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Abstract 22 

Little is understood regarding the effects of mixtures of different metal-based nanoparticles 23 

(NPs). Using concentration addition (CA) and independent action (IA) models, we evaluated 24 

the combined toxicity of Cu and ZnO NPs based on five nested combinations, i.e. Cu(NO3)2-25 

CuNPs, Zn(NO3)2-ZnONPs, Cu(NO3)2-ZnONPs, Zn(NO3)2-CuNPs, and CuNPs-ZnONPs on 26 

root elongation of Lactuca sativa L. The CA and IA models performed equally well in 27 

estimating the toxicity of mixtures of Cu(NO3)2-CuNPs, Zn(NO3)2-ZnONPs and Zn(NO3)2-28 

CuNPs, whereas the IA model was significantly better to fit the data of Cu(NO3)2-ZnONPs 29 

and CuNPs-ZnONPs mixtures. Dissolved Cu proved to be the most toxic metal species to 30 

lettuce roots in the tests, followed by Cu NPs, dissolved Zn, and ZnO NPs respectively. An 31 

antagonistic effect was observed for ZnO NPs on the toxicity of Cu NPs. This antagonistic 32 

effect is expected to be the result of interactions between dissolved Cu and dissolved Zn, 33 

particulate Zn and dissolved Zn, particulate Cu and dissolved Zn, and between particulate 34 

Zn and dissolved Cu. In general terms, assuming additivity gives a first indication of the 35 

combined toxicity with soluble and insoluble metal particles both being important in driving36 

toxicity of metal-based NPs to higher plants. 37 

 Keywords: Cu, Zn, nanoparticles, mixture, toxicity 38 

39 
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1. Introduction56 

Nanotechnology has been applied to create novel materials with unique characteristics in a 57 

large variety of consumer and household products. For example, engineered zinc oxide 58 

nanoparticles (NPs) are added into personal care products and coatings, which benefit from 59 

their ability to efficiently absorb UV-light and their increased transparency to visible light1. 60 

Nano-Cu powders can be dispersed into catalysts, conductive pastes, sintering additives, 61 

anti-bacteria products, and lubricant additives owing to their potential catalytic, dielectric, and 62 

biomedical properties2.  63 

Dissolution and aggregation/agglomeration are the two main processes that can strongly 64 

influence the state of metal-based NPs present in suspensions, and consequently impact the 65 

bioavailability, uptake and toxicity of NPs3. It has been reported that various characteristics 66 

of the exposure media can affect dissolution and aggregation of metal-based NPs, e.g. pH, 67 

ionic strength and the presence of naturally occurring organic matter4. Dissolution of NPs is 68 

a dynamic process in which constituent molecules of the dissolving solid migrate from the 69 

surface to the bulk solution through a diffusion layer5. The adsorption of molecules and ions 70 

from solution can promote or delay the dissolution process by modifying the characteristics 71 

of the diffusion layer6. Apart from heteroaggregation, particles can also be bound together 72 

(homoaggregation) when their equilibrium solubility is above saturation concentrations7, 73 

which can increase the overall diffusion layer thickness and hinder dissolution of NPs.  74 

Increasing numbers of applications may lead to direct or indirect releases of engineered 75 

metal-based NPs into the environment. This may pose effects on a variety of organisms in 76 

aquatic and terrestrial ecosystems, and in turn requires more attention on their eco-77 

toxicological effects. Metal-based NPs are commonly predicted to occur in the environment 78 

as colloids 8. Metal ions or small inorganic complexes produced by engineered metal-based 79 

NPs consisting of highly toxic elements inevitably drive the partial toxicity of metal-based 80 

NPs to organisms3. However, it is still a challenge to clarify which metal species contribute 81 

most to the nano-toxicity. Some studies suggested that the toxic effects of ZnO NPs and Cu 82 
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NPs on organisms were most likely due to the dissolved metal species rather than being 83 

particle-dependent 9-11. Other researchers argued that the particulate forms of ZnO NPs and 84 

Cu NPs contributed substantially to the cytotoxic effects on mammalian and piscine cell lines85 

12, 13. The translation from an effect on a cell line to a whole organism is not straightforward 86 

and depends on numerous factors such as the type of cell lines used and the physical and 87 

chemical composition of the NPs under consideration. Karlsson et al. 14 found for instance 88 

that the oxidative stress of mouse embryonic stem (mEs) cells was induced by the released 89 

Cu ions of CuO NPs whereas the stress was particle related for NiO NPs.  90 

The lowest median L(E)C50 value for nano-ZnO to aquatic organisms was observed to be 91 

<0.1 mg/L. This value classifies nano-ZnO as being ‘extremely toxic’, whereas the lowest 92 

values of L(E)C50 (0.1~1 mg/L) classify nano-Cu as ‘very toxic’ 15. These NPs were found to 93 

be simultaneously present in wastewater effluents 16-18. They thus can jointly enter the 94 

terrestrial system by the application of bio-solids from sewage systems as a fertilizer 19. 95 

