

AMERICAN METEOROLOGICAL SOCIETY

Bulletin of the American Meteorological Society

EARLY ONLINE RELEASE

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/BAMS-D-16-0057.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

If you would like to cite this EOR in a separate work, please use the following full citation:

Lozier, M., S. Bacon, A. Bower, S. Cunningham, M. de Jong, L. de Steur, B. deYoung, J. Fischer, S. Gary, B. Greenan, P. Heimbach, N. Holliday, L. Houpert, M. Inall, W. Johns, H. Johnson, J. Karstensen, F. Li, X. Lin, N. Mackay, D. Marshall, H. Mercier, P. Myers, R. Pickart, H. Pillar, F. Straneo, V. Thierry, R. Weller, R. Williams, C. Wilson, J. Yang, J. Zhao, and J. Zika, 2016: Overturning in the Subpolar North Atlantic Program: a new international ocean observing system. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-16-0057.1, in press.

	Station - INDUSTRY - COMPTUE
1	Overturning in the Subpolar North Atlantic Program: a new international ocean
2	observing system
4	
5	
6	M. Susan Lozier ¹ , Sheldon Bacon ² , Amy S. Bower ³ , Stuart A. Cunningham ⁴ , M. Femke de Jong ^{1,}
7	^{5, 6} , Laura de Steur ^{5, 6} , Brad deYoung ⁷ , Jürgen Fischer ⁸ , Stefan F. Gary ⁴ , Blair J.W. Greenan ⁹ ,
8	Patrick Heimbach ¹⁰ , Naomi P. Holliday ² , Loïc Houpert ⁴ , Mark E. Inall ⁴ , William E. Johns ¹¹ ,
9	Helen L. Johnson ¹² , Johannes Karstensen ⁸ , Feili Li ¹ , Xiaopei Lin ¹³ , Neill Mackay ¹⁴ , David P.
10	Marshall ¹² , Herlé Mercier ¹⁵ , Paul G. Myers ¹⁶ , Robert S. Pickart ³ , Helen R. Pillar ¹⁷ , Fiammetta
11	Straneo ³ , Virginie Thierry ¹⁵ , Robert A. Weller ³ , Richard G. Williams ¹⁸ , Chris Wilson ¹⁴ , Jiayan
12	Yang ³ , Jian Zhao ³ , Jan D. Zika ¹⁹
13	CY.
14	
15	¹ Duke University, Durham, North Carolina
16	² National Oceanography Centre, Southampton, United Kingdom
17	³ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
18	⁴ Scottish Association for Marine Science, Oban, United Kingdom
19	⁵ NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
20	⁶ Utrecht University, Utrecht, the Netherlands
21	⁷ Memorial University, St. John's, Canada
22	⁸ GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
23	⁹ Bedford Institute of Oceanography, Dartmouth, Canada
24	¹⁰ The University of Texas at Austin, Austin, Texas

- 25 ¹¹ University of Miami, Miami, Florida
- 26 ¹² University of Oxford, Oxford, United Kingdom
- 27 ¹³ Ocean University of China, Qingdao, China
- 28 ¹⁴ National Oceanography Centre, Liverpool, United Kingdom
- ¹⁵ CNRS, Laboratory of Ocean Physics and Satellite Oceanography, Ifremer centre de Bretagne,

30 Plouzané, France

- 31 ¹⁶ University of Alberta, Edmonton, Alberta, Canada
- 32 ¹⁷ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- 33 ¹⁸ University of Liverpool, Liverpool, United Kingdom
- ¹⁹ Imperial College, London, United Kingdom
- 35
- 36
- 37
- 38
- 39
- 40 Corresponding author: M. Susan Lozier, Earth and Ocean Sciences, Nicholas School of the
- 41 Environment, Duke University, Durham, North Carolina 27708, USA, E-mail:
- 42 mslozier@duke.edu
- 43
- 44

A new ocean observing system has been launched in the North Atlantic in order to
understand the linkage between the meridional overturning circulation and deep water
formation.

48

49 **ABSTRACT**

For decades oceanographers have understood the Atlantic Meridional Overturning Circulation 50 51 (AMOC) to be primarily driven by changes in the production of deep water formation in the subpolar and subarctic North Atlantic. Indeed, current IPCC projections of an AMOC slowdown 52 53 in the 21st century based on climate models are attributed to the inhibition of deep convection 54 in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep water 55 formation. The motivation for understanding this linkage is compelling since the overturning 56 57 circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have 58 consequences for regional and global climates through its effect on the poleward transport of 59 60 warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar 61 North Atlantic (OSNAP), to provide a continuous record of the trans-basin fluxes of heat, mass 62 63 and freshwater and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the RAPID/MOCHA array at 26^oN and other 64 observational elements, will provide a comprehensive measure of the three-dimensional AMOC 65 and an understanding of what drives its variability. The OSNAP observing system was fully 66 deployed in the summer of 2014 and the first OSNAP data products are expected in the fall of 67 68 2017.

69 INTRODUCTION AND BACKGROUND

70 The ocean's Meridional Overturning Circulation (MOC) is a key component of the global climate 71 system (IPCC AR5 2013). The MOC, characterized in the Atlantic (the AMOC) by a northward 72 flux of warm upper-ocean waters and a compensating southward flux of cool deep waters, 73 plays a fundamental role in establishing the mean climate state and its variability on 74 interannual to longer time scales (Buckley and Marshall 2016; Jackson et al. 2015). Coupled 75 with the winter release of locally stored heat, the heat advected northward as part of the upper 76 AMOC limb (Rhines et al. 2008) keeps the northern hemisphere generally, and western Europe 77 in particular, warmer than they would be otherwise. Variations in AMOC strength are believed 78 to influence North Atlantic sea surface temperatures (Knight et al. 2005; Delworth et al. 2007; Robson et al. 2012; Yeager et al. 2012), leading to impacts on rainfall over the African Sahel, 79 80 India and Brazil; Atlantic hurricane activity; and summer climate over Europe and North 81 America (Knight et al. 2006; Zhang and Delworth 2006; Sutton and Hodson 2005; Smith et al. 2010). Finally, variability of the inflow of warm Atlantic waters into high latitudes has been 82 83 linked to the decline of Arctic sea-ice (Serreze et al. 2007) and mass loss from the Greenland 84 Ice Sheet (Rignot and Kanagaratnam 2006; Holland et al. 2008; Straneo et al. 2010), both of which have profound consequences for climate variability. 85

86

Though less studied than its impact on climate, the AMOC's role in the ocean carbon cycle has
emerged as a recent concern. The North Atlantic is a strong sink for atmospheric CO₂
(Takahashi et al. 2009; Khatiwala et al. 2013), accounting for ~40% of the annual mean global
air-sea CO₂ flux, with nearly half of that flux occurring north of 50°N. Furthermore, modeling
(Halloran et al. 2015; Li et al. 2016) and observational (Sabine et al. 2004) studies show that
the North Atlantic plays a crucial role in the uptake of anthropogenic carbon. The AMOC is

believed to play a strong role in creating this carbon sink (Pérez et al. 2013): in addition to 93 94 transporting anthropogenic carbon northward from the subtropical gyre (Rosón et al. 2003), 95 as these northward-flowing surface waters cool they absorb additional CO₂ that is carried to 96 depth when deep waters form (Steinfeldt et al. 2009). The carbon flux in the subpolar North 97 Atlantic is also driven by a strong, annual cycle of net community production (Kortzinger et al. 98 2008). AMOC variability can potentially impact this productivity if there is a disruption to the 99 northward flow of nutrients (Palter and Lozier 2008) or to the supply of nutrients to the 100 surface by convection and mixing. Thus, AMOC variability, through its direct impact on CO₂ 101 uptake via transport and overturning and indirectly through its effect on ocean primary 102 productivity, has the potential to alter the ocean's role as a major sink for carbon in the 103 subpolar North Atlantic.

104

105 With such a profound array of implications, it is no surprise that a mechanistic understanding 106 of AMOC variability is a high priority for the climate science community. Hypotheses 107 concerning what drives the overturning fall into two categories (Visbeck 2007; Kuhlbrodt et al 108 2007); is the AMOC "pushed" by buoyancy forcing at high latitudes, or is it "pulled" by vertical 109 mixing supported by wind and tidal forcing? While both mechanisms contribute to the long-110 term equilibrium state of the AMOC, it is generally believed that overturning variability on 111 interannual to millennial time scales are linked to changes in buoyancy forcing and the 112 associated changes in the formation of dense water masses at high latitudes in the North 113 Atlantic. Below, we provide a brief review of that linkage in the modeling and observational 114 context.

