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Abstract: Seismic refraction data and results from receiver functions were used to compile the
depth to the basement and Moho in the NE Atlantic Ocean. For interpolation between the unevenly
spaced data points, the kriging technique was used. Free-air gravity data were used as constraints in
the kriging process for the basement. That way, structures with little or no seismic coverage are still
presented on the basement map, in particular the basins off East Greenland. The rift basins off NW
Europe are mapped as a continuous zone with basement depths of between 5 and 15 km. Maximum
basement depths off NE Greenland are 8 km, but these are probably underestimated. Plate recon-
structions for Chron C24 (c. 54 Ma) suggest that the poorly known Ammassalik Basin off SE
Greenland may correlate with the northern termination of the Hatton Basin at the conjugate margin.
The most prominent feature on the Moho map is the Greenland–Iceland–Faroe Ridge, with Moho
depths .28 km. Crustal thickness is compiled from the Moho and basement depths. The oceanic
crust displays an increased thickness close to the volcanic margins affected by the Iceland plume.
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The rifting in the NE Atlantic Ocean region (Fig. 1)
occurred in several episodes spanning from
the Carboniferous Period to the early Cenozoic
break-up (e.g. Ziegler 1988; Doré et al. 1999). Sea-
floor spreading propagated from the Central Atlan-
tic Ocean northwards into the NE Atlantic Ocean
(Srivastava & Tapscott 1986), where spreading
between Greenland and NW Europe began in the
Early Eocene (Storey et al. 2007). Large sections
of the continental margins fringing the NE Atlantic
Ocean are magma-rich margins with extensive
flood-basalt volcanism and igneous intrusions (e.g.
Eldholm & Grue 1994; Holbrook et al. 2001). The
amount of break-up-related magmatism depends on
the distance to the Iceland plume (Holbrook et al.
2001). Furthermore, the plume has profoundly

influenced the creation of oceanic crust throughout
the NE Atlantic region (Howell et al. 2014). The
influence of the plume appears to extend further to
the south along the Reykjanes Ridge than to the
north along the Kolbeinsey Ridge (Hooft et al.
2006). The most outstanding feature on the bathy-
metric map is the Greenland–Iceland–Faroe Ridge
(composed of the Greenland–Iceland Ridge, Ice-
land and the Iceland–Faroe Ridge: Fig. 1), the result
of enhanced melting in the Iceland plume (White &
McKenzie 1995; Staples et al. 1997). Most of the
NE Atlantic Ocean has shallower bathymetry and
hotter mantle when compared to other oceans (Par-
kin & White 2008; Artemieva & Thybo 2013).

The complex rifting and spreading history, as
well as the interaction with the Iceland plume,
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have shaped the present configuration of the crust in
the NE Atlantic realm. The first-order structure of
the crust can be recognized by regional mapping
of the Moho and basement depth. A number of
maps already exist for the region, such as the global
model CRUST1.0 of Laske et al. (2013) or the
model for the North Atlantic region by Artemieva
& Thybo (2013). In addition, large parts of the
region are included in compilations that cover the
European plate (Grad et al. 2009; Molinari &
Morelli 2011). In contrast to these existing maps
for the NE Atlantic Ocean, the new compilation is
exclusively compiled from seismic refraction data

supplemented by receiver functions along the bor-
dering land areas. Most seismic refraction lines
are acquired along pre-existing multichannel seis-
mic (MCS) data. The interpretation of the MCS
data down to the basement is generally used as the
starting point for velocity modelling of the seis-
mic refraction lines. Deep crustal seismic reflection
data were not considered for two reasons. First, even
though the reflection and refraction Moho generally
correlate well, there can be deviations (cf. Mooney
& Brocher 1987). Second, seismic reflection data
require a conversion from time to depth, which is
difficult to do when no velocity information is

Fig. 1. Physiographical map of the NE Atlantic Ocean using the ETOPO1 Global Relief Model (Amante & Eakins
2009). Abbreviations: BFZ, Bight Fracture Zone; EB, Edoras Bank; FI, Faroe Islands; FS, Fram Strait; GIR,
Greenland–Iceland Ridge; HB, Hatton Basin; HH, Hatton High; IFR, Iceland–Faroe Ridge; JM, Jan Mayen; KnR,
Knipovich Ridge; KR, Kolbeinsey Ridge; L, Lofoten; MB, Møre Basin; MNS, Mid-Norway Shelf; MR, Mohns
Ridge; N, Norway; NEGS, NE Greenland Shelf; PB, Porcupine Basin; PH, Porcupine High; RH, Rockall High; RR,
Reykjanes Ridge; RT, Rockall Trough; SI, Shetland Islands; SVB, Svalbard; VP, Vøring Plateau.
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available. To allow for the best possible quality con-
trol and internal consistency, existing local com-
pilations were not incorporated into our database.
Examples of such compilations are the seismically
constrained gravity inversion for Iceland (Kaban
et al. 2002) or the model for the Barents Sea (Ritz-
mann et al. 2007) that is based on both seismic
reflection and refraction data, as well as on gravity
modelling.

By incorporating so far unpublished seismic
refraction data, the compilation has an unparalleled
data density (Fig. 2), even though there are still
substantial data gaps. These unpublished datasets
comprise lines that have only been presented at con-
ferences or in internal reports. Knowledge of the
basement and Moho depth allows the calculation
of the crustal thickness from which stretching fac-
tors can be estimated (cf. Kimbell et al., this volume,

Fig. 2. Data coverage. Solid lines show the location of seismic refraction lines. The labels refer to Table 1 where
line names and references are given. Circles mark the positions of receiver functions (see Table 2 for references).
The background shows a shaded relief map (ETOPO1: Amante & Eakins 2009).
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Table 1. Seismic refraction studies used in the compilation of data

Label Line name References and comments

1–5 AWI 94300, AWI 94320, AWI 94340,
AWI 94360 and AWI 94400

Mandler & Jokat (1998), Schlindwein & Jokat
(1999), Schmidt-Aursch & Jokat (2005)

6–8 AWI 99200, AWI 99300 and AWI 99400 Ritzmann & Jokat (2003), Czuba et al. (2004,
2005), Ritzmann et al. (2004)

9–12 AWI 20030200, AWI 20030300, AWI
20030400 and AWI 20030500

Voss & Jokat (2007, 2009), Voss et al. (2009)

13–15 AWI 20090100, AWI 20090200 and AWI
20090250

Jokat (2010), Jokat et al. (2012),
Hermann & Jokat (2013)

16 AWI 97260 and Barents 98 line 9 Ritzmann et al. (2002)
17–20 ARK 1988 lines 3–6 Weigel et al. (1995)
21 DLC 94 line 5 Dahl-Jensen et al. (1998)
22–24 EAGER 2011 lines 1–3 Gerlings et al. (2014), Funck et al. (2015)
25–26 GEUS 2002 lines A and B Døssing et al. (2008), Døssing & Funck (2012)
27–28 LOS 2004 lines A and B Funck et al. (2008)
29–32 SIGMA lines 1–4 Korenaga et al. (2000), Holbrook et al. (2001),

Hopper et al. (2003), Reiche et al. (2011)
33–34 SIGNAL lines 2 and 3 Funck et al. (2012)
35–46 Barents 98 lines 1, 2, 3E, 3W, 4–8, 10,

A and B
Breivik et al. (2002, 2003, 2005), Mjelde et al.

