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ABSTRACT

Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient
flows to higher trophic levels. Despite the recent proliferation of small-scale studies on herbivore effects on aquatic
plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic
ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the
structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global
meta-analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies,
in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated
with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with
herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with
plants eliminated at high densities. Significant between-taxa differences in impact were detected, with insects associated
with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant
abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for
fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant
abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting
that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that
herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across
a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were
associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native
herbivores and invasive plants, native herbivores and mixed-nativeness plants, and native herbivores and native plants.
By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions
in plant abundance compared with both mixed-nativeness herbivores and native plants, and native herbivores and
native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at
high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the
literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in
how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning.
Currently, the failure to incorporate top-down effects continues to hinder our capacity to understand and manage the
ecological dynamics of habitats that contain aquatic plants.
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I. INTRODUCTION

Foraging by primary consumers on primary producers is a
fundamental biotic process in nature. By controlling primary
producer abundance, and regulating the flow of energy and
nutrients between primary producers and higher trophic
levels, interactions between primary producers and their
herbivores play key roles in determining ecosystem structure,
functioning and service provision (Hairston, Smith &
Slobodkin, 1960; Huntly, 1991; Polis, 1999; Estes et al., 2011).
Globally, vascular plants are important primary producers
across a range of ecosystems, and thus their regulation
has important ecosystem-level consequences (Carpenter &
Lodge, 1986; Engelhardt & Ritchie, 2001; Cronin, Lewis &
Schiehser, 2006).

The traditional view of ecologists has been that herbivore
regulation of vascular plants did not occur in aquatic
ecosystems. For example, Polunin (1984) considered that
emergent macrophytes enter the food web only as detritus.
Similarly, Gregory (1983, p. 161) concluded that ‘living
aquatic vascular macrophytes generally are not a major
component of the diet of herbivores in lotic systems’.
Furthermore, Wetzel (1983, p. 543) stated that herbivores
typically remove less than 8% of total annual aquatic plant
production. As a consequence, even recent aquatic ecology
and food web texts omit mention of these interactions (e.g.
Lampert & Sommer, 2007; Moore & de Ruiter, 2012).
However, there is growing recognition that vascular aquatic
plants are consumed by a range of taxa, principally birds
(primarily waterbirds such as swans, geese, ducks, and rails),
mammals, fish, crayfish, insects, echinoderms and molluscs
(Prejs, 1984; Lodge, 1991; Newman, 1991; Lodge et al., 1998).
For example, Wood et al. (2012b) reported that, globally,
there are 233 species of waterfowl that actively feed on plant
tissues. Mammalian herbivores are particularly diverse in
terms of foraging mode, as this group comprises true aquatic
mammals (such as dugong Dugong dugon; Aragones & Marsh,
2000), semi-aquatic diving species (such as beaver Castor
spp.; Law, Jones & Willby, 2014), and terrestrial species that
wade into shallow waters to feed (such as moose Alces alces;
Bergman & Bump, 2015). Interactions between herbivores
and aquatic plants have been reported in a wide range of
habitat types, including freshwater lakes, rivers, estuaries,
wetlands, and shallow seas (Lodge et al., 1998; Bakker
et al., 2016). Accordingly, interactions between herbivores
and aquatic plants have a global distribution, having been
observed from equatorial seas (de Iongh, Wenno & Meelis,
1995; Vonk, Pijnappels & Stapel, 2008) to Arctic wetlands
(Gauthier et al., 1995; Massé, Rochefort & Gauthier, 2001).

Indeed, it appears that herbivores are present wherever
submerged, floating, or emergent plants are present. The only
continent for which such interactions have not been reported
is Antarctica, a region which lacks vascular aquatic plants.

There is a growing body of evidence that herbivores can
regulate aquatic plant abundance (Cyr & Pace, 1993; Lodge
et al., 1998). However, the outcomes of plant–herbivore
interactions appear to be highly variable across aquatic
ecosystems. Numerous studies have experimentally excluded
or enclosed herbivores in order to compare plant abundance
with and without herbivores and quantified the outcomes of
plant–herbivore interactions (e.g. Søndergaard et al., 1996;
Wass & Mitchell, 1998; Sarneel et al., 2014). Such studies
have reported a wide range of outcomes, such as strong
negative effects of herbivores on aquatic plants (e.g. Stott &
Robson, 1970; Silliman et al., 2005; Law et al., 2014), others
report no effects (e.g. Roberts et al., 1995), whilst some report
positive effects of herbivory on aquatic plant abundance (e.g.
Chambers et al., 1990). Even within these broad outcomes,
effect sizes are highly variable; across ecosystems reductions
in plant abundance range from 0 to 100% (Cyr & Pace,
1993; Lodge et al., 1998; Marklund et al., 2002; Wood et al.,
2012b). However, such individual studies are typically limited
in spatiotemporal and taxonomic extent, which raises doubts
about how generally their conclusions apply. To allow us
to understand the fundamental structure and functioning of
ecosystems containing aquatic plants, as well as to manage
such ecosystems under current and future conditions, we
need to understand how the outcomes of plant–herbivore
interactions are regulated.

The consistent methodology of the small-scale
plant–herbivore studies allows a meta-analysis approach to
be used to determine patterns across wide ranges of species
and ecosystems (Poore et al., 2012). Meta-analysis approaches
have been used successfully to understand the factors which
regulate the outcomes of plant–herbivore interactions in ter-
restrial ecosystems (Milchunas & Lauenroth, 1993; Hawkes
& Sullivan, 2001) and for aquatic non-vascular primary
producers (Hillebrand, 2002, 2009; Poore et al., 2012). How-
ever, to date there have been no comprehensive studies of
the factors which determine herbivore regulation of vascular
primary producers in aquatic ecosystems.

In this study we address this deficit by conducting a
global meta-analysis of the outcomes of plant–herbivore
interactions, in order to test two mechanistic hypotheses.
Previous studies have suggested that plant abundance
appears to be negatively related to herbivore biomass density
due to greater grazing pressure at high herbivore densities
(Crivelli, 1983; Wood et al., 2012b; Atkins et al., 2015). Indeed,
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Wood et al. (2012c) reported a significant linear relationship
between mute swan (Cygnus olor) biomass density and the
abundance of aquatic plants in shallow rivers. Therefore
our first hypothesis was that greater negative changes in
plant abundance would be associated with higher herbivore
biomass densities. Similarly, small-scale studies have
indicated that differences in herbivore taxonomic identity,
linked to among-taxa differences in foraging ecology,
physiology and behaviour, may be linked to variation in
the magnitude of plant–herbivore interactions (Lodge et al.,
1998; Allcock & Hik, 2004). Thus, our second hypothesis
was that the magnitude of changes in plant abundance would
vary among different herbivore taxonomic groups.

