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Abstract 25 

 26 

In a terrestrial Triassic–Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites 27 

are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying 28 

this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned 29 

sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite 30 

overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating 31 

fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement 32 

postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by 33 

conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple 34 

stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values 35 

for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their 36 

overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies 37 

have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic / 38 

freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg 39 

contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of 40 

varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. 41 

Bacterially-mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that 42 

are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical 43 

conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.  44 

 45 

 46 

 47 

 48 

 49 
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Introduction 50 

 51 

Siderite is a common early diagenetic mineral occurring with a variety of morphologies in different 52 

depositional environments. Rhombohedral and spheroidal (ellipsoid-shaped) siderite are known from marine 53 

mudstones and sandstones (e.g. Mozley and Carothers 1992; Mortimer et al. 1997; Wilkinson et al. 2000, 54 

Weibel et al. 2010), whereas sphaerosiderite (with internal radial and/or concentric zonation) and spherulitic 55 

siderite morphologies (with internal radial structures) and nodules/spheres of siderite (without clear internal 56 

structures) are commonly of pedogenic origin (e.g. Browne and Kingston 1993; Retallack 1997; Driese et al. 57 

2010; Robinson et al. 2010; Suarez et al. 2010; Rosenau et al. 2013) and are occasionally found in tidal flats 58 

(Choi et al. 2003). A morphological change from spherulitic to rhombohedral siderite during diagenesis has 59 

recently been suggested by Köhler et al. (2013) and renders the probability of other explanations for the 60 

varying siderite morphologies. In a similar way to the changes during burial of marine sediments, the initial 61 

microbial mediated fast precipitation may change into rhombohedral growth, as the supply of Fe becomes 62 

slower during increased burial of continental deposits.  Zonation is common in rhombohedral and spheroidal 63 

siderite, and sphaerosiderites are characterized by internal radial-concentric microstructures. Siderite 64 

zonation has previously been ascribed to mixing of meteoric and marine waters (Mozley 1989; Choi et al. 65 

2003), diagenetic evolution of freshwater or brackish-marine pore water during burial (Matsumoto and Iijima 66 

1981; Lim et al. 2004), or modification of the original marine pore waters during successive stages of 67 

microbial decomposition of organic matter (Mozley and Carothers 1992; Wilkinson et al 2000; Lim et al. 68 

2004). Despite the wide occurrence of sphaerosiderite, little is known of the pedogenetic conditions 69 

(physical, chemical and biological) under which they form and when different siderite morphologies are 70 

likely to precipitate (Driese et al. 2010).  Precipitation of siderite, even within historical time (< 100 years) 71 

shows that microbial degradation of organic contaminants can enhance siderite precipitation rate (Driese et 72 

al. 2010). Hence, microbial activity in the pedogenic regime may have promoted precipitation of 73 

sphaerosiderite. Siderite formation has been interpreted to be microbially mediated in various environments; 74 

marine (Mozley and Carothers 1992; Wilkinson et al. 2000), tidal (Choi et al. 2003), and lacustrine (Fisher et 75 
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al. 1998). A wide range in carbon isotope composition (δ13C) of spharerosiderites is interpreted to originate 76 

from variations in the type of microbial activity in soils (e.g. Robinson et al. 2010), whereas a more narrow 77 

range of oxygen isotope compositions (δ18O) is thought to reflect meteoric water compositions (e.g., Ufnar et 78 

al. 2004b; Driese et al. 2010; Robinson et al. 2010; Suarez et al. 2010). The latter has therefore been used as 79 

a palaeoproxy for the isotope composition of rainfall, primarily during the Cretaceous (Ludvigson et al. 80 

1998; Ufnar et al. 2001, 2002, 2004a, 2004b, 2004c; Suarez et al. 2009, 2010; Robinson et al. 2010).  81 

 82 

The end-Triassic event is one of the five largest biotic crises during the Phanerozoic (Bond and Wignall 83 

2014). It is temporally linked to the emplacement of intrusive and extrusive volcanic rocks during the 84 

formation of the Central Atlantic Magmatic Province (Schoene et al. 2010; Blackburn et al. 2013), and 85 

degassing from this volcanism is generally believed to have played a major part in the extinction scenario 86 

(e.g., Hesselbo et al. 2002; Ruhl et al. 2011; Lindström et al. 2012). Organic δ13C records across the 87 

Triassic–Jurassic boundary show large negative perturbations in the carbon cycle interpreted as reflecting 88 

input of light carbon from the volcanism or from methane release (e.g. Hesselbo et al. 2002). In the terrestrial 89 

realm, physiological responses in fossil plants indicate intense global warming across the Triassic–Jurassic 90 

boundary (McElwain et al. 1999). Increased storminess and lightning activity are further indicated by 91 

charcoal records showing increased wildfire activity from Greenland, Denmark, Sweden and Poland 92 

(Marynowski and Simoneit 2009; Belcher et al. 2010; Petersen and Lindström 2012). Sedimentary records 93 

from the Danish Basin indicate increased reworking of palynological material (Lindström et al. 2012), and 94 

marked changes in fluvial terrestrial successions in Sweden and Greenland seem to indicate an increased 95 

water content in the hydrological cycle across the boundary (Lindström and Erlström 2006; Steinthorsdottir 96 

et al. 2012).   97 

 98 

Sphaerosiderites and other siderite morphologies have previously been reported from Triassic–Jurassic 99 

boundary sediments (Höganäs Formation) in Scania, southern Sweden (Fig. 1; Troedsson 1951; Ahlberg 100 

1994). Troedsson (1951) reported sphaerosiderites from early – middle Rheatian clayey sediments (Vallåkra 101 

Member of the Höganäs Formation) in several old cored wells and outcrops in northwest and central Scania, 102 
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and concluded that sphaerosiderites were restricted to this particular interval. Here we show that 103 

sphaerosiderites also occur within the latest Rhaetian sand and sandstones (Helsingborg Member of the 104 

Höganäs Formation), although they are apparently absent from the intermediate part (Bjuv member of the 105 

Höganäs Formation) (Fig. 1). The purpose of this study is to find explanations for the different siderite 106 

morphologies and contribute to the understanding of sphaerosiderite formation, and its implications 107 

regarding Triassic – Jurassic-boundary events. In northwest Scania, southern Sweden, the end-Triassic 108 

terrestrial succession is characterized by a pronounced shift in depositional style and in occurrence of various 109 

types of authigenic siderite. Mid to late Rhaetian forest mires and confined fluvial channel deposits are 110 

completely free of authigenic siderite, whereas the overlying latest Rhaetian unconfined and probably 111 

episodic braided river deposits are dominated by siderite concretions and authigenic siderite. In this sense, 112 

the Albert-1 core, Norra Albert quarry and the Fleninge No. 266 core (Fig. 2), which together encompass 113 

Norian–Hettangian strata, provide excellent opportunities for such investigations as perfectly zoned 114 

sphaerosiderite occur juxtaposedwith other siderite morphologies.  115 

 116 

Fig. 1: Stratigraphy 117 

 118 

Fig. 2: Map 119 

 120 

 121 

Geological setting 122 

 123 

During the Late Triassic – Early Jurassic the Norwegian–Danish Basin was situated on the margin of an 124 

epicontinental basin covering NW Europe (e.g. Fischer and Mudge 1998; Nielsen 2003). Southern Sweden 125 

was part of the Fennoscandian Border Zone, which is structurally defined by the Sorgenfrei-Tornquist Zone, 126 

and marks the transition from the Fennoscandian Shield to the north-east and the gradually deepening 127 