(2002b), Ljones et al. (2004)
47 Horsted ’05 Czuba et al. (2008)
48–49 Knipovich 02 lines 1 and 2 Kandilarov et al. (2008, 2010)
50–58 Lofoten 88 lines 1–9 Mjelde (1992), Mjelde et al. (1992, 1993, 1995),

Mjelde & Sellevoll (1993)
59–63 Møre 99 lines 1–5 Mjelde et al. (2009)
64–66 Møre 2009 lines 1–3 Kvarven et al. (2014)
67–74 Mohns Ridge 88 lines 2–4 and 6–10 Klingelhöfer et al. (2000)
75–80 OBS 2000 lines 1–3, 5, 6 and 8 Breivik et al. (2006), Raum et al. (2006), Rouzo

et al. (2006), Mjelde et al. (2008)
81–85 OBS 2003 lines 3, 4, 8, 10 and 11 Breivik et al. (2008, 2009, 2011) for line 8: Mjelde

(pers. comm.)
86–87 OBS 2008 lines 1 and 2 Czuba et al. (2011), Libak et al. (2012a, b)
88 PETROBAR 07 Clark et al. (2013)
89–90 Valdivia 59–87 lines IV and V Grevemeyer et al. (1997)
91–97 Vøring 92 lines 1–7 Mjelde et al. (1997a, b, 2003), Digranes et al.

(1998). Note: lines 1, 2, 3 and 5 are not labelled
on the map (Fig. 2)

98–112 Vøring 96 lines 1–7, 8A, 8B, 9–14 Mjelde et al. (1998, 2001, 2003), Raum (2000),
Berndt et al. (2001), Raum et al. (2002, 2006).
Note: lines 7 and 11–14 are not labelled on the
map (Fig. 2)

113 Vøring 99 line AB Mjelde et al. (2005, 2007). Note: the line is not
labelled on the map (Fig. 2)

114–115 AMG 95 lines 1 and 2 Raum et al. (2005)
116 FAST Richardson et al. (1999), Smallwood et al. (2001)
117–128 FLARE lines 1–12 Richardson et al. (1999), White et al. (1999),

Fliedner & White (2003), internal reports
(Faroese Earth and Energy Directorate)

129–130 Foerbas lines 1 and 2 Internal reports (Faroese Earth and Energy
Directorate)

131 iSIMM Faroes Eccles et al. (2007), Roberts et al. (2009)
132–133 Mobil lines 1 and 2 Hughes et al. (1998), Makris et al. (2009)
134–138 AMP lines A, C–E and L Klingelhöfer et al. (2005), Kelly et al. (2007),

England (pers. comm.)
139 BANS-1 Klingelhöfer et al. (2005)
140–143 iSIMM Hatton dip line/strike line/dip

line (W)/western strike line
Smith et al. (2005), Parkin & White (2008),

White & Smith (2009)
144 LISPB Bamford et al. (1977, 1978), Barton (1992)
145 PUMA Powell & Sinha (1987)

(Continued)
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in press). Crustal thickness is also an important
parameter for deformable plate reconstructions and
basin modelling.

Dataset

The core study area for the mapping of the Moho
and basement depth comprises the NE Atlantic
Ocean, extending from the Bight Fracture Zone
and the southern limit of the Edoras Bank, Rockall
and Porcupine highs in the south, to the Fram Strait
and western Barents Sea in the north (Fig. 1). While
the focus was on the offshore region, Iceland was an
integral part of this study.

The primary database behind the compilation
consists of velocity–depth models derived from
seismic refraction data. Figure 2 shows the location

of all lines that were used in this study, and Table 1
provides the line names and references. The 202
lines under consideration were acquired between
1969 and 2011, but only 10 of them prior to 1980.
There are numerous other seismic refraction lines
in the study area that were not included. The reason
for dismissal was mainly associated with age, which
frequently was associated with a limited resolution
of the velocity models and often the published infor-
mation would not allow for a proper quality assess-
ment. The majority of lines that were considered in
this study were experiments that used ocean-bottom
seismometers (either equipped with geophones or
hydrophones or both) and seismic land stations
as receivers, and airgun arrays or explosives as the
source. Occasionally, some additional sonobuoys
were used to receive the seismic signals. Only two
lines incorporated expanded spread profiles (ESP)

Table 1. Continued

Label Line name References and comments

146–147 BP/Britoil lines 86-002 and 86-005 Roberts et al. (1988)
148 Hatton Bank line A Scrutton (1970, 1972), Bunch (1979)
149 W-reflector profile Warner et al. (1996), Morgan et al. (2000), Price &

Morgan (2000)
150 CAM 77 Barton & White (1997)
151–155 COOLE lines 1, 3A, 3B, 6 and 7 Makris et al. (1988), Lowe & Jacob (1989),

O’Reilly et al. (1991)
156 Rockall Bank Profile A Bunch (1979)
157 Goban Spur Bullock & Minshull (2005), Minshull (pers. comm.)
158–159 HADES combined lines 1 and 2, and line 3 Morewood et al. (2005), Ravaut et al. (2005),

Chabert et al. (2006), McDermott (pers. comm.)
160–166 RAPIDS lines 1, 2, 2-1, 32, 33, 34 and 4 Makris et al. (1991), Hauser et al. (1995), O’Reilly

et al. (1996), Vogt et al. (1998), Shannon et al.
(1999), Mackenzie et al. (2002), Morewood et al.
(2004, 2005)

167–168 VARNET lines A and B Masson et al. (1998), Landes et al. (2000), Hauser
et al. (2008), O’Reilly et al. (2010)

169 B96 Menke et al. (1998)
170–172 BK 80 lines X, Y and Z Bunch & Kennett (1980)
173–176 CAM 71–74 Smallwood et al. (1995), Smallwood & White

(1998)
177–178 FIRE Land and Offshore White et al. (1996), Staples et al. (1997),

Richardson et al. (1998)
179 ICEMELT Darbyshire et al. (1998, 2000)
180 IFR Sedov & Makris (2001), Bohnhoff & Makris (2004)
181 IS 2004 Erlendsson & Blischke (2013), Gunnarsson (pers.

comm.)
182–187 JMKR-95 lines 1–6 Kodaira et al. (1997, 1998a, b), Mjelde et al.

(2002a)
188–190 KRISE lines 1, 4 and 7 Hooft et al. (2006), Furmall (2010), Brandsdóttir

et al. (2015)
191–192 OBS-JM-2006 lines 1 and 2 Kandilarov et al. (2012)
193–194 RAMESSES lines 1 and 2 Navin et al. (1998), Sinha et al. (1998)
195–197 RISE lines A, B and D Weir et al. (2001)
198–201 RRISP-77 lines 1 and 3–5 Angenheister et al. (1980), Gebrande et al. (1980),

Goldflam et al. (1980), Jacoby et al. (2007)
202 SIST Bjarnason et al. (1993)

MOHO AND BASEMENT DEPTH IN THE NE ATLANTIC 211



and 12 lines from the Faeroes Large Aperture
Research Experiment (FLARE) (e.g. Fliedner &
White 2003) used long-offset seismic lines by tow-
ing two multichannel streamers with maximum
offsets of 38 km.

The secondary dataset used in this study con-
sisted of receiver functions analysis. This method
was based on the observation of teleseismic events
at either permanent or temporary deployed stations.
Receiver function analysis provides information on
the depth of the Moho beneath the station and can
fill in some gaps in the primary dataset. Regions
of particular interest were Iceland, Greenland and
Ireland. Table 2 provides information on the receiver
function studies used in the compilation, while the
station location is shown in Figure 2.