II. METHODS

(1) Data collation

To locate suitable studies for our meta-analysis we performed
a literature search using the following academic search
engines: ISI Web of Science, Scopus, JStor, PubMed and Google
Scholar. We used all 16 combinations of one herbivore search
term (‘herbivory’, ‘herbivore’, ‘grazing’, ‘grazer’) together
with one plant search term (‘macrophyte’, ‘aquatic plant’,
‘aquatic vegetation’, ‘plant consumption’) with the boolean
operator ‘AND’. The results of each search term were
assessed for suitability for inclusion in our meta-analysis; we
required studies to contain sufficient information to calculate
change in plant abundance and the full range of explanatory
variables. Additionally we searched previously published
reviews and meta-analyses of aquatic herbivory for suitable
studies (Lodge, 1991; Newman, 1991; Cyr & Pace, 1993;
Lodge et al., 1998; Valentine & Heck, 1999; Marklund et al.,
2002; Hughes et al., 2004; Eklöf et al., 2008; Poore et al., 2012;
Reeves & Lorch, 2012; Wood et al., 2012b).

In order to conduct a comprehensive test of our two
hypothesis it was necessary to account for a range of
additional factors which previous individual studies have
suggested may influence the outcomes of plant–herbivore
interactions. For example, the classification of the herbivore
and plant species as native or invasive (e.g. Stott & Robson,
1970; Parker, Burkepile & Hay, 2006; Korsten et al., 2013),
habitat type (Lodge et al., 1998; Bergman & Bump, 2015),
latitude (Schemske et al., 2009; Morrison & Hay, 2012), phase
of plant growth cycle (Cebrián & Duarte, 1994; Marklund
et al., 2002), size of experimental area and study length
(Mitchell & Wass, 1996; Hillebrand, 2009), and herbivore
and plant assemblage species richness (Lodge et al., 1998),
have each been suggested previously by localised studies
to affect the outcome of interactions between primary
consumers and vascular primary producers within aquatic
ecosystems. Phases of the plant growth cycle comprised four
possible classes, based on the phase in which the comparison
between grazed and ungrazed treatments was reported by
the study: growth, peak, winter, and transplant. We included
transplant experiments as a distinct phase of the growth

cycle as transplanted plants may show different phenological
and performance responses relative to locally adapted plants,
and thus transplanted plants cannot be considered to occur
under natural conditions in the growth cycle (Joshi et al.,
2001). Our approach also had the advantage of maximising
data availability, by allowing us to include studies which used
only transplant experiments.

We limited our meta-analysis to studies that used herbi-
vore exclosure/enclosure or addition/removal experiments
to measure vascular plant abundance both in the presence
and absence of herbivores. To achieve maximum data
availability we included studies of submerged, emergent, and
floating vascular plant species, as such species have not been
shown to differ in their responses to herbivory (e.g. Lodge
et al., 1998; Marklund et al., 2002). We further limited our
meta-analysis to studies where herbivore counts were made
in a defined area over a defined period of time. The suitable
studies categorised themselves as one or more of six aquatic
habitat types: freshwater lakes, freshwater rivers, estuaries,
wetlands, salt marshes, and marine habitats. We used the
habitat type reported by each study to classify the habitat
type for our analysis. As there is no universally accepted
distinction between pond and lake (Sayer, 2014), for the
purposes of our study we included ponds within the lake cate-
gory. Whilst herbivore consumption rates may increase with
body mass to a power of <1.0 (van Gils, Gyimesi & Van Lith,
2007; Wood et al., 2012b), consumption is only one mecha-
nism through which herbivores affect plant abundance, with
others including trampling, and herbivore-induced changes
in nutrient availability (e.g. through faecal deposition) and
light climate (Mitchell & Wass, 1996; Hobbs & Searle,
2005). As the allometric scaling factors for non-consumptive
mechanisms are typically unknown, we assumed a mass
exponent of 1.0 in our conversion of individual to biomass
densities as a conservative approximation.

We limited our analysis to studies that had measured plant
abundance as fresh or dry mass biomass per unit area, and
excluded those which reported only alternative measures
of abundance such as percentage cover, volume or stem
densities. We did this because different measures of plant
abundance, whilst typically correlated, may not always show
identical temporal trends in abundance (Wood et al., 2012a)
and may not show the same response to herbivory (Gayet
et al., 2011); including these could have introduced additional
variance and limited our ability to detect changes in plant
abundance due to our explanatory factors. We compared
plant abundance with and without herbivores at the time
of maximal standing crop in the ‘without herbivores’
treatment, after Wood et al. (2012b). Where studies contained
multiple values of changes in plant abundance that were
not statistically independent we calculated mean values
for such changes and for herbivore density. Where data
were presented in graphs, we extracted values from pdf
versions using DataThief (Tummers, 2006). We calculated
the percentage reduction in plant abundance (C ) as:
C = −[(AHerbivoreAbsent − AHerbivorePresent)/AHerbivoreAbsent] ×
100, where AHerbivorePresent and AHerbivoreAbsent are plant
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abundance with and without herbivores present, respec-
tively. The percentage change in plant abundance is the
standard metric used in previous meta-analyses of herbivore
effects on plants (Milchunas & Lauenroth, 1993; Lodge
et al., 1998; Marklund et al., 2002). Similarly, following the
approaches of these previous studies we did not consider
statistical significance reported by individual studies, due to
high levels of inter-study variance in test type and statistical
power (Lodge et al., 1998; Marklund et al., 2002).

For each suitable study we also recorded the values of
each predictor variable as given in the studies. Herbivore
biomass density (g live mass m−2) was calculated as the total
mass of herbivores (mean individual mass multiplied by the
mean number of individuals present over the study period)
divided by the study area size. Where information on sex
and age ratios was presented, we used sex- and age-specific
biomass values. Where no such information was presented
we assumed an equal sex ratio and that all individuals
were adults, and the mean mass of males and females
was used in our biomass calculations. Herbivore taxa were
recorded as Bird, Mammal, Crustacean, Mollusc, Insect,
Fish, and Echinoderm. We limited our meta-analysis to
studies that presented data for individual taxa, either where
only one herbivore taxon was present or where the effects of
different taxa were experimentally separated through careful
exclosure design (e.g. Evers et al., 1998; Wong, Kwong &
Qiu, 2009).