115

116 Linkage between convection and AMOC variability: climate models

Current IPCC projections of AMOC slowdown in the 21st century based on an ensemble of 117 118 climate models (see IPCC AR5 2013, Figures 12-35) are widely attributed to the inhibition of 119 deep convection at high latitudes in the North Atlantic. Similarly, simulations using 20th 120 century coupled ocean-sea ice models also find that AMOC intensification is connected to 121 increased deep water formation in the subpolar North Atlantic (Danabasoglu et al. 2016). This 122 link between AMOC strength and North Atlantic water mass production was made explicit in a 123 study of climate models where a freshwater anomaly was spread uniformly over the subpolar domain (Stouffer et al. 2006). These "hosing" experiments yielded AMOC decreases, with 124 125 concomitant decreases in surface air and water temperatures in the high-latitude North 126 Atlantic. However, the adequacy of coarse resolution models to simulate the ocean's dynamical response to freshwater sources has been called into question in the past few years. For 127 example, Condron and Winsor (2011) argue that the climatic response to anomalous 128 129 freshwater input needs to be studied with models that resolve the dynamics of narrow, coastal 130 flows into and around the North Atlantic basin. Similarly, although a growing number of model 131 simulations suggest that present day and projected ice loss from the Greenland Ice Sheet may 132 affect the AMOC, the nature and magnitude of the prescribed freshwater fluxes may not 133 appropriately describe how and where Greenland meltwater enters the ocean (Straneo and 134 Heimbach 2013). Clearly, observational studies are needed to guide and constrain modelling 135 efforts aimed at understanding the mechanistic link between convective activity and AMOC 136 variability.

137

138 Linkage between convection and AMOC variability: observations

139 Dense water formation in the Nordic Seas and in the North Atlantic subpolar gyre (NASPG)

140 produces the water masses in the AMOC lower limb (Figure 1). The deepest constituents of the

141 lower limb originate as dense intermediate waters formed in the Nordic Seas. These waters, 142 referred to collectively as overflow waters (OW), flow over the shallow sills of the Greenland-143 Scotland Ridge (GSR) into the North Atlantic: to the east of Iceland is the Iceland-Scotland 144 Overflow Water (ISOW), which has traditionally been thought to follow the topography around 145 the Reykjanes Ridge to the Irminger Basin where it joins the deeper, denser Denmark Strait 146 Overflow Water (DSOW). The shallowest component of the AMOC lower limb is the 147 intermediate water produced by deep convection within the NASPG itself. Though this water 148 mass is referred to as Labrador Sea Water (LSW), it is the product of the cumulative 149 transformation of subtropical waters as they flow around the NASPG. 150

No conclusive observational evidence for a link between dense water formation in the 151 152 Labrador Sea and AMOC variability has emerged to date (Lozier 2012). The product of that dense water formation - Labrador Sea Water – is exported out of the basin via a deep western 153 154 boundary current. As such, that boundary current has been closely monitored over the past two decades. Measurements of that boundary current east of the Grand Banks at 43⁰N during 155 156 1993 to 1995 and then again from 1999 to 2001 showed that transport in the LSW density range was remarkably steady despite the fact that LSW production was considerably weaker 157 during the latter time period (Clarke et al. 1998; Meinen et al. 2000; Schott et al. 2006; Lazier et 158 159 al. 2002). Similarly, Dengler et al. (2006) found a strengthening of the Deep Labrador Current at 53[°]N over the time period of a well-documented decrease in convection. Finally, Pickart et 160 161 al. (1999) showed that, equatorward of the Grand Banks, the Deep Western Boundary Current 162 (DWBC) appears weaker when it advects a larger fraction of LSW. As with LSW, there has been no conclusive observational evidence linking the formation of Nordic Seas overflow waters 163 164 with AMOC variability (Jochumsen et al. 2012; Hansen and Østerhus 2007).

165

166	One possible reason for the lack for a clear connection between convection and AMOC
167	variability is that not all of the export pathways of dense waters have been monitored. The
168	DWBC has traditionally been considered the sole conduit for the lower limb of the AMOC.
169	However, this assumption has been challenged by observational and modeling studies that
170	reveal the importance of interior, as well as boundary, pathways (e.g., Bower et al. 2009;
171	Holliday et al. 2009; Stramma et al. 2004; Xu et al. 2010; Lozier et al. 2013).
172	
173	Secondly, a direct link between LSW formation and the AMOC has been called into question as
174	more has been learned about the constraints on the spreading of this water away from
175	formation sites (Send and Marshall 1995; Spall and Pickart 2001; Spall 2004; Straneo 2006;
176	Deshayes et al. 2009). Essentially, the compilation of studies over the past decade yields a
177	description of LSW production whereby the properties and transport variability within the
178	DWBC are not a sole function of deep water formation. Instead, boundary current transport,
179	property gradients between the interior and the boundary current and the strength of the eddy
180	field all play a role in setting the exit transport and properties. Finally, the linkage between
181	AMOC variability and deep water formation can be impacted by wind-driven changes in the
182	basin. Since the density field near the basin boundaries sets the overall shear of the basinwide
183	geostrophic circulation, wind-forced changes in that density field can modify AMOC strength
184	(Hirschi and Marotzke 2007).
185	
186	In summary, while modeling studies have suggested a linkage between deep water mass

187 formation and AMOC variability, observations to date have been spatially or temporally

188 compromised and therefore insufficient to either support or rule out this connection.

190 *Current observational efforts to assess AMOC variability in the North Atlantic*

191 The UK-US RAPID/MOCHA program at 26°N successfully measures the AMOC in the subtropical 192 North Atlantic via a trans-basin observing system (Cunningham et al. 2007; Kanzow et al. 2007; 193 McCarthy et al. 2015). While this array has fundamentally altered the community's view of the 194 AMOC, modeling studies over the past few years have suggested that AMOC fluctuations on 195 interannual time scales are coherent only over limited meridional distances. In particular, a 196 break point in coherence may occur at the subpolar/subtropical gyre boundary in the North 197 Atlantic (Bingham et al. 2007; Baehr et al. 2009). Furthermore, a recent modeling study has 198 suggested that the low-frequency variability at the RAPID/MOCHA array appears to be an 199 integrated response to buoyancy forcing over the subpolar gyre (Pillar et al. 2016). Thus, a 200 measure of the overturning in the subpolar basin contemporaneous with a measure of the buoyancy forcing in that basin likely offers the best possibility of understanding the 201 202 mechanisms that underpin AMOC variability. Finally, though it might be expected that the 203 plethora of measurements from the North Atlantic would be sufficient to constrain a measure 204 of the AMOC within the context of an ocean general circulation model, recent studies 205 (Cunningham and Marsh 2010; Karspeck et al. 2015) reveal that there is currently no 206 consensus on the strength or variability of the AMOC in assimilation/reanalysis products. 207

208 **OSNAP OBJECTIVES**

Given the imperative of understanding AMOC variability and based on recommendations of the
ocean science community (US CLIVAR report 2007; Cunningham et al. 2010), an international
team of oceanographers has developed an observing system for sustained trans-basin
measurements in the subpolar North Atlantic, called Overturning in the Subpolar North

213	Atlantic Program	(OSNAP)	. OSNAP,	deployed in th	ne summer o	f 2014, is meas	suring the full-
		<u> </u>	,	· · · · · · · · ·		- ,	

214 depth mass fluxes associated with the AMOC, as well as meridional heat and freshwater fluxes.

215

216 The specific objectives of the OSNAP program are to:

217 1. Quantify the subpolar AMOC and its intra-seasonal to interannual variability via overturning

218 metrics, including associated fluxes of heat and freshwater.

219 2. Determine the pathways of overflow waters in the NASPG to investigate the connectivity of

the deep boundary current system.

3. Relate AMOC variability to deep water mass variability and basin-scale wind forcing.

4. Determine the nature and degree of the subpolar-subtropical AMOC connectivity.

5. Determine from OSNAP observations the configuration of an optimally efficient long-term

AMOC monitoring system in the NASPG. Such a determination will include the use of numerical

225 model results, satellite altimetry, Argo data and other NASPG observations as needed.

226

227 OSNAP DESIGN

OSNAP is a trans-basin observing system (Figures 2 and 3a) that consists of two legs: one leg 228 extends from southern Labrador to southwestern Greenland and the other from southeastern 229 230 Greenland to the coast of Scotland. The two legs are situated to capitalize on a number of 231 existing long-term observational efforts in the subpolar North Atlantic: the Canadian repeat 232 AR7W program in the Labrador Sea; the German Labrador Sea western boundary mooring 233 array at 53°N; repeat A1E/AR7E hydrographic sections across the Irminger and Iceland Basins 234 (approximately coincident with OSNAP East); the western part of the biennial OVIDE line in the 235 Irminger Sea and over the Reykjanes Ridge (Mercier et al. 2015); and the Ellett line (Holliday et 236 al. 2015) in the Rockall region. Importantly, two of the four moorings that form the US Global

OOI (Ocean Observatories Initiative) Irminger Sea node were placed along the OSNAP line
(Figure 3b) in August of 2014, thereby enhancing the ability of the OSNAP array to capture the
full breadth of the deep currents in this basin. OSNAP also complements a new Canadian
program in the Labrador Sea (VITALS: Ventilation Interactions and Transports Across the
Labrador Sea) focused on carbon and oxygen cycles. VITALS will provide information on gas
uptake and water mass formation north of the OSNAP West line, complementing the water
mass information provided by the annual survey of the AR7W line (Yashayaev 2007).