Compilation

The database consisting of the velocity models from
the seismic refraction lines and the Moho depths
from the receiver function studies was used to com-
pile both the depth to the basement and the depth to
the Moho in the NE Atlantic Ocean. The Moho is
generally characterized by an increase in P-wave
velocity to values greater than 7.6 km s21 (White
et al. 1992). This increase is often associated with
a prominent wide-angle reflection (PmP). However,
serpentinization processes in the mantle rock can
reduce the seismic velocity to values as low as
4.8 km s21 (Christensen 2004). In these cases, the
Moho depth is measured at the top of the (partially)
serpentinized mantle.

For the definition of basement, the top of the
igneous crust is used in the oceanic domain. Land-
wards of the continent–ocean boundary, basement
is measured at the top of the crystalline crust. That
way, any volcanic rocks located above the continen-
tal crystalline crust are considered as part of the
sedimentary column. Off NE Greenland, the top of
the crystalline crust could not be resolved on some
of the lines owing to the presence of consolidated
Palaeozoic and Mesozoic sedimentary rocks with

velocities exceeding 5 km s21 and a lack of a clear
seismic discontinuity at the basement. These lines
include AWI 20030200 (Voss et al. 2009), AWI
20030300 (Voss et al. 2009), AWI 20030400
(Voss & Jokat 2007) and AWI 20030500 (Voss &
Jokat 2007, 2009), and here the 5.7 km s21 velo-
city contour was used as a proxy for the basement.
This value differs from the commonly assumed
6.0 km s21 velocity contour as the base of sedi-
ments, as the existing data indicate that the crystal-
line Caledonian basement both in East Greenland
and in northern Svalbard can display P-wave veloc-
ities down to 5.5 km s21 (Schmidt-Aursch & Jokat
2005; Czuba et al. 2005). Therefore, we used the
5.7 km s21 contour as a compromise to avoid an
overestimation of the sedimentary thickness.

The original digital velocity models and naviga-
tion data were obtained for a majority of the seismic
refraction lines, thus avoiding possible inaccuracies
that result from digitizing figures from papers. For
the compilation of the basement map, only the por-
tions of the lines with seismic control on the base-
ment depth were used. In the next step, the misfit
at the cross-points was investigated. In the case of
misfits, the original velocity models and the under-
lying documentation were revisited to check the
basement constraints. Data in the vicinity of the
cross-point was then excluded along the line with
the poorer constraints.

In the case of Iceland, the basement is mostly
equivalent to the topography, with exception of
areas that are covered by glaciers and thin sediments
(mostly beach sands). The existing seismic refrac-
tion lines on Iceland often use simplified versions
of the topography as the large shot and receiver
spacing makes it unnecessary to take the small-scale
topographical variations into account. In addition,
there are a number of shot and receiver positions
that are projected onto the seismic lines, which
introduces erroneous elevations. For this reason,
the basement points in Iceland and the adjacent
coastal zone (see the extent in Fig. 3) were removed
from the dataset and replaced with the ETOPO1
Global Relief Model (Amante & Eakins 2009).
Regions with glaciers and beach sands were not
assigned a basement depth.

All data points were converted to a Lambert con-
formal projection with 408W as the central merid-
ian, and 558N and 758N as standard parallels.
Along the seismic lines, the basement depth was
sampled at a spacing of 1 km. Together with the
basement points around Iceland, a basement map
was compiled employing the universal kriging tech-
nique (Stein 1999). Prior to this, a block mean with a
point spacing of 10 km was applied to maintain lat-
eral resolution in areas with dense line spacing, such
as along the Norwegian margin. Universal kriging
within the SAGA GIS tool (Böhner & Antonić

Table 2. Receiver function studies used in the
compilation of data

Region References

Greenland Gregersen et al. (1988), Dahl-Jensen
et al. (2003), Kumar et al. (2007),
Schiffer et al. (2014)

Iceland Schlindwein (2006), Kumar et al.
(2007)

Faroe Islands Harland et al. (2009)
Ireland and

UK
Tomlinson et al. (2006), Licciardi

et al. (2014)
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2008; Olaya & Conrad 2008) was applied using
free-air gravity as a constraint for the interpolation
and extrapolation. The gravity data were obtained
from the DTU10 grid (Andersen et al. 2010; see
also fig. 1b in Haase et al., this volume, in review).

Owing to the lack of seismic constraints, the onshore
areas – with the exception of Iceland, western
Ireland, Svalbard, the Faroe Islands and some
other smaller islands – were clipped from the result-
ing basement map shown in Figure 3.

Fig. 3. Basement depth (below sea level). White lines show the contours with a 2 km interval. Seismic constraints
are shown in red. Within the dotted line around Iceland, the basement is approximated by the topography. The
dashed line indicates the continent–ocean boundary (Funck et al. 2014). Abbreviations: AB, Ammassalik Basin;
DB, Danmarkshavn Basin; FI, Faroe Islands; GIR, Greenland–Iceland Ridge; HB, Hatton Basin; IFR, Iceland–
Faroe Ridge; JM, Jan Mayen; KnR, Knipovich Ridge; KR, Kolbeinsey Ridge; LB, Lofoten Basin; MB, Møre Basin;
MR, Mohns Ridge; PB, Porcupine Basin; RR, Reykjanes Ridge; RT, Rockall Trough; TB, Thetis Basin; UK, United
Kingdom; VB, Vøring Basin.
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For the compilation of the Moho depth, velocity
models along the seismic refraction lines were re-
viewed to reject portions of the profiles on which
the Moho is not constrained by Moho reflections
(PmP) or mantle refractions (Pn). Not all publica-
tions display the ray coverage to assess the model
constraints. In these cases, the outer portions of
the models were excluded. The consistency checks
at the cross-points of the lines were performed
the same way as for the basement depth. Two
lines were completely removed from the Moho
dataset. The first line is the IFR profile (Bohnhoff
& Makris 2004) across the Iceland–Faroe Ridge,
which has a substantially lower Moho depth (23 km)
than the FIRE offshore line (Richardson et al. 1998)
along the ridge (.30 km) (Fig. 4). Given that the
SIGMA line 1 (Holbrook et al. 2001) on the con-
jugate Greenland–Iceland Ridge displays Moho
depths greater than 30 km, the IFR profile was elim-
inated from the Moho dataset.

The second dataset to be dismissed was DLC 94
line 5 (Dahl-Jensen et al. 1998) along the SE coast
of Greenland. Along this line, the Moho depth varies
between 39 and 52 km, which is substantially more
than the maximum Moho depth of 33 km on the
two nearby lines 3 (Hopper et al. 2003) and 4 (Hol-
brook et al. 2001) of the SIGMA experiment. DLC
94 line 5 has a difficult geometry, with a crooked
shot line along the coast and only three receivers
onshore. Hence, there might be out-of-plane phases
mimicking a Moho. Alternatively, the deep Moho

could be an intra-mantle reflection similar to the
one observed off West Greenland (Gerlings et al.
2009) in an area that was affected by the Iceland
plume. The depth at the top of the high-velocity
zone (7.5 km s21) on DLC 94 line 5 varies between
26 and 34 km, and would, in fact, be in reasonable
agreement with the interpreted Moho on SIGMA
lines 3 and 4.

Moho depths obtained from receiver functions
were reviewed critically before they were added to
the database. Of particular concern were the mea-
surements on Iceland, as Schlindwein (2006)
pointed out that the P–S converted phases there
are only weak, which is why the use of the receiver
function technique may be limited. For this reason,
the 53 available measurements by Kumar et al.
(2007) were cross-checked with the seismic refrac-
tion data and the seismically controlled gravity
inversion of Kaban et al. (2002). In this process,
14 receiver functions were rejected, as they were
not consistent with the other methods. Most of the
excluded stations are located close to the coast.