(2) Statistical analyses

To meet the normality assumptions associated with our
Gaussian linear models, values of C were rescaled between
0 and 1 and arcsine square-root transformed. Herbivore
taxa, habitat type and herbivore–plant nativeness were
treated as categorical factors. Herbivore density, latitude,
size of experimental area, study length, herbivore assemblage
species richness, and plant assemblage species richness were
treated as covariates and were log10-transformed to achieve
linearity of relationship and normal distribution of residuals.
To address our two hypotheses, we used linear models
with Gaussian error structures to test the effects of (i)
herbivore taxa; (ii) herbivore density; (iii) the nativeness of the
herbivore and plant assemblage; (iv) habitat type; (v) latitude;
(vi) phase of plant growth cycle; (vii) size of experimental
area; (viii) study length; (ix) herbivore assemblage species
richness; and (x) plant assemblage species richness, on
percentage change in plant abundance (C ). To identify
issues with multicollinearity (Graham, 2003) we calculated
the variance inflation factor (VIF), which measures the
degree to which variances of regression coefficients are
inflated relative to unrelated variables, associated with each
of our continuous predictor variables (Aho, 2014). VIFs
were calculated as VIF = 1/(1 − R2), based on the R2 value
associated with a linear regression of a predictor variable
on all other predictor variables in our data set. Following
the approach recommended by Aho (2014), we judged that
multicollinearity was excessively influencing the efficiency
and reliability of parameter estimation where VIF > 5.

We carried out full subset model selection in order
to test all possible combinations of additive and two-way
interaction terms using the glmulti package in R (Calcagno
& de Mazancourt, 2010; R Development Core Team,
2015). For each candidate model we calculated the value
of second-order Akaike’s Information Criteria, corrected
for small sample size relative to the number of predictor
variables (AICc). The model with the lowest AICc value was
judged to be our best-supported model, whilst any model
with a �AICc value within 2.0 of the best-supported model
was also considered to have substantial support in the data
(sensu Burnham & Anderson, 2004). To facilitate detailed
model comparison we also calculated the relative likelihood
and Akaike weight associated with each candidate model, as
indicators of relative strength of model support in the data
(Aho, 2014). Furthermore, we used R2

adj values to indicate
the percentage of the variance in change in plant abundance
explained by each model. Post-hoc differences between
different levels of categorical factors were determined using
Tukey’s HSD. We present the 10 best-supported models in
addition to a model comprised of the intercept alone. All
statistical analyses were performed with R version 3.1.2 (R
Development Core Team, 2015), with a significant effect
attributed where P < 0.05.

III. RESULTS

From our meta-analysis we found 326 values for
herbivore-induced changes in plant abundance from 163
published studies for the period 1961 to 2014 (see
online Appendix S1). These studies exhibited large ranges
in the values associated with our explanatory variables
(see online Appendix S2). The variance inflation factors
associated with each of our predictor variables were
all <5 (range = 1.79–4.35), indicating no issues with
multicollinearity and thus there was no need to exclude
any of our predictor variables from any candidate model (see
online Appendix S3).

Across all studies we found a substantial range in observed
herbivore-induced changes in plant abundance from −100
to +76% (see online Appendix S1), with a mean ±95% CI
change of −47.2 ± 3.4%. The median change in abundance
was −47.3%. Of the 326 experimental results, negative
changes in plant abundance were reported in 300, positive
changes in 21, and no change in five experiments (i.e. ±0%).
Complete elimination of plant above-ground standing crop
(i.e. −100%) was reported in 11 experiments.

Variance in observed herbivore-induced change in plant
abundance (C ) was best explained by a model comprising
herbivore biomass density, herbivore taxa, plant–herbivore
nativeness, herbivore species richness, and an interaction
between herbivore density and herbivore–plant nativeness
(Tables 1 and 2). Across all taxa, herbivore biomass
density exhibited a negative relationship with change
in plant abundance (Fig. 1). Our best-supported model
indicated an effect of herbivore taxa on mean reductions
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Table 1. The 10 best-supported linear models (and null model) of change in plant abundance, as determined by corrected Akaike’s
information criteria (AICc). n = 326 for all candidate models. The best-supported model is indicated in bold. Values of k refer to the
number of fitted parameters in each candidate model

Model k AICc �AICc Relative likelihood Akaike weights R2
adj (%)

i+D*N+T+R 23 −279.65 0.00 1.00 0.181 47.3
i+D*N+T+R+S 24 −279.55 0.10 0.95 0.172 47.4
i+D*N+T+R+L 24 −279.44 0.21 0.90 0.163 47.4
i+D*N+T+R+S+L 25 −278.85 0.80 0.67 0.122 47.5
i+D*N+T+R+S+E 25 −277.61 2.04 0.36 0.065 47.3
i+D*N+T+R+P 24 −277.31 2.35 0.31 0.056 47.1
i+D*N+T+R*S 25 −277.28 2.38 0.30 0.055 47.3
i+D*N+T+R*L 25 −277.14 2.51 0.28 0.052 47.3
i+D*N+T 22 −276.80 2.86 0.24 0.044 46.6
i+D*N+T+S 23 −276.59 3.07 0.22 0.039 46.8
i 1 −96.20 183.45 0.00 0.000 0.0

Predictor variables: i, intercept; T , herbivore taxa; D, herbivore density (g m−2); N , nativeness of the herbivore and plant assemblages; G,
stage of the plant annual growth cycle; H , habitat type; R, herbivore species richness; P , plant species richness; L, latitude (◦ from equator);
E, size of experimental area such as enclosure or exclosure (m2); S, length of study (days).

in plant abundance (Table 2; Fig. 2). In particular, post-hoc

comparisons indicated that insects were associated with lower
reductions in plant abundance compared with all other
taxa. Birds were associated with lower reductions in plant
abundance than echinoderms, fish, and molluscs. Finally,
crustaceans were associated with lower reductions in plant
abundance compared with fish (Fig. 2). No other significant
between-taxa differences were detected. We found evidence
of an effect of herbivore–plant nativeness on changes in plant
abundance (Table 2; Fig. 3). Post-hoc comparisons indicated
that assemblages comprised of invasive herbivores and native
plant assemblages were associated with greater reductions
in plant abundance compared with invasive herbivores
and invasive plants, native herbivores and invasive plants,
native herbivores and mixed-nativeness plants, and native
herbivores and native plants (Fig. 3; see online Appendix S4).
By contrast, assemblages comprised of native herbivores and
invasive plants were associated with lower reductions in plant
abundance compared with both mixed-nativeness herbivores
and native plants, and native herbivores and native plants
(Fig. 3; see online Appendix S4). No other significant
between-nativeness differences were detected. Furthermore,
our best-supported model indicated a negative interaction
between herbivore biomass density and herbivore–plant
nativeness, such that the effect of nativeness on change in
plant abundance was reduced at higher herbivore densities
(Table 2). Across all studies, we found evidence of a positive
relationship between herbivore species richness and change
in plant abundance, with the strongest reductions in plant
abundance reported for low herbivore species richness
(Table 2; Fig. 4).