Plants such as Lactuca sativa and Medicago sativa 20 have been reported to be able to take 96 

up and store metal-based NPs in their tissues 21. To date, the knowledge of the eco-toxicity 97 

of Cu NPs and ZnO NPs is far from being adequate as compared to their large-scale 98 

application 22, 23, especially under conditions of co-exposure. 99 

This study aims at improving the understanding of the effects of Cu NPs, ZnO NPs and their 100 

mixtures on L. sativa L. by unravelling the following two research questions: (1) Will the 101 

dissolved metals and the particulate metals of each type of metal-based NPs act jointly 102 

following the common rules of additivity? (2) Will Cu NPs interact with ZnO NPs and 103 

influence the toxicity of each other? Theoretically, if Cu NPs and ZnO NPs would act 104 

comparable to their metal salts, the existing models for predicting the combined effects of 105 

metals can be applied to predict the toxicity of mixtures of metal-based NPs. As shown in our 106 

previous studies 24, 25, Cu2+ competed with Zn2+ for binding to the biotic ligand of lettuce. 107 

However, this research is more complex than in case of mixtures of metal salts because 108 

suspensions of each type of metal-based NPs consist of a mixture mainly containing 109 
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dissolved metal species and undissolved particles. Suspensions of Cu NPs and ZnO NPs 110 

will therefore contain four metal species that are relevant to the toxicity of mixtures, i.e. 111 

dissolved Cu, dissolved Zn, particulate Cu and particulate ZnO. Cedergreen et al. 26 have 112 

shown that the joint effect of ternary mixtures can be predicted from binary mixture toxicity 113 

results. Thus, an elaborate nested experiment (binary, ternary, quaternary mixtures) was 114 

designed to include all possible combinations in order to trace down the potential 115 

‘interactions’ between Cu NPs and ZnO NPs and where these ‘interactions’ (if any) take 116 

place. The two classic concepts of additivity i.e. concentration addition (CA) and 117 

independent action (IA) were both used for mixture toxicity predictions. A Zn(NO3)2 or 118 

Cu(NO3)2 solution was applied as a reference to assess the behavior of the dissolved Zn or 119 

Cu from the NPs in solution. The combined effects on root growth by nanoCu-nanoZnO 120 

mixtures were then compared with the overall effects of Cu(NO3)2 and Zn(NO3)2 reported in 121 

previous studies. The following combinations were studied: 122 

····Cu(NO3)2 and Cu NPs (dissolved Cu and particulate Cu, Cu-nanoCu)123 

····Zn(NO3)2 and ZnO NPs (dissolved Zn and particulate ZnO, Zn-nanoZnO)124 

····Zn(NO3)2 and Cu NPs (dissolved Zn, dissolved Cu and particulate Cu, Zn-nanoCu)125 

····Cu(NO3)2 and ZnO NPs ((((dissolved Cu, dissolved Zn and particulate ZnO, Cu-nanoZnO)126 

····Cu NPs and ZnO NPs (dissolved Cu, dissolved Zn, particulate Cu and particulate ZnO,127 

nanoCu-nanoZnO) 128 

2. Methods129 

2.1 Test compounds and nutrient solution 130 

Uncoated Cu NPs (nano-spheres, nominal particle size 50 nm, coded NM-0014, purity 131 

99.8%) and uncoated ZnO NPs (nano-sticks, nominal particle size 150 nm, coded NM-110) 132 

were purchased from the io-li-tec company (Heilbronn, Germany). Cu(NO3)2•3H2O (purity 133 

99.5%), Zn(NO3)2•6H2O (purity 99.5%) and other salts used in preparing the nutrient solution 134 

were all purchased from the Merck KGaA company (Darmstadt, Germany). The nutrient 135 
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solution was composed of Ca(NO3)2•4H2O (236.1 mg/L), MgSO4•7H2O (60 mg/L), NaHCO3 136 

(50 mg/L), and KHCO3 (10 mg/L) totally dissolved in demi-water (pH 7.8) and was applied 137 

for culturing plants and preparing the exposure media.   138 

2.2 Experimental design 139 

To allow the data to be interpreted over a wide range of concentrations of particulate and 140 

dissolved species of Cu and Zn, the composition of the five mixtures was chosen according 141 

to a full factorial experimental design. The nominal concentrations of Cu(NO3)2 ranged from 142 

0.06 to 0.30 mg/L, the range of Zn(NO3)2 was from 2.90 to 17.39 mg/L, the range of Cu NPs 143 

was from 0.10 to 0.80 mg/L, and the range of ZnO NPs was from 0.50 to 50.00 mg/L. A 144 

detailed description of the experimental setup after pre-screening tests is provided in Table 145 

S1 on the basis of actual concentrations. Mixture treatments of each combination were 146 

repeated twice with negative controls (nutrient solution) and positive controls (single 147 

compounds, i.e. Cu(NO3)2, Zn(NO3)2, Cu NPs, ZnO NPs individually) for further analysis 148 

(section 2.6) and to reduce the variation of non-simultaneous toxicity tests. Hydroponic 149 

exposure was used as a starting point to study the mutual impacts between metal-based 150 

NPs and to avoid interference from complex interactions with soil particles. To keep the 151 

concentrations of compounds in solution constant, the test media were replaced every day. 152 

