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Abstract: The meteorological and chemical transport model WRF-Chem was implemented to 
forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one 
way nested domains using the GFS meteorological data and the TNO MACC II emissions. The 48 
hour forecasts were run for each day of the winter and summer period of 2014 and there is only a 
small decrease in model performance for winter with respect to forecast lead time. The model in 
general captures the variability in observed PM10 concentrations for most of the stations. However, 
for some locations and specific episodes the model performance is poor and the results can not yet 
be used by official authorities. We argue that a higher resolution sector based emission data will be 
helpful for this analysis in connection with a focus on planetary boundary layer processes in WRF-
Chem and their impact on the initial distribution of emissions on both time and space. 
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Introduction 

Forecasting air quality provides important information to the public. Air quality forecasts 
are especially important to sensitive individuals e.g. children, elderly or asthmatic 
patients. Forecasts assist local authorities in preventive steps (e.g. temporarily shutting of 
major emission sources, Ying et al., 2004). Saide et al. (2011) suggest that preventive 
steps to limit high concentrations require that air quality forecast is available with at least 
48h lead time. A key parameter in air quality forecasts is PM10 concentration (Saide et al. 
2011). According to current knowledge, particulate matter (PM) consists of a complex 
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mixture of solid and liquid particles of organic matter, mineral dust, secondary inorganic 
aerosols, trace metals and sea salt aerosols, as well as water and unspecified compounds. 
PM affects air quality and, in turn, human and ecosystem well-being, and also have an 
important role in Earth’s climate system (Kirtman et al., 2013). Particulate matter 
pollution is probably the most pressing issue in air quality regulation worldwide (Fuzzi et 
al., 2015) and our study is focused on forecasting of PM10 concentrations over one of the 
most problematic regions in Europe in the context of air pollution. 

PM10 pollution results from both primary emissions and secondary formation through 
complex photochemical and heterogeneous chemical pathways. Both natural processes 
and human activities release PM10 into the atmosphere. Potential sources from human 
activities include among others coal-fired power plants, industry, residential heating and 
road transport. The chemical and physical nature of emitted particulate matter can be 
changed considerably within the atmosphere due to factors such as location, temperature, 
humidity and the presence of other pollutants (Sloss & Smith 2000). Therefore, the PM10 
concentration in the air is affected by both human activities and meteorological factors 
(Saliba et al., 2010). Due to the fact that PM10 is  a sum of various different elements, a 
total uncertainty of PM10 concentrations is a sum of uncertainties of emissions and 
concentrations modelling of individual gaseous and particle pollution. This makes the 
prediction of temporal and spatial distribution of PM10 concentrations more difficult than 
modelling of individual species (Vautard et al., 2007; Werner et al., 2014) 

 Causes to PM10 concentrations can be studied by Chemistry Transport Models (CTMs), 
e.g. by focusing on the physical and chemical processes of gases and particulate matter. 
The majority of CTMs are offline models meaning that the meteorology is calculated 
prior to the chemistry such as CHIMEREv4.5  (Bessagnet et al. 2008; Pay et al. 2010), 
CMAQ (Matthias 2008) or EMEP (Simpson et al. 2012; van Loon et al. 2007). Usually 
the meteorology for these models is available at a 1h, 3h or 6h resolution. The online 
integration of numerical weather prediction with atmospheric chemistry, transformation 
and transport allows all meteorological three-dimensional fields to be used at each time 
step (Kukkonen et al. 2012), varying from seconds to a few minutes. This reduces 
inconsistencies in processes that relate to aerosols, chemistry and meteorology (Baklanov 
et al. 2014). It also enables feedback effects from air pollution (e.g. those due to aerosol) 
on meteorological processes (Kukkonen et al. 2012; Forkel et al. 2012). A recent review 
has highlighted a number of important areas to focus on in relation to online modelling 
(Baklanov et al. 2014). These areas include focus on mixing processes in the planetary 
boundary layer (PBL) and improved time-dependence on atmospheric conditions.  

In this study we apply the on-line model WRF-Chem version 3.5 (Skamarock & Klemp 
2008; Grell et al. 2005) to forecast PM10 concentration over Poland, with a focus on the 
south-west part of the country called the Lower Silesia region. The forecasting system 
described in the paper is developed within the LIFE  European project 
(http://ec.europa.eu/environment/life/). The first operational version of the system is 
presented, where the focus is to study the influence of the meteorological conditions, 
independent of the – well known but uncertain – large temporal variations in the 
emissions. The final version of the system will be based on information from this study in 
relation to the relevant meteorological processes and also will include up-to-date 
temporal variation in emission. The approach used here therefore enabled us to study the 
influence of meteorological conditions on air quality and the potential feedback 

http://ec.europa.eu/environment/life/
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mechanisms, which are important components in air quality forecasting systems using 
complex on-line  models like WRF-Chem. 