Our best-supported model explained 47.3% of the
variance in changes in plant abundance (Table 1). The null
model, comprised of an intercept alone, had a �AICc value
of 183.5 relative to our best-supported model, effectively
receiving no support in the data. Only two other candidate
models were found to have an associated AICc value

within 2.0 of our best-supported model (Table 1). However,
compared to our best-supported model, both alternative
models were less parsimonious in terms of the number
of fitted parameters, had higher AICc values, and lower
relative likelihood and Akaike weights values, and thus were
not considered further (Table 1).

IV. DISCUSSION

Our meta-analysis indicated that, in contrast to the
traditional view of ecologists, herbivory is an important
biotic process in aquatic ecosystems across a wide range of
latitudes, habitat types and species assemblages. Despite
the strong evidence for herbivore limitation of plant
abundance presented here, herbivory as a structuring force
in aquatic ecosystems has been poorly studied relative
to bottom-up factors such as nutrient availability, light
limitation and water temperature (Bornette & Puijalon,
2011). Our study is the first to yield a comprehensive
understanding of how the outcomes of interactions between
herbivores and vascular aquatic plants are regulated across
a global range of aquatic ecosystems (all continents except
Antarctica, spanning 3.3–73.3◦ from the equator). With
326 experimental results from 163 studies, our study
represents the most comprehensive assessment to date of
herbivore-induced changes in aquatic plants. Our study
indicates that, in accordance with our two hypotheses, the
magnitude of interactions between primary consumers and
primary producers are determined by herbivore biomass
density, herbivore species richness, and herbivore taxonomic
identity, and that the nativeness of assemblages appears also
to play a role.

The herbivore-induced changes in plant abundance
identified in this meta-analysis were almost exclusively
negative, with reductions reported for 300 of 326
experiments. The mean (±95% CI) change in plant
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Table 2. The mean and S.E. effect sizes of the log10-transformed
predictor variables in our best-supported linear model on the
arcsine square-root transformed change in plant abundance

Variable
Parameter
estimate

Parameter
estimate S.E.

Intercept 0.362 0.043
Herbivore density −0.077 0.023
Herbivore taxon (Birds) — —
Herbivore taxon (Mammals) 0.182 0.046
Herbivore taxon (Crustaceans) 0.323 0.045
Herbivore taxon (Molluscs) 0.316 0.053
Herbivore taxon (Insects) 0.165 0.039
Herbivore taxon (Fish) 0.275 0.043
Herbivore taxon (Echinoderms) 0.334 0.056
Herbivore species richness 0.091 0.041
Nativeness (II) — —
Nativeness (IM) 0.122 0.059
Nativeness (IN) 0.236 0.044
Nativeness (MM) −0.051 0.648
Nativeness (MN) 0.065 0.080
Nativeness (NI) 0.134 0.046
Nativeness (NM) 0.167 0.061
Nativeness (NN) 0.112 0.035
Herbivore density : Nativeness (II) — —
Herbivore density : Nativeness (IM) −0.108 0.037
Herbivore density : Nativeness (IN) −0.152 0.027
Herbivore density : Nativeness (MM) −0.053 0.530
Herbivore density : Nativeness (MN) −0.066 0.050
Herbivore density : Nativeness (NI) 0.010 0.033
Herbivore density : Nativeness (NM) −0.088 0.047
Herbivore density : Nativeness (NN) −0.070 0.022

The table represents the best-supported model and had the form:
C , intercept + herbivore density + herbivore taxon + herbivore
species richness + herbivore–plant nativeness + (herbivore den-
sity × nativeness). Nativeness of the herbivore and plant assem-
blages: NN, native herbivores and native plants; IN, invasive
herbivores and native plants; MN, mixed herbivores and native
plants; II, invasive herbivores and invasive plants; IM, invasive her-
bivores and mixed plants; MI, mixed herbivores and invasive plants;
MM, mixed herbivores and mixed plants; NM, native herbivores
and mixed plants; NI, native herbivores and invasive plants. The
values for all other herbivore taxa are relative to birds, whilst the
values for all other herbivore–plant nativeness groups were relative
to II.

abundance of −47 ± 3% represents a substantial loss of
physical habitat and rerouting of energy and nutrients within
food webs. We found that the magnitude of reductions
in plant abundance in aquatic habitats exceeded those
typically reported for terrestrial ecosystems. Cyr & Pace
(1993) estimated that herbivores were responsible for the
median removal of 18, 30, and 79% of primary productivity
of terrestrial plants, aquatic macrophytes, and aquatic algae,
respectively. Subsequent authors argued that these values
represented reductions in abundance rather than removal
of primary productivity (Mitchell & Wass, 1996), and so
are comparable to our values of reduction in abundance.
We found a median change in aquatic plant biomass
of −47%, greater than both terrestrial ecosystems and
previous estimates for aquatic plants. Similarly, Milchunas

Fig. 1. The negative relationship between change in plant
abundance and herbivore density across seven herbivore taxa.
Data points represent observed values, while the fitted line
represents the mean (±95% CI; dashed lines) relationship based
on our best-supported model (Table 2). Thus the fitted line does
not match the data points perfectly as the fitted line also accounts
for the effects of herbivore taxonomic identity, herbivore species
richness, and herbivore–plant nativeness.

Fig. 2. Mean +95% CI observed changes in aquatic plant
abundance for each of our seven focal herbivore taxa. Different
letters indicate significant post-hoc differences.

& Lauenroth (1993) reported a mean change in terrestrial
plant abundance of −23%. Furthermore, Gruner et al. (2008)
reported that herbivore removal typically led to increased
primary producer abundance in freshwater and marine
ecosystems, but no such pattern was detected for terrestrial
ecosystems. However, our −47% median change in aquatic
vascular plant abundance is still considerably less than those
for algae within marine, brackish and freshwater ecosystems.
For example, Hillebrand (2009) used a global meta-analysis
to show a mean −59% change in periphyton abundance.
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Fig. 3. Mean +95% CI observed changes in aquatic plant
abundance for each of our herbivore–plant nativeness groups.
Group abbreviations: NN, native herbivores and native plants;
NM, native herbivores and mixed plants; NI, native herbivores
and invasive plants; MN, mixed herbivores and native plants;
MM, mixed herbivores and mixed plants; IN, invasive
herbivores and native plants; II, invasive herbivores and invasive
plants; IM, invasive herbivores and mixed plants. No data were
available for MI. Different letters below the columns indicate
significant post-hoc differences between groups.

