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Foreword 

Over the last decades, we have been observing an exponential increase of the areas of seabed 

being surveyed with multibeam echosounder, providing the marine scientific community with 

vast volumes of data. However, our understanding of the seabed nature and processes will only 

follow this exponential growth if we are capable of study and distribute the information revealed 

by this datasets. That can require as much if not more resources than what needed to acquire the 

data since even the base mapping can be extremely time-consuming. Developing semi-

automated mapping methods provide ways to reduce the effort invested to on production of 

maps. Additionally, interpretation of bathymetric data is implicitly subjective and any analysis of 

such data is vulnerable to errors by the interpreter, also minimise by the use of semi-automated 

methods.  

After successfully develop a semi-automatic workflow and script to map pockmark (Gafeira et 

al., 2012), it was decided to attempt to adapt that method or develop similar automated methods 

for other seabed bathymetric features. This report describes a new mapping approach developed 

to semi-automatically map coral reef mounds and to extract their attributes from multibeam 

datasets without interpreter bias.    
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Summary 

This report describes a new approach to map coral reef mounds. The study area used for this 

mapping exercise is located approximately 13 km east of the island of Mingulay (56°50′N, 

7°30′W) and is known as the Mingulay Reef Complex. The approach adopted consists on the 

combination of the Bathymetric Position Index tool for habitat mapping and the semi-automated 

mapping method developed initially to map pockmarks at seabed.  During this exercise, 354 

coral reefs were successfully mapped. The results of this test-of-concept supported the creation 

of a customised tool for semi-automated mapping of cold-water coral reefs, to derive coral 

mound attributes from multibeam datasets without interpreter bias.    
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1 Introduction 

Datasets such as sidescan sonar or multibeam echosounder give an indication of size and density 

of coral mounds at seabed. However, manual mapping of these features can be extremely time-

consuming and it is implicitly subjective and any analysis of such data is vulnerable to 

interpretation errors. As such datasets have been acquired digitally over the last decade this 

provides an opportunity for the development of automated mapping methods to minimise 

interpretation errors.  

After successfully developing a semi-automatic workflow and script to map pockmark (Gafeira 

et al., 2012), it was decided to attempt to adapt that method or develop similar automated 

methods for other seabed features. Cold-water coral reefs can develop mound-like structures that 

can have comparable geometry to pockmarks but as a topographic high rather than a depression. 

Therefore, it was expected that would be possible to develop an approach to automatically map 

and describe the cold-water coral reefs. The Mingulay Reef was chosen as test site for this 

attempt, due to 1) the high resolution of the dataset available and 2) the possibility to collaborate 

with potential end-users.        

2 Mingulay Reef Complex 

The Mingulay Reef Complex is located in the Sea of the Hebrides, approximately 13 km east of 

the island of Mingulay (Figure 1). It comprises several cold-water coral reef areas constructed by 

the azooxanthellate Lophelia pertusa that provides 3D habit for many different species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Location of 

Mingulay Reef Complex, 

(adapted from Roberts et al., 

2009). 

 

 

The area of the Mingulay Reef Complex includes E-W orientated bedrock ridges that rise to less 

than 100 m water depth, within an area where water depths locally reach 260 m, causing 

disruption to the oceanographic currents flowing north-north-eastwards into the Minch (Figure 

2). Upon the ridge, prominent mound-like structures are observed predominately in Mingulay 

Reef 1, Mingulay Reef 5 (North and South) and on the Banana Reef (Davies et al., 2009). Those 

near-circular features are up to 5 m high and have a general diameter of 15 m (Long and Wilson, 

2003). 

 

http://www.int-res.com/abstracts/meps/v397/p139-151/
http://www.int-res.com/abstracts/meps/v397/p139-151/
http://www.snh.org.uk/pdfs/publications/commissioned_reports/306.pdf
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Figure 2 – Map extracted from (Roberts et al., 2005). 

 

Some of these reefs have been dated to over 4,000 years old, however, they are likely to be much 

older as the samples collected were from surficial sediments. Growth rates reached up to 

12 mm a
−1

 which is the highest growth rate so far found in any cold-water coral reef (Douarin et 

al., 2013). These figures have been derived from more than 50 dates (U/Th and 
14

C) acquired 

from the Mingulay Reef, however, Douarin et al. (2013) did not find evidence of coral growth 

from 1.4 ka to modern times despite video and samples revealing live coral on the reef. She 

identified several collapses in the coral ecosystems during the Holocene (Douarin et al., 2015). 