West of the main mapping area, the cleaned
dataset of Moho points was supplemented with
the global crustal model of Laske et al. (2013) at
a resolution of 18 (Fig. 5). In the east, the dataset
was extended with the European Moho map of
Grad et al. (2009) at a resolution of 0.18 (Fig.
5). The available computational power required a
resampling of the European Moho on a 50 km ras-
ter in the Lambert projection described above. To
equalize the data distribution, a block average filter
was applied to the entire dataset using a 10 km ras-
ter. The Moho map (Fig. 6) was then interpolated
using the SAGA GIS tool Global Ordinary Krig-
ing. The variance in the logarithmic form was
used as a quality measure and the inverse distance
was applied as an interpolation method. Finally,
the crustal thickness (Fig. 7) was calculated from
the difference between the Moho and basement
depth.

Results

The basement, Moho and crustal thickness maps
compiled from the seismic data are shown in Figures
3, 6 and 7, respectively. A brief description of the
main observations is given in this section, while
some features of the maps are discussed in more
detail in the following section.

On the basement map (Fig. 3), the Greenland–
Iceland–Faroe Ridge stands out as a zone of ele-
vated basement. On the Greenland–Iceland Ridge,
the maximum basement depth along SIGMA
line 1 is 1.6 km below sea level (Holbrook et al.
2001). In Iceland, the basement is above sea level
and the adjacent mid-oceanic spreading ridges (the

Fig. 4. Comparison of P-wave velocity models of the
intersecting seismic refraction lines FIRE Offshore
(Richardson et al. 1998) and IFR (Bohnhoff & Makris
2004) on the Iceland–Faroe Ridge. Velocities are
specified in km s21.
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Reykjanes and Kolbeinsey ridges) are also char-
acterized by elevated basement. However, the base-
ment depth on these ridges increases with increasing
distance from Iceland.

Another prominent feature on the basement map
(Fig. 3) is the continuous basin along the NW Euro-
pean margin that extends from the southern Rockall
Trough to the Lofoten Basin. The maximum base-
ment depth in this zone is 15 km in the Møre and
Vøring basins off mid-Norway. The SW Barents
Shelf is also characterized by a deep basement,
often exceeding 8 km in depth and up to a maximum
depth of 17 km. The sedimentary basins off East
Greenland are not well covered by seismic refrac-
tion profiles, but there is an indication for basement
depths exceeding 8 km off NE Greenland. A smaller
basin in the south (the Ammassalik Basin) will be
discussed below.

Similar to the basement map, the Greenland–
Iceland and Iceland–Faroe ridges are very promi-
nent on the depth to Moho map (Fig. 6). The

minimum Moho depth on these ridges is 29 km,
while the maximum Moho depth beneath Iceland
is 39 km. South and north of Iceland, the Moho is
generally shallowest along the spreading ridges
(5–10 km) from where the Moho deepens towards
the continent–ocean boundary (15–20 km). This
increase in Moho depth is related to the cooling of
the lithosphere with age and to excess magmatism
around the time of break-up, which resulted in
anomalously thick oceanic crust close to the conti-
nent–ocean boundary (Holbrook et al. 2001). The
basins along the NW European margins are associ-
ated with a relatively shallow Moho depth, best
seen in the Rockall Trough (12 km) and the Porcu-
pine Basin (10 km).

Onshore Greenland, the Moho is deepest in the
southern part with a depth of 40–45 km, while the
NW part displays depths of 35–40 km (Fig. 6). In
NW Europe, the deepest Moho in the mapping
area is found in Scandinavia (47 km: Grad et al.
2009). In Ireland and the UK, the Moho is

Fig. 5. Datasets used for the compilation of the Moho depth. Circles and lines show the receiver functions and
seismic refraction lines, respectively.
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substantially shallower, varying mainly between 30
and 36 km.

The crustal thickness map (Fig. 7) displays sim-
ilar characteristics to the Moho map (Fig. 6). The
Greenland–Iceland–Faroe Ridge has a minimum

thickness of 28 km. South of the ridge, the thickness
of the oceanic crust varies mostly between 5 and
8 km, not too dissimilar from the average oceanic
crust thickness of 7 km (White et al. 1992). North
of Iceland, the crust produced along the Kolbeinsey

Fig. 6. Moho map (depth below sea level). White lines show the contours with a 5 km interval. Solid lines and
yellow circles mark the location of seismic refraction data and receiver functions, respectively. The dashed line
indicates the continent–ocean boundary (Funck et al. 2014). Grey lines mark active and extinct spreading ridges.
Abbreviations: AR, Aegir Ridge; EJMFZ, East Jan Mayen Fracture Zone; ER, Eirik Ridge; FI, Faroe Islands; GIR,
Greenland–Iceland Ridge; HH, Hatton High; IFR, Iceland–Faroe Ridge; JM, Jan Mayen; KnR, Knipovich Ridge;
KR, Kolbeinsey Ridge; MR, Mohns Ridge; PB, Porcupine Basin; RR, Reykjanes Ridge; RH, Rockall High; RT,
Rockall Trough; UK, United Kingdom; VS, Vøring Spur; WJMFZ, West Jan Mayen Fracture Zone.
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Ridge is around 8 km thick (e.g. Kodaira et al.
1997), while the crust that formed at the now extinct
Aegir Ridge is mostly thinner than 6 km (e.g. Brei-
vik et al. 2006). Further north along the Mohns
Ridge, crustal thickness decreases to 4–5 km
(Klingelhöfer et al. 2000), and along the Knipovich
Ridge segment, the thickness varies between 3 km

(Hermann & Jokat 2013) and 7 km (Kandilarov
et al. 2010).

Within the Rockall Trough, the crust thickens
from 5 km in the south to 10 km in the north
(Fig. 7). Further to the north, within the Faroe–Shet-
land Trough, the thickness of the crystalline crust
thins again to values as small as 7 km (Makris

Fig. 7. Crustal thickness map with a contour interval of 5 km (white lines). Data points with Moho and basement
constraints are shown in grey and red, respectively. The dashed line indicates the continent–ocean boundary (Funck
et al. 2014). Grey lines mark active and extinct spreading ridges. Abbreviations: AR, Aegir Ridge; FI, Faroe Islands;
GIR, Greenland–Iceland Ridge; IFR, Iceland–Faroe Ridge; JM, Jan Mayen; KnR, Knipovich Ridge; KR,
Kolbeinsey Ridge; MR, Mohns Ridge; Reykjanes Ridge; RT, Rockall Trough; UK, United Kingdom.
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et al. 2009). Likewise, the basins off mid-Norway
are characterized by a thin crust with a minimum
thickness of 5 km (e.g. Raum 2000).

Discussion

Conjugate margin comparison

The maps displaying basement depth (Fig. 3), Moho
depth (Fig. 6) and crustal thickness (Fig. 7) are com-
piled from seismic refraction data that are unevenly
distributed across the study area (Fig. 2). In particu-
lar, the NW European margin is much better
sampled with seismic data when compared to the
East Greenland continental margin. This offers the
opportunity to learn from NW Europe when study-
ing the structures found along the East Greenland
coast. At the same time, the conjugate margin com-
parison can reveal potential shortcomings of the
compilation that result from the distribution or inter-
pretation of data.