Fig. 4. The positive relationship between change in plant
abundance and herbivore species richness. Data points represent
observed values, while the fitted line represents the mean (±95%
CI; dashed lines) relationship based on our best-supported model
(Table 2). The fitted line does not match the data points perfectly
as it also accounts for the effects of herbivore density, herbivore
taxonomic identity, and herbivore–plant nativeness.

Our findings highlight the need for a substantial shift
in how ecologists incorporate plant–herbivore interactions
into theories of aquatic ecosystem structure and functioning.
We argue that, by regulating primary producer abundance,
interactions between herbivores and vascular aquatic plants
may play key roles in the maintenance of alternative
stable states (e.g. Scheffer et al., 2001). Furthermore,

we argue that changes in the relative abundance or
composition of plant–herbivore assemblages may trigger
trophic cascades that can shift ecosystems between alternative
states (e.g. Carpenter, Kitchell & Hodgeson, 1985; Estes et al.,
2011). These mechanisms are equivalent to the previously
documented interactions between phytoplankton and their
zooplankton grazers (Scheffer et al., 2001; Jones & Sayer,
2003). The failure to consider the importance of herbivory
has been most acute among freshwater researchers (Lodge,
1991; Cebrián & Duarte, 1998; Klaassen & Nolet, 2007).
By contrast, there has been greater appreciation of the
roles of seagrass herbivores in estuaries and shallow seas
(Thayer et al., 1984; Heck & Valentine, 2006; Burkepile,
2013). Indeed, the similarities between plant–herbivore
interactions within seagrass ecosystems, and those observed
in terrestrial grazing lawns, have been highlighted recently
(Burkepile, 2013; Bakker et al., 2016). Such between-habitat
differences were not supported by our finding of no
effect of habitat type on the outcome of plant–herbivore
interactions. Currently, key theories of aquatic ecosystem
structure and functioning (e.g. Vannote et al., 1980; Junk,
Bayley & Sparks, 1989; Scheffer et al., 2001) do not consider
the possible role of herbivores in regulating vascular
plant abundance, or the ecosystem consequences of such
regulation. Our study builds on current evidence that
aquatic herbivores can trigger shifts in ecosystem state,
with losses of vascular plants and the ecosystem functions
and services which they provide (Silliman et al., 2005).
Given the multiple roles of aquatic plants, the provision
of goods and services in aquatic ecosystems is likely to be
affected by herbivore-induced changes in plant abundance,
in particular primary production which is a key supporting
service. Annual primary productivity is positively related
to peak biomass for aquatic plant communities (Duarte,
1989). Thus herbivore-induced losses in plant abundance
can lead to substantial decreases in primary productivity,
in particular where plants cannot regrow after herbivore
damage (e.g. Silliman & Bertness, 2002). Furthermore, the
loss of plant abundance will reduce their regulatory role on
water movements, nutrient cycling and secondary production
of animals (Eklöf et al., 2008; Estes et al., 2011).

Increased herbivore density represents greater grazing
pressure on a plant community, with correspondingly higher
quantities of plant tissues consumed and removed by
non-consumptive mechanisms such as trampling (Hobbs &
Searle, 2005; Wood et al., 2012b). Thus it is unsurprising that
changes in plant abundance were strongly negatively related
to herbivore density, in accordance with our first hypothesis.
Only at relatively low herbivore densities were positive
changes in plant abundance reported, suggesting that in
aquatic systems greater herbivore densities overwhelm plant
compensatory growth responses. In support of our second
hypothesis, we found substantial between-taxa differences
in herbivore effects on plant abundance, with echinoderms,
molluscs, and fish having relatively large impacts on plants,
whilst insects and birds had relatively low impacts. Our
findings concur with the recent research by Bakker et al.
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(2016), which concluded that among herbivores the obligate
aquatic species that live within water permanently have
the greatest impacts on aquatic plants. The between-taxa
differences we identified may be linked to differences in
herbivore individual movement ability and foraging ecology.
The observed result that bird herbivory was associated with
smaller changes in plant abundance relative to most other
taxa may be linked to inequalities in the movement ability
of these taxa. Birds are highly mobile consumers which
can, and frequently do, move between foraging sites in
response to changes in site profitability (Nolet et al., 2001;
Gyimesi et al., 2012; Wood et al., 2013). At foraging sites
where plant abundance becomes substantially depleted birds,
unlike the other taxa in our study, can abandon the site
and fly elsewhere. Thus bird-induced reductions in plant
abundance may be lower than for other taxa which cannot
easily move away from the foraging site. Similarly, adult
insects capable of flight could move between foraging areas
to avoid severe depletion. However, many studies in our
meta-analyses concerned flightless life stages of insects which
could not move between waterbodies. Here, the relatively
low impact of insect herbivores may be explained by their
high specificity for certain plant species and tissues, which
means that only part of a heterogeneous plant community
will be affected (Newman, 1991). This contrasts with the
bulk-grazing strategies of many other herbivore taxa, such
as echinoderms, molluscs and crayfish, which will consume
multiple tissue types and species and will thus affect a greater
proportion of a plant community (Lodge et al., 1998). Whilst
taxa other than birds and adult insects can also exhibit
movements between habitats in response to food availability
(e.g. crayfish; Grey & Jackson, 2012), such movements are
typically over much shorter distances than birds; for example
herbivorous waterfowl can undertake daily movements of up
to 20 km between foraging and roosting sites (Newton, Thom
& Brotherston, 1973). Another reason for the relatively low
impact of bird herbivores may be that many aquatic bird
species also consume seeds and animal matter, and thus the
vegetative plant tissues which make up the majority of plant
above-ground biomass comprises only a small part of their
diet (Wood et al., 2012b). Indeed, Wood et al. (2012b) showed
that birds which were more herbivorous had a greater per

capita effect on plant abundance than those that were more
omnivorous. By contrast, the greatest reductions in plant
abundance for a given herbivore density were reported for
echinoderms and molluscs which are entirely herbivorous
and cannot move quickly to new feeding areas in response
to plant depletion. However, changes in plant abundance
caused by birds and insects could still be substantial. For
example, birds were associated with a mean and a maximum
change of −44 and −93% respectively. Such high reductions
may be expected to occur where alternative feeding areas
are unavailable, or birds ability to move between sites
is constrained, for example during their annual flightless
moulting period (Dos Santos et al., 2012).

Whilst some localised studies have documented large
impacts of invasive herbivores on aquatic plants (e.g.