Live coral samples seem preferentially distributed on the top and flank of the mounds from 

Mingulay Reef 1 and Mingulay Reef 5 (North and South). 

 

Figure 3 shows the schematic model of 

cold-water coral reef build-up presented 

by Douarin et al. (2014). This model 

explains the systematic sedimentary 

sequence observed in vibrocores, 

suggesting cyclic depositional 

environments that can be subdivided into 

four major steps: reef initiation, 

framework expansion, collapse of the 

framework and coral rubble. Each step 

characterised by changes in the relative 

biodiversity, sedimentological regime 

and changes in erosional processes. 

Figure 3 - Schematic model of cold-

water coral reef  

build-up, extract from Douarin et al. (2014). 

http://link.springer.com/article/10.1007%2Fs00338-005-0049-6
http://www.sciencedirect.com/science/article/pii/S0012821X13002689
http://www.sciencedirect.com/science/article/pii/S0967064513002968
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3 Data 

In early summer 2003, multibeam surveys were carried out in four areas to the west of Scotland 

where the coral Lophelia pertusa had previously been recorded. The surveys used a 200 kHz 

Kongsberg EM2000 MBES with approximately 50% overlap between survey lines. East of the 

island of Mingulay a total of five areas between 2 and 21 km
2
 were surveyed (Figure 2). A 

further survey in 2006, on board of the RV ‘Pelagia’ equipped with the 30 kHz Kongsberg 

EM300 MBES, covered some of the reefs and identified previously unknown reefs (Davies et 

al., 2009). These are the elongate reef named “Banana Reef” and a series of mounds called “Four 

Mounds”.  

Additionally, during mid-July 2013, a surface-towed boomer shallow seismic survey (BGS 

cruise 2013/7) took place in the area, and its main objective was to determine the thickness and 

extent of the coral layers (Wallis, 2013). It showed that the mounds sit on a relatively smooth 

rock head (Figure 4).  

 

Figure 4 - Boomer line across one of the Mingulay’s cold-water coral mound, showing its 

internal structure and how it sits on top of underlying rock head. 

4 Semi-automated mapping  

A semi-automated mapping tool was previously developed for mapping and attributing 

pockmarks from multibeam datasets (Gafeira et al., 2012). This has since been adapted for 

mapping cold-water corals mounds, often termed ‘mini-mounds’, found on the Celtic Margin. 

However, due to the preferential development of cold-water coral mounds in areas of irregular 

topography, the application of the semi-automated mapping tool directly from the bathymetric 

data is not possible. Therefore, it was decided to attempt to map this features using a derived 

dataset, the Bathymetric Position Index (BPI) map.  

4.1 BATHYMETRIC POSITION INDEX 

The BPI was originally derived from topographic data to characterising watersheds and was 

called topographic position index (TPI) (Weiss, 2001). It is a measure of where a certain location 

is relative to its surrounding (i.e. compares the water depth of each cell in a DEM to the mean 

water depth of the neighbourhood cells). Positive BPI values represent locations that are 

shallower than the average of their surroundings, as defined by the neighbourhood (ridges). 

Negative BPI values represent locations that are deeper than their surroundings (depressions). 

BPI values near zero are either flat areas or areas of constant slope (Figure 5). 

http://www.snh.org.uk/pdfs/publications/commissioned_reports/306.pdf
http://www.snh.org.uk/pdfs/publications/commissioned_reports/306.pdf
http://nsg.eage.org/publication/publicationdetails/?publication=61435
http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf
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Figure 5 - Topographic Position Index (TPI)  illustration taken from Weiss’ poster (2001). 

 

To develop and test the new method, a small area of the Mingulay Reef Complex was assessed 

(Figure 6). The use of a smaller area allows short processing time and faster rate of iterations 

during the process of writing the scripts.  
 

 

Figure 6 – Location of the clipped area used for this mapping exercise. 

 

By using the BPI values it is possible to delineate the coral mounds, however, the delineation 

will depend dramatically on how the BPI map was calculated. The BPI is calculated from the 

bathymetrical digital elevation model (DEM) but if can be calculated at different scales. The BPI 

algorithm compares each cell’s elevation to the mean elevation of the surrounding cells within a 

user-defined analysis neighbourhood. The analysis neighbourhood  can have the shape of a 

rectangle, an annulus (doughnut shape) or a circle and any size defined by the interpreter. The 

BPI value for a given cell will depend on of the geometry and size of the analysis neighbourhood 

used in its calculation. Smaller analysis neighbourhood will allow the detection of smaller, 

localised variations in the terrain. BPI maps with different analysis neighbourhood were 

generated using Benthic Terrain Modeller (BTM) and compared (Figure 7 and Figure 8). 

http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf
http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf
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The BTM toolbox contains a set of customised scripts that allow users to create, from a 

multibeam bathymetry input grid, additional grids of slope, bathymetric position index or BPI 

and seafloor rugosity. It can be downloaded from the ArcGIS website:  

http://www.arcgis.com/home/item.html?id=b0d0be66fd33440d97e8c83d220e7926 

 

 
 

Figure 7 – Illustration of the analysis neighbourhood used to create the four different BPI maps. 