The PM10 forecasts were tested during the winter (1st January - 28th February) and 
summer (1st July – 31st August) period of 2014. Winters in Poland often contain 
episodes with high concentrations of particulate matter. These episodes are due to both 
high coal consumption used for residential heating and meteorological conditions 
preventing mixing and dilution of air pollutants. The forecasts are evaluated by 
comparison with observations separately for 24h and 48h lead time and for both the 
summer and winter period. 

Methodology  

The WRF-Chem model setup 

WRF-Chem is used in nested mode with a summary of the model configuration in Table 
1. These include the Noah Land Surface Model (Chen & Dudhia 2001), YSU boundary 
layer physics (Hong et al. 2006), RRTMG long and short wave radiation scheme (Iacono 
et al. 2008), Grell 3D parameterisation with radiative feedback and shallow convection 
(Grell 2002), the Lin microphysics scheme (Lin et al. 1983).  The simulations are driven 
by the GFS meteorological data, available every 3h, at a 0.5o x 0.5o spatial resolution.  
Emissions are the TNO MACC II data set at a 1/8° x 1/16° spatial resolution (Pouliot et 
al. 2012). Temporal variations in emissions are restricted to emissions from nature, while 
the TNO MACC II emissions are assumed constant during the entire simulation. The 
chemical boundary conditions of trace gases consist of idealised, northern hemispheric, 
mid-latitude, clean environmental profiles based upon the results from the NOAA 
Aeronomy Lab Regional Oxidant Model (Liu et al. 1996). The first 48-h forecasting 
cycle on the 01 January and 01 July uses a 2-week spin-up, with the model simulations 
initialized with the GFS meteorology for initial and boundary conditions. From the 2nd of 
January and July, the model uses chemistry cycling, and the WRF-Chem run for the last 
hour on the previous day is used to initialize the next day’s forecasting simulation.  

 

 

Table 1. Model configuration used in WRF-Chem simulations* 

Model evaluation 

The PM10 concentrations’ forecasts were compared with daily mean observations 
gathered by the Voivodeship Inspectorate of Environmental Protection for 16 stations in 
the Lower Silesia region in SW Poland (Fig. 1, 2). Forecasting quality was evaluated by 
using forecasting lead time as defined by World Meteorological Observation, separately 
for 24h and 48h lead time (Tab. 2). This means that the first day will correspond to 0 day 
lead time (0h-23h forecasts) and the second day to 1 day lead time (24h-47h forecasts). 
Taking into account all available stations following statistics have been calculated: mean 
bias (MB), factor of two (FAC2), normalised mean bias (NMB) and root mean square 
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error (RMSE). Time series and scatter plots for one station with the lowest and one with 
the highest MB (calculated for the winter period) are given as examples (Fig. 3, Fig.4). 
Mean Bias for 48 lead time is also presented spatially for individual stations separately 
for winter and summer season (Fig. 2). 

 

Figure 1. Height above sea level of the innermost model domain [m]. 

 

Figure 2. Mean PM10 concentrations for winter (Jan-Feb 2014, upper) and summer (Jul-
Aug 2014, lower) period in SW Poland, for 48 hour lead time. Mean Bias statistic marked 
with dots (MB=model-observation, different scale for winter and summer). 

 

Results 

Spatial distribution of modelled mean PM10 concentration for winter and summer period 
is presented in Fig. 2. Mean PM10 concentration in the winter period is slightly higher 
than in summer (24.0 and 18.0 µg m-3, respectively), however maximum value is about 
70% higher in winter than in summer (47.8 and 29.0 µg m-3, respectively). 

For winter the lowest values are in the Sudety Mountains and the highest are related to 
neighboring emission sources and also with the region of Kłodzko which favors 
appearance of temperature inversion as well as gathering and stagnation of air pollution. 

The mean observed PM10 concentration from 16 stations is 42 µg m-3 during winter and 
19 µg m-3 during summer period. Very high concentrations were observed between 25th 
and 28th of January and between 25th and 28th of February. Model performance is 
noticeably better for summer in comparison to winter, with FAC2 respectively equal to 
0.84 and 0.65 (Tab. 2). Measured concentrations are underestimated by the model during 
cold and slightly overestimated during warm season. NMB for summer is close to 0.  
Generally, the simulated forecast performance is slightly better for the 24h lead time 
compared to the 48h lead time during winter and lower during summer (Tab. 2). 

 

 

Table 2. Model performance for the 24h and 48h lead time, separately for the winter and summer 
period (n – number of observations). 

 

Figure 3. Time series of PM10 concentration for the 48h lead time of the forecasts for two selected 
stations (different y-axis scale is for winter and summer).  

 

 

Figure 4. Scatter plots for two selected stations for winter and summer, presenting both 24h and 
48h lead time (unit: µg m-3). 
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The lowest absolute MB, from all stations during winter, is for Kłodzko and Działoszyn, 
whereas the highest is for Nowa Ruda (Fig. 2).  It does not correspond to the model 
performance during summer where the lowest NMGE is calculated for Nowa Ruda. 

