence of energetic
internal waves that have been attributed to increased momentum transfer from the atmosphere to the
ocean. New measurements made in the Canada Basin during the unusually ice-free and stormy summer of
2012 show previously observed enhancement of internal wave energy associated with ice-free conditions.
However, there is no enhancement of mixing at intermediate depths away from significant topography. This
implies that contrary to expectations of increased wind-induced mixing under declining Arctic sea ice cover,
the stratification in the central Canada Basin continues to suppress turbulent mixing at intermediate depths
and to effectively isolate the large Atlantic and Pacific heat reservoirs from the sea surface.

1. Introduction

The Arctic Ocean is generally regarded as quiescent, with very low levels of turbulent diapcynal mixing in the
interior [Padman, 1995; Fer, 2009; Lenn et al., 2009; Guthrie et al., 2013]. At present, these low levels of mixing
facilitate weak diapcynal heat fluxes, arising primarily from double diffusive convection, out of the intermedi-
ate depth Atlantic heat reservoir. Together with the intruding intermediate depth Pacific water the Atlantic
water provides the main oceanic heat input to the Arctic Ocean. However, this state of very low mixing in
the Arctic Ocean interior may be altered as a result of the recent decline in seasonal Arctic sea ice cover.
Energetic internal waves have been observed in response to reduced sea ice cover, in both shelf sea
[Rainville and Woodgate, 2009] and open Arctic Ocean locations [Dosser et al., 2014], which have been attrib-
uted to increased momentum transfer from the atmosphere to the ocean [Giles et al., 2012; Martini et al.,
2014]. This has led to speculation that the future “seasonally ice-free” Arctic Ocean will see increased wind-
induced ocean mixing [Carmack and Melling, 2011; Martini et al., 2014; Martin et al., 2014; Tsamados et al.,
2014]. Subsequently, this hypothesized mixing could lead to a larger heat flux toward the sea surface from
the temperature maxima of the intermediate depth Pacific and Atlantic origin water, potentially impacting
sea ice thickness and extent.

The Arctic summer of 2012 was unique in several ways. A new record low sea ice extent was announced by
the U.S. National Snow and Ice Data Center on 26 August, with the decline continuing for 23 more days
before reaching a new record annual minimum on 18 September. The minimum areal extent in 2012
was 49% below the mean minimum (calculated over 1 day) for the period 1979–2000, with the largest
new sea ice losses in the Canada Basin sector. Wind speeds are generally low during the Arctic summer;
however, over the past 50 years, there has been a trend to increasing numbers of summer cyclones
[Sepp and Jaagus, 2010]. In early August 2012, a storm formed over Siberia, and then moved across the
Arctic Ocean, dying out over the Canadian Arctic 2 weeks later. Both the intensity and the longevity of
the storm are atypical of the Arctic. The low central pressure (966 hPa) was the deepest of all 1618 cyclones
recorded over the Arctic Ocean in August (in a record beginning in 1979), and the 13th lowest central
pressure of any Arctic storm, regardless of month, recorded since 1979, leading to its designation as the
“Great Arctic Cyclone of August 2012” [Simmonds and Rudeva, 2012]. The fluxing of subsurface oceanic heat
to the surface by wind-induced turbulent mixing is implicated as a contributing factor to the additional ice
melt which accompanied the Great Arctic Cyclone of 2012 [Zhang et al., 2013] resulting in the new record
summer sea ice minimum of 2012.
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Multidecadal measurements of Arctic Ocean mixed layer characteristics show some variability of the mixed
layer depths in response to wind forcing although they also suggest that density stratification is effective
in suppressing the wind-driven mixing [Peralta-Ferriz and Woodgate, 2015; Toole et al., 2010]. Furthermore,
observations in the Canada Basin indicate that, under typical wind conditions, the summer halocline may
be eroded drawing near-surface heat upward, while the underlying Pacific and Atlantic layer heat remains
untapped [Timmermans, 2015]. Key questions therefore arise as to what impact the enhanced atmosphere-
ocean momentum transfer will have on wind-induced turbulent mixing at intermediate depth and hence
on the fluxing of Pacific and Atlantic origin heat toward the sea surface, in the future seasonally ice-free
Arctic Ocean.