(epicontinental) basin towards the south-west (Fig. 1; Liboriussen et al. 1987; Mogensen and Korstgård, 128 
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2003; Nielsen 2003). Therefore, minor sea-level changes played a significant role in controlling the lateral 129 

facies distribution (Ahlberg et al. 2003). In Scania, the southernmost part of Sweden, typical continental red 130 

beds of the Norian Kågeröd Formation, deposited under a semi-arid regime, are succeeded by claystones, 131 

sandstones and coals belonging to the Rhaetian-Hettangian Höganäs Formation (Fig. 1). The oldest member 132 

of the Höganäs Formation, the Vallåkra Member, consists of variegated smectitic clays and sands which 133 

constitute a transition from the underlying red beds of the Kågeröd Formation to the kaolinite-rich 134 

underclays, mature sands and coals of the Bjuv Member (Ahlberg et al. 2003). The Norwegian–Danish Basin 135 

was transgressed in two steps (indicated on Fig. 1) during the Rhaetian, culminating with a maximum 136 

transgression (MFS7) that can be traced all over the Danish part of the Norwegian–Danish Basin (Figs 1 and 137 

3; Nielsen 2003; Lindström and Erlström 2006). The marine transgression reached as far in Scania as the 138 

localities Helsingborg and Lunnom, and at Norra Albert an incursion of marine dinoflagellates probably 139 

represents marine waters entering the rivers during storm episodes (Fig. 1; Lindström and Erlström 2006). 140 

The precursor mires, resulting in the Bjuv Member coals/coaly beds, were formed on a low-relief coast 141 

affected by a transgressive event in the mid-late Rhaetian (Petersen et al. 2013). The change from a semi-arid 142 

climate during the Norian to more humid conditions during the Rhaetian has been attributed to effects of the 143 

marine inundation of the Central European Basin from the Tethys (Ahlberg et al. 2002). Climatic changes at 144 

the Triassic–Jurassic boundary that forced supraregional deforestation in NW Europe, (van de Schootbrugge 145 

et al. 2009) which severely affected the forest mires (Petersen and Lindström 2012), may have triggered the 146 

changes in continental deposits from mire forests and wetlands with confined fluvial channels (Bjuv 147 

Member) to braided streams of the Boserup beds (Helsingborg Member) (Lindström et al. 2015). The 148 

Boserup beds constitute the basal part of the Helsingborg Member (Sivhed 1984, Troedsson 1951). Some 149 

authors have placed the boundary between the Bjuv Member and the Helsingborg Member at the top of coal 150 

bed A, i.e. at c. 3 m in Fig. 3A (Sivhed 1984). In the Norra Albert quarry the boundary of the Boserup beds 151 

has not been formally defined. In the present paper it is placed at 6 m in Fig. 3A based on sedimentological 152 

considerations. The Bjuv Member is characterized by mudstones and coal beds with subordinate sandstones 153 

interpreted as fluvial deposits. The overall depositional environment is interpreted as a floodplain. The coal 154 

bed A is overlain by carbonaceous mudstone and with strongly deformed sand beds 5.0–6.2 m (Fig. 3A). 155 
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This succession comprises thin beds of fine-grained sand with graded bedding separated by mud-drapes. The 156 

sand shows ripple-cross-lamination, indistinct lamination and locally parallel bedding. The sedimentary 157 

structures suggest episodic, non-channelized deposition of sand in a flood-plain environment. Two phases of 158 

soft-sediment deformations are interpreted caused by seismic shocks (Lindström et al. 2015). They are 159 

erosionally overlain by the Boserup beds, which are a distinct association of facies dominated by structure 160 

less, parallel bedded and trough cross-bedded sand, with several large concretions. The Boserup beds are 161 

interpreted as braided stream deposits.  162 

 163 

At the Norra Albert quarry and in the Fleninge No. 266 well this terrestrial ecosystem change is marked by a 164 

gradual loss of Taxodiacean/Cupressacean gymnosperm pollen (Perinopollenites elatoides) from trees that 165 

thrived in mires in favour of the enigmatic gymnosperm pollen tetrad Ricciisporites tuberculatus, 166 

representing an unknown habit, perhaps ruderal / scrubby (Kürschner et al. 2014). A similar shift in 167 

dominating pollen-type is recorded in marine sediments (the Stenlille-1 well – see Fig. 2) representing a 168 

sediment source-area larger than that of the investigated terrestrial localities (Lindström et al. 2012). In 169 

addition, repeated intervals of seismites occur at the Triassic-Jurassic transition at the Norra Albert quarry 170 

(Lindström et al. 2015) coinciding with the occurrence of perfectly zoned sphaerosiderite (Fig. 2). 171 

 172 

Fig. 3: Sedimentary logs from Norra Albert quarry, Albert-1 and Fleninge No. 266 cores. 173 

 174 

 175 

Methodology and terminology 176 

 177 

The samples comprise outcrop rock samples taken during field work in the Norra Albert quarry 2009 - 2012 178 

and core samples from the Albert-1 and the Fleninge No. 266 wells, which were drilled in 2009 and 1935, 179 

respectively. Consequently, the samples from the Fleninge No. 266 well were restricted by the limited 180 

remaining core samples. 181 
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 182 

Petrography was evaluated from polished thin sections using a Zeiss Axioplane for transmitted and reflected 183 

light microscopy. Supplementary studies of crystal morphologies, dissolution features and paragenetic 184 

relationships were performed on gold coated rock chips mounted on stubs and on carbon coated thin sections 185 

using a Phillips® XL 40 scanning electron microscope (SEM) operated with secondary electron detector 186 

(SE) and back-scatter detector (BSE), respectively. The SEM was equipped with an energy dispersive X-ray 187 

analysis (EDX) system Thermo Nanotrace® 30 mm2 detector surface window and a Pioneer Voyager® 2.7 188 

10 mm2 window Si(Li) detector. The electron beam was generated by a tungsten filament operating at 17 kV 189 

and 50-70 µA. One sample was partially dissolved in hydrochloric acid heated at 30°C in 2 hours under 190 

agitation in order to enhance visibility of growth structures in the SEM. 191 

 192 

Bulk samples for X-ray diffraction (XRD) analysis were mounted with random orientation. Samples were 193 

scanned on an automated Philips® PW 3710 X-ray diffractometer with automatic divergence slit, using 194 

graphite monochromated CuK radiation. Quantification of major mineral phases based on bulk samples 195 

was done by Rietveld analysis of X-ray diffractograms.  196 

 197 

Total abundances of the major oxides and several minor elements were analysed by ICP-ES (inductively 198 

coupled plasma-emission spectrometry) and the rare earth elements were determined by ICP-MS 199 

(inductively coupled plasma-mass spectrometry) at ACME laboratory. The samples were fused by lithium 200 

metaborate/ tetraborate and digested in dilute nitric acid. Total S and C were analysed by LECO. The major 201 

elements were applied for calculation of mineral abundances. 202 

 203 

Quantitative chemical analyses of the carbonates were performed on a JEOL® JXA-8200 electron 204 

microprobe operated at an acceleration voltage of 15 kV, a beam current of 8 nA and a spot size of 10 µm. 205 

Carbon coated thin section were applied. 206 

 207 
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Carbon and oxygen isotopes were analysed on bulk rock samples by IRMS (isotope ratio mass spectrometry) 208 

and in situ by SIMS (secondary ion mass spectrometry) on thin sections. Bulk rock carbon and oxygen 209 

isotope analyses using a VG SIRA II dual inlet mass spectrometer were performed on carbon dioxide 210 

released from the carbonates after reaction with phosphoric acid at 25°C for 3 hours (calcites) and at 100°C 211 

for 96 hours (siderites) at the SUERC facility in the UK. This way the major part of carbon dioxide produced 212 

at 25°C will be from calcite, ensuring that the subsequent produced (at 100°C) carbon dioxide was 213 

dominantly from siderite. The fractionation factors used were from Friedman and O’Neil (1977) (calcite) and 214 