Stock suspensions of Cu NPs and ZnO NPs were daily prepared in nutrient solution and 153 

sonicated in an S 40 H Elmasonic water bath sonicator (Elma, Germany) for 10 min. All the 154 

stock solutions including the nitrate salts were further diluted 10 times with nutrient solution 155 

to obtain the nominal concentrations for each treatment.  156 

2.3 Exposure of lettuce and toxicity determination 157 

Lactuca sativa L. was selected as the test organism because its bioassay has been 158 

recommended to be a relatively easy and quick way of evaluating potential environmental 159 

risks by the Organization for Economic Cooperation and Development (OECD) 27. The 160 

toxicity tests were performed according to guidelines of the US Environmental Protection 161 

Agency (EPA) 28. As compared to the germination rate of seeds, the relative root elongation 162 
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rate (RRE, %) of lettuce seedlings is more accurate and more effective in reflecting the 163 

impact of external stressors 29, and therefore RRE was exploited as the toxicological 164 

endpoint in this study. Lettuce seeds were purchased from the Horti Tops company 165 

(Amsterdam, the Netherlands) and germinated on expanded perlite in a climate room (18°C, 166 

80% humidity, and a 16:8 h light: dark cycle) for 96 h. After germination, seedlings with 167 

taproot lengths more than 3 cm were chosen to be fixed on parafilm strips floating on the 168 

surface of glass petri dishes containing 30 ml test medium. In each petri dish, 4 seedlings 169 

were introduced. Before and after 96 h exposure, the length of lettuce taproot was measured 170 

from the transition point between the hypocotyls and the root to the root tip. The root growth 171 

of each treatment was defined as the mean value of differences in root length of 4 seedlings 172 

before and after exposure. Then RRE was determined according to equation 1: 173 

%
RG

RRE
RG

= ×100S

C

 (1) 174 

RGs: the root growth of plants in the sample solution, cm; 175 

RGc: the root growth of plants in the control solution, cm. 176 

2.4 Characterization of nanoparticles 177 

The primary morphology and particle size of metal-based NPs prepared in lettuce culture 178 

medium were characterized using a JEOL 1010 Transmission Electron Microscope (TEM, 179 

JEOL, Japan). The particle size of Cu NPs and ZnO NPs was analyzed using a Nano 180 

Measurer 1.2 (Fudan University, China). The distribution of hydrodynamic diameter and the 181 

zeta-potential of NPs in seven types of test media (i.e. nano-Cu, nano-ZnO, Cu-nanoCu, Zn-182 

nanoZnO, Cu-nanoZnO, Zn-nanoCu, nanoCu-nanoZnO mixtures prepared in lettuce culture 183 

medium) were measured after 1 h and 24 h of preparation by Dynamic Light Scattering (DLS) 184 

on a Zetasizer Nano-ZS instrument (Malvern, United Kingdom).   185 

2.5 Chemical analysis  186 

A Cu-ion selective electrode (Cu-ISE, Metrohm, Switzerland) was used as a direct way to 187 

measure the free Cu-ion activity in solution after 1 h and 24 h. A Zn-ion selective electrode 188 
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was not used in this study because the detection limit was not sufficient for the test. To 189 

check whether particles will reduce the sensitivity of the Cu-electrode membrane, plain 190 

polystyrene fluorescent microspheres # 103125-05 (nominal particle size 70 nm, 191 

Microspheres-Nanospheres, American) were added to compare the activities of Cu2+ with 192 

those in solutions of Cu(NO3)2 alone. The actual total concentrations of Ca, Mg, Na, K, Cu, 193 

Zn, and the dissolved concentrations of Cu and ZnO NPs after 1 h and 24 h of equilibration 194 

were analyzed using Flame Atomic Absorption Spectroscopy (FAAS, Perkin Elmer AAnalyst 195 

100, American). Centrifugation of samples removed particles from suspensions. The 196 

supernatants were obtained and used for testing after 20 min of centrifugation in a 197 

Centrifuge 5415D (Eppendorf, Germany) at 13 300 g 12. The particle suspensions, the 198 

supernatants and the liquids with nitrate salts were digested using HNO3 and sampled for 199 

FAAS analysis.  200 

2.6 Data analysis 201 

To check the potential chemical-chemical interactions before entering the organism, 202 

relationships between the free Cu2+ activities in the solution (or the dissolved metal species 203 

of Cu NPs or ZnO NPs) and the added amount of one compound in mixtures of Cu-nanoCu, 204 

Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, and nanoCu-nanoZnO after 1 h and 24 h were all 205 

analyzed using the linear regression method in the GraphPad Prism 5 software (GraphPad, 206 

American). For the Cu-nanoCu mixtures, the activities of Cu2+ released from Cu NPs were 207 

calculated by subtracting the Cu2+ activities of Cu(NO3)2 from the totally measured activities 208 

of Cu2+ in mixture solutions. The actually total or dissolved concentrations of Cu NPs or ZnO 209 

NPs in Cu-nanoCu and Zn-nanoZnO mixtures were calculated in a similar way. 210 

The independent action (IA) model and the concentration addition (CA) model based on the 211 

rules of ‘additivity’ 30 were both used to predict the combined toxicity of mixtures of Cu-212 

nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu and nanoCu-nanoZnO. The observed 213 

effects were then compared with the estimated values of CA or IA models. By definition, the 214 

basic assumption of additivity is that one compound is non-interactive with the other 215 
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compounds in a mixture 31. The CA model is thought to be valid for mixtures where the 216 

components have similar target sites and a similar mode of action (MoA) 32. The concept of 217 