From with the finest scale map (i6:o9) with an inner radius of 6 cells and outer radius of 9 cells, 

and the broader scale (i18:o36) with an inner radius of 18 cells and outer radius of 36 cells.  

http://www.arcgis.com/home/item.html?id=b0d0be66fd33440d97e8c83d220e7926
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Figure 8 – Clip of the four different BPI maps created using different analysis neighbourhood. 

From with the finest scale map (i6:o9) with an inner radius of 6 cells and outer radius of 9 cells, 

and the broader scale (i18:o36) with an inner radius of 18 cells and outer radius of 36 cells. Note 

that the areas identify as topographic highs (in brown) change depending on the scale used.  
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Additionally to the visual assessment of the BPI map generated, profiles across some of the 

mounds assisted the selection of BPI map used as input dataset and also to define the threshold 

value for the automated method (Figure 9). 

 

 
 

Figure 9 –The bathymetric profile (black) and four corresponding BPI profiles (in brown, green, 

red and blue). 

 

4.2 BGS CORAL MOUND TOOLS 

Two scripts were written in Python during this work: “BPI Feature Delineation” and “Feature 

Description”. These were added to an ArcGIS Tool Box named BGS Coral Mound tools. 

4.2.1 BPI Feature Delineation 

If we consider a coral mound as a confined bathymetric high capable to be identified within a 

BPI map and invert the BPI map, it is possible to employ hydrological algorithms developed to 

identify sinks on digital elevation models. Sinks, in this context, are cells with an undefined 

drainage direction since no cells surrounding it are lower. BPI Feature Delineation script follows 

a similar logic to the script developed for mapping pockmarks and described by (Gafeira et al., 

2012). By creating a script tool dialogue box (Figure 10) any user can run the script as a normal 

ArcGIS tool and read the description for the individual parameters (Table 1). The output of this 

script is a polygons shapefile delineating all the mounds respecting the dimensions and BPI 

values set by the thresholds defined by the used. The table of attributes of the output shapefile 

will capture varies characteristics of the mapped features (e.g. Area, Perimeter, Maximum BPI 

value, Minimum Bounding Geometry box's length, … ). 

http://nora.nerc.ac.uk/19728/
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Figure 10 – “BPI Feature Delineation” script tool dialogue box. 

 

Table 1- Parameter set for the “BPI Feature Delineation” script tool. 

Parameter  Explanation  Data Type  

Feature to delineate 
Pockmarks (negative BPI values) or Mounds 

(positive BPI values). 

String 

Input BPI raster File with the BPI map. Raster Dataset 

Workspace 
Folder where the final shapefile and temporary 

files will be stored. 

Workspace 

Name 
Shapefile name: without extension and should 

not be longer than 7 characters.  

String 

Cut-line BPI value 

Threshold defined to delineate the features. 

Only areas with a BPI value higher than the 

Cut-line BPI value will be mapped. 

Double 

Minimum BPI value 

Features with a maximum BPI value lower than 

this threshold will be excluded. The Minimum 

BPI value has to be the same or higher than the 

Cut-line BPI value. 

Double 

Minimum Area (Sq m) 
Minimum Area threshold excludes features 

smaller than a given area. 

Double 

Minimum Width/Length 

ratio 

Minimum Width/Length Ratio threshold allows 

excluding features based on their shape. 

Double 

Buffer Distance (m) 

(Optional)  

A buffer is applied to the polygons created to 

compensate for the fact that the delineation 

process was based on the Minimum BPI 

threshold. The Buffer Distance should reflect 

approximately the distance, in plan view, from 

the initially delineated polygon to the actual 

rim of the feature. 

Double 
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With the “BPI Feature Delineation” script tool and using the finest scale BPI map created 

(i6:o9) a total of 354 coral reefs were delineated within the study area. Figure 11 illustrate the 

results of this mapping exercise (polygons in light green) and also compare it to the automated 

mapping previous obtain by using directly the DEM dataset (purple). The application of the 

“Feature Delineation” tool with DTM dataset tends to underestimate the coral mounds’ area. 