Here we present new measurements made during the record-breaking ice-free conditions and unusually
strong winds of August 2012, which led to an ideal natural experiment to test the impact of the wind on
turbulent mixing at intermediate depths. The observations comprise a series of profiles of the rate of dissipa-
tion of turbulent kinetic energy (TKE) made in ice-free conditions in the Canada Basin during and following
the passage of the Great Arctic Cyclone across that area. The new data are combined with long-termmoored
measurements to investigate whether this unique combination of an intense storm and newly open-water
conditions drove enhanced diapycnal mixing at intermediate depths. In particular, we focus on the impact
of the storm on mixing of heat toward the surface from the intermediate-depth Pacific and Atlantic water
temperature maxima.

2. Methodology

A series consisting of 36 profiles of the rate of dissipation of turbulent kinetic energy, together with tempera-
ture and salinity, were made in the Canada Basin as part of the Beaufort Gyre Exploration Project (BGEP)/Joint
Ocean Ice Studies (JOIS) research cruise during August 2012. The profiles were taken in open-water condi-
tions at locations shown in Figure 1. The profiles were made with a loosely tethered free-fall velocity micro-
structure profiler (Rockland VMP500) and spanned the upper 500m of the water column. The rate of
dissipation of turbulent kinetic energy (TKE), ε, is calculated for depth bins of approximately 1m under the
assumptions of stationarity and homogeneity [Lenn et al., 2011]. Layer-averaged values of ε and buoyancy
frequency N2 were calculated for the Pacific layer and upper Atlantic Water. Diapycnal heat fluxes are then
estimated from these values by assuming a dissipation flux coefficient of Γ= 0.2. The layers over which the
diapcynal heat fluxes are estimated are shown in Figure 2.

Supporting sea ice and oceanographic parameters are taken from the BGEP mooring D, which was located
in the Eastern Beaufort Sea at 74.0°N 140°W, in water about 3800m deep. The measurements presented

Figure 1. The Canada Basin, showing 2012 measurement locations. Mooring D: yellow circle at 74°N 140°W. VMP micro-
structure profiles are divided between those taken in the central basin (white circles) and those taken over significant
topography (white triangles). The 200m and 500m isobaths are plotted in black to indicate the continental slope. ITP41
drift track (thick black line). Example temperature and salinity profiles plotted in Figure 2 are shown as red circles.
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were made using instruments mounted on the top flotation buoy on the mooring located ~30m below the
sea surface. They consist of an Upward Looking Sonar (ULS) which measured the thickness of the ice
beneath the sea surface at the mooring. The ice draft values are daily means of these measurements calcu-
lated following Krishfield et al. [2014]. An upward looking 600 kHz Acoustic Doppler Current Profiler (ADCP),
also mounted in the buoy, recorded hourly current profiles in the surface waters over a range from 28m to
3m below the surface during summer, although this is reduced in winter due to acoustic reflections from
the sea ice.

The amplitude of inertial currents was calculated from the ADCP data using a least squares fitting method at
the local inertial period, TI= 12/sinϕL = 12.48 h (where ϕL is the mooring latitude), to 13 h sections of mean
currents from two different depth ranges. The range 3–15m was chosen to represent the SML, while mean
currents below 20m were used to quantify currents below the stratified base of the SML. The depth range
approximation is supported by density profiles collected from the mooring site during August, and visual
examination of the velocity structure suggests that it is valid during the summer months, when the SML is
generally less than 20m thick.

Further information on the internal wave field is obtained from an Ice-Tethered Profiler (ITP no. 41)
[Krishfield et al., 2008] which had been deployed in October 2010 and collected two vertical profiles of
temperature and salinity per day, at 06:00 and 12:00 between 7 and 750m depth by means of a
conductivity-temperature-depth profiler suspended on a wire from beneath an ice floe. The ITP sampling
schedule is designed to balance endurance with the need to eliminate aliasing of motions at the semidiur-
nal tidal and inertial periods [Dosser et al., 2014]. To overcome this bias a least squares fitting method
[Dosser et al., 2014] using complex demodulation was employed on ITP profiles between January and
August 2012 to estimate the isopycnal displacements at the inertial frequency. These are calculated over
the depth range 50–200m, and scaled to account for vertical variation in stratification. During the period
of interest, the ITP drifted east then south and as a result was located very close to mooring D in August
2012 (Figure 1). During and after the cyclone, only partial ITP profiles were returned as the automated
profiler had difficulty climbing the wire during times of anomalously fast drift, and as a consequence, fewer
estimates of internal wave amplitude were possible.