Along the SE Greenland margin, the Ammassa-
lik Basin shows up as a 3 km-deep basement low
(Fig. 3). The structure is not sampled by seismic
refraction data, but was introduced by the kriging
algorithm that used free-air gravity (Andersen
et al. 2010) as a constraint. Hence, the basin outline
correlates with the corresponding gravity low in
that area. There are few seismic reflection data
available that could independently confirm the
shape and depth of the basin. Hopper et al. (1998)
were the first to notice the presence of a sedimentary
basin in this region: they interpreted the structure as
a rift system with a sediment infill corresponding
to 1 s two-way travel time (TWT). Reprocessing
of the seismic data suggests a probable sediment
thickness of at least 3 km (Gerlings et al., this vol-
ume, in review).

When the basement depth is reconstructed for
Chron C24 (Fig. 8) using the rotation poles of
Gaina (2014), the Ammassalik Basin lies just to
the north of the Anton Dohrn Lineament Complex
at the conjugate NW European margin. Kimbell
et al. (2005) identified three individual lineaments
within this complex. The continent–ocean boun-
dary is shifted landwards across the complex (when
moving from south to north), while the axis of
the Rockall Trough is offset seawards by some
200 km. The Hatton Basin does not continue north-
wards of the Anton Dohrn Lineament Complex.
This is why the Ammassalik Basin could be a
NW-shifted continuation of the Hatton Basin that
was left on the Greenland side at the time of final
break-up. This shift would essentially be similar
to the one observed between the northern and south-
ern Rockall Trough. Hence, knowledge of the
poorly studied Ammassalik Basin can probably
be increased by comparison to the Hatton Basin.

In the Hatton Basin, the total sediment thickness is
more than 6 km in the northern part (Hopper et al.,
this volume, in prep) and this could be an indication

Fig. 8. Reconstruction of the basement depth for
Chron C24 using the rotation pole of Gaina (2014).
Europe is fixed in this reconstruction and the rotation
of Greenland is carried out with GMT (Generic
Mapping Tools) software (Wessel et al. 2013). White
lines show the contours with a 2 km interval. The solid
and dashed red lines mark the continent–ocean
boundary (COB) of Greenland and NW Europe,
respectively (Funck et al. 2014). Note that there is an
overlap of the COB in the northernmost area. Dashed
lines indicate lineaments. Abbreviations: AB,
Ammassalik Basin; ADLC, Anton Dohrn Lineament
Complex; BL, Bivrost Lineament; DB, Danmarkshavn
Basin; HB, Hatton Basin; LB, Lofoten Basin; MB,
Møre Basin; PB, Porcupine Basin; RH, Rockall High;
RT, Rockall Trough; TB, Thetis Basin; UK, United
Kingdom; VB, Vøring Basin.
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of the possible depth of the Ammassalik Basin.
Hence, the kriging technique with gravity as a con-
straint may underestimate the basement depth if
seismic data are lacking.

Such an underestimation of basement depth
also occurs on the NE Greenland continental shelf.
The basement reconstruction for Chron C24
(Fig. 8) shows that the deep basins off mid-Norway
(the Møre, Vøring and Lofoten basins) correlate
with the basins off NE Greenland (the Danmark-
shavn and Thetis basins). However, the Norwegian
basins are up to 15 km thick, while the maxi-
mum depth off Greenland seems to be only 8 km.
The seismic refraction constraints within the
basins off NE Greenland are restricted to the south-
ern edge of the Danmarkshavn Basin (line AWI
20030300) and the eastern edge of the Thetis
Basin (line AWI 20030200) (Fig. 3). In addition,
the basement on these two lines is only poorly
resolved by the seismic data and is therefore approx-
imated by the 5.7 km s21 velocity contour. Newly
released seismic reflection data indicate a maxi-
mum sediment thickness of 18 km (Hopper et al.,
this volume, in prep), which is in better agreement
with the mid-Norwegian basins and also with the
SW Barents Sea.

While the gravity constraints used in the kriging
procedure could outline the general structure of
the basins not covered by seismic refraction data,
this method seems to underestimate the basement
depth, as seen in the two examples from Greenland.
Initially, gravity constraints were also tested for
the kriging of the Moho depth. In particular, filtered
versions of the Bouguer gravity anomaly were used
for this purpose. However, these resulted in some
features, such as crustal roots, that were difficult
to explain in some cases. This is why the final krig-
ing of the Moho was performed without gravity
constraints. Instead, regional and global datasets
(Grad et al. 2009; Laske et al. 2013) were used
to constrain the surrounding areas. Assuming iso-
stasy, the basins on the continental shelves should
be associated with a shallowing of the Moho.
While this is the case for basins covered with seis-
mic data (e.g. the Rockall Trough), the basins off
Greenland (the Ammassalik, Danmarkshavn and
Thetis basins) do not show a corresponding expres-
sion in the Moho depth. In these areas, the Moho
depth obtained from seismically controlled gra-
vity inversion (Haase et al., this volume, in review)
provides greater structural detail.

Thickness of oceanic crust

The oceanic crust in the NE Atlantic Ocean displays
variations in thickness ranging between 2 and 40 km
(Fig. 9) compared to an average of 7 km for normal
oceanic crust (White et al. 1992). Areas with thick

oceanic crust can generally be related to an
increased magmatism associated with the Iceland
plume. The Greenland–Iceland–Faroe Ridge is
characterized by a 28–40 km-thick crust, which
White (1997) interpreted as the interaction of a ris-
ing mantle plume with a spreading ridge. He sug-
gested that the thickness variations were related to
variations in the temperature of the mantle or mantle
flow rates, or both.

South of Iceland, the initial oceanic crustal thick-
ness at break-up is generally greater than 15 km
(Fig. 9) and decreases with increasing distance
from the plume (cf. Holbrook et al. 2001). Over
time, the thickness of the oceanic crust decreased
to values of around 8 km at a distance of 250 km
from the continent–ocean boundary. Refraction
seismic experiments on the Reykjanes Ridge away
from Iceland indicate variations in the crustal thick-
ness that ranged from 4 to 9 km (Bunch & Kennett
1980; Smallwood et al. 1995; Navin et al. 1998;
Smallwood & White 1998; Jacoby et al. 2007).

North of Iceland, the initial spreading after
break-up was along the Aegir Ridge, which lasted
until 30 Ma when spreading there became extinct
(Gaina et al. 2009). At that time, the Kolbeinsey
Ridge started to develop from the south, with final
detachment of the Jan Mayen microcontinent from
East Greenland occurring at 20 Ma (Chron C6b)
(Gaina et al. 2009; Peron-Pinvidic et al. 2012).
The thickness of the oceanic crust that was formed
in the northern portions of the Aegir and Kolbeinsey
ridges differs significantly (Fig. 9). Between the
Jan Mayen microcontinent and mid-Norway, the
initial crustal thickness at break-up was around
11 km (Breivik et al. 2006), which is less than that
observed in SE Greenland at a similar distance
from the Iceland plume (19 km: Hopper et al.
2003). Close to the extinct Aegir Ridge, the crustal
thickness is as little as 4 km (Breivik et al. 2006). In
contrast, the crust at the Kolbeinsey Ridge has a
thickness of between 7 and 10 km (Kodaira et al.
1997). Breivik et al. (2006) speculated that the
thin oceanic crust between the Jan Mayen microcon-
tinent and mid-Norway is caused by interaction
with the Iceland plume. They suggested that the
construction of the magmatic Greenland–Iceland–
Faroe Ridge to the south depleted the mantle.
Asthenospheric flow transported this depleted man-
tle to the Aegir Ridge, giving a lower than normal
magma productivity. Howell et al. (2014) employed
three-dimensional (3D) numerical models that sim-
ulated a plume interacting with rifting continents and
spreading ridges. Their results support a plume with
a relatively low flux (95–128 m3 s21) to explain the
restriction of the relatively thick crust in the south-
ern part of the Aegir Ridge.