Rosenbaum and Sheppard (1986) (siderite). Carbon  and oxygen isotope data (δ13C and δ18O) are presented 215 

in the standard δ notation relative to PDB, Pee Dee Belemnite (Craig 1957). In situ carbon and oxygen 216 

isotopes measurements, were performed at the NORDSIM facility, Stockholm, using a CAMECA® 217 

IMS1280 large-geometry ion microprobe using a 20 kV, ca. 10 µm Cs+ primary beam, a low-energy 218 

electron-flooding gun to compensate for charge build-up and simultaneous detection in either two Faraday 219 

detectors (for 16O and 18O) or a Faraday together with an ion-counting electron multiplier (for 12C and 13C 220 

respectively). All analyses were performed in automated chain sequences that regularly interspersed analyses 221 

of unknowns with those of standards.   Because there is no universally accepted siderite standard we 222 

developed our own through the Stable Isotope Facility (SIF) at the BGS using a VG Optima dual inlet mass 223 

spectrometer and the Isotope Community Support Facility (ICSF) at SUERC using a VG SIRA II dual inlet 224 

mass spectrometer). These two laboratories have slightly different analytical methods but agreed on the 225 

preferred value for our principal standard, to which we compare our data. The siderite standard is from 226 

Ivigtut cryolite deposits, Ivigttuut, Greenland. It was reacted under vacuum with anhydrous phosphoric acid 227 

at a constant 100oC for 96 hours (SIF) and at 70°C for one week (ICSF). The CO2 liberated was 228 

cryogenically separated from water vapour under vacuum and analysed using IRMS. The mineral-gas 229 

fractionation factor used for siderite was 1.00881 (derived from Rosenbaum and Sheppard, 1986). The 230 

oxygen and carbon isotope composition of the siderite (δ18O and δ13C) are reported as per mil (‰) deviations 231 

of the isotope ratios (18O/16O and 13C/12C) calculated to the V-PDB scale. The SIF derived value for the 232 

siderite standard was –21.97‰ (0.09 1SD) δ18O and –8.08‰ (0.02 1SD) for δ13C. The ICSF derived value 233 

for the siderite standard was –22.13‰ (0.23 1SD) δ18O and –8.51‰ (0.17 1SD) for δ13C. Consequently, 234 
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average values of –22.04‰ (0.17 1SD) for δ18O and –8.25‰ (0.24 1SD) for δ13C were achieved when 235 

compiling all standard measurements and were applied for correcting the SIMS data.  236 

 237 

 238 

Results, sedimentology and petrography 239 

 240 

Occurrence of siderite in the sediments  241 

 242 

At the Norra Albert quarry siderite concretions are confined to the coarse-grained, poorly sorted, fluvial 243 

sandstones of the Boserup beds and sporadic siderite cement in the uppermost part of the Bjuv Member (Fig. 244 

3A), whereas their absence is notable in the underlying more clayey floodplain sediments of the Bjuv 245 

Member. In general, the siderite concretions (ranging in size from 20 cm – 2 m) are developed preferentially 246 

along the stratification (Fig. 4A, 4C and 4D). In some cases, the concretions appear to have initiated locally 247 

in the most coarse-grained undulating intervals followed by continued siderite growth into the surrounding 248 

finer-grained sand intervals, which cuts the sedimentary structures (Fig. 4E and 4F). In rare cases, petrified 249 

wood occurs in the centre of siderite concretions (Fig. 4B).pure siderite occurs. The pure siderite can be 250 

either detrital, very early siderite, or a late infilling in the centre of the concretion (cf. Bojanowski et al. 251 

2016). Siderite may comprise a relatively large proportion of the concretions, suggesting that siderite 252 

precipitation took place as displacive growth (Fig. 5).  253 

 254 

The Albert-1 core (Fig. 3B) shows that authigenic siderite is absent in the Bjuv Member, though present in 255 

the underlying Vallåkra Member. Core samples from the Fleninge No. 266 well (Fig. 3C) verify the presence 256 

of perfectly zoned sphaerosiderite and other authigenic siderite morphologies in the lower part of the 257 

Boserup beds; and confirm that authigenic siderite is absent in the Bjuv Member, though present at the 258 

boundary to Vallåkra Member (Fig. 3C).  259 
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 260 

Fig. 4: Siderite concretions at N Albert quarry 261 

 262 

Fig. 5: Calculated mineral abundance 263 

 264 

 265 

Siderite micromorphology  266 

The siderite micromorphologies are divided into the following types that precipitated in successive order:  267 

1. Zoned sphaerosiderite and spheroidal siderite, which is subdivided into: 1A perfectly zoned 268 

sphaerosiderite: 1B poorly zoned sphaerosiderite (and spherulites); and 1C zoned spheroidal siderite. 269 

2. Radial siderite overgrowths, which exhibit variable habits according to their substratum: from 270 

mainly rhombohedral on the perfectly zoned sphaerosiderite (A) to preferentially fibrous, when 271 

growing on the spheroidal siderite (B). 272 

3. Microcrystalline, anhedral or subhedral, randomly orientated pervasive siderite cement that forms 273 

concretionary cements. Rhombohedral single siderite crystals dispersed in the sandstones are 274 

considered initial precipitations in ‘immature concretions’ (compare with Bojanowski et al. 2016). 275 

 276 

Zoned sphaerosiderite and spheroidal siderite 277 

Perfectly zoned sphaerosiderite and zoned spheroidal siderite are common in the siderite concretions in a 278 

specific interval in the Boserup beds partly coincident with the interval of soft sediment deformation 279 

structures (Fig. 3A). Poorly zoned sphaerosiderite generally occurs scattered, though is occasionally 280 

abundant in concretions, immediately below this interval, i.e. in the uppermost part of the Bjuv Member (Fig. 281 

3A and 3C). Scattered poorly zoned sphaerosiderites are common in concretions in the overlying Boserup 282 

beds (Fig. 3A). Poorly zoned sphaerosiderite occurring in the basal part of the Bjuv Member (Fig. 3C) never 283 

encloses detrital grains and are oversized compared with sphaerosiderite in the Bjuv and Helsingborg 284 

members, though similar to those occurring in the Vallåkra Member analysed by Troedsson (1951) and 285 
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slightly resembling the cemented areas of the Vallåkra Member in the Albert-1 well (AL1-09.28 in Fig. 3B). 286 

These oversized sphaerosiderite may not have been formed in situ within the Bjuv Member deposits, but 287 

probably precipitated in older strata (e.g. Vallakra Member) and were redeposited.  288 

 289 

Poorly zoned sphaerosiderite has an inner core surrounded by a rim of rhombohedral or irregular crystals 290 

(Fig. 6).  Perfectly zoned sphaerosiderite has an inner core of radiating growth (which gives rise to a 291 

characteristic extinction pattern) in few to several concentric zones (Fig. 7). The outermost rim of 292 

rhombohedral crystals is partly coalescent with the cement filling the shrinkage fracture between the detrital 293 

grains and sphaerosiderite. Sphaerosiderite commonly occurs in clusters (Figs 7E and 8B) forming a coccoid 294 

morphology (compare Driese et al. 2010). Sphaerosiderite zonation is caused by variation in mineralogy and 295 

chemistry. Rhodochrosite zones in sphaerosiderite seem to be more affected by dissolution than siderite (Fig. 296 