Figure 2. Profiles of water column structure and the rate of dissipation of TKE (ε). Profiles of (a) temperature and (b) salinity
from 7 August 2012 (grey) and 6 September 2012 (black) during the JOIS hydrographic expedition in the central Canada
Basin. (c) The mean ε profiles for the central Canada Basin (formed from the 30 VMP profiles made over a sea bed
slope< 0.01) and over the continental slope (the six profiles where bed slope> 0.01). The levels of the different water
masses and interfaces named in the text are shown on Figures 2a and 2b, respectively, while the respective integration
range for the calculation of the mean Pacific water and the section of the water column separating the cold Halocline from
the Atlantic water are indicated on Figure 2c.
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3. Results

The profiles of temperature and salinity for early August and September 2012 reveal five distinct and well-
known layers in the upper 500m of the water column (Figure 2a). The SML, extending from the surface to
between 5 and 20m has low salinity (≈25–26) and a temperature which varies from 5°C in the southern basin
to freezing temperature (≈�1.8°C in the north). This overlies several layered water masses which comprise
the halocline. In the profiles shown, a cooler layer lies below the base of the surface layer (i.e., the summer
halocline); this layer is a remnant of the previous winter's mixed layer and extends to about 50m. Next, a layer
of warmer (by ≈1.0°C) Pacific origin water (PW) lies between 50 and 100m depth, with cooler halocline waters
between 100 and 200m. Below about 200m, the temperature increases with depth to the warm core (~0.5°C)
of the Atlantic origin water (AW) located at around 400m depth. Thermohaline staircases are evident across
the section of the water column separating the AW from the cold halocline above, in all profiles taken in the
central Canada Basin. Such phenomena are commonly observed in the Arctic Ocean where the water column
exhibits bulk gradients in temperature and salinity that both increase with depth [Padman and Dillon, 1988;
Timmermans et al., 2008; Fer, 2009; Lenn et al., 2009]. Staircases arise as a consequence of low levels of turbu-
lent mixing coupled with differing rates of molecular diffusion for heat and salt [Ruddick and Gargett, 2003]. In
contrast, the thermohaline staircase is absent in the six VMP profiles taken over the continental slope, despite
stratification favorable for double diffusion, thus suggesting higher levels of turbulent mixing at intermediate
depth at these locations.

Mean profiles of the rate of dissipation of TKE (ε) are calculated for the central basin (i.e., the mean of 30 pro-
files where the sea bed slope is<0.01) and over the continental slope (i.e., the mean of six profiles where sea
bed gradient is>0.01; see Figure 2). In the central basin, below the surface mixed layer, ε declines and is close
to the instrument noise level (5 × 10�10W kg�1) except in the PW layer where there is a small enhancement.
In contrast, ε is enhanced over sloping topography in the layers of strong stratification corresponding to the
strong gradients associated with the PW and AW. Within the PW layer, ε rises by an order of magnitude, from
2× 10�9W kg�1 in the central basin to 2 × 10�8W kg�1 over the continental slope. There is also a more
modest rise over the continental slope when compared to the central basin, 3 × 10�9W kg�1 compared to
1 × 10�9W kg�1 across the region of the water column separating the AW core from the cold halocline.

To set these measurements into a wider context we present observations of the seasonal variability in sea ice
conditions and upper ocean currents during spring and summer 2012, at a local mooring position (mooring D
in Figure 3). In March, sea ice cover was close to 100% and the ice was near stationary. Through April andMay,
the dense sea ice was observed to drift at a rate proportional to the wind strength: the ratio of ice to wind
speed was 2%, which is consistent with previously reported values [e.g., Thorndike and Colony, 1982]. The
ice began to fracture in late May, with about 5% open water observed throughout June. As the season pro-
gressed, the sea ice continued to decline and the mooring location became ice-free by the end of the first
week of August. The ice-free conditions persisted for almost 3months, with ice reappearing in late October.

The disappearance of the sea ice in early August coincided with the period of substantially elevated winds
(Figure 3a) over the area associated with the passage of the Great Arctic Cyclone. Overall, the ice-free
conditions of August to October coincided with an unusually windy period when the daily mean surface
wind stress (from the National Center for Environmental Prediction, NCAR, reanalysis) was ~70% higher than
the mean for the remainder of 2012, and unprecedented for August since the National Centers for
Environmental Prediction (NCEP) reanalysis time series began in 1979 [Simmonds and Rudeva, 2012].

