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Abstract 
 
Modern species distribution models account for spatial autocorrelation in order to obtain 
unbiased statistical inference on the effects of covariates, to improve the model’s predictive 
ability through spatial interpolation, and to gain insight in the spatial processes shaping the 
data. Somewhat analogously, hierarchical approaches to community-level data have been 
developed to gain insights into community-level processes, and to improve species-level 
inference by borrowing information from other species that are either ecologically or 
phylogenetically related to the focal species. We unify spatial and community-level structures 
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by developing spatially explicit joint species distribution models. The models utilize spatially 
structured latent factors to model missing covariates as well as species-to-species associations 
in a statistically and computationally effective manner. We illustrate that the inclusion of the 
spatial latent factors greatly increases the predictive performance of the modelling approach 
with a case study of 55 species of butterfly recorded on a 10 km x 10 km grid in Great Britain 
consisting of 2,609 grid cells.  
 
Key words. Joint species distribution models, community models, spatial models, latent 
factors 
 
Introduction 
 
Conceptual and theoretical research in community ecology has long emphasized that the 
dynamics and distributions of species communities are shaped by the interplay between i) 
environmental filtering, ii) species interactions, and iii) spatial and stochastic processes 
(Leibold et al. 2004). One reason why metacommunity theories are still poorly linked with 
data is the lack of statistical frameworks that enable these three factors to be integrated and 
that would be applicable for data typically available in community ecological studies (Logue 
et al. 2011). As we briefly review below, the last decade has brought major statistical 
advances in species distribution modelling that helps to bridge this gap between theory and 
data: joint species distribution modelling facilitates the assessment of environmental filtering 
and species interactions, whereas spatially and spatio-temporally structured species 
distributions models enable one to incorporate the effects of spatial and stochastic processes. 
In this paper, we bring these developments together by developing a statistical framework for 
spatially explicit joint species distribution modelling. 
 
In their influential review, Ferrier and Guisan (2006) classified strategies for analysing 
community-level species distribution data into the three categories of ‘assemble first, predict 
later’ (e.g. modelling species richness as the response variable), ‘predict first, assemble later’ 
(e.g. summing the predictions of single-species models to predict species richness), and 
‘assemble and predict together’. Since their review, a great amount of methodological 
progress has taken place in the category of ‘assemble and predict together’, i.e. joint species 
distribution models that include simultaneously both species- and community-level 
components. Such models have been shown to have better predictive power than single-
species models, in particular for rare species for which model parameterization may not be 
feasible without borrowing information from other species (Ovaskainen and Soininen 2011, 
Bonthoux et al. 2013, Hui et al. 2013). 
 
Joint species distribution models extend single-species approaches in two principally 
different ways: by modelling environmental filtering at the community level, and by 
accounting for statistical co-occurrence among the species. In the context of regression-based 
models, one approach for seeking community level patterns in environmental filtering is to 
treat the species-specific regression coefficients (related to occurrence and/or detectability) as 
random effects, and thus assuming that they follow either univariate or multivariate normal 
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distributions across the species (Dorazio and Royle 2005, Dorazio et al. 2006, Kery et al. 
2009, Russell et al. 2009, Dorazio et al. 2010, Zipkin et al. 2010, Ovaskainen and Soininen 
2011, Jackson et al. 2012, Olden et al. 2014). Another approach that similarly allows sharing 
information among species is the use of mixture models, which use model-based grouping of 
species into ‘species archetypes’ (Dunstan et al. 2011, Hui et al. 2013). Not only model 
construction, but also model selection can be conducted either at the species level or at the 
community level (Madon et al. 2013). 
 