The model generally captures the observations at Działoszyn (winter and summer) and 
Nowa Ruda (summer, Fig. 3) and most of the model-observation pairs are between the 
lines 1/2 and 2/1 (dotted lines, Fig.4) in the scatter plot. In the case of Nowa Ruda in 
winter, the model is not able to reproduce the observations during a series of episodes 
with very high PM10 concentrations. In fact, the observations show much higher 
variability than the model calculations for that site only (e.g. compare the variability in all 
four scatter plots). There are two main factors responsible for this situation in winter 
season. The station is located in a river valley surrounded by hills and in the station 
vicinity dominate family houses heated by coal and wood burning. The first is 
responsible for the air stagnation and the second for high emission from residential 
heating, for which emission inventory is highly uncertain. An investigation of the 
meteorology in WRF-Chem showed that several of these episodes (e.g. within 5-17 of 
January) coincided with days that are either characterised by temperature inversion or 
relatively low T2 temperature (below 0ºC), which forces people to heat their houses (Fig. 
5). 

 

 

 

Figure 5. Vertical cross-section of temperature at Nowa Ruda station, 5 – 18 January 
2014.  

Summary and conclusions 

We have presented the results of WRF-Chem PM10 forecasts for south-west Poland. The 
48 hour forecasts were run for each day of the winter and summer period of 2014 and 
there is only a small decrease in model performance for winter with respect to forecast 
lead time. We have found that WRF-Chem tends to underestimate measurements in 
winter and slightly overestimate in summer, with much better error statistics for summer. 
The model in general captures the variability in observed PM10 concentrations for most of 
the stations. However the highest observed peaks in winter are in general underestimated 
by the model. The lowest performance for this period was obtained for the Nowa Ruda 
station, which is located in a deep valley. This area has a high contribution of the 
emissions from coal fired residential heating, which is highly uncertain. Such 
circumstances could cause high PM10 observed concentrations peak during certain 
weather types such as winter time inversions. Recent paper by Kryza et al. (2016, this 
issue) shows that the WRF model overestimates the PBL height for this area and for the 
winter season. This overestimation of PBL height may lead to underestimation of the 
observed concentrations of air pollutants. 
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For some locations and specific episodes the model performance is poor and the results 
can not yet be used by official authorities. We argue that a higher resolution sector based 
emission data will be helpful for this analysis in connection with a focus on PBL 
processes in WRF-Chem and their impact on the initial distribution of emissions on both 
time and space. In the next step we are planning to adopt a high resolution (1km x 1km) 
up to date regional emission database and temporal emission profiles. This will also give 
an opportunity to study the impact of the more detailed emission inventory and 
application of temporal emission profile on the quality of the air chemistry forecasts. 
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Tables 

 

Table 1. Model configuration used in WRF-Chem simulations* 

Category Model setup 

Forecasts period 01st January – 28th February 2014, 01st July – 31st August 

Domains Europe (36 km) – Poland (12 km) – SW Poland (4 km) 

Vertical resolution 35 layers 

PBL process YSU (Hong et al. 2006) 

Land-surface process NOAH LSM 

Cumulus Grell and Denvenyi (2002) for d1 and d2 

Shortwave & Longwave radiation RRTMG 

Microphysics Lin et al. (1983) 

Gas-phase mechanism RADM2 

Aerosol model MADE/SORGAM 

Photolysis scheme Fast-J 

Wet deposition  Simplified parameterisation for wet scavenging 

*Please refer to the WRF and the WRF-Chem user’s guides for a complete description of the 
options. 

 

Table 2. Model performance for the 24h and 48h lead time, separately for the winter and summer 
period (n – number of observations). 

  
  

WINTER 
Forecast 

range n FAC2 MB MGE NMB NMGE RMSE 

00-23h 977 0.65 -16.49 21.10 -0.39 0.50 29.46 

24-48h 977 0.65 -16.65 21.23 -0.39 0.50 29.73 

  SUMMER 

00-23h 994 0.84 0.12 7.55 0.01 0.39 10.03 

24-48h 994 0.82 0.55 7.59 0.03 0.40 10.01 
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Figure 1. Height above sea level of the innermost model domain [m]. 



   

 

   

   

 

   

   

 

   

    Title    
 

    

 

 

   

   

 

   

   

 

   

       

 

 

Figure 2. Mean PM10 concentrations for winter (Jan-Feb 2014, upper) and summer (Jul-
Aug 2014, lower) period in SW Poland, for 48 hour lead time. Mean Bias statistic marked 
with dots (MB=model-observation, different scale for winter and summer). 
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Figure 3. Time series of PM10 concentration for the 48h lead time of the forecasts for two selected 
stations (different y-axis scale is for winter and summer).  

Działoszyn - winter 

Działoszyn - summer 

Nowa Ruda - winter 

Nowa Ruda - summer 
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Figure 4. Scatter plots for two selected stations for winter and summer, presenting both 

24h and 48h lead time (unit: µg m-3). 
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Figure 5.  

Vertical cross-section of temperature at Nowa Ruda station, 5 – 18 January 2014  
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