244

245 Mooring arrays have been deployed at the continental boundaries and on the eastern and 246 western flanks of the Reykjanes Ridge (Figure 4). The OSNAP Reykjanes Ridge moorings are 247 complemented by those from the French Reykjanes Ridge Experiments (RREX; Figure 3c), an 248 observational and modeling effort designed to study the processes controlling the dynamical 249 connections between the two sides of the Revkjanes Ridge. Additional full-depth moorings 250 containing T/S sensors have been placed at key locations to estimate geostrophic transports 251 (Figure 4). Additionally, in the eastern basin, a suite of gliders is measuring properties across 252 the Rockall-Hatton Basin and westward into the Iceland basin (Figures 3a and 4b). Finally, 253 acoustically tracked deep floats (RAFOS) have been released on the OSNAP lines to study the 254 connectivity of overflow water pathways between moored arrays and to aid the interpretation 255 of the Eulerian measurements (Figure 3a).

256

257 The effectiveness of the proposed OSNAP design has been tested using a series of OSSE

258 (Observing System Simulation Experiment) where basin-width integrated fluxes calculated

259 from subsampled model fields are compared to the model "truth" or reference fluxes. OSNAP

260 OSSE were conducted using ORCA025, an intermediate resolution, or eddy-permitting,

configuration of the Nucleus for European Modeling of the Ocean (NEMO; Madec 2008). The 261 262 OSSE mean overturning transports for 1990-2004 are within one standard deviation of the 263 mean transports for the model truth, calculated over the same time period: for OSNAP West the model truth mean transport in density space is 7.65 ± 1.68 Sv, while the OSSE mean 264 265 transport is 7.78 ± 1.73 Sv; for OSNAP East the model truth mean transport is 13.65 ± 1.56 Sv, 266 while the OSSE mean transport is 12.97 ± 2.56 Sv. Furthermore, the proposed design does an 267 impressive job of capturing the overturning variability, with a correlation of 0.89 (0.85) 268 between the OSSE and the reference time series for OSNAP West (East). Comparisons of heat 269 and freshwater fluxes are also favorable: for OSNAP West, the total heat flux is 0.10 ± 0.02 PW 270 for both the model truth and the OSSE (R= 0.94), and the total freshwater flux relative to the section mean salinity is -0.17 ± 0.04 Sv for the OSSE and -0.16 ± 0.04 for the model truth (R= 271 272 0.90); for OSNAP East, the total heat flux is 0.36 ± 0.04 PW for the model truth and 0.33 ± 0.05 PW for the OSSE (R= 0.83), and the total freshwater flux relative to the section mean salinity is 273 274 -0.14 ± 0.05 Sv for both the model truth and the OSSE (R= 0.98). All correlation coefficients in 275 parentheses above denote agreement between the model truth and the OSSE time series. 276 Readers are referred to the OSNAP technical report (http://www.osnap.org/observations/technical-report/) for details on the calculation methodology and for 277 278 information on steps we are currently taking to improve our estimates.

279

280 **PROGRESS TO DATE**

Due to cost considerations, some of the OSNAP arrays are on a one-year replacement schedule; others on a two-year schedule. Thus, the complete suite of data necessary to produce time series of the volume, heat and freshwater fluxes across the OSNAP line will not be available until September of 2016. However, in addition to these basin integral measures, the OSNAP

program will produce, and indeed is already producing, observations of the circulation and 285 286 property fields across the subpolar gyre. Data that have been collected to date, discussed 287 below, reveal the rich spatial and temporal variability of those fields. The OSNAP observational program is complemented by modeling, theoretical and data analyses efforts that aim to 1) 288 289 place the observations in a broader spatial and temporal context and 2) link the observations 290 to forcing mechanisms. Preliminary efforts toward this end are also discussed below. Please 291 note that the sections below do not constitute a preliminary look at the comprehensive 292 measurements that will result from the entire suite of OSNAP data, namely the volume, heat 293 and freshwater transports. Rather, the sections below illustrate the wide variety of 294 investigations possible under the OSNAP program.

295

296 First look at the OSNAP cross-section velocity field

297 The OSNAP line was first surveyed with a Conductivity-Temperature-Depth (CTD) section in 298 June-July 2014 on RRS James Clark Ross, providing the first modern, quasi-synoptic, 299 hydrographic and biogeochemical section from North America to Europe at subpolar latitudes 300 (King and Holliday 2015; see Keike and Yashayaev (2015) for a review of other hydrographic 301 surveys in the subpolar basin). The cross-section geostrophic velocity field from the survey 302 illustrates the complexity of the circulation in this region (Figure 5, derived from CTD profiles, 303 the thermal wind equation, and a reference velocity from lowered ADCP, following the method 304 in Holliday et al. 2009). The warm North Atlantic Current (NAC) can be seen as two major 305 shallow and surface-intensified currents in the Iceland Basin, plus a jet in the western Rockall 306 Trough, and the cooler Irminger Current on the west side of the Reykjanes Ridge. Between the 307 major currents there are transient eddies and more persistent topographically steered 308 recirculation features. In the Irminger and Labrador Seas the fast gyre boundary currents can

309 be seen tight against the continental slopes of Greenland and Canada. In the western gyre the 310 boundary currents are deep-reaching features, linking the surface circulation to the cold, deep 311 overflow waters (< 3.0 °C). In contrast, from the western side of the Reykjanes Ridge across to 312 Rockall, the upper ocean is often moving in a direction opposing that of the deepest layers. In 313 the Iceland Basin the multiple current cores of overflow waters lie under a thick layer of 314 slowly-circulating LSW and are also subject to recirculation (e.g., southward cores at ~2300 315 and ~2450 km, and recirculation at ~2400 and ~2600 km in Figure 5). The OSNAP moorings and Lagrangian observations of overflow pathways will help put these synoptic observations 316 317 into context, as well as reveal variability on time scales shorter than the time it takes to 318 complete a synoptic survey.

319

320 Hydrography across the Irminger and Labrador Seas: signatures of strong convection The deployment of the OSNAP array in the summer of 2014 was auspiciously timed, as 321 322 revealed by a hydrographic survey along the OSNAP line in the Irminger Sea in the summer of 2015 (de Steur 2015). The survey revealed a large body of water with high dissolved oxygen 323 324 content and low salinity that fills the central part of the basin at upper to intermediate depths 325 (Figure 6a). Year-round observations from a profiling mooring in the Irminger gyre confirm 326 that this water was formed locally in the strong winter of 2014/2015 when mixed layer depths 327 reached down to 1400 m (de Jong and de Steur 2016). The first time series from the OOI 328 Irminger Sea global node (Figure 6b) shows the sharp increase in oxygen concentration as 329 convection deepens the mixed layer from November to December. These observations confirm 330 the role of the Irminger Sea as a convective basin in addition to the Labrador Sea as suggested earlier by Pickart et al. (2003). In the Labrador Sea strong convection also took place in the 331 332 winter of 2014/2015 (Yashayaev and Loder 2016, in review). In addition to this signature of

deep convection, the survey also shows the familiar features of the warm and saline Irminger
Current on the eastern and western boundaries of the basin, as well as the cold, dense and
oxygen rich DSOW carried along the East Greenland slope by the DWBC. A new feature,
however, is the signature of stirring between the interior waters (high in oxygen) and
boundary current water (low in oxygen) that appears over the western flank of the MidAtlantic Ridge. Interestingly, deep convection and enhanced mesoscale eddy exchange, may
well be related; a connection that will be investigated in detail with OSNAP data.