IA originates from statistical considerations of independent responses and is supposed to be 218 

satisfactory for modeling effects of mixtures where the components differ in uptake pathways 219 

or MoA 30. However, information on detailed MoA is still not available for the majority of 220 

chemicals33. Thus, the additive effects of mixtures were predicted by both multiplying the 221 

responses of mixture components (for IA), and by summing the scaled exposure levels (for 222 

CA) in this study. The IA model is mathematically presented by equation 2: 223 

n

i

i

E C E C∏mix

=1

( ) =1- [1- ( )] (2) 224 

E(Cmix): the estimated effect of an n-compound mixture; 225 

E(Ci): the effect of the ith compound applied singly at a fixed concentration, relative to the 226 

RGc of untreated controls.   227 

To facilitate the estimation of toxic effects of mixtures on the basis of concentration addition, 228 

the sum of toxic units (TUmix, a dimensionless ratio) was introduced to represent the toxic 229 

strength of a mixture 34. Strict concentration addition occurs when the value of TUmix equals230 

one according to equation 3: 231 

∑mix
=1

TU =
EC

n
i

i
xi

c
(3) 232 

ci: the concentration of individual compound i in the mixture with n compounds; 233 

ECxi: the effect concentration of individual compound i that results in the same effect (x%) 234 

as the mixture. The concentration-response relationship of a mixture was obtained using the 235 

logistic fuction 35 presented in equation 4 programmed in OriginPro 8 (Origin Lab, United 236 

Kingdom): 237 

mix
50%

mix

100
=

TU
1+( )

TU

β

RRE (4) 238 
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RRE: RGs of mixture treatments relative to RGc of negative controls; β: the shape parameter 239 

that determines the steepness of the response curves; 
50%

mixTU :  the sum of toxic units of a 240 

mixture inducing 50% inhibition of root elongation. 241 

If compounds in a mixture do not follow the rules of ‘additivity’, ‘interactions’ between 242 

compounds may either increase or decrease the toxicity of mixtures relative to the model 243 

predictions 36. Finding interactions in mixtures is always a challenge, especially when a 244 

mixture contains more than two components. Since the suspensions of mixtures of Cu-245 

nanoZnO, Zn-nanoCu, and nanoCu-nanoZnO contain more than two metal species, 246 

searching interactions between these different metal species cannot be done using the 247 

existing models for binary mixtures. Therefore, a different approach was used in this study, 248 

which will be explained by the following example of Cu-nanoZnO mixtures.  249 

To examine the influence of Cu(NO3)2 on the toxicity of ZnO NPs, the median effective 250 

concentrations (EC50) of ZnO NPs in the co-exposure with Cu(NO3)2 were compared with the 251 

EC50 value of ZnO NPs in single exposure. The RREs induced by ZnO NPs in co-exposure 252 

with Cu(NO3)2 can be calculated using the root growth of positive controls (with Cu(NO3)2 253 

alone) as RGc in equation (1). The RREs induced by ZnO NPs alone can be calculated by 254 

using the root growth of negative controls (nutrient solution only) as RGc in equation (1). The 255 

EC50s of ZnO NPs in single-exposure or co-exposure with Cu(NO3)2 were calculated using 256 

the log (inhibitor) vs. normalized response-variable slope function in GraphPad Prism 5. It 257 

was assumed that if the EC50s of ZnO NPs in the co-exposure with Cu(NO3)2 were 258 

significantly different from the value of ZnO NPs in single exposure, then the influence of 259 

Cu(NO3) on the toxicity of ZnO NPs was statistically significant. The EC50 values of ZnO NPs 260 

were plotted as a function of increasing concentrations of Cu(NO3)2 following linear 261 

regression in OriginPro 8. As an initial attempt, the slope of the obtained straight lines was 262 

compared with zero to indicate the overall antagonism or synergism. A non-significant slope 263 

is indicative of no substantial interactive effects of Cu(NO3)2 on the toxicity of ZnO NPs, a 264 

Page 11 of 32 Environmental Science & Technology



significant positive (p < 0.05) slope implies the decreased toxicity of ZnO NPs by Cu(NO3)2 265 

or the occurrence of antagonistic effects of Cu(NO3)2 on ZnO NPs, and a significant negative 266 

slope indicates the increased toxicity of ZnO NPs by Cu(NO3)2 or synergistic effects. Similar 267 

methods can be used to find out the influence of ZnO NPs (in both dissolved and particulate 268 

forms) on the toxicity of Cu(NO3)2 and for other mixtures investigated in this study.  269 

3. Results270 

3.1 Characterization of nanoparticles 271 

The TEM images of Cu NPs, ZnO NPs and their mixtures are shown in Figure 1. The 272 

primary sizes and shapes of the particles were estimated based on the TEM images. The Cu 273 

NPs were shown to be of spherical shape, 127 nm in size (size variation of 119-137 nm). 274 

The ZnO NPs crystals displayed an approximatively tetragonal morphology (width: 55 nm, 275 

size variation of 24-110 nm; length: 144 nm, size variation of 95-224 nm). The size 276 

distribution of the hydrodynamic diameter of NPs in lettuce culture solution and in 277 

suspensions of the five combinations investigated was determined using DLS and are shown 278 

in Table S2. Initial particle sizes changed quickly after the NPs were submerged in lettuce 279 

culture solution. Both NPs were present as aggregates (370 nm - 1531 nm) in lettuce culture 280 

solution and in mixture suspensions. The hydrodynamic particle sizes of Cu NPs and ZnO 281 