As reviewed by Kissling et al. (2012) and Wisz et al. (2013), statistical co-occurrence among 
species (generated by species interactions or missing covariates) can be incorporated into 
joint species distribution models in several ways. The most straightforward alternative is to 
use some species as predictors for others. In communities with a large number of species, this 
however leads to the problem of multiple testing, which can be counteracted by including as 
predictors only the most abundant species (le Roux et al. 2014), or only those species that are 
part of the food web of the focal species (Pellissier et al. 2013). Another alternative is the use 
of multivariate regression models (Ovaskainen et al. 2010, Sebastian-Gonzalez et al. 2010, 
Clark et al. 2014, Pollock et al. 2014) or neural network models (Harris 2015) in which the 
response variable is the vector of occurrences (Ovaskainen et al. 2010, Sebastian-Gonzalez et 
al. 2010, Pollock et al. 2014, Harris 2015) or abundances (Clark et al. 2014) of all species. In 
this context, neural network models can be used to identify non-linear relationships between 
species. With rich enough data, one may attempt to infer more refined aspects of species 
associations, e.g. the presence of so called competitive intransitivity (Ulrich et al. 2014). But 
as statistical co-occurrence patterns can be created either by missing environmental 
covariates or by biotic interactions (Morales-Castilla et al.), the results of such multivariate 
regression models need to be interpreted with caution (Ovaskainen et al. 2010, Pollock et al. 
2014). 
 
Joint species distribution models can also be effective tools for bringing functional and 
phylogenetic perspectives to the analysis of species distribution data. Species traits can be 
used to model the responses of the species to environmental covariates (Pollock et al. 2012, 
Brown et al. 2014) and to facilitate the estimation of the species-to-species correlation 
matrices by considering them as functions of trait dissimilarity (Dorazio and Connor 2014). 
Accounting for phylogenetic constrains is necessary for obtaining unbiased inference in 
analyses that consider each species as a data point, and it can also be helpful for disentangling 
the effects of environmental filtering from those of biotic interactions (Helmus et al. 2007, 
Ives and Helmus 2011). Further, bringing the phylogenetic perspective to joint species 
distribution models shifts the emphasis from measures of community similarity based on 
species identity to corresponding measures based on phylogenetic similarity (Ives and 
Helmus 2010).  
 
In parallel to the developments aiming to move from single-species perspectives to multi-
species perspectives, the need for using spatially explicit species distribution models has 
become increasingly acknowledged in ecological research, both due to interest on spatial 
processes per se, and due to the need to account for non-independent data points (Dormann et 
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al. 2007). The estimation of spatially structured residuals has been facilitated by 
computational advances in Bayesian inference, both on Markov Chain Monte Carlo (MCMC) 
sampling methods (Latimer et al. 2009, Chakraborty et al. 2010) and on methods based upon 
the integrated nested Laplace approximation (Blangiardo et al. 2013). Another increasingly 
popular approach for bringing spatial structure into species distribution models is the use of 
spatial eigenvectors derived from the distance matrix among the sampling sites (Borcard and 
Legendre 2002, Dray et al. 2006, Dray et al. 2012). 
 
The aim of this paper is to integrate joint species distribution modelling and spatially explicit 
species distribution modelling. Such developments were pioneered by Latimer et al. (2009), 
who incorporated for each species a spatially structured residual, and estimated species-to-
species correlation structure among the spatial effects. As the approach of Latimer et al. 
(2009) requires the estimation of species-specific spatial effects, it is not suited for large 
species communities that are often dominated by rare species. Latimer et al. (2009) 
parameterized their model for four common species only. Here we overcome this limitation 
by modelling spatial effects at the community level. To do so, we utilize latent factor models, 
which have recently emerged in the ecological literature (Walker and Jackson 2011, Hui 
2015), and for which computationally efficient sampling algorithms are available 
(Bhattacharya and Dunson 2011). The use of spatial latent factors was recently introduced in 
the community context by Thorson et al. (2015). While our work is closely related to that 
developed independently by Thorson et al. (2015), it has the following differences: (i) our 
modelling approach is developed in the Bayesian framework, and it thus provides the full 
posterior distribution of parameter uncertainty, (ii) we combine spatial factors with fixed 
effects and thus partition variation between measured and unmeasured covariates, (iii) we 
apply the model to all species that make up the community, instead of restricting the analyses 
to common species only, and (iv) we demonstrate how the approach can be used to assess the 
geographic scaling of spatial covariance patterns. We demonstrate the predictive power of 
our modelling approach with data consisting of the occurrences of 55 species of butterflies 
sampled in Great Britain during 1995-1999 on 2,841 grid cells at the resolution of 
10 km x 10 km (Asher et al. 2001). 
 