340

341 The evolution of convection in the Labrador basin during the winter of 2014/2015 will be 342 revealed once data from the OSNAP West arrays (on a two-year schedule) are retrieved. The 343 analysis of that data will be advantaged by the fact that there have been sustained observations 344 in the basin interior (see K1 in Figure 3a) and in the boundary current off the Labrador coast 345 since 1997 (see German boundary array in Figure 3a; Fischer et al. 2004), well before the 346 deployment of the OSNAP array in the summer of 2014. Observations from both sites allow for 347 the study of how convectively transformed waters from the Labrador Sea are exported to the 348 boundary current, as well as a study of water mass transformation within the boundary 349 current itself. The simultaneous observations at K1 and K9 since 2009 have offered an 350 interesting contrast. As seen in Figure 7a, the 2013/2014 winter was characterized by a 351 positive North Atlantic Oscillation (NAO) index that has persisted to present 352 (www.cpc.ncep.noaa.gov). An increase in surface buoyancy loss over the Labrador Sea during 353 this positive NAO index period goes along with an abrupt change in mixed-layer depths in 354 excess of 1500m in the boundary current (at K9; see location in Figure 3a) and in the central 355 Labrador Sea (at K1), a situation last documented in the 2007/2008 winter (Kieke and 356 Yashayaev 2015). While the 2013/2014 response is similar at both sites (though stronger in

the interior, at K1), the boundary current response to the 2011/2012 NAO forcing is decidedly
weaker. Though it has been pointed out that the NAO index does not optimally indicate
buoyancy forcing changes in the Labrador Sea (e.g. Grist et al. 2015), these observations alone
highlight the fact that the dynamical link between deep convection in the Labrador Sea and the
export of newly formed deep waters in the boundary current remains unresolved. Results from
the OSNAP array will enable an investigation of the link between deep mixing, the net water
mass formation and the dynamics of the export.

364

365 Glider observations in the eastern subpolar region

366 Some areas across the OSNAP line have been monitored or at least intermittently measured for years, e.g., the waters of the DWBC off the Labrador coast. However, in other areas there are 367 only sparse historical observations, particularly of the flow field, a prime example of which is 368 the Rockall Plateau. Though these observations have been too few to estimate the circulation in 369 370 this region, ocean model simulations indicate that 2-5 Sv of northward flow should be found 371 here, a sizeable contribution to the total northward flow across the OSNAP East line. However, 372 because the plateau is shallow, no Argo floats are deployed across or drift over the plateau, and because of fishing activities moorings are unlikely to survive. Thus, gliders were chosen to 373 374 provide property, transport and flux measurements across the plateau. Ten OSNAP glider 375 sections were realized between 21°W and 15°W from July 2014 to November 2015 of which 376 three are shown in Figure 8. Data from past glider missions and real-time data from current 377 missions may be viewed at http://velocity.sams.ac.uk/gliders/.

378

A remarkable feature of these measurements is the signature of intense vertical mixing that
occurred in the 2014/2015 winter. This mixing deepened the mixed layer to 700 m (Figure

381 8b) and resulted in the formation of anomalously large volumes of Subpolar Mode Water 382 (SPMW) in the density range σ_{θ} =27.3 to 27.4. In a recent paper, Grist et al. (2015) show how 383 excess formation of Subpolar Mode Water (SPMW) in winter (2013-2014) relates to extreme 384 North American temperatures and record-breaking precipitation over the UK during that 385 winter. This volume of SPMW in the density range of σ_{θ} = 27.3 to 27.4 is capped by seasonal 386 stratification (Figure 8a). In the following winter of 2014-2015 (Figure 8b) intense vertical 387 mixing deepens the mixed layer to 700m. By the following summer Figure 8c) the SPMW is 388 again capped by seasonal stratification and there is a larger, denser, volume of SPMW than the 389 previous year. These first observations confirm that the OSNAP glider across the Rockall 390 Plateau is well placed to observe the evolution of SPMW and to quantify ocean-atmosphere 391 dynamic exchanges.

392

Gliders are also being employed to enhance the OSNAP data coverage in the eddy-rich region of
the Iceland Basin where the NAC flows northward across the section, often in multiple
branches (Figure 5). One glider, deployed on the OSNAP-East line in June 2015 and recovered
in November 2015, accomplished 519 profiles with a depth range between 0-1000 m while
patrolling between moorings M3 and M4 (green line, Figure 3a). A replacement glider,
deployed in November 2015, has executed 370 profiles as of March 2016 and is expected to
operate until July 2016 when it will be recovered and replaced.

400

Between July and November 2015, a strong anticyclonic eddy was sampled by a glider between
the M3 and M4 moorings (Figure 9). An anticyclonic eddy is often present in this region, and is
a feature of the long-term (20-year) mean Absolute Dynamic Topography (ADT; the altimeter
ADT products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes <

405 http://www.aviso.altimetry.fr/duacs/). Despite rotational currents that affected its path, the glider 406 successfully produced a hydrographic section that shows relatively warm, salty and high 407 oxygen waters for the eddy core, indicating that the water trapped in the eddy is probably 408 recently ventilated water from the NAC. The eddy moved northeastward by the time of the 409 second glider deployment, revealing the relatively smooth front separating the warm, salty and 410 low oxygen water in the east from the relatively cold, fresh and high oxygen water in the west. 411 The high-resolution sections of temperature, salinity, and geostrophic velocity across this 412 region provided by the gliders will lead to increased accuracy in estimates of heat and 413 freshwater flux over that available from the mooring observations and Argo data alone.

414

415 Complementary model and data-based analyses

416 In order to quantify the transformation of the warm waters of the AMOC upper limb that flow northward across the OSNAP line into cooler waters that return southward at depth across the 417 418 line, information is needed on the surface fluxes of heat and fresh water responsible for the 419 transformation. A Regional Thermohaline Inverse Method (RTHIM), which extends the Walin 420 (1982) water mass transformation framework to two water mass coordinates (Groeskamp et 421 al. 2014), quantifies this transformation using surface fluxes from climate reanalysis and 422 observations from Argo floats and satellite altimetry. Importantly, RTHIM provides an estimate 423 of the volume fluxes (AMOC) independent of the OSNAP array observations. RTHIM has been 424 successfully validated against a numerical simulation of the subpolar/Arctic region using a 1° 425 ORCA model and further validation, including more realistic boundary currents and mesoscale 426 eddies, is underway. The method's strength is that it allows for a determination of the relative importance of interior mixing and surface fluxes to the transformation of water masses in the 427 428 subpolar/Arctic region. Given that surface flux observations in the Arctic are sparse, we plan

to use several reanalysis products, recently evaluated in Lindsay at al. (2014), to derive a set of
RTHIM solutions and uncertainties. When applied to the observations, this technique will
provide a proxy measure of the AMOC over a longer time span leading up to OSNAP, helping us
place the variability observed by the array in a broader temporal context.

433 To better understand, and ultimately predict, interannual and decadal variability in the AMOC, 434 a quantification of its sensitivity to changes in surface forcing is needed. This quantification is 435 most efficiently accomplished using an adjoint modelling approach, which provides the linear 436 sensitivity of the AMOC at a single latitude to changes in surface forcing over the globe, for all 437 forcing lead times (Pillar et al. 2016). Sensitivity distributions of the AMOC at 25°N and 50°N to 438 surface heat flux anomalies throughout the Atlantic basin are compared in Figure 10b-e for 439 forcing at lead times of 3 and 8 years. Differences in these sensitivity distributions indicate key 440 regions and lead times at which surface heat flux anomalies may force a notable deviation 441 between the response of the AMOC observed at the RAPID/MOCHA and OSNAP monitoring 442 arrays.

443

444 To further illustrate this point, we show the sensitivity of the AMOC at 25°N (blue) and 50°N 445 (green) to surface heat flux anomalies integrated over the subpolar gyre, as a function of 446 forcing lead time (up to 15 years), in Figure 10a. Examination of this spatially-integrated 447 sensitivity is useful for approximating the AMOC response to regional heat flux anomalies of 448 the same sign, such as those associated with the NAO (e.g., Eden and Jung 2001). At 25°N, the 449 AMOC response to NAO-type heat fluxes over the subpolar gyre oscillates in sign on decadal 450 timescales (Czeschel et al. 2010). In contrast, at 50°N, the AMOC response to the same forcing 451 notably diminishes for forcing lead times exceeding 5 years, due to large cancellation in the 452 integral associated with smaller scale structures in the sensitivity distributions (Figure 10c).

453 These results highlight the need to further explore the full spatial structure of AMOC sensitivity

454 and better constrain variations in surface buoyancy forcing, supporting the expectation that

455 subpolar monitoring under OSNAP will be invaluable in helping us to understand - and

456 possibly predict - low frequency variability in the AMOC at the RAPID/MOCHA array.

457

458 ANTICIPATED OSNAP DATA PRODUCTS AND TIMELINE

OSNAP data products will parallel those of the RAPID/MOCHA program, namely, time series of
the overturning circulation as well as the depth and zonally-integrated heat and freshwater
fluxes. The OSNAP overturning metric will be reported in both depth and density coordinates.
The OSNAP PIs are committed to a timely delivery of OSNAP products. The earliest expected
delivery of the first OSNAP products is one year following the retrieval of all data necessary for
the calculations, i.e., early fall of 2017. Please see www.o-snap.org for further information on
OSNAP, including cruise reports, blogs and technical information on all OSNAP arrays.