NPs increased by a factor of 1.5 to 2 after being submerged for 24 h in lettuce culture 282 

solution and in suspensions of mixtures of Zn-nanoCu, nanoCu-nanoZnO, Zn-nanoZnO.  283 

3.2 Fate analysis  284 

Relationships between the free activities of Cu2+ in solution and added ZnO NPs, Zn(NO3)2,285 

Cu NPs, Cu(NO3)2 after 1 h and 24 h are plotted in Figure S1. After 24 h, the activities of 286 

Cu2+ were generally increased in mixtures of Cu-nanoCu, Zn-nanoCu, Cu-nanoZnO, and 287 

nanoCu-nanoZnO as compared to the values after 1 h. However, no consistently significant 288 

effects of increasing concentrations of Cu(NO3)2, Cu NPs, Zn(NO3)2, ZnO NPs were 289 

observed on the activities of Cu2+ in solution after 1h and 24 h of equilibration using the Cu-290 
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ISE. This indicated that the amount of free Cu2+ released from either Cu NPs or Cu(NO3)2291 

was not substantially affected by other compounds of Cu or Zn added to the solution. It is 292 

shown in Figure S2 that the trend of increasing Cu2+ activities in solution with polystyrene 293 

fluorescent microspheres remained constant when more Cu(NO3)2 was added and the slope 294 

of linear curves remained positive.  295 

The background concentrations of Na, K, Ca, Mg in nutrient solution were measured to be 296 

respectively 11.9 ± 0.3 mg/L, 3.68 ± 0.07 mg/L, 31.24 ± 0.5 mg/L, and 5.49 ± 0.08 mg/L. The 297 

impacts of other compounds on the dissolved concentrations of Cu NPs and ZnO NPs after 298 

1h and 24 h of equilibration in mixtures of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-299 

nanoCu, nanoCu-nanoZnO are represented in Figure S3. Generally, the more NPs were 300 

added to the solution, the lower the percentage of dissolved metal-based NPs was 301 

measured after 1 h and 24 h. The dissolved concentrations of Cu NPs at the same 302 

concentration levels were found to be higher after 24 h in all combinations, which coincided 303 

with increases of the free Cu2+ activities. No statistically significant and consistent impacts 304 

were observed from addition of Zn(NO3)2, Cu(NO3)2, and Cu NPs on the dissolution of ZnO 305 

NPs. Although the dissolved concentrations of Cu NPs at lower concentrations were 306 

significantly increased by the added Cu(NO3)2 after 1 h, the influence was not constant 307 

across the whole range of concentrations. Only for Zn-nanoCu mixtures, it was found that 308 

after 24 h the dissolved concentrations of Cu NPs were significantly reduced by the addition 309 

of Zn(NO3)2.  310 

3.3 Toxicity of individual compounds 311 

Following the full factorial experimental design, a complete concentration-response curve 312 

was obtained for each compound investigated in this study, which was used to calculate the 313 

EC50 to L. sativa L. As shown in Table 1, ZnO NPs had the lowest acute toxicity to lettuce 314 

roots. By contrast, Cu(NO3)2 showed the highest toxic effects on root growth, which was 315 

followed by Cu NPs and Zn(NO3)2. The EC50 values of Cu NPs and Cu(NO3)2 were similar, 316 

but the EC50 value of ZnO NPs was twice as high as for Zn(NO3)2. 317 
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3.4 Toxicity of mixtures 318 

The accuracy of model predictions is shown in Figure 2 and Table 2. Generally, 62%~100% 319 

of the estimated values of RRE were within a factor of 2 of the observed values. On the 320 

basis of ‘additivity’ or no interactions, the IA model performed better than the CA model in 321 

estimating toxicity of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, and nanoCu-nanoZnO 322 

mixtures at different exposure levels, as evidenced by a 0.04~24 percentage of increase in 323 

R2. Apart from the combination of Cu-nanoCu, the combined effects of Zn-nanoZnO, Zn-324 

nanoCu, Cu-nanoZnO, and nanoCu-nanoZnO mixtures were mostly underestimated using 325 

the IA model (Figure 2 F-J). This indicated that the predictive ability of IA and CA models 326 

was also combination-specific for mixtures with metal-based NPs. 327 

To examine whether ‘interactions’ were the cause of remaining deviations from the model, 328 

the effective concentrations causing a 50% reduction in root elongation of Cu NPs, ZnO NPs, 329 

Cu(NO3)2, Zn(NO3)2 in single-exposure and in co-exposures of Cu-nanoCu, Zn-nanoZnO, 330 

Cu-nanoZnO, Zn-nanoCu, and nanoCu-nanoZnO were plotted as a function of various 331 

concentration levels of Cu or Zn in solution (Figure 3). Significant linear fits (p<0.05) with a 332 

positive slope were generally found in four out of five combinations, which indicated overall 333 

antagonistic effects between mixture components. In Figure 3 A-D, the EC50 values of nano-334 