Joint species distribution modelling with spatially structured latent factors 
 
We model the presence-absences or abundances of a set of species using the statistical 
framework of spatially explicit joint species distribution models. The main advantage of this 
modelling framework is the use of spatially structured latent factors, which makes it possible 
to capture the effects of missing covariates, the effects of biotic interactions, or the 
combination of these two. The computational and statistical efficiency of the approach arises 
from there generally being far fewer latent factors than there are species. This is because all 
species are modelled with the help of a shared set of latent factors, each species having its 
own loading for each latent factor. If the latent factors were known covariates, these loadings 
would simply correspond to regression coefficients which could be estimated using standard 
techniques. However, it is often the case that species distributions are partly determined by 
unknown or unmeasurable covariates, or by biotic interactions. These ‘hidden covariates’ are 
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here accounted for by the latent factors, and as they are not known a priori, they must be 
estimated. During the model fitting process, also the spatial scale at which each latent factor 
varies is estimated. For instance, if the latent factor corresponds to a large-scale macro-
climatic gradient, the corresponding spatial scale will be much larger than if the latent factor 
corresponds to a small-scale micro-climate gradient or small-scale biotic interactions. 
Informally, the latent factors, and their spatial scales, are estimated so that they explain as 
much of the variation in the distributions of all the species simultaneously. Also the number 
of latent factors is estimated, with the aim of including a sufficient number of latent factors to 
allow the model to capture as much of the biologically relevant variation as possible, but to 
avoid over-fitting and thus the inclusion of latent factors that model noise rather than signal. 
 
Before turning to the formal description of the model, we illustrate its main idea in Fig. 1. For 
simplicity, we don’t include any measured covariates. Thus the predictors of the model 
consist only of two latent factors  and , shown respectively in panels a and b of Fig. 1. 

The example is constructed to mimic the case of two competing species with overlapping 
resource use, e.g. two birds which are both restricted to coniferous forest but that compete for 
nesting locations within each stand. In such a case, one would expect to see negative co-
occurrence over short spatial scales, but positive co-occurrence over large spatial scales 
(Araujo and Rozenfeld 2014). In Fig. 1, the latent factor  represents the shared resource, 

and it varies at the large characteristic spatial scale  spatial units (in Fig. 1, the spatial 

unit corresponds to the grid cell size). The latent factor  represents the influence of 

competition, and it varies at the smaller spatial scale of  spatial units. Each species  

has its own loading  for each latent factor , so that species-specific occurrence 

probabilities are modelled as linear combinations of the latent factors. In the example of Fig. 
1, the loadings of species 1 are  , so that the linear predictor for species 1 

(illustrated in panels ce) is . The loadings of species 2 are  , so 

that the linear predictor for species 2 (illustrated in panels df) is . As both 

species have a positive loading to the latent factor , they show positive co-occurrence over 

large spatial scales. But as their loadings have opposite signs to the latent factor , their co-

occurrence pattern is negative over short spatial scales (Figs. 1gh). 
 
Let us then turn to a more formal definition of the model. We index by  the 

sampling units and by  the species. Whilst we exemplified the modelling 

framework with two species, the model is equally well suitable for communities consisting of 
a large number of species. 
In case of presence-absence data, we model the presence ( ) or absence ( , 

including the possibility of non-detection) of species  on sampling unit  by probit 

regression, implemented as  where the latent liability  includes the 

linear predictor  and the residual which models the probit link-function and is distributed 
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 independently among the species and the sampling units. The linear predictors 

are further modelled as 
 

 
 
Here  is the measured covariate  for sampling unit ,  is the regression 

coefficient measuring how species  responds to the covariate ,  is the (unmeasured) 

latent factor , and the factor loading  measures how species  responds to the 

latent factor . We included the intercept in the model by setting . 