A strong oceanic response to the ice-free conditions is evident in the upper water column currents
(Figure 3c), which showed an order-of-magnitude increase in horizontal velocities coincident with the thin-
ning and breaking of the sea ice in July. This is highlighted by the variability in the inertial currents over
the two chosen depth ranges, which is shown in Figure 3c. Early in the year, near-inertial currents are small,
0.01–0.03m s�1. They begin to increase in June, with a more substantial increase in July coinciding with the
breakup and subsequent disappearance of the sea ice. At this time the near-inertial current speed increased
from 0.05m s�1 to 0.25m s�1, corresponding to a 25-fold increase in the horizontal kinetic energy in the
ocean surface mixed layer since the spring. The largest near-inertial currents (>0.2m s�1) were found during
late July and early August when ice concentration was low (<50%), and continuing to decline, with an ice
thickness <1m. This result is consistent with those of Martin et al. [2014], who showed that an optimum
concentration of sea ice can lead to an enhancement of the efficiency of momentum transfer from the
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atmosphere to the ocean. Figure 3d shows that the inertial currents are generally larger over the range 3–15m
than over 20–30m layers with the relative changes between the two likely due to changes in stratification
resulting from buoyancy input to the surface mixed layer due to summer freshening and warming.
Concurrent measurements from the ITP between January and August 2012 show that the mean resultant

Figure 3. Wind stress, sea ice, and current observations from the Eastern Canada Basin in 2012 (at mooring D in Figure 1)
accompanied by TKE dissipation measurements from across the region during August 2012 when inertial internal wave
energy levels peaked. (a) Wind stress calculated from NCEP reanalysis daily values (black) and from ship measurements
(magenta). (b) Mean daily ice draft measured by upward looking sonar (shaded area) and percent of time that the mooring
site was ice covered (orange dashed line). (c) Velocity data measured by upward looking acoustic current meter. Blue and
green dashed lines indicate depth ranges 3–15m and 20–30m for the fits plotted in Figure 3d. (d) Amplitude of inertial
period currents calculated by least squares fit to 13 h sections of velocity data over the depth ranges indicated in Figure 3c.
Black dots indicate the inertial period internal wave amplitude calculated from ITP data over the depth range 50–200m.
(e) An expanded section covering only the period of the microstructure measurements (August 2012) showing the profile
mean Pacific water (40–100m), εPW, in red and the section of the water column separating the Cold Halocline from the
Atlantic water (180–240m), εAW, in yellow. The TKE dissipation rates together with the cube of the wind speed (shaded
grey). Profiles taken over the continental slope (i.e., slope> 0.01) are plotted as triangles and those in the central Canada
Basin as circles (slope< 0.01). In both cases the variability is indicated as the 95% confidence interval. Ship measured wind
speed cubed is plotted in grey as a proxy for the rate of kinetic energy transfer from the atmosphere to the ocean surface
layer. The period of the microstructure measurements is shown in Figures 3a–3c as a grey-shaded area.
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inertial internal wave amplitude over the depth range 50–200mwas found to be correlated to the near-inertial
currents in the upper part of the water column (r=0.62) implying that the near-inertial currents observed at
intermediate depths are related to those observed close to the surface. This observation is consistent with
Dosser and Rainville [2016], who show that internal inertial wave activity at depth peaks annually during
the ice-free summer period and that the largest amplitude waves over the available 10 year record occurred
during the summer of 2012.

Time series of the profile average ε for the depth of the PW layer and the region of the water column separ-
ating the AW core from the cold halocline are shown in Figure 3e alongside the cube of the wind speed mea-
sured from the ship (ws

3), to represent the rate of kinetic energy transfer from the wind. Mean AW dissipation
rates are ~6 × 10�10W kg�1, only just above the instrument noise level, while within the PW layer, dissipation
rates are up to 2 orders of magnitude higher, at 2 × 10�9 to 6 × 10�8W kg�1. The profiles showing signifi-
cantly enhanced ε at intermediate depths are found over the continental slope indicating topographic effects
may also be important (Figure 2c). However, there is no significant relationship (r< 0.1) between ws