Cu were shown not to be statistically significantly increased upon increasing concentrations 335 

of Cu(NO3)2 and significant impacts of Cu NPs on the EC50s of Cu(NO3)2 were neither 336 

observed. This implied that the dissolved Cu and the particulate Cu did not affect the toxicity 337 

of each other to lettuce (Table 3). For the combination of Cu-nanoZnO, the EC50 values of 338 

nano-Zn and Cu(NO3)2 cannot be accurately calculated when concentrations were beyond 339 

40 mg/L and 0.06 mg/L respectively due to the small difference in root length as compared 340 

to positive controls. Without these data points, the EC50 values of Cu(NO3)2 were significantly 341 

increased upon increasing amounts of ZnO NPs in the solution (F-H, Figure 3), and the 342 

EC50s of nano-Zn were significantly increased, up to a factor of 5.5 at 0.05 mg/L of Cu(NO3)2 343 

(small graph inside E, Figure 3). For the combination of Zn-nanoCu, the EC50s of Zn(NO3)2 344 
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were found to be sharply increased by the added Cu regardless of the metal species in 345 

solution, and a similar result was observed in turn at low concentrations (small graph inside I, 346 

Figure 3). The EC50 values of nano-ZnO significantly increased upon increasing 347 

concentrations of Zn(NO3)2 in solution. At lower concentrations of ZnO NPs, the EC50s of 348 

Zn(NO3)2 were also increased with increasing concentrations of Zn NPs (small graphs inside 349 

N-P, Figure 3). This finding indicated that the dissolved Zn may compete against the 350 

particulate Zn for inducing toxicity to lettuce at lower concentrations of Zn NPs (< 20 mg/L). 351 

For nanoCu-nanoZnO mixtures, without the EC50s of ZnO NPs at higher concentrations of 352 

Cu NPs, non-significant impacts of Cu NPs (<0.05 mg/L) were observed on the toxicity of 353 

ZnO NPs. The EC50s of Cu NPs were observed to be significantly increased with an 354 

increased amount of ZnO NPs in solution (< 5mg/L).  355 

4. Discussion356 

 4.1 Fate of nanoparticles  357 

The absolute values of the zeta-potential were < 14 mV, which implied that suspensions of 358 

NPs were unstable and general aggregation of the particles was observed because of the 359 

Van Der Waals inter-particle forces. This explained why the hydrodynamic size of Cu NPs 360 

and ZnO NPs in culture media of lettuce was not observed to be strongly affected by 361 

addition of Cu(NO3)2 and Zn(NO3)2 after 1 h and 24 h of equilibration. The high 362 

concentrations of salts in the nutrient solution can be an additional reason for the rapid 363 

aggregation observed4. The dissolution or ion release of Cu NPs or ZnO NPs was 364 

insignificantly and inconsistently hindered or stimulated by the increasing concentrations of 365 

Cu or Zn in the exposure media except in Zn-nanoCu mixtures after 24 h. The observation of 366 

significant impacts of Zn on the dissolution of Cu NPs may be related to the Zn(NO3)2 367 

concentrations used which were in between 3.23 and 100 times higher than the 368 

concentrations of Cu NPs. The increasing amount of Zn2+ in water may bind to the negatively 369 

charged surface of Cu NPs, and thus hinder the dissolution of Cu NPs by increasing 370 

thickness of the diffusion layer of NPs or by introducing kinetic hindrance to the Cu2+ 371 

Page 15 of 32 Environmental Science & Technology



diffusion process5. Nevertheless, a similar observation was not made for nanoCu-nanoZnO 372 

mixtures, which implied that the impacts of nanoZnO on dissolution of nanoCu were not 373 

concentration-dependent only. Alternatively, unlike the other properties of water chemistry 374 

such as pH, HPO4
2- and DOM 37, the increased background concentrations of Cu and Zn375 

may not strongly influence the dissolution of Cu NPs and ZnO NPs. Further research is still 376 

needed on how to accurately quantify these two competing processes (i.e. dissolution and 377 

aggregation) and their mutual impacts in water system for metal-based NPs.  378 

4.2 Toxicity of individual compounds 379 

In this study, we found that both Cu NPs and ZnO NPs reduced the root size of lettuce. 380 

Although copper and zinc are essential for plant growth, they are also toxic to plants at 381 

concentrations that exceed critical levels 38. The decrease of nutrients such as P and Fe, the 382 

alteration of enzyme activity 20, and the higher production of reactive oxygen species (ROS)39 383 

within the plants may be explanations for the impacts of metal-based NPs on lettuce growth. 384 

In addition, the portion of aqueous Cu species dissolved from Cu NPs may also damage the 385 

plasmalemma of root cells and result in loss of K, N, and other solutes 40. Results of the 386 

present study and of the previous studies showed that Cu is more toxic to lettuce seedlings 387 

than Zn regardless of the metal being in the form of a cation or nanoparticles. This suggests 388 

metal-specific responses of lettuce or different toxicokinetics of excess Cu and Zn in 389 

terrestrial plants. However, the EC50 of dissolved Zn calculated in this study was significantly 390 

lower than the value predicted for Zn2+ in the research of Le et al. 24. This difference can be 391 

the result of differences in the chemical composition of the background medium used and 392 

the subsequent variation in speciation as calculated by the Windermere Humic-Aqueous 393 