 
In the standard non-spatial latent factor model (Bhattacharya and Dunson 2011), the latent 
factors are assumed to be normally distributed with zero mean and unit variance, 

. To bring spatial structure for the latent factors, we assumed a spatially 

homogeneous Gaussian process with  where  is the spatial 

distance between the sampling units  and , and  is Kronecker delta with value 1 for 

 and with value 0 for . The function  is a spatial covariance function, 

normalized to  so that its unit is correlation and that the marginal distributions of 

the latent factors have zero mean and unit variance, similar to non-spatial latent factor 
models. Here we assume the exponential function , where  is the 

spatial scale of the latent factor . We note that the standard latent factor model with spatially 

independent factors induces the covariance structure  with  

where  is a matrix of the factor loadings (Bhattacharya and Dunson 2011). In addition to 

determining covariance at zero distance (Thorson et al. 2015), the spatial structure of the 
latent factors induces a spatial covariance  in the latent factors influencing the 

occurrences of species  and , given at distance  by 

 

 
 
This characterizes species-to-species associations not only at the local level ( ) but also 

their spatial decay, similar to Latimer et al. (2009). As illustrated by Fig 1h, spatial 
covariance between species can be positive or negative, corresponding to positive or negative 
co-occurrence. 
 
To ensure that not more factors are selected than is necessary to explain the data, we follow 
Bhattacharya and Dunson (2011) by defining a multiplicative gamma process shrinkage prior 
on the factor loadings. This variant of the Bayesian approach also avoids the need to use a 
pre-specified structure for the loading matrix as assumed by Thorson et al. (2015). We 
extended the Gibbs sampling algorithm of Bhattacharya and Dunson (2011) to the present 
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case by utilizing Bayesian multivariate regression for the fixed effects, and by incorporating a 
discrete grid sampler for the spatial scale parameters . The technical details of the 

sampling algorithm are presented in Supplementary material, as well as a Matlab code for 
model parameterization. 
 
A case study with butterfly data for Great Britain 
 
To illustrate the modelling approach, we consider a case study of 55 species of butterflies. 
We use the 1995-1999 atlas data (Asher et al. 2001) as presence-absence for each of the 10 x 
10 km Ordnance Survey grid cells for Great Britain (n=2,609 cells). Based on previous 
studies on butterflies in Great Britain (Hodgson et al. 2011, Bennie et al. 2013), we included 
as measured covariates (1) the number of growing degree days above 5 degrees Celsius, and 
the percentage of the grid cell cover that consists of (2) broadleaved woodland, (3) coniferous 
woodland, and (4) calcareous substrates (Fig. 2; see Supplementary material for details on the 
data). To make the test case challenging, we randomly selected only 300 cells that were used 
as training data to parameterize the model (Fig. 2), and thus used the remaining 2,309 cells 
for model validation. To assess the influence of spatially structured latent factors on model 
performance, we first fitted the model with just the four covariates. We then fitted the model 
with the four covariates and the spatially structured latent factors. 
 
While the focus in this paper is on the spatial part of the model, we note that the model 
belongs to the standard framework of generalized linear mixed models, allowing one to 
incorporate various hierarchical layers and covariance structures. As an example, we model 
here the responses of the species ( ) to the measure covariates ( ) as a function of their 

functional group. To do so, we classified the species as wider countryside species, specialist 
species, and migratory species. Similarly to Brown et al. (2014) and Ovaskainen et al. (2010), 
we model the vector of regression coefficients for species  with the multivariate normal 

distribution  where the expected response  is assumed to be specific to 

the functional group (  to which the species belongs to. 

 
Failing to account for spatial autocorrelation (i.e., assuming independence among the data 
points) is expected to lead to biased estimates of fixed effects (known covariates) and 
overestimation of their statistical significance (Legendre et al. 2002). With the butterfly data, 
the estimates for the fixed effects were more pronounced and had tighter credibility intervals 
in the model without latent factors than in the model that also includes latent factors. In the 
model without the latent factors, the 95% credibility interval for the effect of covariates 1, 2, 
3 and 4 did not cross zero respectively for 50, 42, 11 and 40 species. In contrast, when latent 
factors were included, 95% credibility interval for the effect of covariates 1, 2, 3 and 4 did 
not cross zero for 28, 6, 8 and 10 species (see Supplementary material for the species-specific 
results). The likely overestimation of fixed effects is visible both in species- and community-
level predictions, which reflect the covariate layers more pronouncedly than the data. For 
example, areas with calcareous substrate (Fig. 2d) differ in their species richness from the 
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surrounding areas in a more pronounced way in the model prediction (Fig. 3e) than in the 
data (Fig. 3d). With the inclusion of the latent factors, this mismatch between the data and the 
model prediction (Fig. 3f) disappears. 
 