The Kolbeinsey Ridge terminates at the West Jan
Mayen Fracture Zone. Northwards of the fracture
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zone, the crustal thickness decreases markedly
(Fig. 9). The Mohns Ridge produced thicker than
normal oceanic crust just after break-up, but most
of the younger crust is only between 4 and 6 km
thick. The main exception is the southernmost part
of the Mohns Ridge, which is affected by the

volcanism on the Jan Mayen islands. Rickers et al.
(2013) could identify two distinct low-velocity
zones in the mantle: one centred beneath Iceland
and one beneath the northern Kolbeinsey Ridge.
At depth, the latter anomaly covers the whole length
of the Kolbeinsey Ridge and extends beyond the

Fig. 9. The thickness of oceanic crust. Contours from 2 to 8 km are shown as thin white lines with an interval of
2 km. Bold white lines are contours .10 km, where a contour interval of 5 km is used. The continent–ocean
boundary (COB) is marked by a dashed line. Red lines indicate active and extinct spreading ridges. Abbreviations:
AR, Aegir Ridge; EJMFZ, East Jan Mayen Fracture Zone; GIR, Greenland–Iceland Ridge; IFR, Iceland–Faroe
Ridge; JMMC, Jan Mayen microcontinent; KnR, Knipovich Ridge; KR, Kolbeinsey Ridge; MR, Mohns Ridge; RR,
Reykjanes Ridge; WJMFZ, West Jan Mayen Fracture Zone.
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West Jan Mayen Fracture Zone to the southern
Mohns Ridge. Just to the north of the West Jan
Mayen Fracture Zone, close to Jan Mayen, the
crustal thickness is 10 km (Kandilarov et al.
2012). Based on the distinct mantle velocity anom-
alies, Rickers et al. (2013) see two seperate hotspots
beneath Iceland and Jan Mayen, which can be also
supported by isotope studies (Schilling et al. 1999).

On a series of seismic refraction lines on the
eastern flank of the Mohns Ridge, Klingelhöfer
et al. (2000) modelled a mean crustal thickness
of 4 km that was produced at a full spreading rate
of 14 mm a21. For spreading rates greater than
20 mm a21, there is little variation in crustal thick-
ness: however, the thickness drops rapidly for
lower rates (Dick et al. 2003). Crust that was pro-
duced at the Knipovich Ridge (a full spreading
rate of 14 mm a21: DeMets et al. 1990, 1994) is
often just 3 km thick (Hermann & Jokat 2013), in
particular to the west of the present location of
the ridge. To the east, the crust is generally slightly
thicker. Even though there are some asymmetries in
crustal accretion at the Knipovich Ridge (Gaina
2014), a systematic difference in crustal thickness
on either side of the ridge is difficult to explain.
This is why it is worthwhile revisiting the datasets
on which the crustal thickness compilation is based.

The main profile that is constraining the crustal
thickness west of the Knipovich Ridge is line
AWI 20090200 (labelled as number 14 in Fig. 2)
(Hermann & Jokat 2013). This line displays a
2–3 km-thick oceanic crust (Fig. 10) that lacks a
distinct oceanic layer 3 (Hermann & Jokat 2013).
Some 30 km to the south, another profile extends
from the Knipovich Ridge towards the NE (Barents
98 line 8, labelled as number 43 in Fig. 2). Close to
the ridge, this line exhibits 6–7 km-thick crust
(Fig. 10) with distinct oceanic layers 2 and 3 (Ljones
et al. 2004). A further profile in close proximity is
Knipovich 02 line 1 (labelled as numbers 48 in
Fig. 2) (Kandilarov et al. 2008). Here, the crust is
4 km thick adjacent to the ridge (Fig. 10), which is
in better agreement with line AWI 20090200. How-
ever, Kandilarov et al. (2008) also interpreted the
presence of an oceanic layer 3, in contrast to the
model of line AWI 20090200 (Hermann & Jokat
2013), on the western side of the Knipovich Ridge.
Although crust formed at ultraslow-spreading ridges
can display large variations in thickness and veloc-
ity structure (Jokat et al. 2003; Minshull et al. 2006),
some differences may also result from different
approaches in the velocity modelling and the sub-
sequent interpretation of the model. This is why
the three lines will be briefly reviewed here.

The total thickness of oceanic layer 2 is similar
on lines AWI 20090200 and Barents 98 line 1
(Fig. 10), even though the level of detail in the mod-
els is different. On the AWI line, Hermann & Jokat

(2013) differentiated three sublayers (2A, 2B and
2C), while no such subdivision is seen on Barents
98 line 8 (Ljones et al. 2004). However, the velocity
range observed within layer 2 is not too dissimilar.
The main difference here is that the AWI line
resolves velocities as low as 2.7 km s21 at the top
of the oceanic crust that are not resolved on Barents
98 line 8.

The potentially critical issue on Barents 98 line 8
is the interpreted oceanic layer 3 (Ljones et al. 2004)
with velocities of 6.4–6.9 and 7.2 km s21 in layers
3A and 3B, respectively (Fig. 10). Ljones et al.
(2004) stated that there were a total of 107 travel
time picks for reflections between layers 2 and 3A,
while only 11 Moho reflections (PmP) were picked.
With a shot spacing of 200 m, these 11 picks corre-
spond to a 2 km-long segment along which the
PmP is observed. With such a limited number of
observations, the Moho appears not to have been
mapped reliably by reflections. In contrast, the
numerous observed reflections between layers 2
and 3 are also unusual, as this is commonly not a
reflective boundary. Minshull et al. (2006) did not
report a single such reflection in their dataset from
the ultraslow-spreading SW Indian Ridge, and the
same is true for the Mohns Ridge (Klingelhöfer
et al. 2000). However, both of these other studies
show frequent reflections from the Moho. This is
why an alternate explanation for the interpreted
layer 3 should be looked into. Instead of having
a gabbroic composition, a partially serpentinized
mantle rock may explain the seismic observations.

The Moho interpretation on line AWI 20090200
is also unclear. Despite a modelled velocity contrast
of .1.5 km s21 (Fig. 10), not a single Moho reflec-
tion is observed in a 140 km-wide zone adjacent to
the Knipovich Ridge (Hermann & Jokat 2013).
Hence, there might not be a sharp Moho, as indi-
cated in the model, but rather a gradual velocity
transition from layer 2C into the mantle. In this
case, the interpreted layer 2C or parts of it could,
in fact, be a highly serpentinized mantle. Never-
theless, there are some large misfits between the
observed and calculated travel-time curves along
the AWI line. For example, ocean-bottom seismom-
eter (OBS) 216 close to the Knipovich Ridge (fig. 2c
in Hermann & Jokat 2013) shows that the calculated
travel times of the mantle refraction are up to
300 ms too fast, which could mean that the Moho
locally could be up to 1.8 km deeper than shown
in the velocity model.

When the AWI profile is compared with the
Knipovich 02 line 1 (Fig. 10), there is a good match
between the combined layers 2A and 2B on line
AWI 20090200 (Hermann & Jokat 2013), and oce-
anic layer 2 on the Knipovich 02 line 1 (Kandilarov
et al. 2008). This applies to both layer thickness and
velocities. The underlying layer is interpreted as
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layer 2C on the AWI profile (4.8–6.1 km s21) and
as layer 3 on the Knipovich 02 line 1 (5.6–
7.0 km s21). Hence, based on the modelled veloci-
ties, the different interpretations seem to be justified.
However, as discussed earlier, there is also the
possibility that part of the interpreted layer 2C on
the AWI line could be highly serpentinized mantle.