Stott & Robson, 1970; Carlsson, Brönmark & Hansson,
2004; Tatu et al., 2007), we have shown for the first time
that plant–herbivore nativeness is a key factor affecting
the magnitude of herbivore impacts on plant abundance
across a wide range of species assemblages. In particular,
compared with native plants we found that invasive plants
experience relatively small losses in biomass due to native
herbivores, which may aid the establishment of invasive
plants beyond their native range. The mean change in
plant abundance associated with assemblages of native
herbivores and invasive plants found in our study (−22%)
was similar to that reported by Parker et al. (2006) for all
ecosystems. However, the impacts of invasive herbivores
were not consistently greater than native herbivores across
all assemblages. Furthermore, the effect of nativeness on
change in plant abundance was reduced at higher herbivore
densities, perhaps because at high herbivore densities the
opportunities for selective feeding on preferred species will
be diminished because of competition among individuals
(Schoener, 1971). Recent decades have seen an increased
spread of both invasive herbivores and macrophytes, which
suggests that the magnitude of plant–herbivore interactions
may be varying over time in many invaded aquatic
ecosystems in response to changes in the nativeness of species
assemblages (Jackson & Grey, 2013; Evangelista, Thomaz &
Umetsu, 2014).

Previous research has shown that greater diversity of
the herbivore assemblage increased damage to primary
producers (Duffy, Richardson & Canuel, 2003). However,
in this study we found evidence for a positive relationship
between herbivore species richness and change in plant
abundance, with the strongest reductions in plant abundance
reported for low herbivore species richness. The effect of
herbivore species richness was not apparent in the observed
data, and was only identified once the other key factors
in our best-supported model (herbivore density, herbivore
taxa, and herbivore–plant nativeness) had been accounted
for. Indeed, many studies in our meta-analysis reported
substantial reductions in plant abundance, of up to 100%,
associated with only a single species of herbivore (e.g.
Pípalová, 2002; Ip et al., 2014; but see Coetzee, Byrne & Hill,
2007). By contrast, we found no effect of plant species richness
on the size of the outcome of plant–herbivore interactions.

Our finding of no latitudinal gradient in herbivore
effects on primary producers is consistent with other
recent meta-analyses conducted for marine and terrestrial
ecosystems (Gruner et al., 2008; Hillebrand, 2009; Moles
et al., 2011; Poore et al., 2012). Finally, we found no strong
support for consistent differences in herbivore impact among
different habitat types; reductions in plant abundance were
equivalent across lake, river, estuary, wetland, salt marsh,
and shallow-sea habitat types. Variation among habitat
types identified in previous localised studies (Lodge et al.,
1998) may reflect differences in other factors, such as
herbivore densities, rather than effects of habitat per se.
Our habitat-type categories were broad, due to the limited
information presented by individual studies that could be
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used to classify habitats, and so future work should examine
whether key habitat characteristics, such as productivity and
nutrient status, can modulate plant–herbivore interactions.
In particular, evidence from terrestrial ecosystems has
suggested that differences in habitat productivity can affect
plant–herbivore interactions (Bakker et al., 2006). We were
unable to consider habitat productivity in the current study
as few of the studies we identified presented quantitative
information on productivity.

We have shown here that herbivory is an important force
in the control of plant abundance across aquatic systems, as
has long been recognised for terrestrial plants and aquatic
algae. However, herbivory is unlikely to be the sole driver of
plant dynamics in most ecosystems. In particular, a range of
bottom-up processes are known to influence plant abundance
such as nutrient availability, light limitation, and temperature
(Barko, Adams & Clesceri, 1986; Bornette & Puijalon,
2011). Therefore a key future challenge is to integrate
our understanding of the regulatory effects of top-down
(e.g. herbivory), bottom-up (e.g. nutrient availability), and
competitive processes on plant abundance and ecosystem
primary productivity (Hughes et al., 2004; Gayet et al., 2011;
Wood et al., 2012c; Sarneel et al., 2014). Currently, our limited
knowledge of multifactorial regulation of primary producers
hinders efforts to manage aquatic ecosystems effectively
(Chambers et al., 1999; Bakker et al., 2013).

V. CONCLUSIONS

(1) The traditional view of biologists has been that
herbivore regulation of vascular plants did not occur in
aquatic ecosystems, and thus even recent aquatic ecology
and food web texts omit mention of these interactions (e.g.
Lampert & Sommer, 2007; Moore & de Ruiter, 2012). By
contrast, the role of herbivory in terrestrial ecosystems, and
primary consumer–phytoplankton interactions in aquatic
ecosystems, have long been recognised by researchers
(McNaughton et al., 1989; Milchunas & Lauenroth, 1993;
Hillebrand, 2002; Estes et al., 2011; Poore et al., 2012). Despite
the traditional view that herbivory played no significant role
in aquatic plant dynamics, we found a growing literature
on plant–herbivore interactions in aquatic ecosystems. The
availability of numerous localised studies of herbivore effects
on plant abundance, using comparable methodologies,
allowed us to carry out a comprehensive meta-analysis of
herbivore-induced changes in plant abundance across a wide
range of species assemblages, geographic regions, and habitat
types.

(2) We have demonstrated that herbivores are
an important structuring force affecting aquatic plant
abundance. In accordance with our two hypotheses,
we found evidence that herbivore-induced changes in
plant abundance varied between herbivore taxa and
herbivore-plant nativeness, decreased with herbivore
diversity, and increased with herbivore biomass density. We
argue that the issue of whether herbivores can affect aquatic

plant abundance is increasingly well understood, and there
is now overwhelming evidence that herbivores can reduce
(and in some cases increase) plant abundance. Researchers
should now focus on understanding the conditions under
which herbivores exert such effects on aquatic plant
abundance. We have shown here that both herbivore density
and herbivore species richness, as well as the nativeness
of the herbivore–plant assemblage, are key factors in
understanding the magnitude of herbivore-induced changes
in aquatic plant abundance.

(3) For aquatic ecosystems, the current failure to
incorporate top-down effects continues to hinder our
fundamental understanding of the functioning of ecosystems
that contain aquatic plants. Furthermore, fundamental
knowledge of the roles of such trophic interactions will
help us to understand how aquatic ecosystems will respond
to the sustained environmental change these systems
are experiencing (Moss, 2015). If not accounted for,
herbivory will confound our attempts to understand and
predict responses in plant dynamics and the interactions
of plants with other organisms, ecosystem processes
and the physico-chemical environment (Reader, 1992).
Furthermore, efforts to restore aquatic ecosystems to
plant-dominated states require detailed understanding of
how plant communities respond to multiple perturbations
in space and time; we argue that herbivory must be
considered as one such perturbation. Unaccounted for
impacts on primary producers and the wider ecosystem
due to herbivory may limit our ability to manage and restore
aquatic ecosystems through targeted schemes such as the
European Union’s Water Framework Directive (Hering et al.,
2010). Indeed, it has been acknowledged that such schemes
must account for key biotic interactions in order to be
effective (Logan & Furse, 2002). By providing a quantitative
relationship between herbivore densities and changes in plant
abundance, our findings should aid managers in determining
when herbivore impacts on aquatic plants may affect
restoration attempts. The results of our global meta-analysis
highlight the need for greater recognition among biologists
of the role of different herbivore assemblages in regulating
aquatic plant dynamics.