The posterior median estimates (95% credibility intervals) for spatial scale parameters of the 
two most dominant spatial latent factors are  km and 

 km. The first latent factor identifies essentially a north-south 

gradient, whereas the second one recognises that the south-eastern part of Great Britain 
differs in terms of its butterfly community composition from the rest of the country and 
especially from the north-western part (Fig. 2). The model with spatially structured latent 
factors appears to better predict the data than the model without the latent factors (Figs. 3 and 
4). As expected, the predictive power is generally poorest for species with very low or very 
high prevalence, as the occurrence of these species varies little. The mean  value is 30% 

for the model without latent factors, whereas it is 42% for the model with latent factors. 
Across the 55 species, the model with latent factors had higher  and AUC (Fielding and 

Bell 1997) values for 54 and 51 species, respectively, when evaluated against the validation 
data. In addition to improving the average AUC for occurrence of individual species from 
0.86 to 0.91, including the latent factors improved the root mean squared error of species 
richness, reducing it from 4.9 species to 3.2 species 
 
Taking the average over the species, in the model with latent factors the proportions of 
variance (at the level of the linear predictor) attributed to covariates 1-4 were 28%, 3%, 1% 
and 3%, whereas they were 54% and 11% for the latent factors 1-2 (Fig. 4). Thus, the 
covariates contributed 35% to the explained variation and the latent factors the remaining 
65%, reflecting the increase in the model’s predictive power achieved by adding the latent 
factors. Taking the average over the species, the amount of variance (at the level of the linear 
predictor) attributed to covariates 1-4 in the model with latent factors were reduced to 71%, 
51%, 102% and 55% of the corresponding values in the model without latent factors. Thus, 
the latent factors absorbed some of the variation attributed to fixed effects in the model 
without the latent factors. 
 
Discussion 
 
Statistical methods for joint species distribution modelling have become well established, but 
thus far they have lacked a spatially explicit perspective (with the exceptions of Latimer et al. 
2009, Thorson et al. 2015). In this paper we have utilized recent progress in latent factor 
modelling to develop a general statistical framework for spatially explicit joint species 
distribution modelling. As illustrated by our results, the inclusion of spatial latent factors 
improves statistical inference of joint species distribution models in three ways. First, failing 
to account for spatial structure corresponds to the assumption of independent data points, 
which leads to biased estimates for the effects of measured covariates. The inclusion of 
spatially structured latent factors is analogous to the inclusion of a spatially structured 
residual in single species models, and thus it corrects the inference on the effects of measured 
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covariates. Second, the incorporation of spatial latent factors enables spatial interpolation 
which can greatly improve the predictive power of the model. This was indeed the case in the 
butterfly case study, where most of the explained variation was attributed to the spatial latent 
factors. Third, the spatial latent factors identified by the models can be informative, as they 
can be interpreted as the covariates that influence the species community but are missing 
from the model, or as the end results of biotic interactions. For example, whilst we included 
the growing degree days above 5 degrees as a covariate, the first and most important latent 
factor identified by the model corresponded to a North-South gradient. This suggests that the 
North-South gradient correlates with relevant covariates other than the number of growing 
degree days, or that there is random species turnover along this gradient. 
 