Model VI. Additionally, the effects of Cu or Zn seemed to be associated with the form of the 394 

metal species that the relatively lower EC50 values of nitrate salts were calculated in this 395 

study as compared to the corresponding nanoparticles. This finding was consistent with the 396 

research of Hong et al. 20, in which the size of particles was shown to play an important role 397 

in Cu uptake.  398 
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4.3 Combined toxicity of Cu NPs and ZnO NPs 399 

4.3.1 Comparison of CA and IA models 400 

The present study used the CA as well as the IA model to assess the combined toxicity of 401 

mixtures and their departures from additivity. The CA concept is usually proposed as a 402 

default conservative option as compared to the IA concept, which was also the case in our 403 

study. However, the fitting performance of the IA model was significantly better than the 404 

fitting performance of the CA model based on the value of R2 for combinations of Cu-405 

nanoZnO and nanoCu-nanoZnO. This is different from the findings of our previous studies 41, 
406 

42 showing that the combined effects of binary metal mixtures with Cu were equally well 407 

explained by these two classic mixture models. The mechanisms of toxicity of metal-based 408 

NPs in co-exposure were so complex that they cannot be directly extrapolated from normal 409 

metal mixtures. Therefore, it is suggested that both models should remain as statistical 410 

statements of joint effects, especially for mixtures of metal-based NPs.  411 

4.3.2 Comparison with previous research  412 

The good fittings provided by IA and CA (R2
adj=0.90~0.94) models and the non-significant413 

‘interactions’ observed between dissolved and particulate Cu simultaneously verified the 414 

assumption of Song et al. 13 that addition models can be used to estimate the relative 415 

contributions of ionic and particulate forms to the cytotoxicity of Cu NPs. Both models also 416 

showed reasonable predictive power in estimating toxicity of Zn-nanoZnO mixtures 417 

(R2
adj=0.79~0.83). Antagonistic interactions were identified between dissolved and418 

particulate Zn which helped explain variations in modelling. Antagonistic effects were also 419 

observed for dissolved Zn or Cu resulting from NPs on the toxicity of their nitrate salts 420 

(Figure 3 G, K). This was consistent with the competition between Cu2+ and Zn2+ at the 421 

organism level reported in previous studies 24, 25, 36. The feed-back mechanism 43 explained 422 

that an increase of copper in plant cell decreases the quantity of zinc importer proteins and 423 

blocks channels for zinc. In turn, the presence of low amounts of zinc may exert a positive 424 

effect on cell homeostasis and on the tolerance of cells to copper 18. Until now, only Li et al.425 
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18 reported (1) the potentiation effects on the human hepatoma cell line HepG2 co-exposed 426 

to Cu NPs and ZnO NPs and (2) suggested that the nano-particulate ZnO NPs were 427 

attributable to the enhancement of Cu NPs toxicity. By contrast, ZnO NPs were observed to 428 

have an antagonistic effect on the impact of Cu NPs on root growth of lettuce at low 429 

concentrations, whereas the toxicity of ZnO NPs was insignificantly affected by Cu NPs. This 430 

difference may be caused by different features between animal cells and plant cells which 431 

lead to a diverse bioavailability or toxicity across species. Additionally, the one-sided 432 

antagonistic effects may be because the Zn concentrations were many times higher than the 433 

concentrations of Cu in the mixtures 36. In compliance with the second finding of Li et al. 18, 434 

the particulate NPs were also observed to correlate with the ‘interactions’ and the overall 435 

toxicity of Cu NPs and ZnO NPs, which may be due to their physical effects 8 produced on 436 

the plant surface.  437 

In summary, the concentration addition and independent action models performed equally 438 

well in assessing the combined toxicity of Cu-nanoCu, Zn-nanoZnO, and Zn-nanoCu 439 

mixtures on lettuce roots. However, for the combinations of Cu-nanoZnO and nanoCu-440 

nanoZnO, the IA model significantly accounted for more variation in root growth. Based on 441 

the results of the Cu-nanoCu, Zn-nanoZnO, Zn-nanoCu, Cu-nanoZnO mixtures, the one-442 

sided antagonistic effects observed for nanoCu-nanoZnO mixtures may be attributed to 443 

‘interactions’ occurring between dissolved Cu and dissolved Zn, particulate Zn and dissolved 444 

Zn, particulate Cu and dissolved Zn, particulate Zn and dissolved Cu. It was thus 445 

demonstrated that considering various species of Cu NPs and ZnO NPs in water (dissolved 446 

and particulate) is of great importance for assessing their toxicity to terrestrial plants. The 447 

combined effects of dissolved species from NPs were similar to the effects produced by 448 

common metal mixtures. To our knowledge, exposure methods have been mostly used for 449 

assessing the ecological effects of single type NPs. Considering naturally occurring 450 

conditions, our experiments constitute the first study of mixture effects of NPs to higher 451 

plants. Although detailed information of interactive mechanisms of metal-based NPs with 452 
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their environment remains to be obtained, there is no doubt that this research will enrich the 453 

rapid evolving field of nano-toxicology and help scientists develop approaches to evaluate 454 

the potential impacts of metal-based NPs and their mixtures on ecosystems. 455 
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Figure 1. TEM images of Cu NPs, ZnO NPs and their mixtures (prepared in lettuce culture 626 

medium). Scale bars indicate size (nm). 627 
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636 

Figure 2. Relationships between the observed and estimated log 4-d relative root elongation 637 