8A). Rhodorchrosite abundance of up to 25% of the cement of one concretion is documented by XRD. In 297 

other concretions, ankerite dolomite and/or rhodochrosite are occasionally present in XRD detectable 298 

amounts. Poorly zoned sphaerosiderite occur with dissolution voids next to poorly zoned sphaerosiderite 299 

having a core of increased Ca, Mn and Si contents, suggesting that dissolution preferentially occurred in 300 

other carbonate phases and low Fe siderite (Fig. 6B and 6D).  Zonation enhanced by weathering in other 301 

sphaerosiderites (Fig. 7C) may also originate from other carbonate minerals or incorporation of varying 302 

amounts of Ca, Mn (Mg?) and Zn in the siderite structure (Fig. 8A and 8C). Zonation patterns are uniform 303 

within concretions, though vary between different concretions (Figs 7D and 8A). 304 

 305 

Zoned spheroidal siderite has an inner core of radiating crystals similar to the perfectly zoned 306 

sphaerosiderite, and only few but regular spheroidal zones (Fig. 9). The spheroidal siderite has a more 307 

uniform size (30 – 80 µm) than the size of the perfectly zoned sphaerosiderite (20 – 350 µm) and the usual 308 

size of poorly zoned sphaerosiderite (3 – 170 µm) (Fig. 3).  309 

 310 

 311 

 312 
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Overgrowths on siderite morphologies 313 

Perfectly zoned sphaerosiderite is typically surrounded by a rim of rhombohedral siderite crystals (Fig. 314 

7).The outermost rim of rhombohedral crystals is partly coalescent with fracture-healing cement between the 315 

detrital grains and perfectly zoned sphaerosiderite (Fig. 7A, 7B and 7D). The overgrowths on the zoned 316 

spheroidal siderite preferentially consist of radiating crystals (Fig. 9A).  317 

 318 

Concretionary siderite cement 319 

Sparry, microspar or micritic siderite cement encloses perfectly and poorly zoned sphaerosiderite and 320 

spheroidal siderite to form concretions. Dispersed rhombohedral  siderite and poorly zoned sphaerosiderite 321 

characterise the weakly-cemented sandstones in the lower part of the exposed Boserup beds at Norra Albert, 322 

whereas the upper exposed part of the Boserup beds have concretions with poorly zoned sphaerosiderite 323 

(Fig. 3A). The dispersed siderite occurs preferentially in the most coarse-grained intervals. 324 

   325 

 326 

 327 

Siderite in relation to other minerals 328 

Siderite is typically non-corrosive against detrital grains, which support a displacive growth of the siderite 329 

cement. However, siderite crystals and spheres grow along cleavage planes in mica and feldspar and more 330 

rarely in secondary porosity after feldspar and altered Fe-Ti oxides. Few authigenic phases predate siderite. 331 

Rare pyrite, enclosing micro-spheres of siderite, is enclosed in the centre of sphaerosiderite so pyrite mainly 332 

predates siderite. Kaolinite (crystal sizes: 2 – 4 µm) occur enclosed in rhombohedral siderite and partly 333 

dissolved feldspar, and are enclosed in sparry siderite cement. Other authigenic phases, such as kaolinite 334 

(crystal size: 5 – 10 µm), anatase and possibly quartz, occur in the central dissolution voids after poorly 335 

zoned sphaerosiderite (Fig. 6C) and consequently postdate siderite. The authigenic origin of quartz is 336 

suggested from its euhedral shape and from the  ubiquitous initial quartz overgrowths on detrital quartz, in 337 

general. 338 
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 339 

Alteration products, such as manganese oxides/hydroxides and iron-oxides/hydroxides, are common in most 340 

sandstones. Iron-oxide/hydroxides (hematite in one sample) occur in altered zones of sphaerosiderite and 341 

spheroidal siderite and as alteration rims around rhombohedral siderite. Manganese oxides/hydroxides occur 342 

as authigenic rims around detrital and authigenic phases, though without any specific petrographic 343 

relationship to the chemistry of the carbonate phases.  344 

 345 

Fig. 6: Poorly zoned sphaerosiderites (spherulites, spherulitic siderite) 346 

 347 

Fig. 7: Perfectly zoned sphaerosiderites 348 

 349 

Fig. 8: Varieties of zoned sphaerosiderites 350 

 351 

Fig. 9: Spheroidal siderite (pseudomorphs after organic matter?) 352 

 353 

Chemical composition 354 

Low CaMg siderites (Fig. 8) dominate all siderite morphologies with typically < 5 % CaCO3 and < 3 % 355 

MgCO3. Maximum 11 % MgCO3 (sample 516816), 10 % CaCO3 (sample 516814) and up to 0.9 % ZnCO3 356 

occur in some samples. MnCO3 is more common with up to 10 %. Poorly zoned sphaerosiderite has a 357 

tendency of slightly higher content of CaCO3, up to 10 %, than other siderite micromorphologies. Zoned 358 

spheroidal siderite, perfectly zoned sphaerosiderite and their overgrowths have the highest content of 359 

MnCO3, up to 35 % (Fig. 8). 360 

 361 

Fig. 10: Chemical composition 362 

 363 
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Isotope composition 364 

The δ18O of siderite is mostly unrelated to the siderite morphology, because concretions and weakly 365 

cemented sandstones containing perfectly zoned and poorly zoned sphaerosiderite, spheroidal and 366 

rhombohedral siderites appear with similar oxygen isotopic compositions (SIMS: –4.7 to –5.1‰ δ18O and 367 

IRMS:–4.8 to –5.3‰ δ18O) (Table 1; Fig. 11). Sphaerosiderite with rhodochrosite zones group together with 368 

other perfectly zoned sphaerosiderites (Fig. 11A). Samples containing small rhombohedral siderites, which 369 

are more prone to alteration, have relatively lower δ18O values (down to –7.5‰). One intensively altered 370 

sample with even lower values has been left out, as the high amounts of iron-oxide/hydroxides affected the 371 

oxygen isotopic composition. 372 

 373 

The SIMS measurements show clearly more positive δ13C values for the concretionary cement (–5.5 to 374 

+7.8‰) than for the siderite micromorphologies, such as perfectly zoned sphareosiderite (–17.3 to –2.4‰), 375 

spheroidal siderite (–101.1 to –5.1‰) and their overgrowths (–13.0 to +3.0‰) (Fig. 11B). The somewhat 376 

wider span in δ13C values (–17.3 to +7.8‰) for the in situ SIMS measurements compared to bulk rock IRMS 377 

measurements (–11.6 to +6.0‰ δ13C) is a result of different mixtures of sphaerosiderite and spheroids and 378 

concretionary cement in the bulk rock samples.  379 

 380 

Fig. 11: Isotopic composition 381 

 382 

Table 1. Isotopic composition 383 

 384 

 385 

 386 

 387 

 388 
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Discussion 389 

 390 

Microstructural growth pattern 391 

 392 

A wide spectrum of siderite morphologies is represented in the Norra Albert quarry. It is remarkable to find 393 

perfectly concentrically-zoned sphaerosiderite, spheroidal siderite, rhombohedral siderite and poorly-zoned 394 

sphaerosiderite occurring together. Poorly zoned sphaerosiderite could be the precursor to perfectly zoned 395 

sphaerosiderite, which forms only under specific conditions. 396 

 397 

Poorly-zoned sphaerosiderite and spherulites with central dissolution voids cannot, strictly speaking, be 398 

distinguished. Internal dissolution voids in rhombohedral siderite and spherulites may origin from siderite 399 

growths around a core of different chemistry or carbonate mineralogy, an episode of crystal poisoning 400 

(Wilkinson et al. 2000) or it may be explained by areas (‘eyes’) of less stability within the spherulites 401 

originating from its primary growth pattern (Gránásy et al. 2005). In the latter case no chemical or 402 

mineralogical zonation is necessary in order to explain the central instability. 403 