As community-level data on species occurrence or abundance typically come from a spatial 
setting, the possibility to account for spatiality in the analysis phase enables many kinds of 
applications. Thus we expect the method presented here to be generally useful for data 
typically collected in community ecological studies: presence-absence or abundance data 
acquired for a set of sampling sites, some environmental covariates describing the properties 
of those sites, and the spatial coordinates of those sites. With such data, the modelling 
approach presented here can be used for assessing the geographic scaling of covariance 
patterns (Eq. 2; illustrated in Fig. 1h), which can provide information on the type of species 
interactions (Araujo and Rozenfeld 2014). More generally, the generalized linear modelling 
framework allows one to partition variation in any community metric (e.g., species richness, 
evenness, or community dissimilarity) to the influences of measured covariates, to the 
influences of spatially structured latent factors, and to unexplained residual variation. We 
note that while we have utilized here atlas data that form a regular grid, the method applies 
directly also to any spatially irregular sampling design. Furthermore, by replacing the 
distance in two-dimensional space to the one-dimensional distance over time, the method 
applies as such also for time-series data. In this case, the exponential correlation structure 
assumed here corresponds to the widely applied AR(1) autoregressive model. 
 
The model presented here adds the influence of measured covariates compared to the 
approach presented by (Thorson et al. 2015), but is still ignores many aspects that other 
approaches developed in community ecology account for. However, as our modelling 
approach is based on the standard framework of hierarchical generalized linear mixed 
models, it is of a very general nature and easily extendable to components implemented in 
previous research to joint species distribution modelling. These include the  influence of 
species traits (Pollock et al. 2012, Brown et al. 2014) and phylogenetic constraints (Helmus et 
al. 2007, Ives and Helmus 2011), the use of abundance data instead of presence-absence data 
(Clark et al. 2014), and accounting for detectability (Dorazio et al. 2006).  
 
As illustrated here, spatially explicit community modelling is expected to be useful especially 
for problems that involve spatial interpolation, e.g. for predicting species distribution maps 
from a sparse set of observations. But much interest in community ecology relates also to 
extrapolation, i.e. predicting the occurrences of species under environmental conditions not 
present in the training data, e.g. after climate change, after habitat loss, or in an unexplored 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

region. While it is not expected that spatially explicit community modelling will be able to 
provide improved mean predictions for extrapolation, it can improve the assessment of 
uncertainty in such predictions. This is because the modelling framework is able to identify 
how much of the current species occurrences are influenced by such unknown variation that 
is structured by space and thus not likely to be just noise. Assuming that the same proportion 
of the variance will be attributed to un-modelled but spatially structured variation also in the 
extrapolated situation will enable constructing more realistic confidence intervals than just 
ignoring such variation.  
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Data Accessibility 

The data used in the case study are provided in the supplementary material. These data were 

obtained from the following sources: 

• British butterfly distribution data for the 1995-1999 atlas period gathered by the 

Butterflies for the New Millennium recording scheme (Asher et al. 2001) are provided 

in the supplementary material. These data are held by Butterfly Conservation and the 

Centre for Ecology & Hydrology, and are available through http://butterfly-

conservation.org/111/butterflies-for-the-new-millennium.html and 

http://data.nbn.org.uk (contact: Richard Fox, rfox@butterfly-conservation.org). These 

data maybe used, with appropriate acknowledgement, under a creative commons 

license (https://creativecommons.org/licenses/by/4.0/). 

 

• UK climate data: are provided in the supplementary material. We used mean annual 

number of growing degree days above 5 degrees Celsius for 1995-1999 for Britain at 

a 10 km Ordnance Survey grid resolution were derived from CRU ts2.1 and CRU 61-

90 climate datasets (Barrow, Hulme & Jiang 1993). This involved the anomalies at 
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0.5 deg grid resolution being interpolated onto the UK Ordnance Survey 10 km grid 

and combined with the TIGER climate data (Hill 1995) from mean elevations within 

grid cells. These data may be used, with appropriate acknowledgement, under a 

creative commons license (https://creativecommons.org/licenses/by/4.0/). Original 

data are data are available from http://www.alarmproject.net/climate/climate/ 

 

 

• UK Land cover data (LCM2000): are provided in the supplementary material. We 

used percent cover broadleaved woodland, and percent coniferous woodland (Fuller et 

al. 2002). Percent cover was calculated as a percentage of the land area within UK 

Ordnance Survey 10 km grid cell. These data are licensed and and must be used in 

accordance with the open government License (OGL; 

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/). 