3 and
either the PW or the AW layer-averaged ε in the central basin. The heat fluxes resulting from the observed
ε are modest, with an upward heat flux of 0.7 ± 0.4Wm�2 from the PW in the central basin similar to those
reported under ice by Shaw et al. [2009]. PW heat fluxes over the continental slope are elevated to as much
as 6Wm�2 which is comparable to PW heat flux estimates over rough topography under ice [Shaw et al.,
2009]. The average heat flux from the AW into the overlying cold halocline is estimated to be 0.14
± 0.03Wm�2 in the central basin, with amodest rise to 0.24 ± 0.1Wm�2 over the slope. These fluxes are com-
parable to reported fluxes arising from double diffusion in this region [Padman and Dillon, 1987; Timmermans
et al., 2008] but are considerably smaller than the AW heat fluxes reported for continental slope region north
of Svalbard of about 20Wm�2 [Padman and Dillon, 1991; Rippeth et al., 2015].

4. Discussion

The new observations presented offer a unique glimpse of an aspect of the likely mixing regime in the future
seasonally ice-free central Arctic Ocean. Current meter time series show an order-of-magnitude increase in
near-inertial current velocities, in response to the breakup and disappearance of the sea ice, with a conse-
quent increase in kinetic energy of 2 orders of magnitude. This result is consistent with previous observations
[Rainville and Woodgate, 2009; Lenn et al., 2011; Dosser et al., 2014; Martini et al., 2014] which have in turn led
to speculation that decreasing ice cover will lead to increased wind mixing [Rainville and Woodgate, 2009;
Carmack and Melling, 2011]. However, despite the open water, the anomalously strong atmospheric forcing
and the consequent enhanced levels of internal wave energy, the directly observed mixing levels at inter-
mediate depths within the central Canada Basin remain low leading to a diapcynal heat flux from the
Atlantic water of 0.14 ± 0.03Wm�2 and comparable to under-ice estimates acquired under sea ice cover in
the Canada [Padman & Dillon, 1987; Lique et al., 2014] and Eurasian [Lenn et al., 2009; Sirevaag and Fer,
2012; Fer, 2014] basins of the Arctic Ocean.

Furthermore, the thermohaline staircase separating the core of the Atlantic water from the cold halocline
above was observed to be a persistent feature in all profiles taken in the central Canada Basin (Figure 2a).
The persistence of the staircase indicates the absence of significant shear-driven turbulent mixing at these
depths over the period of interest as turbulence would disrupt the well-formed step structure. For example,
Bebieva and Timmermans [2016] found no staircase at the flanks of an AW eddy where geostrophic shear
leads to higher mixing; they estimated that diapycnal diffusivities are an order of magnitude larger where
the staircase is absent compared to measurements several kilometers away that are characterized by a
well-formed staircase. Timmermans et al. [2008] demonstrated the persistence and lateral coherency of indi-
vidual mixed layers in the staircase over the entire central Canada Basin, consistent with enhanced mixing
events being rare. It is therefore reasonable to assume that the sustained presence of the staircase fine struc-
ture in these new observations implies that the very low levels of turbulence derived from the synoptic micro-
structure observations are representative of the central Canada Basin mixing environment, over the duration
of the Great Arctic Cyclone of 2012, at these depth levels.

These new result imply that, despite the exceptional loss of sea ice cover in summer 2012, the stratification in
the central Canada Basin is presently sufficiently strong to isolate the intermediate-depth heat reservoir from
the direct impact of enhanced mixing resulting from increased momentum transfer from the wind. These
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new results therefore further highlight the key role of stratification in isolating the intermediate depths from
wind-driven mixing. In a future seasonally ice-free Arctic Ocean, stratification in the surface mixed layer and
cold halocline will likely increase in response to increased freshwater runoff coupled with an increased
seasonal sea ice melt volume; in this setting, the competing influences of enhanced internal wave stresses
and stratification barriers to turbulent mixing at intermediate depths are likely to be complicated.

Finally, the new results also provide some evidence of the key role of topography and so point to the loca-
lized nature of enhanced diapcynal mixing and oceanic heat fluxes toward the sea surface [Padman and
Dillon, 1991; Rippeth et al., 2015]. While reduced sea ice extent will likely lead to the increased transfer of
momentum from the atmosphere to the ocean [e.g., Giles et al., 2012] and higher near-inertial energy [e.g.,
Pinkel, 2005], our results indicate that enhanced turbulence will be largely restricted to the steeper topogra-
phy of the basin margins.
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