The definition of the Moho along the Knipovich
02 line 1 seems to be based mainly on mantle refrac-
tions (Pn). Kandilarov et al. (2008) showed only one
station that recorded a Moho reflection (PmP) and

here the misfit is up to 200 ms. Close to the Knipo-
vich Ridge, the Moho is difficult to model with Pn
phases alone, as the model indicates only a small
velocity increase across the Moho. With that, there
is no distinct change in the phase velocity of the
first arrivals between the crustal and mantle arrivals
that would allow for an unequivocal phase inter-
pretation. From the previous discussion, it can be
seen that the differences in the crustal structure of
the lines at the Knipovich Ridge may, in fact,
be less than that indicated by the velocity models.

Fig. 10. Comparison of the P-wave velocity model of seismic refraction line AWI 20090200 (Hermann & Jokat
2013) with (top) the Barents 98 line 8 (Ljones et al. 2004), and (bottom) the Knipovich 02 line 1 (Kandilarov et al.
2008). For all lines, a 60 km-wide portion adjacent to the Knipovich Ridge is shown. Velocities are specified in
km s21. Sed., sediments.
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In order to decide whether the differences are real
or not, the lines should be reanalysed together.

Conclusions

The maps of the basement and Moho depth are use-
ful tools to use in the discussion of first-order crustal
features in the NE Atlantic realm. Although the
region is not evenly covered with seismic refraction
data and receiver function analyses, there is an ade-
quate coverage of the large-scale tectonic structures.
Data used in this compilation were acquired over a
timespan of more than 40 years, and are therefore
very variable in the shot and receiver spacing, as
well as in the modelling technique. In addition,
our understanding of rifting processes at continental
margins has considerably changed over this period,
which, of course, is reflected in the conceptual mod-
els on which the interpretation of the velocity mod-
els are based. Nevertheless, the basement and Moho
depth are generally fairly robust features of velocity
models, with the exception of areas with thin crust.
Here, the mantle rock can be partially serpentinized
and display velocities as low as 4.8 km s21 at a ser-
pentinization rate of 100% (Christensen 2004), and,
hence, may erroneously be interpreted as crustal
rock. One important measure of quality control for
the basement and Moho compilation was the fit at
cross-points to check for internal consistency of
the datasets. While this helped to eliminate some
erroneous data from the compilation, the maps are
only as good as the underlying velocity models.

Using seismic refraction data to map the base-
ment depth has two advantages compared to seismic
reflection data. One is that no time-to-depth conver-
sion is necessary as the velocity models are devel-
oped in the depth domain. The other is that the
basement is often better defined on seismic refrac-
tion data, in particular in areas with deep sedimen-
tary basins or where basalts are interbedded with
sedimentary rocks. Many seismic refraction lines
benefit from coincident reflection data by incorpo-
rating detailed basement relief from there. The dis-
advantage is that the data coverage with seismic
refraction lines is not nearly as good as that with
reflection lines. However, using the kriging method
with gravity as a constraint, a rather detailed base-
ment map could be compiled from the seismic
refraction data (Fig. 3). That way, even basement
lows that are not covered by seismic data are imaged,
such as the Ammassalik Basin off SE Greenland.
The basin depths of these seismically unconstrained
features may be erroneous, but at least allow a qual-
itative assessment and comparison with the conju-
gate margin to be made (Fig. 8).

Our results show that the continuous rift basins
extending from the southern Rockall Trough to the

Lofoten Basin carry on to the Danmarkshavn and
Thetis basins of NE Greenland (Fig. 8). Similarly,
the Hatton Basin off Ireland seems to continue
along with the Ammassalik Basin in SE Greenland.
These correlations are most prominent on the base-
ment map (Figs 3 & 8), while details of the Moho
geometry beneath the Greenlandic basins are not
resolved. This is related to a lack of seismic refrac-
tion data in these regions. However, 3D gravity
modelling based on the seismic constraints is able
to show a continuity of these features on the crustal
thickness and Moho maps (Haase et al., this volume,
in review).

The crustal thickness that is compiled from the
basement and Moho maps can be used to calculate
crustal stretching factors and first-order crustal
strength profiles, which has done by Kimbell et al.
(this volume, in press) for the NW European margin.
In addition, deformable plate reconstructions
depend on good estimates of crustal thickness.
Apparent inconsistencies in the crustal thickness
map, such as the generally thinner oceanic crust
west of the Knipovich Ridge compared to the east,
can help to identify datasets that it might be worth-
while remodelling/reanalysing.
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Brandsdóttir, B., Hooft, E.E.E., Mjelde, R. & Murai,
Y. 2015. Origin and evolution of the Kolbeinsey Ridge
and Iceland Plateau, N-Atlantic. Geochemistry, Geo-
physics, Geosystems, 16, 612–634, https://doi.org/
10.1002/2014gc005540

Breivik, A.J., Mjelde, R., Grogan, P., Shimamura, H.,
Murai, Y., Nishimura, Y. & Kuwano, A. 2002. A
possible Caledonide arm through the Barents Sea
imaged by OBS data. Tectonophysics, 355, 67–97,
https://doi.org/10.1016/S0040-1951(02)00135-X

Breivik, A.J., Mjelde, R., Grogan, P., Shimamura, H.,
Murai, Y. & Nishimura, Y. 2003. Crustal structure
and transform margin development south of Svalbard
based on ocean bottom seismometer data. Tectono-
physics, 369, 37–70, https://doi.org/10.1016/s0040-
1951 (03)00131-8

Breivik, A.J., Mjelde, R., Grogan, P., Shimamura, H.,
Murai, Y. & Nishimura, Y. 2005. Caledonide
development offshore–onshore Svalbard based on
ocean bottom seismometer, conventional seismic, and

potential field data. Tectonophysics, 401, 79–117,
https://doi.org/10.1016/j.tecto.2005.03.009

Breivik, A.J., Mjelde, R., Faleide, J.I. & Murai, Y.
2006. Rates of continental breakup magmatism and
seafloor spreading in the Norway Basin-Iceland
plume interaction. Journal of Geophysical Research,
111, B07102, https://doi.org/10.1029/2005jb004004

Breivik, A.J., Faleide, J.I. & Mjelde, R. 2008. Neogene
magmatism northeast of the Aegir and Kolbeinsey
ridges, NE Atlantic: spreading ridge–mantle plume
interaction? Geochemistry, Geophysics, Geosystems,
9, Q02004, https://doi.org/10.1029/2007gc001750

Breivik, A.J., Faleide, J.I., Mjelde, R. & Flueh, E.R.
2009. Magma productivity and early seafloor spread-
ing rate correlation on the northern Vøring Margin,
Norway – constraints on mantle melting. Tectonophy-
sics, 468, 206–223, https://doi.org/10.1016/j.tecto.
2008.09.020

Breivik, A.J., Mjelde, R., Raum, T., Faleide, J.I.,
Murai, Y. & Flueh, E.R. 2011. Crustal structure
beneath the Trøndelag Platform and adjacent areas of
the Mid-Norwegian margin, as derived from
wide-angle seismic and potential field data. Norwegian
Journal of Geology, 90, 141–161.