Original data are available through http://www.ceh.ac.uk/landcovermap2000.html.  

 

• UK geology data: are provided in the supplementary material.  We used the 1 

kilometre resolution Soil Parent Material model detailing 6 basic parent-material 

parameters (derived from the 1:50 000 scale version). We calculated the sum of 1km 

squares within each UK Ordnance Survey 10 km grid cell with a calcareous content 

value of “HIGH”.  Original data were downloaded on 2015-10-01, licensing 

restrictions, terms and conditions and original data are available (with appropriate 

acknowledgement) from http://www.bgs.ac.uk/downloads/start.cfm?id=2899. 

 

Figure legends 
 
Figure 1. Illustration of the joint species distribution modelling with spatially structured 
latent factors. The panels a and b show latent factors  and  which have exponentially 

decaying correlation structure at spatial scales  and . The panels c and d show 

respectively the linear predictors for species 1 ( ) and species 2 ( ), 

which combine the latent factors with the loading matrix . The panels e 

and f show the occurrence patterns of species 1 and 2 and panel g their co-occurrence pattern, 
with red and blue denoting occurrences of species 1 and 2, and black denoting the co-
occurrence of both species. Panel g shows the spatial covariance functions (Eq. 2), with red 
and blue depicting the within species covariances  and , and black depicting the 

between species covariance . 
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Figure 2. Measured environmental covariates and model-identified latent factor used to 
model the butterfly community. The upper panels show the measured covariates 1-4: the 
number of growing degree days above 5 degrees (a), and the fraction of each grid cell 
consisting of broadleaved woodland (b), coniferous woodland (c), and calcareous substrates 
(d). The lower line of panels show the two most dominant latent factors (i.e., hidden 
environmental covariates) identified by the model:  (e) and  (f). The black squares in 

panel g show the 300 randomly selected 10 km x 10 km grid cells that were used to 
parameterize the model. The remaining 2,309 (shown by grey) were used to test the 
predictive performance of the model. 
 
Figure 3. Visual comparison of model predictions and data. Panel a shows data (black 
corresponding to presence and grey to absence) for one of the 55 butterfly species (Green 
hairstreak; Callophrys rubi) and panel d the observed species richness. Panels bc show the 
model predictions for the occurrence probability of Green hairstreak based on the model 
without (b) and with (c) spatial latent factors. Similarly, panels ef show the model predictions 
for species richness based on the model without (e) and with (f) latent factors. All predictions 
are based on fitting the models to data on the 300 training sites shown in Fig. 2g. 
 
Figure 4. The predictive performance of the community model. Panel a shows species-
specific Tjur (2009)  values as a function of the species prevalence, and panel b compares 

predicted species richness to observed species richness. Both panels are based on fitting the 
models without spatial latent factors (grey dots) and with spatial latent factors (black dots) to 
data on 300 training sites (Fig. 2g), and comparing model predictions to the data for the 2,309 
validation sites. Panel c shows the relative proportions of variance attributed to the measured 
covariates and to the spatial latent factors. The measured covariates 1-4 are ordered from 
bottom to top, and coloured grey (covariate 1, i.e. growing degree days), and 3 levels of red 
(covariates 2-4). The latent factors 1-2 are shown on top of the measured covariates, and are 
coloured as light blue (latent factor 1) or dark blue (latent factor 2).  
 
Supplementary material 
 
Supplementary methods. Technical details of the Monte Carlo Markov Chain algorithm 
used to sample the posterior distribution. 
 
Matlab implementation of the statistical model. The files include a source code, tutorial 
for its use, a simulated example, and the butterfly example of this paper. 
 
Supplementary information for the case study. 
 
Supplementary Table S1. Posterior estimates for the effects of the measured covariates 
derived from the model without latent factors. The sheets show the posterior mean estimate, 
the posterior median estimate, and the 0.025 and 0.975 quantiles. 
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Supplementary Table S2. Posterior estimates for the effects of the measured covariates 
derived from the model with latent factors. The sheets show the posterior mean estimate, the 
posterior median estimate, and the 0.025 and 0.975 quantiles. 
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