VI. ACKNOWLEDGEMENTS

We thank Dee Galliford, Kate Mason, Jeanette Crawford,
and Adrian Smith for help accessing articles used in the
meta-analysis. We also wish to thank William Foster, Tim
Benton, Alison Cooper, and two anonymous reviewers for
their helpful and constructive comments.

VII. REFERENCES

*Aguilar, J. A., Camarena, O. M., Center, T. D. & Bojorquez, G. (2003).
Biological control of water hyacinth in Sinaloa, Mexico with the weevils Neochetina
eichhorniae and N. bruchi. BioControl 48, 595–608.

Biological Reviews 92 (2017) 1128–1141 © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Herbivory in aquatic ecosystems 1137

Aho, K. A. (2014). Foundational and Applied Statistics for Biologists Using R. CRC Press,
Boca Raton.

*Ajuonu, O., Byrne, M., Hill, M., Neuenschwander, P. & Korie, S. (2009). The
effect of two biological control agents, the weevil Neochetina eichhorniae and the mired
Eccritotarsus catarinensis on the water hyacinth, Eichornia crassipes, grown in culture with
water lettuce, Pistia stratiotes. BioContol 54, 155–162.

*Alberti, J., Canepuccia, A., Pascual, J., Perez, C. & Iribarne, O. (2011). Joint
control by rodent herbivory and nutrient availability of plant diversity in a salt
marsh-salty steppe transition zone. Journal of Vegetation Science 22, 216–224.

*Alberti, J., Casariego, A. M., Daleo, P., Fanjul, E., Silliman, B., Bertness,
M. & Iribarne, O. (2010). Abiotic stress mediates top-down and bottom-up control
in a south-western Atlantic salt marsh. Oecologia 163, 181–191.

Allcock, K. G. & Hik, D. S. (2004). Survival, growth, and escape from herbivory are
determined by habitat and herbivore species for three Australian woodland plants.
Oecologia 138, 231–241.

*Allin, C. C. & Husband, T. P. (2003). Mute swan (Cygnus olor) impact on
submerged aquatic vegetation and macroinvertebrates in a Rhode Island coastal
pond. Northeastern Naturalist 10, 305–318.

*Allison, A. & Newton, I. (1974). Waterfowl at Loch Leven, Kinross. Proceedings of

the Royal Society of Edinburgh. Section B: Biology 74, 365–381.
*Anastácio, P. M., Correia, A. M. & Menino, J. P. (2005). Processes and patterns

of plant destruction by crayfish: effects of crayfish size and developmental stages of
rice. Archiv für Hydrobiologie 162, 37–51.

*Anastácio, P. M., Frias, A. F. & Marques, J. C. (2000). Impact of crayfish
densities on wet seeded rice and the inefficiency of a non-ionic surfactant as an
ecotechnological solution. Ecological Engineering 15, 17–25.

*Anderson, M. G. & Low, J. P. (1976). Use of sago pondweed by waterfowl on the
Delta Marsh, Manitoba. Journal of Wildlife Management 40, 233–242.

Aragones, L. & Marsh, H. (2000). Impact of dugong grazing and turtle cropping on
tropical seagrass communities. Pacific Conservation Biology 5, 277–288.

Atkins, R. L., Griffin, J. N., Angelini, C., O’Connor, M. I. & Silliman, B. R.
(2015). Consumer-plant interaction strength: importance of body size, density and
metabolic biomass. Oikos 124, 1274–1281.

Bakker, E. S., Pagès, J. F., Arthur, R. & Alcoverro, T. (2016). Assessing the
role of large herbivores in the structuring and functioning of freshwater and marine
angiosperm ecosystems. Ecography 39, 162–179.

Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M.
H. (2006). Herbivore impact on grassland plant diversity depends on habitat
productivity and herbivore size. Ecology Letters 9, 780–788.

Bakker, E. S., Sarneel, J. M., Gulati, R. D., Liu, Z. & Van Donk, E. (2013).
Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic
constraints. Hydrobiologia 710, 23–37.

Barko, J. W., Adams, M. S. & Clesceri, N. L. (1986). Environmental factors and
their consideration in the management of submersed aquatic vegetation: a review.
Journal of Aquatic Plant Management 24, 1–10.

*Barrat-Segretain, M. H. & Lemoine, D. G. (2007). Can snail herbivory influence
the outcome of competition between Elodea species? Aquatic Botany 86, 157–162.

*Bazely, D. R. & Jeffries, R. L. (1986). Changes in the composition and standing
crop of salt-marsh communities in response to the removal of a grazer. Journal of

Ecology 74, 693–706.
*Belal, I. E. H. (2007). Controlling aquatic weeds in a Saudi drainage canal using

grass carp (Ctenopharyngodon idella Val.) Journal of Food, Agriculture & Environment 5,
332–336.

Bergman, B. G. & Bump, J. K. (2015). Experimental evidence that the ecosystem
effects of aquatic herbivory by moose and beaver may be contingent on water body
type. Freshwater Biology 60, 1635–1646.

*Bertness, M. D. (1984). Habitat and community modification by an introduced
herbivorous snail. Ecology 65, 370–381.

*Bonaventura, S. M., Pancotto, V., Vicari, R. L., Madanes, N. & Bellocq,
M. I. (2003). Demography and microhabitat use of the wild guinea pig (Cavia aperea)
in freshwater Spartina densiflora marshes in Argentina. Acta Zoologica Sinica 49, 20–31.

Bornette, G. & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: a
review. Aquatic Sciences 73, 1–14.

*Bortolus, A., Iribarne, O. O. & Martínez, M. M. (1998). Relationship between
waterfowl and the seagrass Ruppia maritima in a southwestern Atlantic coastal lagoon.
Estuaries 21, 710–717.