(RRE, %) of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu and nanoCu-nanoZnO 638 

mixtures for lettuce Lactuca sativa L. using the CA model (A-E) and the IA model (F-J). R2
adj639 

indicates the adjusted determination coefficient. n indicates the number of data points. The 640 

solid line represents the perfect fit (1:1 line) and the dotted lines represent a difference of a 641 

factor of 2 between the observed and estimated values. 642 
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643 

Figure 3. Relationships between the median effective concentrations (EC50s) of one 644 

component for L. sativa L. after 4-d exposure and the concentration (total, dissolved, 645 

particulate) of the other components in mixtures of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, 646 

Zn-nanoCu, nanoCu-nanoZnO. Data are presented as mean ± standard error of the mean. 647 

Solid lines represent the statistically significant linear fits (a positive slope indicates an 648 

overall antagonistic effects; a negative slope indicates an overall synergistic effects). The 649 

smaller graphs inside figures depict significant effects occurring at low concentration levels. 650 
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The dissolved concentrations of metal-based NPs were expressed as the average value 651 

after 1 h and 24 h of equilibration. R2 indicates the determination coefficient adjusted for the 652 

degrees of freedom. p indicates the statistical significance level. * indicates that the slope of 653 

linear curve is significantly different from zero at the 5% significance level. 654 
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Table 1. The median effective concentrations (EC50, mg/L) or median effective activities 672 

(EA50, µmol/L) with the standard error of the mean (SEM) or the 95% confidence interval (CI) 673 

of Cu NPs, ZnO NPs, Cu(NO3)2 and Zn(NO3)2 individually on 4-d root elongation of lettuce (L. 674 

sativa L.) in the present study and in the previous study.   675 

Compounds Metal species EC50 (mg/L) or EA50 (µmol/L) n Sources 

Cu NPs Total Cu 0.10 (±0.01) 7 This study 

ZnO NPs Total Zn 4.47 (±0.62) 7 This study 

Cu(NO3)2 Dissolved Cu 0.07 (±0.006) 4 This study 

Zn(NO3)2 Dissolved Zn 2.08 (±0.25) 4 This study 

Cu(NO3)2 Cu2+ 0.03 (0.02 ~ 0.04) - 24 

Zn(NO3)2 Zn2+ 106 (91.1 ~ 124) - 24 

n: the number of replicates; -: not determined. 676 
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Table 2. Fitting results of the toxicity of Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, and nanoCu-nanoZnO mixtures by the 688 

concentration addition (CA) model and the independent action (IA) model. 689 

Mixtures 

The IA model The CA model 

Sources 

R2
adj p value R2

adj p value 
50%

mixTU  (±SE) β (±SE) 

Cu-Zn (n=122) 0.92 ＜0.0001* 0.92 ＜0.0001* - - 41 

Cu-nanoCu (n=50) 0.94 ＜0.0001* 0.90 ＜0.0001* 0.79 (±0.04) 1.34 (±0.07) This study 

Zn-nanoZnO (n=60) 0.83 ＜0.0001* 0.79 ＜0.0001* 0.92 (±0.08) 0.79 (±0.06) This study 

Cu-nanoZnO (n=50) 0.79 ＜0.0001* 0.63 ＜0.0001* 1.16 (±0.13) 0.62 (±0.07) This study 

Zn-nanoCu (n=50) 0.80 ＜0.0001* 0.84 ＜0.0001* 1.44 (±0.07) 1.65 (±0.12) This study 

nanoCu-nanoZnO (n=50) 0.82 ＜0.0001* 0.58 ＜0.0001* 0.81 (±0.11) 0.88 (±0.12) This study 

R2
adj: the adjusted coefficient of determination; p: the outcome of the likelihood ratio test; *: significant at the 5% significance level; β: the shape 690 

parameter that determines the steepness of the response curves; 
50%

mixTU : the sum of toxic units of a mixture inducing 50% inhibition of root 691 

elongation; SE: standard error; -: not determined; n: the number of data points. 692 

693 
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Table 3. Mutual impacts found between mixture components in combinations of Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, 694 

and nanoCu-nanoZnO in the exposure of 4-d lettuce seedlings.  695 

Substance 1 

Substance2 

Zn (NO3)2 Cu (NO3)2 Cu NPs Dissolved Cu Particulate Cu 

Cu (NO3)2 Anta\Anta24,25 n.d. No\No No\n.d. No\n.d. 

Zn (NO3)2 n.d. Anta\Anta24,25 Anta\No Anta\n.d. Anta\n.d. 

ZnO NPs Anta\Anta Anta\Anta No\Anta No\n.d. No\n.d. 

Dissolved Zn n.d.\Anta n.d.\Anta n.d.\Anta n.d. n.d. 

Particulate ZnO n.d.\Anta n.d.\Anta n.d.\Anta n.d. n.d. 

No significant effect (No): the slope of the linear fits in Figure 3 is not significantly different from zero, which indicates that no significant effects 696 

of one component were observed on the EC50 values of another component; Antagonism (Anta): the positive slope of linear fits in Figure 3 697 

significantly deviates from zero (p < 0.05), which indicates an antagonistic effect of one component on another component in the mixture; n.d.: 698 

not detected in this study; \: the left side indicates the effects of Substance 1 on Substance 2 and the right side indicates the effects of 699 

Substance 2 on Substance 1. 700 
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