A certain degree of manual editing would be recommended before proceeding to the extraction 

of further morphological attributes. However, for the aim of this exercise (test-of-concept) the 

second script “Feature Description” was run using the initially generated shapefile. 

 

 

Figure 11 – Detail view of the differences between the mapping based on the BPI map (green) 

and the mapping based directly on the DEM (purple). Note that some degree of manual editing 

may be required (polygon highlighted in bright blue). 

 

4.2.2 Feature Description  

After manually editing the outline of some of the polygons generated by the first script, the 

geometry of some polygons may have changed but the attribute table will still be the same. 

Therefore, the information on it could be partially incorrect. The “Feature Description” script 

recalculates the attribute values for each feature and adds new attribute fields with additional 

information. After various conversations with members of the Coral Ecosystems Lab at Heriot-

Watt University, it was decided to incorporate information from different datasets, when 

available. At this point, the “Feature Description” script tool (Figure 12) allows the extract 

information from the original DEM and from the BPI, Backscatter and Rugosity Map (Table 2). 

Plus, this tool can also calculate the original seabed slope before the development of the coral 

mound. 
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Figure 12 - “Feature Description” script tool dialogue box. 

 

Table 2 - Parameter set for the “Feature Description” script tool. 

Parameter  Explanation  Data Type  

Feature Shapefile Shapefile delineating the features Shapefile 

DEM DEM from where the water depth will be 

extracted. 

Raster Dataset 

BPI Map BPI Map previously used to delineate the 

features mapped. 

Raster Dataset 

Backscatter Map 

(Optional)  

Backscatter data from where the backscatter 

values will be extracted.  

Raster Dataset 

Rugosity Map (Optional)  Rugosity maps from where the rugosity values 

will be extracted.  

Raster Dataset 

Feature Type Positive features: features with a positive 

vertical relief, like mounds. 

Negative features: features with a negative 

vertical relief, like pockmarks.  

String 

Initial Slope (Optional)  The initial slope will be calculated by erasing 

the bathymetric data of the features mapped 

and recreating an initial surface.  

Boolean 

 

 

In addition to the polygon shapefile that delineates the mapped coral mounds, two other 

shapefiles are generated: 1) a point shapefile that shows the centroid of the referred polygons 

(‘shapefile’_C), and 2) a point shapefile that marks the shallower point within each mound 

(‘shapefile’_M). The table of attributes of both point shapefiles also includes the X and Y fields 

with the location of each point.  
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All of the shapefiles are completed with the full attribute table that comprises the following list 

of attribute fields:  

Area (sq m)  

Perimeter (m) 

Index (BPI)  

ID (Feature identification number) 

MBG_Width (Minimum Bounding Geometry box's width) 

MBG_Length (Minimum Bounding Geometry box's length) 

MBG_Orient (Minimum Bounding Geometry box's orientation) 

MBG_W_L (MBG_Width / MBG_Lenght) 

MinWD (Minimum Water Depth)  

MaxWD (Maximum Water Depth) 

MeanWD (Mean Water Depth) 

MaxVRelief (Maximum Vertical Relief) 

MinVRelief (Minimum Vertical Relief) 

ConfCL_WD (Water Depth of 1
st
Confined Contour Line) 

MaxSlope (Maximum Slope) 

MeanSlope (Mean Slope) 

Min_Rug (Minimum Rugosity Value)  

Max_Rug (Maximum Rugosity Value)  

Mean_Rug (Mean Rugosity Value)  

Min_BS (Minimum Backscatter Value)  

Max_BS (Maximum Backscatter Value)  

Mean_BS (Mean Backscatter Value) 

InitialSlp (Mean Slope of the assumed initial seabed surface)  

 

5 Conclusions  

This work demonstrates that there is significant potential to support expert data analysis through 

the application of a range of automated steps, which accelerate mapping and feature 

characterization process as well as bring more rigour and consistency to the process. 

 

The mapping based on the BPI values is better adjusted to the morphology of cold-water coral 

mounds whereas the direct application of the “Feature Delineation” tool, that use DTM as input 

data, tends to underestimate the coral mounds area. 

 

The collaboration with potential external end-users during this work led to the expansion of the 

type of attributes extract automatically (Figure 13). 
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Figure 13 –Top: Map showing the coral mounds mapped within the study area, classified 

according to the steepness of the calculated original seabed. Bottom: Profile showing the present 

day bathymetry (in brown) and the assumed seabed morphology previous to the development of 

the cold-water coral mounds. 
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