 404 

Radiating growth patterns are characteristic of the centre of perfectly zoned sphaerosiderite and spheroidal 405 

siderite (Figs 7 and 9), but are more difficult to discern within the spherulites and poorly zoned 406 

sphaerosiderites. The growth begins from a nucleus that seems very small in the sphaerosiderite. The 407 

constrained spheroidal shape suggests some kind of growth control, possibly of organic origin, for example 408 

within spheroidal pollen grains or within stomata of leaf cuticles (compare stomata of leafs of ginkgoites or 409 

anomozamites known from a Rhaetian flora in Scania reported by Pott and McLoughlin (2011)). Siderite 410 

precipitation may have started along the inside of the pollen wall as the spore-cell material decayed, or along 411 

the guard cells of the open pores of the stomata, with subsequent continued growth inwards towards the 412 

centre of the pollen grain/ stomata. As the organic matter degraded, growth of siderite radiating outwards 413 

from the original location of the guard cells followed. Other types of organic matter may have acted as 414 
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nucleation sites for the sphaerosiderite growth. The growth pattern changes from radial to rhombohedral, as 415 

spherulites were enclosed in sparry or rhombohedral siderite, and as rhombohedral crystals rimmed the 416 

perfectly zoned sphaerosiderite (Fig. 7C and 7D). This change in growth pattern could reflect biogenically 417 

facilitated, radially- and concentrically-zoned siderite, succeeded by a relatively slower precipitation of 418 

siderite, beginning with rhombohedral crystals and ending with sparry and/or microsparry cement. A 419 

diagenetically-induced change of spherulitic to rhombohedral siderite morphology is advocated by Köhler et 420 

al. (2013), but it seems less likely that only the outermost part of the sphaerosiderite and spherulites should 421 

be diagenetically altered prior to enclosure in sparry or microsparry siderite cement. In this case, a more 422 

reasonable explanation would be continued growth under changed conditions and hence with different 423 

precipitation rates, from bacterially-mediated Fe3+ reduction to microbial fermentation of organic matter in 424 

the methanogenic zone (e.g. Hicks et al. 1996; Ludvigson et al. 1998; Krajewski et al. 2010). 425 

 426 

The perfect zonation of sphaerosiderite is so pronounced and systematic (Fig. 7D) that it cannot merely have 427 

formed from alteration processes. Rather, the alteration processes have enhanced the visibility of the detailed 428 

zonation (Fig. 8A) with in situ alteration products of iron-oxide/hydroxide and dissolution voids after less 429 

stable phases such as Ca or Mn-rich siderite and rhodochrosite. Dissolution voids begin within the pure 430 

rhodochrosite zones rather than in the siderite, so rhodochrosite zones dissolve faster than siderite (Fig. 9A). 431 

Rhodochrosite forms under suboxic conditions whereas siderite precipitates under anoxic conditions 432 

(Bojanowski et al. 2016), hence rhodochrosite is likely to be more stable under oxidizing conditions. 433 

However, dissolution products of rhodochrosite are removed faster from points of dissolution since Mn2+ is 434 

slightly more soluble than Fe2+ (Sholkovitz and Copland 1981).  The central part of the spherulites and 435 

poorly zoned sphaerosiderites is commonly dissolved; but when present the central part generally has higher 436 

contents of Mn, Ca, and occasionally Si. It is therefore probable that the dissolution zones/centres are located 437 

where the siderite has incorporated relatively high amounts of Mn and Ca. This would explain the common 438 

occurrence of ex situ manganese-oxides/hydroxides as alteration rims covering both detrital grains and 439 

authigenic phases, though without any petrographic association with siderite or rhodochrosite.  440 
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Bacterial mediated perfect zonation? 441 

 442 

The growth of sphaerosiderite started on organic or detrital grains and continued in spherical zones around 443 

the nuclei as the bacterial colony continued its reduction of Fe and Mn, which reacted with HCO3
-, liberated 444 

from the degradation of organic matter and precipitated as siderite (and rhodochrosite). Spheroidal siderite 445 

started as impregnation of voids in organic tissue, for example pollen or stomata, and continued with zonal 446 

growth of siderite crystals on the pollen wall or the guard cells and gradually filled the void (Fig. 12). This 447 

could explain the uniform size of spheroidal siderite (Fig. 4A). After degradation of the surrounding organic 448 

matter, the siderite growth continued outwards with larger radiating crystals, possibly reflecting more slowly 449 

sourced iron.  450 

 451 

Most investigations of sphaerosiderite record large variations in δ13C (Table 1; e.g. Ludvigson et al. 1998; 452 

Driese et al. 2010; Robinson et al. 2010; Suarez et al. 2010). The range in δ13C values of sphaerosiderite and 453 

spheroidal siderite, in general, and in this investigation, is large (–17.3 to –2.4‰ for sphaerosiderite and –454 

10.1 to –5.1 ‰ for spheroidal siderite) (Table 1; Fig. 11). This may reflect either a variety in the microbes 455 

(bacteria and fermenters), which produced CO2 / HCO3
- for siderite precipitation, or it could represent a 456 

mixture of two different end-members of bicarbonate. Bicarbonate from the decomposition of organic matter 457 

in the suboxic zone represents the low δ13C values of sphaerosiderite and spheroidal s, whereas bicarbonate 458 

originating from methanogenic fermentation of organic matter is responsible for the relatively high δ13C 459 

values of the concretionary cement (Fig. 11; e.g. Irwin et al. 1977; Mozley and Wersin 1992; Ludvigson et 460 

al. 1998; Krajewski et al. 2010). The shift in δ13C values (Fig. 11) is accompanied by a change in crystal 461 

morphology from radiating growth in sphaerosiderite to rhombohedral overgrowths and cement (Figs 7), 462 

which also may be explained by a shift from bacterially-mediated growth in the iron reduction zone to 463 

precipitation in the methanogenic zone. 464 

 465 
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The zonation within the perfectly zoned sphaerosiderites is caused by variation in carbonate mineralogy and 466 

chemistry, and reflects availability of Fe, Mn, Ca and Mg in the neighboring/local environment. The rate of 467 

iron reduction, and hence the availability of Fe2+, is the limiting factor on precipitation of microbial siderite 468 

(Mortimer et al. 1997). In addition to Fe, Mn, Mg, Zn and Ca abundance in the fluids, variation in nutritional 469 

stress and physical conditions, for example temperature, also influence the iron reduction rate and hence the 470 

incorporation of other elements, like Mn (Mortimer et al. 1997). Coccoid morphology/clusters of 471 

sphaerosiderite and areas of sphaerosiderite with identical zonation pattern (Figs 7E and 8A) probably mark 472 

the outline of microbial communities. The zonation pattern within one microbial community may represent 473 

minor episodes of drying-out or harsh/hostile conditions for the microbes. During such dry periods, 474 

shrinkage, partial dissolution and alteration of the protruding outgrowths may ensure its spherical/rounded 475 

shape (Fig. 12). 476 

 477 

 478 

Microscale variations reflecting groundwater fluctuations 479 

 480 

Causes of zonation can be divided into two general explanations/hypotheses: 1) mixing of meteoric and 481 

marine waters (Mozley 1989; Choi et al. 2003) and 2) modification of the original pore waters during 482 

successive stages of microbial decomposition of organic matter (Mozley and Carothers 1992; Lim et al. 483 

2004). The latter is almost identical to the explanation by Wilkinson et al. (2000) that siderite precipitation 484 

takes place during gradual burial within the Fe and Mn reduction zones, while dissolution takes place in the 485 

sulphate reduction zone, and siderite growth in the methanogenic zone.   486 

The siderite morphologies found in the Boserup beds at Norra Albert provide two important contributions to 487 

this dispute on the origin of zonation due to their microscale and macroscale variations in morphology and 488 

stable isotope geochemistry. The observed microscale variations in siderite zonation pattern in the 489 

sphaerosiderites (Figs 7A, 7E, 8A, 8C) cannot be explained by either of the hypotheses described previously. 490 

