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Abstract 12 

Bacterial genome sizes have previously been shown to exhibit a bimodal distribution. This 13 

phenomenon has prompted discussion regarding evolutionary forces driving genome size in 14 

bacteria and its ecological significance. We investigated the level of inherent redundancy in 15 

the public database and the effect it has on the shape of the apparent bimodal distribution. Our 16 

study reveals that there is a significant bias in the genome sequencing efforts towards a certain 17 

group of species, and that correcting the bias using species nomenclature and clustering of the 18 

16S rRNA gene, results in a unimodal rather than the previously published bimodal distribution. 19 

The true genome size distribution and its wider ecological implications will soon emerge as we 20 

are currently witnessing rapid growth in the number of sequenced genomes from diverse 21 

environmental niches across a range of habitats at an unprecedented rate.  22 



Short communication 23 

Significant progress has been made in understanding interactions between ecology and genome 24 

evolution in prokaryotes. A number of recent studies have focussed on the evolution of 25 

bacterial genome sizes (Kempes et al, 2016), indicating that the interaction between an 26 

organism and its ecological niche, for example resource availability and environmental stability, 27 

selects the genome size of the species (Konstantinidis & Tiedje, 2004; Bentkowski et al, 2015). 28 

The exact mechanisms driving the genome sizes are still not fully resolved (Sabath et al, 2013, 29 

Kempes et al, 2016). It has, however, been speculated that species living in invariant niches 30 

tend to have small genomes, as stability acts to reduce genome size due the metabolic burden 31 

of replicating DNA with no adaptive value (Giovannoni et al, 2005, 2014) such as in obligatory 32 

and intracellular pathogens or mutualists (Moya et al, 2009; Moran 2003; Klasson and 33 

Andersson 2004). Due to their metabolic diversity, species with large genomes are potentially 34 

able to tackle a wider range of environmental conditions (Schneiker et al, 2007) and tend to be 35 

more ecologically successful where resources are scarce but diverse and where there is little 36 

penalty for slow growth (Konstantinidis & Tiedje, 2004). The effect by which these two 37 

opposing evolutionary forces exert on the overall distribution of genome sizes was first 38 

observed by Koonin and Wolf in 2008, where it was reported that bacterial genome sizes show 39 

a bimodal distribution (Koonin and Wolf, 2008). The authors speculated that the observation 40 

of two distinct groups of bacteria, those with 'small' and those with 'large' genomes, directly 41 

reflects the balance between the opposing trends of genome expansion through gene 42 

duplication, horizontal gene transfer and replication, and genome contraction caused by 43 

genome streamlining and degradation (Koonin and Wolf, 2008). The observed bimodality in 44 

the database was the first empirical evidence to show the two forces at work in bacterial 45 

genomes, and the bimodalilty in the distribution has since attracted numerous citations in both 46 

peer-reviewed articles (Giovannoni et al, 2014; Moran et al, 2015; Mock et al, 2012; Lane et 47 



a., 2011) and textbooks (Kirchman, 2012; Saitou, 2014; Seshasayee, 2015; Bergman, 2011; 48 

Koonin, 2011).  49 

 50 

A substantial proportion of complete bacterial genomes in the public domain belong to human 51 

pathogens and very closely related genomes representing variations within the species 52 

(Tausova et al, 2014). As first reported by Graur and Zheng (2014), it has been suggested that 53 

this fact might introduce a bias to the bimodal distribution seen in the previous analyses. No 54 

formal treatment, however, has been carried out in the peer-reviewed literature to examine the 55 

extent of database bias and how it may affect bacterial genome size bimodality. The 56 

distribution of the bacterial genome size has broad and far-reaching implications in our 57 

understanding of prokaryotes and this in turn necessitates re-assessment of the distribution and 58 

the extent to which the bias distorts the apparent bimodality. Here, we present our finding that 59 

the bias in the database has profound influence in shaping the overall distribution of bacterial 60 

genome size. 61 

 62 

Having obtained a total of 3923 complete bacterial genomes from Ensembl Bacteria database, 63 

which is the most comprehensive source of complete bacteria genomes (see Supplementary 64 

Information for detailed methods), the distribution of genome sizes was first evaluated and 65 

compared against the distribution from Koonin and Wolf (2007). Despite that almost six times 66 

more genomes have been archived since 2007, the current dataset exhibited a remarkably 67 

similar bimodal distribution with its distinctive bimodal peaks around 2Mbp and 5Mbp. 68 

Hartigans' dip test (Hartigan and Hartigan, 1985) was used to confirm that it features significant 69 

bimodality with a p-value of 2.2e-16 (Fig 1B), where p-values less than 0.05 indicate 70 

significant bimodality (or multimodality) and p-values greater than 0.10 indicate unimodality 71 

(Freeman and Dale, 2013).  72 



The level of redundancy in the dataset was next assessed by counting the number of genomes 73 

which shared the same species classification. The entire dataset of 3923 genomes represented 74 

1,706 groups of species with a unique species classification based on names. As shown by Fig 75 

1C, there was a significant amount of bias in the genome sequencing efforts towards a certain 76 

group of species most of which belonged to well-characterised human pathogens. In fact, 77 

almost 25% of the entire genome dataset was composed of just 20 species (971 genomes). We 78 

also found that most of these highly redundant species belonged to the peaks in the bimodal 79 

distribution. Notably, the two most redundant species, namely Salmonella enterica, 80 