466

467 SUMMARY

468 For decades oceanographers have assumed the AMOC to be highly susceptible to changes in 469 the production of deep waters at high latitudes in the North Atlantic. A new ocean observing 470 system is now in place that will test that assumption. Early results from the OSNAP 471 observational program reveal the complexity of the velocity field across the section and the 472 dramatic increase in convective activity during the 2014/2015 winter. Early results from the 473 gliders that survey the eastern portion of the OSNAP line have illustrated the importance of these measurements for estimating meridional heat fluxes and for studying the evolution of 474 475 subpolar mode waters. Finally, numerical modeling data has been used to demonstrate the 476 efficacy of a proxy AMOC measure based on a broader set of observational data and an adjoint

477 modelling approach has shown that measurements in the OSNAP region will aid our

478 mechanistic understanding of the low-frequency variability of the AMOC in the subtropical

479 North Atlantic.

480

Finally, we note that while a primary motivation for studying AMOC variability comes from its potential impact on the climate system, as mentioned above, additional motivation for the measure of the heat, mass and freshwater fluxes in the subpolar North Atlantic arises from their potential impact on marine biogeochemistry and the cryosphere. Thus, we hope that this observing system can serve the interests of the broader climate community.

486

487 **ACKNOWLEDGEMENT**

488 The authors gratefully acknowledge financial support from the US National Science Foundation 489 (NSF), the US National Aeronautics and Space Administration (NASA), the US National Oceanic 490 and Atmospheric Administration (NOAA), WHOI Ocean and Climate Change Institute (OCCI) 491 and WHOI Independent Research and Development (IRD) Program, the UK Natural Environment Research Council (NERC), the European Union 7th Framework Program (NACLIM 492 493 project, No. 308299), the German Federal Ministry and Education, German Research RACE 494 Program, the Natural Sciences and Engineering Research Council of Canada (NSERC), Fisheries 495 and Oceans Canada, the National Natural Science Foundation of China (NSFC), the Fundamental 496 Research Funds of the Central Universities of China, the French Research Institute Exploitation 497 of the Sea (IFREMER), the French National Center for Scientific Research (CRNS), French 498 National Institute of Sciences of the Universities (INSU), the French National Program (LEFE) and the French Oceanographic Fleet (TGIR FOF). 499

500

502 **REFERENCES**

- 503Baehr, J., A. Stroup, and J. Marotzke, 2009. Testing concepts for continuous monitoring of the
- 504 meridional overturning circulation in the South Atlantic. *Ocean Model.*, **29**, 147–153.
- 505 Bingham, R.J., C.W. Hughes, V. Roussenov, and R.G. Williams, 2007. Meridional coherence of the
- 506 North Atlantic meridional overturning circulation. *Geophys. Res. Lett.*, **34**, L23606,
- 507 doi:10.1029/2007GL031731.
- Bower, A.S., M.S. Lozier, S.F. Gary, and C. Böning, 2009. Interior pathways of the Atlantic
 meridional overturning circulation. *Nature*, **458**, 243–247.
- 510 Buckley M. and J. Marshal, 2016. Observations, inferences, and mechanisms of the Atlantic
- 511 Meridional Overturning Circulation: A review. *Rev. Geophys.*, 54,
- 512 doi:10.1002/2015RG000493
- 513 Clarke, R.A., R.M. Hendry, and I. Yashayaev, 1998. A western boundary current meter array in
 514 the North Atlantic near 42°N. *Int. WOCE Newsl.*, 33, 33–34.
- 515 Condron, A., and P. Winsor, 2011. A subtropical fate awaited freshwater discharged from
- 516 glacial Lake Agassiz. *Geophys. Res. Lett.*, **38**, L03705, doi:10.1029/2010GL046011.
- 517 Cunningham, S., and Co-Authors, 2010. The Present and Future System for Measuring the
- 518 Atlantic Meridional Overturning Circulation and Heat Transport, *Proceedings of*
- 519 *OceanObs'09: Sustained Ocean Observations and Information for Society (Vol. 2)*, Venice, Italy,
- 520 21-25 September 2009, Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306,
- 521 doi:10.5270/OceanObs09.cwp.21
- 522 Cunningham, S., T. Kanzow, D. Rayner, M. O. Baringer, W. E. Johns, J. Marotzke, H. Longworth, E.
- 523 Grant, J. Hirschi, L. Beal, C. S. Meinen, and H. Bryden, 2007. Temporal variability of the
- 524 Atlantic meridional overturning circulation at 25°N. *Science*, **317**, 935-938.
- 525 Cunningham, S., and R. Marsh, 2010. Observing and modeling changes in the Atlantic MOC.

- 526 *WIREs Climate Change*, **1**, 180–191.
- 527 Czeschel, L., D. P. Marshall, and H. L. Johnson, 2010. Oscillatory sensitivity of Atlantic
- 528 overturning to high-latitude forcing, *Geophys. Res. Lett.*, **37**, L10601,
- 529 doi:10.1029/2010GL043177.
- 530 Danabasoglu, G., and Coauthors, 2016. North Atlantic simulations in Coordinated Ocean-ice
- 531 Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean
- 532 *Model.*, **97**, 65-90, doi: 10.1016/j.ocemod.2015.11.007.
- 533 de Jong, M.F., and L. de Steur., 2016. Strong winter cooling over the Irminger Sea in winter
- 534 2014-2015, exceptional deep convection, and the emergence of anomalously low SST.
- 535 *Geophys. Res. Lett.*, **43**, doi:<u>10.1002/2016GL069596</u>.
- 536 Delworth T.L., R. Zhang, and M.E. Mann, 2007. In: Ocean circulation: Mechanisms and impacts.
 537 *Amer. Geophys. Union*, Washington, D.C.
- 538 Dengler, M., J. Fischer, F.A. Schott, and R. Zantopp, 2006. Deep Labrador Current and its
- 539 variability in 1996–2005. *Geophys. Res. Lett.*, **33**, L21S06, doi:10.1029/2006GL026702.
- 540 Deshayes, J., F. Straneo, and M.A. Spall, 2009. Mechanisms of variability in a convection basin. *J.*
- 541 *Mar. Res.*, 67, 273-303, doi: 10.1357/002224009789954757
- de Steur, L., 2015. R/V Pelagia Cruise Report 64PE400. OSNAP East leg 2, July 8-29 2015, Texel,
- 543 the Netherlands, Royal Netherlands Institute for Sea Research (NIOZ). [Available online at
- 544 http://www.vliz.be/nl/imis?module=ref&refid=260561&printversion=1&dropIMIStitle=1]
- 545 Eden, C., and T. Jung, 2001. North Atlantic interdecadal variability: Oceanic response to the
- 546 North Atlantic oscillation (1865-1997), *J. Climate*, 14(5), 676–691.
- 547 Fischer, J., F. Schott, and M. Dengler, 2004. Boundary circulation at the exit of the Labrador Sea,
- 548 *J. Phys. Oceanogr.*, **34**, 1548–1570,
- 549 doi:10.1175/15200485(2004)034<1548:BCATEO>2.0.CO;2.

- 550 Grist, J. P., S. A. Josey, Z. L. Jacobs, R. Marsh, B. Sinha, and E. Sebille, 2015. Extreme air-sea
- interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its
- sub-surface legacy, *Climate Dyn.*, 1-19, doi:10.1007/s00382-015-2819-3.
- 553 Groeskamp, S., J. D. Zika, B. M. Sloyan, T. J. McDougall, and P. C. McIntosh, 2014. A thermohaline
- 554 inverse method for estimating diathermohaline circulation and mixing. J. Phys. Oceanogr.,
- 555 **44**, 2681–2697, doi:10.1175/JPO-D-14-0039.1.
- 556 Halloran, P.R., B.B.B. Booth, C.D. Jones, F.H. Lambert, D.J. McNeall, I.J. Totterdell, and C. Völker,
- 557 2015. The mechanisms of North Atlantic CO2 uptake in a large Earth System Model
- 558 ensemble. *Biogeosci. Discuss.*, **11**, 14551-14585.
- 559 Hansen, B., and S. Østerhus, 2007. Faroe bank channel overflow 1995–2005. Prog.
- 560 *Oceanogr*, **75**(4), 817-856, <u>doi:10.1016/j.pocean.2007.09.004</u>
- 561 Heimbach, P., C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011. Timescales and regions of
- the sensitivity of Atlantic meridional volume and heat transport: Toward observing system
- 563 design. *Deep-Sea Res. II*, **58**, 1858–1879, doi:10.1016/j.dsr2.2010
- 564 Hirschi, J., and J. Marotzke, 2007. Reconstructing the Meridional Overturning Circulation from
- 565 Boundary Densities and the Zonal Wind Stress. J. Phys. Oceanogr., **37**, 743–763.
- 566 Holland, D.M., R.H. Thomas, B. De Young, M.H. Ribergaard, and B. Lyberth, 2008. Acceleration
- of Jakobshavn Isbrae triggered by warm subsurface ocean waters. *Nat. Geosci.*, **1**, 659–664.
- 568 Holliday, N.P., S. Bacon, J. Allen, and E.L. McDonagh, 2009. Circulation and transport in the
- 569 Western Boundary Current at Cape Farewell, Greenland. J. Phys. Oceanogr., **39**, 1854–1870.
- 570 Holliday, N. P., S. A. Cunningham, C. Johnson, S. Gary, C. Griffiths, J. F. Read, and T. Sherwin,
- 571 2015. Multi-decadal variability of potential temperature, salinity and transport in the
- 572 eastern subpolar North Atlantic. J. Geophys Res., **120**, 5945-5967, doi:
- 573 10.1002/2015JC010762.