Though marine excursions may have occurred in the Boserup beds during storm episodes, similar to the 491 
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marine occurrences in the Bjuv Member at other localities in Scania (Lindström and Erlström 2006), marine 492 

influxes in a meteoric-dominated environment ought to have affected all sphaerosiderites. The chemical 493 

composition is typically low in Mg and Ca for all siderite micromorphologies (Fig. 10), which suggests 494 

meteoric water composition (Matsumoto and Iijima 1981; Mozley 1989; Browne and Kingston 1993).  Pyrite 495 

occurs rarely, and when present as a very early phase enclosed in the centre of the sphaerosiderite. This 496 

indicates that sulphate was limited from the time of deposition and that iron reduction took over instead of 497 

sulphate reduction. Furthermore, the δ18O values in all siderite morphologies from Norra Albert are very 498 

consistent, close to the meteoric water composition, and show no influence from marine water (Fig. 11).  499 

 500 

If the zonation pattern reflects depth-controlled burial processes (as suggested by Mozley and Carothers 501 

1992; Wilkinson et al. 2000), then repeated small tectonic movements or variations in sedimentation 502 

rate/erosion would be required to explain the numerous changes through the Fe-reduction, Mn-reduction, 503 

sulphate reduction and methanogenic zones. These possibilities seem unlikely as the fluvial style of the 504 

Boserup beds does not change over this interval. Groundwater fluctuations seem a more likely explanation 505 

and are supported by additional features besides the perfectly zoned sphaerosiderite. Siderite cementation in 506 

shrinkage-fractures between detrital grains and sphaerosiderite could either be a result of mechanical 507 

compaction or caused by a period of shrinkage occurring during drying-out, either due to subaerial exposure 508 

or to lowering of the water table before siderite was again precipitated in the shrinkage fractures (Figs 7A, 509 

12). The possibility that it could have been caused by mechanical compaction seems less likely, since 510 

fractured sphaerosiderites only occur in one concretion. Fluctuations in groundwater table would result in 511 

multiple changes in the physiochemical condition and the microbial life conditions. A longer growth period 512 

could explain the numerous zones and the necessity of using other metals, e.g. Mn and Zn, as the Fe source 513 

for the bacterial metabolism was exhausted.  The presence of hematite suggests that siderite precipitation 514 

was followed by its alteration to iron-oxide/hydroxides in the unsaturated zone prior to burial diagenesis, as 515 

hematite replaced iron-oxide/hydroxides (not siderite) either due to aging (Van Houten 1961), which is less 516 

likely in Triassic – Jurassic sediments, or at enhanced temperatures (> 56°C) (Weibel 1999). The Triassic–517 

Jurassic-boundary strata in Scania have been subjected to moderate burial temperatures < 85°C (inferred 518 
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from vitrinite reflectance by Ahlberg 1994) and > 65°C (due to restricted quartz diagenesis, in comparison 519 

with Weibel et al. 2010). Hence, fluctuations in groundwater level during deposition of the Boserup beds is 520 

the most plausible explanation for both sphaerosiderites with numerous zones of slightly varying 521 

composition, formation of hematite, and healing shrinkage cracks.  522 

 523 

As elsewhere in NW Europe, the Danish part of the Norwegian–Danish Basin was subjected to major sea-524 

level changes at this time, the “regression–transgression couplet” that may have been linked to tectonic 525 

movements during the formation of the Central Atlantic Magmatic Province (Hallam 1997; Hallam and 526 

Wignall 1999). The underlying Bjuv member is interpreted to have been deposited during a transgression  527 

and as part of a highstand systems tract (Petersen et al. 2013), with the maximum flooding surface MFS7 of 528 

Nielsen (2003) situated between coal seams B and A, whereas the Boserup beds, in contrast, were formed 529 

during a lowstand systems tract. However, these sea-level changes would not necessarily have caused 530 

repeated fluctuations in groundwater level during the deposition of the Boserup beds. The high proportion of 531 

structure less sandstones in the Boserup beds suggests rapid deposition, possibly from flash floods, rather 532 

than through bedform migration, and associated liquefaction/fluidization processes. A more extreme climate 533 

with increased humidity and storminess in the late Rhaetian (Petersen and Lindström 2012), strong 534 

seasonality with episodic storms of heavy rain, alternating with periods of enhanced drought, could be 535 

responsible for a fluctuating groundwater table. The co-occurrence of humid habitats and floral elements 536 

with xeromorphic features, i.e. features that may be linked to physiological drought, in the Rhaetian flora in 537 

Scania (Pott and McLoughlin 2011) may possibly also be ascribed to groundwater fluctuations or seasonal 538 

drought. There is also the possibility that the fluctuations in ground-water table were linked to increased 539 

repeated seismicity during this time (Lindström et al. 2015), because changes in groundwater levels are a 540 

common effect during earthquakes (Wang and Manga 2010). The perfectly zoned sphaerosiderites occur in 541 

the upper part of soft-sediment deformation structures – “seismites”– identified at both Norra Albert and in 542 

the Fleninge No. 266 core (Figs. 3A and C). Soft- sediment deformation structures form in unconsolidated, 543 

water-saturated sediments (e.g. Topal and Özkul 2014), and hence are likely to have formed close to the 544 

groundwater table. Fracturing and displacement of sphaerosiderite, followed by fracture healing (Fig. 7D), 545 
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show that local deformation occurred shortly after early diagenesis and could be related to mechanical 546 

compaction or soft-sediment deformation structures triggered by seismic events (Lindström et al. 2015).  547 

 548 

 549 

Conclusions 550 

 551 

The late Rhaetian terrestrial succession in northwestern Scania exhibits a variety of siderite 552 

micromorphologies, comprising perfectly zoned sphaerosiderite, poorly zoned sphaerosiderite (possibly 553 

identical with spherulitic siderite), spheroidal siderite and their rhombohedral and fibrous siderite 554 

overgrowths, enclosed in sparry, microspar and micritic concretionary siderite cement.  The siderite formed 555 

in an apparently similar early diagenetic/pedogenic environment, as indicated by similar trace element 556 

variations and meteoric water oxygen isotopic compositions.  The characteristic broad range in carbon 557 

isotopic compositions indicates that different microbes in the pedogenic environment were involved in 558 

degradation of organic matter and supplied C for siderite formation. Here the carbon isotopic composition 559 

can be subdivided into sphaerosiderite and spheroidal siderite of low values (–17.3 to –2.4‰ δ13C) and their 560 

rhombohedral or fibrous siderite overgrowths of almost similar values (–13.0 to +3.1‰ δ13C) sourced from 561 

bacterial degradation of organic matter in the Fe-reduction zone. This was followed by concretionary siderite 562 

cement of higher isotopic values (–5.8 to +7.8‰ δ13C) promoted by fermentation activity in the 563 

methanogenic zone. Growths of spheroidal siderite may have initiated on organic compounds, for example 564 

palynomorphs or stomata; likewise sphaerosiderite growth probably started on other, but specific, types of 565 

organic matter, which served as a microbial energy source and controlled the initial crystal growth.  566 

 567 

Perfectly-zoned sphaerosiderite is restricted to the Boserup beds. The perfect multi-layered zonation is 568 

related to heterogeneous alteration caused by mineralogical and geochemical variations. The zonation 569 

reflects microbial activity, their life conditions, and availability of Fe, Mn, Ca and other cations in the pore 570 

water. These conditions are linked to amount of precipitation, water flow and groundwater-level fluctuations. 571 
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Intervals of continuous water-saturation and flow through the sediments resulted in Fe-rich siderite 572 

precipitation in the Fe-reduction zone. Under unsaturated or poorly saturated conditions, for example during 573 

episodes of lowered water table, rhodochrosite and Mn-rich siderite formed when the microbial community 574 

experienced hostile life conditions and/or the Fe supply was exhausted. The change from the saturated to 575 

unsaturated zone caused partial dissolution of poorly and perfectly zoned sphaerosiderite, which explains 576 

their continued spherical zonation and rounded shape. The inferred changes in groundwater level suggest 577 

deposition under a strongly seasonal climate with episodic drought. During burial the siderite precipitation 578 

style changed from bacterially mediated spherical and radiating growth in the Fe-reduction zone to 579 

rhombohedral precipitation in the methanogenic zone and still characterized by meteoric water of –5.1‰ 580 