Escherichia coli belonged to peak β and Helicobacter pylori, Staphylococcus aureus belonged 81 

to peak α. 82 

Having observed the bias in the dataset, we assessed how much impact this has on the modality 83 

of the distribution by removing the redundant genomes from the dataset (Fig 2A). The resulting 84 

distribution exhibited much less pronounced peaks, and as confirmed by Hartigans' dip test, 85 

the distribution was non-significant for bimodality (p = 0.91). The influence these redundant 86 

species has on the distribution became more apparent (Fig 2B) as we evaluated the modality of 87 

the distribution by progressively removing species from the dataset (from the most redundant 88 

to the least). There is a sharp incline towards unimodality as redundant species were gradually 89 

excluded (Fig 2B). In fact, the distribution became more or less unimodal after the top 60 90 

redundant species were removed from the dataset of 1,706 species. 91 

One of the issues we faced with our approach was that a large number of genomes in the dataset 92 

had disorganised and inconsistent taxonomic classification. For instance, there were genomes 93 

using different naming convention such as ones with square brackets or strain identifier 94 

attached to their species name (e.g. "[Clostridium]-cellulolyticum", "Francisella sp. 95 

TX077308"). This meant that removing redundant genomes using a text based approach was 96 

only able to partially extirpate the bias. Also using this approach could not resolve the bias 97 



arising from very closely related genomes representing variations within the species but with 98 

different species classification. A more suitable approach was to use a biomarker gene directly 99 

extracted from each genome to cluster dataset into units of redundant or very closely related 100 

species. For this purpose, we chose 16S rRNA gene as it had been demonstrated that 16S rRNA 101 

sequence on an individual strain with another exhibiting a similarity score of 97% or above 102 

represents the same species (Stackebrandt & Goebel, 1994; Tindall et al, 2010). The clustering 103 

resulted in 1081 groups of species or very closely related species, and as Fig 2C shows, the 104 

resulting distribution from the dataset indicated a unimodal distribution (p = 0.99, Hartigans' 105 

dip test).  106 

 107 

Our results revealed that there is a significant amount of inherent redundancy in the public 108 

database with a strong bias towards certain groups of species, and they have strong influence 109 

in driving bacterial genome size distribution into bimodal. While it is plausible that bacterial 110 

genome size is heavily influenced by the specialist or generalist lifestyle, it is not immediately 111 

apparent whether or not this should lead to any particular distribution. To a great degree, it is 112 

still too early to make any conclusions as to whether the true distribution exhibits certain 113 

modality as the majority of genomes sequenced so far have only focussed on culturable species, 114 

in particular human pathogens and closely related species. Some interesting observations with 115 

a potential link to the nature of distribution have been emerging in recent years. For example, 116 

(i) the bimodality in flow cytometric analysis of bacterial DNA content has been implicated 117 

with the bimodal genome size distribution (Moran et al, 2015; Schattenhofer et al, 2011);  (ii) 118 

there may be other factors such as physical cell space constraints playing a role in genome size 119 

selection (Kempes et al, 2016); and (iii) perhaps most intriguingly, numerous studies from 120 

metagenomics are indicating that species with small genomes are more common than 121 

previously thought (Giovannoni et al., 2014; Moran et al., 2015). With the rise of single-cell 122 



genomics and improved bioinformatic assembly methods coupled with the continual reduction 123 

in genome sequencing, we are currently witnessing rapid growth in the number of sequenced 124 

genomes. Consequently, the true nature of the distribution together with its ecological 125 

implications will become more apparent as we gather more sequenced genomes from diverse 126 

niches across a wide range of habitats.  127 
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Figure legends 220 
 221 
Figure 1 (A) Distribution of genome sizes in bacteria and archaea: the curves were generated 222 
by Gaussian-kernel smoothing of the individual data points. The figure has a very similar 223 
pattern to the figure generated by Koonin and Wolf (2008). The distribution of archaea was 224 
included for comparison only. (B) Distribution of genome sizes in bacteria on a different scale: 225 
the distribution shows clear-cut bimodality. Hartigans' dip test for unimodality/multimodality 226 
with simulated p-value with 10000 Monte Carlo replicates: D = 0.02510, p < 2.2e-16 where 227 
values less than 0.05 indicate significant bi- or multimodality and values greater than 0.10 228 
indicate unimodality (Freeman and Dale, 2013). (C) Number of genomes from the top 20 most 229 
redundant species in the database with mean genome size and peak in which they belong. (Peak 230 
α: 1.5 Mbp - 3 Mbp, Peak β: 4 Mbp - 5.5 Mbp). The top 20 most redundant species belonged 231 
to 971 genomes representing almost 25% of the entire dataset. Most of them (18 species in 232 
total) formed part of the peaks (α and β) including the top 4 species, namely Salmonella 233 
enterica, Escherichia coli, Helicobacter pylori and Staphylococcus aureus. 234 
 235 
Figure 2 (A) Distribution of genome sizes in bacteria after removing redundant genomes. The 236 
grey area indicates 2217 redundant genomes (out of 3923 genomes in total). The distribution 237 
indicates unimodality (Hartigans' dip test: D= 0.0069289, p=0.908). (B) Effect of removing 238 
500 most redundant species from the database on the modality of distribution measured by 239 
Hartigans' dip test. After removing around 60 most redundant species, the distribution becomes 240 
mostly unimodal. (C) Distribution of genome sizes in bacteria after removing redundant and 241 
very closely related genomes using 16S rRNA (2841 genomes). The distribution shows a clear-242 
cut unimodal distribution (Hartigans' dip test: D= 0.0070418, p=0.996). 243 
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