- 574 IPCC, 2013: Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds.,
- 575 Cambridge University Press, 1535 pp, doi:10.1017/CB09781107415324.
- 576 Jackson L, R. Kahana, T. Graham, M. Ringer, T. Woollings, J. Mecking, and R. Wood, 2015. Global
- and European climate impacts of a slowdown of the AMOC in a high resolution GCM. *Climate*
- 578 *Dyn.*, **45**, 3299-3316, doi:10.1007/s00382-015-2540-2
- 579 Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson, 2012. Variability of the Denmark
- 580 Strait overflow: Moored time series from 1996-2011. J. Geophys. Res., 117, C12003,
- 581 doi:10.1029/2012JC008244.
- 582 Kanzow, T., S. A. Cunningham , D. Rayner, J.J.-M. Hirschi, W.E. Johns, M.O. Baringer, H.L. Bryden,
- 583 L.M. Beal, C.S. Meinen, J. Marotzke, 2007. Flow compensation associated with the MOC at
- 584 26.5°N in the Atlantic. *Science*, **317**, 938-941.
- 585 Karspeck, A.R.; D. Stammer, A. Köhl, G. Danabasoglu, M. Balmaseda, D.M. Smith, Y. Fujii, S.
- 586 Zhang, B. Giese, H. Tsujino, A. Rosati, 2015. Comparison of the Atlantic meridional
- 587 overturning circulation between 1960 and 2007 in six ocean reanalysis products. *Climate*
- 588 *Dyn.*, doi: 10.1007/s00382-015-2787-7.
- 589 Khatiwala, S., T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G.
- 590 A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine, 2013. Global ocean storage of
- anthropogenic carbon. *Biogeosciences*, **10**, 2169-2191.
- 592 Kieke, D., and I. Yashayaev, 2015. Studies of Labrador Sea water formation and variability in
- 593 the subpolar North Atlantic in the light of international partnership and collaboration. *Prog.*
- *Oceanogr.*, **132**, 220–232, doi:10.1016/j.pocean.2014.12.010.
- 595 King, B.A., and N.P Holliday, 2015. RRS James Clark Ross Cruise 302, 06 Jun 21 Jul 2014, The
- 596 2015 RAGNARRoC, OSNAP AND Extended Ellett Line cruise report. Southampton, National
- 597 Oceanography Centre, (National Oceanography Centre Cruise Report 35).

- 598 Knight, J.R., R.J. Allan, C.K. Folland, M. Vellinga, and M.E. Mann, 2005. A signature of persistent
- natural thermohaline circulation cycles in observed climate. *Geophys. Res. Lett.*, **32**, L20708,
 doi:10/1029/2005GL024233.
- Knight, J.R., C.K. Folland, and A.A. Scaife, 2006. Climatic impacts of the Atlantic multidecadal
 oscillation. *Geophys. Res. Lett.*, 33, L17706.
- 603 Kortzinger, A., U. Send, D.W.R. Wallace, J. Karstensen, and M. DeGrandpre, 2008. The seasonal
- 604 cycle of O2 and pCO2 in the central Labrador Sea: Atmospheric, biological and physical

605 implications. *Global Biogeochem. Cycles*, **22**, doi:10.1029/2007GB003029.

- 606 Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007. On
- 607 the driving processes of Atlantic meridional overturning circulation. *Rev. Geophys.*, **45**, 32.
- 608 Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002. Convection and
- Restratification in the Labrador Sea, 1990–2000. *Deep-Sea Res. I*, **49**, 1819–1835.
- Li, H., T. Ilyina, A. Wolfgang, A. Müller, and F. Sienz, 2016. Decadal predictions of the North
- 611 Atlantic CO2 uptake. *Nat. Commun.*, **7**:11076, doi: 10.1038/ncomms11076.
- 612 Lindsay, R., M. Wensnahan and A. Schweiger, 2014. Evaluation of seven different atmospheric
- reanalysis products in the Arctic*. *Journal of Climate*, **27**(7), 2588–2606.
- 614 http://doi.org/10.1175/jcli-d-13-00014.1
- 615 Lozier, M.S., 2012. Overturning in the North Atlantic. *Ann. Rev. Mar. Sci.*, **4**, 291–315.
- 616 Lozier, M.S., S.F. Gary and A.S. Bower, 2013. Simulated pathways of the overflow waters in the
- 617 North Atlantic: subpolar to subtropical export, *Deep-Sea Res. II*, **85**, 147-153.
- 618 Madec, G., 2008. NEMO Ocean Engine v2.3. Notes de l'IPS. Universite de P. et M. Curie, Paris.
- 619 McCarthy, G.D., D.A. Smeed, W.E. Johns, E. Frajka-Williams, B.I. Moat, D. Rayner, M.O. Baringer,
- 620 C.S. Meinen, J. Collins, and H.L. Bryden, 2015. Measuring the Atlantic Meridional Overturning
- 621 Circulation at 26°N. *Prog. Oceanogr.*, **130**, 91-111.

622 Meinen, C.S., D.R. Watts, and R.A. Clarke, 2000. Absolutely referenced geostrophic velocity and

transport on a section across the North Atlantic Current. *Deep-Sea Res. I*, **47**, 309–322.

- 624 Mercier, H., P. Lherminier, A. Sarafanov, F. Gaillard, N. Daniault, D. Desbruyères, A. Falina, B.
- 625 Ferron, T. Huck, V. Thierry, 2015. Variability of the meridional overturning circulation at the
- 626 Greenland-Portugal Ovide section from 1993 to 2010. *Prog. Oceanogr.*, **132**, 250-261,
- 627 doi:10.1016/j.pocean.2013.11.001.
- Palter, J.B., and M.S. Lozier, 2008. On the source of Gulf Stream nutrients. *J. Geophys. Res.*, **113**,
 C06018, doi:10.1029/2007JC004611.
- 630 Pérez, F. F., H. Mercier, M. Vazquez-Rodriguez, P. Lherminier, A. Velo, P. Pardo, G. Roson, A.
- 631 Rios, 2013. Reconciling air-sea CO2 fluxes and anthropogenic CO₂ budgets in a changing
- 632 North Atlantic. *Nat. Geosci.*, **6**, 146-152, doi:10.1038/ngeo1680.
- 633 Pickart, R.S., T.K. McKee, D.J. Torres, and S.A. Harrington, 1999. Diagnosing a meander of the
- shelfbreak current in the mid-Atlantic Bight. *J. Phys. Oceanogr.*, **29**, 2541-3132.
- 635 Pickart, R.S., F. Straneo and G.W.K. Moore, 2003. Is Labrador Sea Water formed in the Irminger
 636 Basin? *Deep Sea Res. I*, **50** (1), 23–52. doi:10.1016/S0967-0637(02)00134-6.
- 637 Pillar, H., P. Heimbach, H. Johnson, and D. Marshall, 2016. Dynamical attribution of recent
- 638 variability in Atlantic overturning, J. Climate, in press, doi: 10.1175/JCLI-D-15-0727.1
- 639 Rhines P., S. Häkkinen, and S.A. Josey, 2008. Is oceanic heat transport significant in the climate
- 640 system? *Arctic-Subarctic Ocean Fluxes*, R.R. Dickson, J. Meincke, and P. Rhines, Eds., Springer,
- 641 87–110.
- Rignot, E., and P. Kanagaratnam, 2006. Changes in the velocity structure of the Greenland Ice
 Sheet. *Science*, **311**, 986–990.
- Robson, J. I., R. Sutton, K. Lohmann, and D. Smith, 2012. Causes of the rapid warming of the
- North Atlantic Ocean in the mid-1990s. *J. Climate*, **25**, 4116–4134.