δ18O at a c. 45°N latitudinal position of Scania. 581 
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Figure captions 770 

 771 

Table 1. 772 

Sphaerosiderite occurrences, their geological background, morphology and geochemistry. 773 

 774 

Fig. 1. 775 

Stratigraphy of southern Sweden, which is compared with changes in sphaerosiderite occurrence (Troedsson 776 

1951 and this study), dominating clay mineralogy (Ahlberg et al. 2003), occurrence of coal and remnants 777 

after wildfire activity (Troedsson 1951; Petersen and Lindström 2012) and palynozones (Lund 1977 and this 778 

study). Transgressive events are indicated (arrows), including MFS7, which is an important surface for 779 

correlation in the region (Nielsen 2003). 780 

 781 

Fig. 2. 782 

Map showing location of the Norra Albert quarry and the wells Albert-1 and Fleninge No. 266. Note that the 783 

position of the Norra Albert quarry and the Albert-1 well are identical. 784 

 785 

Fig. 3. 786 

Sedimentary logs showing typical siderite morphologies for the investigated samples.  787 

A. Sedimentary log of the northern wall in the Norra Albert quarry. 788 

B. Sedimentary log of the Albert-1 core. 789 

C. Constructed sedimentary log of the Fleninge No. 266 well based on the description by Troedsson 790 

(1951). 791 

Dimensions given in the diagrams are those of sphaerosiderite, spheroidal and rhombohedral siderite, not the 792 

dimensions of the concretions.  793 

 794 

 795 
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Fig. 4. Fieldwork Norra Albert quarry. 796 

A. Overview of the northern wall in Norra Albert quarry. The ‘Boserup beds’ are the whitish grey 797 

deposits with local siderite concretions; the dark grey deposits of the Bjuv Member are partly 798 

covered by scree. The line marks the boundary between the ‘Boserup beds’ and the Bjuv Member. 799 

Arrows indicate some of the largest concretions. 800 

B. Petrified wood enclosed in a siderite concretion. 801 

C. Undulating siderite concretion following the sedimentary structures. 802 

D. Close up of A. 803 

E. Thick siderite concretion with a middle plane following the sedimentary structures, similar to the 804 

concretionary development in C, and surrounded by growth that cuts the sedimentary structures. 805 

Thegrowth probably started along the most coarse-grained sands and continued both upwards and 806 

downwards into the more fine-grained sandstones. 807 

F. Close up of white box in E. The sedimentary structures seem to end at the concretionary interface, 808 

but thin section investigations have shown that sedimentary structures actually continue through the 809 

cemented area. 810 

 811 

Fig. 5. An early displacive growth of siderite is documented by the high siderite content in concretions 812 

compared with sandstones in the Norra Albert quarry. The mineral content is calculated from chemical 813 

composition of bulk rock samples.  814 

 815 

Fig. 6. Poorly zoned sphaerosiderites (spherulites, spherulitic siderite) 816 

A. Poorly zoned sphaerosiderite (Si) with a low content of Ca and/or Mn commonly having central 817 

dissolution voids (marked by black arrows). Norra Albert quarry, 516816. Back –scatter electron 818 

(BSE) image. 819 

B. Poorly zoned sphaerosiderite (Si) with incipient dissolution in the centre and rims of dissolution void 820 

around the central spherical part. The most intensive dissolution accompanies the centre having a 821 

small Ca content (compare EDS analyses 1 and 2). Norra Albert quarry, 516807. BSE image.  822 
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C. Poorly zoned sphaerosiderite (Si) with central dissolution void containing possible authigenic quartz 823 

(Q) and un-compacted kaolinite (Ka) and surrounded by compacted kaolinite. Fleninge No. 266, 824 

151.62 m. BSE image. 825 

D. Poorly zoned sphaerosiderite (Si) (EDS analysis 3) with a centre possibly made up of iron-826 

oxide/hydroxide (Fe-ox) having a low content of Mn (EDS analysis 4). Norra Albert quarry, 516824. 827 

BSE image. 828 

 829 

Fig. 7. Perfectly zoned sphaerosiderites 830 

A. Zoned sphaerosiderites replaced by iron-oxides/hydroxides (Fe).  Note that the sphaerosiderite at 831 

some point has lost contact to their growth substratum, however this has healed later. Norra Albert 832 

quarry, 516818. Reflected light image. 833 

B. Broken perfectly zoned sphaerosiderite with healing rhombohedral siderite that appears the same as 834 

the overgrowth on the sphaerosiderite. Later exposure to oxidising water has resulted in replacement 835 

by iron-oxides/hydroxides (Fe). Norra Albert quarry, 516818. BSE image. 836 

C. Microcrystalline anhedral siderite (Si) tightly fills the pore space between the sphaerosiderite and 837 

detrital grains. The detrital grains (Q) are dispersed and do not exhibit intergranular contacts, which 838 

indicate displacive and/or replacive growth of siderite. Alteration and replacement by iron-839 

oxides/hydroxides (Fe) is probably related to oxidation of siderite along fracture wall probably due 840 

to percolation of oxygenated fluids. Norra Albert quarry, 516824D. BSE image. 841 

D. Zoned sphaerosiderites replaced by iron-oxides/hydroxides (Fe). Altering zones seem to be almost 842 

similar for a specific area/concretion. The apparent variation in zonation pattern may be caused by 843 

different intersection planes. Norra Albert quarry, 516818. BSE image. 844 

E. Fine-crystalline morphology of the inner part of the sphaerosiderite, which is ripped out, and coarser 845 

crystals as an outer rim. Norra Albert quarry, 516818. Secondary electron (SE) image. 846 

F. Rhombohedral habit of siderite crystals forming an overgrowth on the sphaerosiderite. Norra Albert 847 

quarry, 516818. SE image. 848 

 849 
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Fig. 8. Varieties of zoned sphaerosiderites 850 

A. Sphaerosiderite with relatively high content of Mn in the inner core (EDS analysis 1), followed by a 851 

rhodochrosite rim (EDS analysis 2) with dissolution voids (white arrows) and an outermost rim of 852 

low-Mn siderite .  Norra Albert quarry, 516819. BSE image. 853 

B. Cluster of rhodochrosite rimed sphaerosiderite enclosed in sparry siderite cement.  Norra Albert 854 

quarry, 516819. SE image. 855 

C. Concentric and sector zoned sphaerosiderite having a low content of Ca (EDS analysis 3), whereas 856 

the alteration rims show siderite with low contents of Si and possible Zn (EDS analysis 4). Norra 857 

Albert quarry, 516820.  BSE image. 858 

D. Round siderite core covered by rhombohedral siderite, which is partly dissolved and altered to iron-859 

oxides/hydroxides. Norra Albert quarry, 516825. SE image. 860 

 861 

Fig. 9. Spheroidal siderite (pseudomorphs after stomata) 862 

A. Spheroidal siderite with radiating growth around a spheroidal core and in zones.  Norra Albert 863 

quarry, 516824C. Transmitted light image, crossed nicols. 864 

B. Spheroidal siderite with marked spheroidal zones. Norra Albert quarry, 516824C. Reflected light 865 

image. 866 

C. Spheroidal siderite with radiating growth in spheroidal zones. Acid treated sample, Norra Albert 867 

quarry, 516824C. SE image. 868 

 869 

Fig. 10 Chemical composition  870 

Microprobe analyses show that siderite generally has a low content of Mg and Ca, though commonly 871 

relatively high content of Mn. The highest Mn contents typically occur in spheroidal siderite, perfectly zoned 872 

sphaerosiderite and their overgrowths, whereas the highest Ca contents occur in poorly zoned 873 

sphaerosiderite. 874 

 875 

 876 
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Fig. 11. Isotopic composition  877 