Bullock, A.D. & Minshull, T.A. 2005. From con-
tinental extension to seafloor spreading: crustal struc-
ture of the Goban Spur rifted margin, southwest
of the UK. Geophysical Journal International, 163,
527–546, https://doi.org/10.1111/j.1365-246X.2005.
02726.x

Bunch, A.W.H. 1979. A detailed seismic structure of
Rockall Bank (558N, 158W) – a synthetic seismogram
analysis. Earth and Planetary Science Letters, 45,
453–463, https://doi.org/10.1016/0012-821x(79)90
144-4

Bunch, A.W.H. & Kennett, B.L.N. 1980. The crustal
structure of the Reykjanes Ridge at 598 30′N. Geo-
physical Journal of the Royal Astronomical Society,
61, 141–166, https://doi.org/10.1111/j.1365-246X.
1980.tb04310.x

Chabert, A., Ravaut, C., Readman, P.W., O’Reilly,
B.M. & Shannon, P.M. 2006. Structure of the Hatton
Basin (North Atlantic) from wide-angle and reflection
seismic data. American Geophysical Union Fall Meet-
ing, 11–15 December 2006, San Francisco, CA, USA.
EOSTrans: AGU, 87 (52), Fall Meeting Supplement,
Abstract T53A-1581.

Christensen, N.I. 2004. Serpentinites, peridotites, and
seismology. International Geology Review, 46, 795–
816, https://doi.org/10.2747/0020-6814.46.9.795

Clark, S.A., Faleide, J.I. et al. 2013. Stochastic velocity
inversion of seismic reflection/refraction traveltime
data for rift structure of the southwest Barents Sea. Tec-
tonophysics, 593, 135–150, https://doi.org/10.1016/
j.tecto.2013.02.033

Czuba, W., Ritzmann, O., Nishimura, Y., Grad, M.,
Mjelde, R., Guterch, A. & Jokat, W. 2004. Crustal
structure of the continent–ocean transition zone along
two deep seismic transects in north-western Spitsber-
gen. Polish Polar Research, 25, 205–221.

Czuba, W., Ritzmann, O., Nishimura, Y., Grad, M.,
Mjelde, R., Guterch, A. & Jokat, W. 2005. Crustal
structure of northern Spitsbergen along the deep seismic
transect between the Molloy Deep and Nordaustlandet.

T. FUNCK ET AL.224

https://doi.org/10.1016/j.tecto.2013.08.004
https://doi.org/10.1016/j.tecto.2013.08.004
https://doi.org/10.1016/j.tecto.2013.08.004
https://doi.org/10.1144/gsjgs.133.5.0481
https://doi.org/10.1144/gsjgs.133.5.0481
https://doi.org/10.1111/j.1365-246X.1978.tb06755.x
https://doi.org/10.1111/j.1365-246X.1978.tb06755.x
https://doi.org/10.1111/j.1365-246X.1978.tb06755.x
https://doi.org/10.1111/j.1365-246X.1992.tb00881.x
https://doi.org/10.1111/j.1365-246X.1992.tb00881.x
https://doi.org/10.1111/j.1365-246X.1992.tb00881.x
https://doi.org/10.1111/j.1365-246X.1992.tb00881.x
https://doi.org/10.1029/96jb03387
https://doi.org/10.1029/96jb03387
https://doi.org/10.1029/96jb03387
https://doi.org/10.1023/a:1012089532282
https://doi.org/10.1023/a:1012089532282
https://doi.org/10.1023/a:1012089532282
https://doi.org/10.1029/92jb02412
https://doi.org/10.1029/92jb02412
https://doi.org/10.1029/92jb02412
https://doi.org/10.1016/S0166-2481(08)00008-1
https://doi.org/10.1016/S0166-2481(08)00008-1
https://doi.org/10.1016/S0166-2481(08)00008-1
https://doi.org/10.1016/S0166-2481(08)00008-1
https://doi.org/10.1016/S0166-2481(08)00008-1
https://doi.org/10.1016/j.jog.2004.02.004
https://doi.org/10.1016/j.jog.2004.02.004
https://doi.org/10.1002/2014gc005540
https://doi.org/10.1002/2014gc005540
https://doi.org/10.1002/2014gc005540
https://doi.org/10.1016/S0040-1951(02)00135-X
https://doi.org/10.1016/S0040-1951(02)00135-X
https://doi.org/10.1016/S0040-1951(02)00135-X
https://doi.org/10.1016/S0040-1951(02)00135-X
https://doi.org/10.1016/s0040-1951(03)00131-8
https://doi.org/10.1016/s0040-1951(03)00131-8
https://doi.org/10.1016/s0040-1951(03)00131-8
https://doi.org/10.1016/s0040-1951(03)00131-8
https://doi.org/10.1016/j.tecto.2005.03.009
https://doi.org/10.1016/j.tecto.2005.03.009
https://doi.org/10.1029/2005jb004004
https://doi.org/10.1029/2005jb004004
https://doi.org/10.1029/2007gc001750
https://doi.org/10.1029/2007gc001750
https://doi.org/10.1016/j.tecto.2008.09.020
https://doi.org/10.1016/j.tecto.2008.09.020
https://doi.org/10.1016/j.tecto.2008.09.020
https://doi.org/10.1111/j.1365-246X.2005.02726.x
https://doi.org/10.1111/j.1365-246X.2005.02726.x
https://doi.org/10.1111/j.1365-246X.2005.02726.x
https://doi.org/10.1111/j.1365-246X.2005.02726.x
https://doi.org/10.1016/0012-821x(79)90144-4
https://doi.org/10.1016/0012-821x(79)90144-4
https://doi.org/10.1016/0012-821x(79)90144-4
https://doi.org/10.1016/0012-821x(79)90144-4
https://doi.org/10.1016/0012-821x(79)90144-4
https://doi.org/10.1111/j.1365-246X.1980.tb04310.x
https://doi.org/10.1111/j.1365-246X.1980.tb04310.x
https://doi.org/10.1111/j.1365-246X.1980.tb04310.x
https://doi.org/10.1111/j.1365-246X.1980.tb04310.x
https://doi.org/10.2747/0020-6814.46.9.795
https://doi.org/10.2747/0020-6814.46.9.795
https://doi.org/10.2747/0020-6814.46.9.795
https://doi.org/10.1016/j.tecto.2013.02.033
https://doi.org/10.1016/j.tecto.2013.02.033
https://doi.org/10.1016/j.tecto.2013.02.033


Geophysical Journal International, 161, 347–364,
https://doi.org/10.1111/j.1365-246X.2005.02593.x

Czuba, W., Grad, M. et al. 2008. Seismic crustal struc-
ture along the deep transect Horsted’05, Svalbard.
Polish Polar Research, 29, 279–290.

Czuba, W., Grad, M. et al. 2011. Continent–ocean-
transition across a trans-tensional margin segment:
off Bear Island, Barents Sea. Geophysical Journal
International, 184, 541–554, https://doi.org/10.
1111/j.1365-246X.2010.04873.x

Dahl-Jensen, T., Thybo, H., Hopper, J. & Rosing, M.
1998. Crustal structure at the SE Greenland mar-
gin from wide-angle and normal incidence seismic
data. Tectonophysics, 288, 191–198, https://doi.org/
10.1016/s0040-1951(97)00292-8

Dahl-Jensen, T., Larsen, T.B. et al. 2003. Depth to
Moho in Greenland: receiver-function analysis sug-
gests two Proterozoic blocks in Greenland. Earth and
Planetary Science Letters, 205, 379–393, https://
doi.org/10.1016/s0012-821x(02)01080-4

Darbyshire, F.A., Bjarnason, I.T., White, R.S. &
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Vining, B.A. (eds) Petroleum Geology: North-West
Europe and Global Perspectives – Proceedings of
the 6th Petroleum Geology Conference. Geological
Society, London, 933–945, https://doi.org/10.1144/
0060933

Kimbell, G.S., Stewart, M.A. et al. In press. Controls
on the location of compressional deformation on the
NW European margin. In: Péron-Pinvidic, G., Hop-
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