- 646 Rosón, G., A.F. Ríos, F.F. Pérez, A. Lavín, and H.L. Bryden, 2003. Carbon distribution, fluxes, and
- 647 budgets in the subtropical North Atlantic Ocean (24.5°N). J. Geophys. Res., **108**,
- 648 doi:10.1029/1999JC000047.
- 649 Sabine, C.L., and Coauthors, 2004. The oceanic sink for anthropogenic CO₂. Science, **305**, 367–
- 650 371, doi:10.1126/science.1097403
- 651 Schott, F.A., J. Fischer, M. Dengler, and R. Zantopp, 2006. Variability of the Deep Western
- 652 Boundary Current East of the Grand Banks. *Geophys. Res. Lett.*, **33**, L21S07,
- 653 doi:10.1029/2006GL026563.
- 654 Send, U., and J. Marshall, 1995. Integral effects of deep convection. J. Phys. Oceanogr., 25, 855–
- 655 872**.**
- 656 Serreze, M.C., M.M. Holland, and J. Stroeve, 2007. Perspectives on the Arctic's shrinking sea-ice
 657 cover. *Science*, **315**, 1533–1536.
- 658 Smith D.M., R. Eade, N.J. Dunstone, D. Fereday, J.M. Murphy, H. Pohlmann, and A.A. Scaife, 2010.
- 659 Skilful multi-year predictions of Atlantic hurricane frequency. *Nat. Geosci.*, **3**, 846–849.
- Spall, M.A., 2004. Boundary currents and water mass transformation in marginal seas. *J. Phys. Oceanogr.*, 34, 1197–1213.
- Spall, M.A., and R.S. Pickart, 2001. Where does dense water sink? A subpolar gyre example. *J. Phys. Oceanogr.*, **31**(3), 810–826.
- Stouffer, R.J., and Coauthors, 2006. Investigating the causes of the response of the thermohaline
 circulation to past and future climate changes. *J. Climate*, **19**, 1365–1387.
- 666 Stramma, L., D. Kieke, M. Rhein, F. Schott, I. Yashavaev, and K.P. Koltermann, 2004. Deep water
- 667 changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. *Deep*-
- 668 Sea Res. I, **51**, 1033–1056.
- 669 Steinfeldt, R., M. Rhein, J. L. Bullister, and T. Tanhua, 2009. Inventory changes in anthropogenic

- 670 carbon from 1997-2003 in the Atlantic Ocean between 20°S and 65°N. *Global Biogeochem.*
- 671 *Cycles*, **23**, GB3010, doi:10.1029/2008GB003311
- 672 Straneo, F., 2006. Heat and freshwater transport through the central Labrador Sea. *J. Phys.*673 *Oceanogr.*, **36**, 606–628.
- 674 Straneo, F., G. Hamilton, D.A. Sutherland, L.A. Stearns, F. Davidson, M.O. Hammill, G.B. Stenson,
- and A. Rosing-Asvid, 2010. Rapid circulation of warm subtropical waters in a major glacial
- fjord off East Greenland. *Nat. Geosci.*, **3**, 182–186.
- 677 Straneo, F., P. Heimbach, 2013. North Atlantic warming and the retreat of Greenland's outlet
- 678 glaciers. *Nature*, **504**, 36-43, doi: 10.1038/nature12854.
- Sutton R.T., and D.L.R. Hodson, 2005. Atlantic Ocean forcing of North American and European
 summer climate. *Science*, **309**, 115–118.
- Takahashi, T., and Coauthors, 2009. Climatological mean and decadal change in surface ocean
- pCO₂, and net sea-air CO₂ flux over the global oceans. *Deep-Sea Res. II*, **56**, 554–577.
- 683 U.S. CLIVAR AMOC Planning Team, 2007. Implementation strategy for a JSOST near-term
- 684 priority assessing meridional overturning circulation variability: Implications for rapid
- climate change. U.S. CLIVAR Rep. 2007-2, 23 pp.
- 686 Visbeck, M., 2007. Oceanography: Power of pull. *Nature*, **447**, 383.
- 687 Walin, G., 1982. On the relation between sea-surface heat flow and thermal circulation in the
- ocean. *Tellus*, **34**, 187–195, doi: 10.1111/j.2153-3490.1982.tb01806.x
- Ku, X., W.J. Schmitz, H.E. Hurlburt, P.J. Hogan, and E.P. Chassignet, 2010. Transport of Nordic
- 690 Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and
- observations. *J. Geophys Res.*, **115**, C12048, doi:10.1029/2010JC006351.
- 692 Yashayaev, I., 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Prog.
- 693 *Oceanogr.*, **73**(3), 242-276, <u>doi:10.1016/j.pocean.2007.04.015</u>

- 694 Yashayaev, I., and J.W. Loder, 2016. Recurrent replenishment of Labrador Sea Water and
- 695 associated decadal-scale variability. *J. Geophys Res.,* in review.
- 696 Yeager, S. G., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012. A decadal prediction
- 697 case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 5173–
- 699 Zhang, R., and T.L. Delworth, 2006. Impact of Atlantic multidecadal oscillations on India/Sahel
- rainfall and Atlantic hurricanes. *Geophys. Res. Lett.*, **33**, L17712,
- 701 doi:10/1029/2006GL026267.
- 702

703 **FIGURE CAPTIONS**

Figure 1. Schematic of the major warm (red to yellow) and cold (blue to purple) water

pathways in the North Atlantic subpolar gyre (credit: H. Furey, WHOI). Acronyms not in the

706 text: Denmark Strait (DS); Faroe Bank Channel (FBC); East and West Greenland Currents (EGC,

707 WGC); North Atlantic Current (NAC); DSO (Denmark Straits Overflow); ISO (Iceland-Scotland

708 Overflow).

Figure 2. Schematic of the OSNAP array. The vertical black lines denote the OSNAP moorings with the red dots denoting instrumentation at depth. The thin gray lines indicate the glider survey. The red arrows show pathways for the warm and salty waters of subtropical origin; the light blue arrows show the pathways for the fresh and cold surface waters of polar origin; and the dark blue arrows show the pathways at depth for waters that originate in the high latitude North Atlantic and Arctic.

715 Figure 3. (a) OSNAP observing system: From west to east: Canadian [CA] shelfbreak array and 716 *German [DE] 53°N western boundary array; US West Greenland boundary array; US/UK East 717 Greenland boundary array; Netherlands [NL] western Mid-Atlantic Ridge array; US eastern 718 Mid-Atlantic Ridge array; Chinese [CN] glider survey in the Iceland Basin; UK glider survey 719 over the Hatton-Rockall Bank; UK Scottish Slope current array. Green dots: 2014 US float 720 launch sites. Green line: Chinese glider; red line: UK glider. Blue circles: US sound sources. 721 Purple dashed lines: repeated hydrographic sections. AR7E line is not shown since it mostly 722 overlaps with the OSNAP East line from Greenland to Scotland. The light gray lines represent 723 the 1000m-, 2000m- and 3000m-isobaths. Moorings within the black dashed boxes are 724 specified in Figures 3b and 3c. (b) *00I Global Irminger Sea Array (blue triangles), *German CIS mooring, and *Dutch LOCO mooring. The OOI FLMA and FLMB moorings are on the OSNAP 725 726 East line (black line). (c) *RREX mooring array (white triangles) and OSNAP moorings on the

flanks of the Reykjanes Ridge. The RREX IRW, IRM and IRE moorings are on the OSNAP East

728 line (black line). In (b) and (c) bathymetry (m) is contoured. An asterisk indicates an observing

element that, though used by OSNAP, either existed before the OSNAP program or came online

the same time. All other elements were designed specifically for OSNAP.

731 Figure 4. Schematic of moorings along (a) OSNAP West and (b) OSNAP East. The instrument

types are as indicated by legend: CTD – Conductivity-Temperature-Depth; CM – Current Meter;

733 ADCP – Acoustic Doppler Current Profiler; MP – Moored profiler. Glider domain is indicated by

shaded box: red– Chinese glider, blue – UK glider. Vertical gray lines over the western flank of

the Reykjanes Ridge (~600-750 km) along OSNAP East illustrate three French moorings as

part of the RREX program. Black contours are 2005-2012 mean salinity from WOA13.

737 Enlarged figures are available on the OSNAP website: http://www.o-

738 snap.org/observations/configuration/

Figure 5. Observations on the OSNAP section in June-July 2014; cross-section velocity in color

740 (positive is poleward, ms⁻¹), and potential temperature (°C) (referenced to surface) as

741 contours. Major currents are indicated: Labrador Current (LC), Labrador Sea Boundary Current

742 (BC), West Greenland Current (WGC), East Greenland Current (EGC), Irminger Current (IC),

743 North Atlantic Current (NAC).

Figure 6. (a) Hydrography in the Irminger Sea observed in July 2015. Dissolved oxygen values

745 are plotted with color shading (μmol kg⁻¹). The colored lines are salinity contours plotted at

746 0.04 intervals. CTD station locations are indicated with triangles at the top. (b) Time-series of

747 dissolved oxygen (µmol kg⁻¹) from the OOI HYPM mooring, whose location is indicated with a

748 black circle in (a). White areas denote missing data.