A. IRMS (isotope ratio mass spectrometry) shows a narrow δ18O composition and a large span in δ13C 878 

values for bulk rock samples. Also perfectly zoned sphaerosiderite with zones of rhodochrocite 879 

groups together with other siderite samples. 880 

B. SIMS (secondary ion mass spectrometry) of specific siderite morphologies in thin sections shows 881 

that perfectly zoned sphaerosiderite, spheroidal siderite and their siderite overgrowths have similar 882 

and lower δ13C values than the siderite concretionary cement.  883 

SIMS and IRMS analyses show similar δ18O values for all siderite micromorphologies and the 884 

concretionary cement, which reflect end-Triassic groundwater composition. This fits with the likely 885 

meteoric water composition (indicated by the vertical blue lines) according to the Triassic – Jurassic 886 

middle latitude position at 45°N of Sweden (Anderson and Arthur 1983; Metcalfe 2011; Blakey 2016).  887 

 888 

Fig. 12. Overview of siderite precipitation  889 

Diagram showing an overview of the precipitation and growth of the different siderite morphologies in 890 

relation to other diagenetic features. 891 

 892 

 893 

 894 

 895 
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Figure captions 

 

 

Fig. 1. 

Stratigraphy of southern Sweden  based on changes in sphaerosiderite occurrence (Troedsson 1951 and this 

study), dominating clay mineralogy (Ahlberg et al. 2003), occurrence of coal and remnants after wildfire 

activity (Troedsson 1951; Petersen and Lindström 2012) and palynozoes (Lund 1977 and this study). 

Transgressive events are indicated (arrows), including MFS7, which is an important surface for correlation in 

the region (Nielsen 2003). 
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Fig. 2. 

Map showing location of the Norra Albert quarry and the wells Albert-1 and Fleninge No. 266. Note that the 

position of the Norra Albert quarry and the Albert-1 well are identical. 
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Fig. 3. 

Sedimentary logs showing typical siderite morphologies for the investigated samples.  

A. Sedimentary log of the northern wall in the Norra Albert quarry. 

B. Sedimentary log of the Albert-1 core. 

C. Constructed sedimentary log of the Fleninge No. 266 well based on the description by Troedsson 

(1951). 

Dimensions given in the diagrams are those of sphaerosiderite, spheroidal and rhombohedral siderite, not the 

dimensions of the concretions.  
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Fig. 4. Fieldwork Norra Albert quarry. 

A. Overview of the northern wall in Norra Albert quarry. The ‘Boserup beds’ are the whitish grey 

deposits with local siderite concretions; the dark grey deposits of the Bjuv Member are partly 

covered by scree. The line marks the boundary between the ‘Boserup beds’ and the Bjuv Member. 

B. Petrified wood enclosed in a siderite concretion. 

C. Undulating siderite concretion following the sedimentary structures. 

D. Close up of A. 

E. Thick siderite concretion, which probably started along the most coarse-grained sands, similar to the 

morphology in C, and continued both upwards and downwards. 

F. Close up of white box in E. The sedimentary structures seem to end at the concretionary interface, 

but thin section investigations have shown that sedimentary structures actually continue through the 

cemented area. 
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Fig. 5. An early displacive growth of siderite is documented by the high siderite content in concretions 

compared with sandstones in the Norra Albert quarry. The mineral content is calculated from chemical 

composition of bulk rock samples. 
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Fig. 6. Poorly zooned sphaerosiderites (spherulites, spherulitic siderite) 

A. Poorly zoned sphaerosiderite. Norra Albert quarry, 516816. Back -scatteredelectron (BSE) image. 

B. Poorly zoned sphaerosiderite with incipient dissolution in the centre and rims of dissolution void 

around the central spherical part. Norra Albert quarry, 516807. BSE image.  

C. Poorly zoned sphaerosiderite with central dissolution void containing authigenic quartz (Q) and un-

compacted kaolinite (Ka) and surrounded by compacted kaolinite. Fleninge No. 266, 151.62  m. BSE 

image. 

D. Poorly zoned sphaerosiderite with a centre possibly made up of iron-oxide/hydroxide. Norra Albert 

quarry, 516824. BSE image. 
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Fig. 7. Perfectly zoned sphaerosiderites 

A. Zoned sphaerosiderites.  Note that the sphaerosiderite at some point has lost contact to their growth 

substratum, however this has healed later. Norra Albert quarry, 516818. Reflected light image 

B. Apparently poikilotopic siderite cement, which reveals the presence of sphaerosiderite along a 

fracture where alteration has penetrated. Norra Albert quarry, 516824D. BSE image. 

C. Fine-crystalline morphology of the inner part of the sphaerosiderite, which is ripped out, and coarser 

crystals as an outer rim. Norra Albert quarry, 516818. Secondary electron (SE) image. 

D. Broken perfectly zoned sphaerosiderite, which later has healed. Norra Albert quarry, 516818. BSE 

image. 

E. Zoned sphaerosiderites. Altering zones seem to be similar for a specific area, here two different 

types of zonation is shown. Norra Albert quarry, 516818. BSE image. 

F. Siderite crystals covering the sphaerosiderite. Norra Albert quarry, 516818. SE image. 
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Fig. 8. Varieties of zoned sphaerosiderites 

A. Rhodochrosite rim with dissolution voids marking one of the zones in sphaerosiderite.  Norra Albert 

quarry, 516819. BSE image. 

B. Cluster of rhodochrosite rimed sphaerosiderite enclosed in sparry siderite cement.  Norra Albert 

quarry, 516819. SE image. 

C. Concentric and sector zoned sphaerosiderite. Norra Albert quarry, 516820.  BSE image. 

D. Round siderite core covered by rhombohedral  siderite. Norra Albert quarry, 516825. SE image. 
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Fig. 9. Spheroidal siderite (pseudomorphs after stomata) 

A. Spheroidal siderite with radiating growth around a spheroidal core and in zones.  Norra Albert 

quarry, 516824C. Transmitted light image, crossed nicols. 

B. Spheroidal siderite with marked spheroidal zones. Norra Albert quarry, 516824C. Reflected light 

image. 

C. Spheroidal siderite with radiating growth in spheroidal zones. Acid treated sample, Norra Albert 

quarry, 516824C. SE image. 

 

 



Perfectly zoned sphaerosiderite 

 

Fig. 10 Chemical composition  

Microprobe analyses show that siderite generally has a low content of Mg and Ca, though occasionally 

relatively high content of Mn. 
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Fig. 11. Isotopic composition  

The siderite isotopic composition measured by conventional mass spectrometry on bulk rock samples (bulk 

rock) and in specific siderite morphologies (in situ) by ion probe. Perfectly zoned sphaerosiderite and 

spheroidal siderite have similar and slightly lower δ13C values than the siderite matrix. Bulk rock analyses of 

several samples show isotope values resembling those of in situ measurements of perfectly zoned 

sphaerosiderite, except weathered samples that have been  exposed to more intensive alteration and 

replacement with iron-oxides/hydroxides.  
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Fig. 12. Overview of siderite precipitation  

Diagram showing an overview of the precipitation and growth of the different siderite morphologies in 

relation to other diagenetic features. 

 

 

 