749 **Figure 7.** (a) Winter (DJFM) mean NAO index. (b) and (c) show time-series of temperature

750 from the K1 and K9 moorings, respectively. The mooring locations are shown in Figure 3a.

751 **Figure 8.** Three glider sections on Rockall Plateau along 58°N in (a) July/August 2014, (b) 752 January 2015 and (c) July 2015. Labels on the left and right side of the sections indicate the 753 date at the beginning and end of the section [ddmmyy]. Contours are of salinity (color), 754 potential temperature (white dashed lines) and potential density (black dashed line) 755 referenced to the surface. The mixed layer depth, calculated using a reference level at 10 m 756 depth and a criterion $\Delta \sigma_{\theta} = 0.03$ kg m⁻³, is shown by the red line. The profile path taken by the 757 glider is V-shaped, with a typical horizontal separation of 2-6 km. Descent and ascent speed is \sim 10-20 cm s⁻¹ and forward speed is \sim 20-40 cm s⁻¹. Vertical resolution of sampling is \sim 0.5-1.5 758 759 m above the main pycnocline and ~ 1.5 -3 m below.

Figure 9. (a) Absolute Dynamic Topography (m) between 23 July and 2 August, 2015, showing
an anti-cyclonic eddy on the ONSAP line. The two black squares denote moorings M3 and M4
and a black line represents the sampling path. The temperature (°C), salinity and dissolved
oxygen (µmol kg⁻¹) data recorded by the glider during the eddy scenario are shown in (b), (c),
(d), respectively.

765 Figure 10. (b-e) Linear sensitivity of the AMOC at (d, e) 25°N and (b, c) 50°N in January to 766 surface heat flux anomalies per unit area. Positive sensitivity indicates that ocean cooling leads to an increased AMOC, e.g. in the upper panels, a unit increase in heat flux out of the ocean at a 767 768 given location will change the AMOC at (d) 25°N or (e) 50°N 3 years later by the amount shown 769 in the colorbar. The contour intervals are logarithmic. (a) The time series show linear 770 sensitivity of the AMOC at 25°N (blue) and 50°N (green) to heat fluxes integrated over the 771 subpolar gyre (black box with surface area $\sim 6.7 \times 10 \text{ m}^2$) as a function of forcing lead time. The 772 reader is referred to Pillar et al. (2016) for model details and to Heimbach et al. (2011) and 773 Pillar et al. (2016) for a full description of the methodology and discussion relating to 774 dynamical interpretation of the sensitivity distributions.

Figure 1. Schematic of the major warm (red to yellow) and cold (blue to purple) water pathways in the North Atlantic subpolar gyre (credit: H. Furey, WHOI). Acronyms not in the text: Denmark Strait (DS); Faroe Bank Channel (FBC); East and West Greenland Currents (EGC, WGC); North Atlantic Current (NAC); DSO (Denmark Straits Overflow); ISO (Iceland-Scotland Overflow).

Figure 2. Schematic of the OSNAP array. The vertical black lines denote the OSNAP moorings with the red dots denoting instrumentation at depth. The thin gray lines indicate the glider survey. The red arrows show pathways for the warm, and salty waters of subtropical origin; the light blue arrows show the pathways for the fresh and cold surface waters of polar origin; and the dark blue arrows show the pathways at depth for waters formed via convections in the high latitude North Atlantic and Arctic.

Figure 3. (a) OSNAP observing system: From west to east: Canadian [CA] shelfbreak array and *German [DE] 53°N western boundary array; US West Greenland boundary array; US/UK East Greenland boundary array; Netherlands [NL] western Mid-Atlantic Ridge array; US eastern Mid-Atlantic Ridge array; Chinese [CN] glider survey in the Iceland Basin; UK glider survey over the Hatton-Rockall Bank; UK Scottish Slope current array. Green dots: 2014 US float launch sites. Green line: Chinese glider; red line: UK glider. Blue circles: US sound sources. Purple dashed lines: repeated hydrographic sections. AR7E line is not shown since it mostly overlaps with the OSNAP East line from Greenland to Scotland. The light gray lines represent the 1000m-, 2000m- and 3000m-isobaths. Moorings within the black dashed boxes are specified in Figures 3b and 3c. (b) *OOI Global Irminger Sea Array (blue triangles), *German CIS mooring, and *Dutch LOCO mooring. The OOI FLMA and FLMB moorings are on the OSNAP East line (black line). (c) *RREX mooring array (white triangles) and OSNAP moorings on the flanks of the Reykjanes Ridge. The RREX IRW, IRM and IRE moorings are on the OSNAP East line (black line). In (b) and (c) bathymetry (m) is contoured. An asterisk indicates an observing element that, though used by OSNAP, either existed before the OSNAP program or came online the same time. All other elements were designed specifically for OSNAP.

Figure 4. Schematic of moorings along (a) OSNAP West and (b) OSNAP East. The instrument types are as indicated by legend: CTD – Conductivity-Temperature-Depth; CM – Current Meter; ADCP – Acoustic Doppler Current Profiler; MP – Moored profiler. Glider domain is indicated by shaded box: red– Chinese glider, blue – UK glider. Vertical gray lines over the western flank of the Reykjanes Ridge (~600-750 km) along OSNAP East illustrate three French moorings as part of the RREX program. Black contours are 2005-2012 mean salinity from WOA13. Enlarged figures are available on the OSNAP website: http://www.o-snap.org/observations/configuration/

Figure 5. Observations on the OSNAP section in June-July 2014; cross-section velocity in color (positive is poleward, ms⁻¹), and potential temperature (°C) (referenced to surface) as contours. Major currents are indicated: Labrador Current (LC), Labrador Sea Boundary Current (BC), West Greenland Current (WGC), East Greenland Current (EGC), Irminger Current (IC), North Atlantic Current (NAC).

Figure 6. (a) Hydrography in the Irminger Sea observed in July 2015. Dissolved oxygen values are plotted with color shading (μ mol kg⁻¹). The colored lines are salinity contours plotted at 0.04 intervals. CTD station locations are indicated with triangles at the top. (b) Time-series of dissolved oxygen (μ mol kg⁻¹) from the OOI HYPM mooring. The location of this mooring is indicated with white circle in (a).

Figure 7. (a) Winter (DJFM) mean NAO index. (b) and (c) show time-series of temperature from the K1 and K9 moorings, respectively. The mooring locations are shown in Figure 3a.

Figure 8. Three glider sections on Rockall Plateau along 58°N in (a) July/August 2014, (b) January 2015 and (c) July 2015. Labels on the left and right side of the sections indicate the date at the beginning and end of the section [ddmmyy]. Contours are of salinity (color), potential temperature (white dashed lines) referenced to surface and potential density (black dashed line) referenced to surface. The mixed layer depth, calculated using a reference level at 10 m depth and a criterion $\Delta \sigma_{\theta}$ = 0.03 kg m⁻³, is shown by the red line. The profile path taken by the glider is V-shaped, with a typical horizontal separation of 2-6 km. Descent and ascent speed is ~ 10-20 cm s⁻¹ and forward speed is ~ 20-40 cm s⁻¹. Vertical resolution of sampling is ~ 0.5-1.5 m above the main pycnocline and ~ 1.5-3 m below.

Figure 9. (a) Absolute Dynamic Topography (m) between 23 July and 2 August 2015, showing an anti-cyclonic eddy on the ONSAP line. The two black squares denote moorings M3 and M4 and a black line represents the sampling path. The temperature (°C), salinity and dissolved oxygen (μ mol kg⁻¹) data recorded by the glider during the eddy scenario are shown in (b), (c), (d), respectively.

Figure 10. (b-e) Linear sensitivity of the AMOC at (d, e) 25°N and (b, c) 50°N in January to surface heat flux anomalies per unit area. Positive sensitivity indicates that ocean cooling leads to an increased AMOC, e.g., a unit increase in heat flux out of the ocean at a given location will change the AMOC at (d) 25°N or (e) 50°N 3 years later by the amount shown in the colorbar. The contour intervals are logarithmic. (a) The time series show linear sensitivity of the AMOC at 25°N (blue) and 50°N (green) to heat fluxes integrated over the subpolar gyre (black box with surface surface area ~ 6.7×10 m²) as a function of forcing lead time. The reader is referred to Pillar et al. (2016) for model details and to Heimbach et al. (2011) and Pillar et al. (2016) for a full description of the methodology and discussion relating to dynamical interpretation of the sensitivity distributions.