*Bourque, A. S. & Fourqurean, J. W. (2013). Variability in herbivory in subtropical
seagrass ecosystems and implications for seagrass transplanting. Journal of Experimental

Marine Biology and Ecology 445, 29–37.
*Bownes, A., Hill, M. P. & Byrne, M. J. (2010a). Assessing density-damage

relationships between water hyacinth and its grasshopper herbivore. Entomologia

Experimentalis et Applicata 137, 246–254.
*Bownes, A., Hill, M. P. & Byrne, M. J. (2010b). Evaluating the impact of

herbivory by a grasshopper, Cornops aquaticum (Orthoptera: Acrididae), on the
competitive performance and biomass accumulation of water hyacinth, Eichornia

crassipes (Pontederiaceae). Biological Control 53, 297–303.

*Buck, D. H., Baur, R. J. & Rose, C. R. (1975). Comparison of the effects of grass
carp and the herbicide diuron in densely vegetated pools containing golden shiners
and bluegills. The Progressive Fish-Culturist 37, 185–190.

Burkepile, D. E. (2013). Comparing aquatic and terrestrial grazing ecosystems: is the
grass really greener? Oikos 122, 306–312.

*Burnell, O. W., Connell, S. D., Irving, A. D. & Russell, B. D. (2013).
Asymmetric patterns of recovery in two habitat forming seagrass species following
simulated overgrazing by urchins. Journal of Experimental Marine Biology and Ecology

448, 114–120.
Burnham, K. P. & Anderson, D. R. (2004). Multimodel inference: understanding

AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Calcagno, V. & De Mazancourt, C. (2010). glmulti: an R package for easy

automated model selection with (generalized) linear models. Journal of Statistical

Software 34, 1–29.
*Carlsson, N. O. L. & Brönmark, C. (2006). Size-dependent effects of an invasive

herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian
wetlands. Freshwater Biology 51, 695–704.

Carlsson, N. O. L., Brönmark, C. & Hansson, L. A. (2004). Invading herbivory:
the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85,
1575–1580.

*Carlsson, N. O. L. & Lacouriere, J. O. (2005). Herbivory on aquatic vascular
plants by the introduced golden apple snail (Pomacea canaliculata) in Lao PDR.
Biological Invasions 7, 233–241.

Carpenter, S. R., Kitchell, J. F. & Hodgeson, J. R. (1985). Cascading trophic
interactions and lake productivity. BioScience 35, 634–639.

Carpenter, S. R. & Lodge, D. M. (1986). Effects of submersed macrophytes on
ecosystem processes. Aquatic Botany 26, 341–370.

*Carreira, B. M., Dias, M. P. & Rebelo, R. (2014). How consumption and
fragmentation of macrophytes by the invasive crayfish Procambarus clarkii shape the
macrophyte communities of temporary ponds. Hydrobiologia 721, 89–98.

Cebrián, J. & Duarte, C. M. (1994). The dependence of herbivory on growth rate
in natural plant communities. Functional Ecology 8, 518–525.

Cebrián, J. & Duarte, C. M. (1998). Patterns in leaf herbivory on seagrasses. Aquatic

Botany 60, 67–82.
*Center, T. D., Steward, K. K. & Bruner, M. C. (1982). Control of waterhyacinth

(Eichhornia crassipes) with Neochetina eichhornia (Coleoptera: Curculionidae) and a growth
retardant. Weed Science 30, 453–457.

Chambers, P. A., Dewreede, R. E., Irlandi, E. A. & Vandermuelen, H.
(1999). Management issues in aquatic macrophyte ecology: a Canadian perspective.
Canadian Journal of Botany 77, 471–487.

Chambers, P. A., Hanson, J. M., Burke, J. M. & Prepas, E. E. (1990). The impact
of crayfish Orconectes virilis on aquatic macrophytes. Freshwater Biology 24, 81–91.

*Charman, K. & Macey, A. (1978). The winter grazing of saltmarsh vegetation by
dark-bellied brent geese. Wildfowl 29, 153–162.

Coetzee, J. A., Byrne, M. J. & Hill, M. P. (2007). Impact of nutrients and herbivory
by Eccritotarsus catarinensis on the biological control of water hyacinth, Eichornia

crassipes. Aquatic Botany 86, 179–186.
*Corti, P. & Schlatter, R. P. (2002). Feeding ecology of the black-necked swan

Cygnus melancoryphus in two wetlands of southern Chile. Studies on Neotropical Fauna and

Environment 37, 9–14.
*Creed, R. P. & Sheldon, S. P. (1993). The effect of feeding by a North American

weevil, Euhrychiopsis lecontei, on Eurasian watermilfoil (Myriophyllum spicatum). Aquatic

Botany 45, 245–256.
Crivelli, A. J. (1983). The destruction of aquatic vegetation by carp. Hydrobiologia

106, 37–41.
Cronin, G., JR Lewis, W. M. & Schiehser, M. A. (2006). Influence of freshwater

macrophytes on the littoral ecosystem structure and function of a young Colorado
reservoir. Aquatic Botany 85, 37–43.

Cyr, H. & Pace, M. L. (1993). Magnitude and patterns of herbivory in aquatic and
terrestrial ecosystems. Nature 361, 148–150.

*Daleo, P., Alberti, J. & Iribarne, O. (2011). Crab herbivory regulates
re-colonization of disturbed patches in a southwestern Atlantic salt marsh. Oikos 120,
842–847.

*Dall Armellina, A. A., Bezic, C. R. & Gajardo, O. A. (1999). Submerged
macrophyte control with herbivorous fish in irrigation channels of semiarid
Argentina. Hydrobiologia 415, 265–269.

*De Winton, M. D., Taumoepeau, A. T. & Clayton, J. S. (2002). Fish effects on
charophyte establishment in a shallow, eutrophic New Zealand lake. New Zealand

Journal of Marine and Freshwater Research 36, 815–823.
*Ding, J. & Blossey, B. (2005). Impact of the native water lily leaf beetle Galerucella

nymphaeca (Coleoptera: Chrysomelidae) attacking introduced water chestnut, Trapa

natans, in the northeastern United States. Environmental Entomology 34, 683–689.
*Ding, J., Blossey, B., Du, Y. & Zheng, F. (2006). Impact of Galerucella birmanica

(Coleoptera: Chrysomelidae) on growth and seed production of Trapa natans. Biological

Control 37, 338–345.
*Dixon, H. D. J. (2009). Effect of black swan foraging on seagrass and benthic invertebrates in

western Golden Bay. MSc Thesis: Massey University, Palmerston North, New Zealand.

Biological Reviews 92 (2017) 1128–1141 © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1138 K. A. Wood and others

*Dorenbosch, M. & Bakker, E. S. (2012). Effects of contrasting omnivorous fish
on submerged macrophyte biomass in temperate lake: a mesocosm experiment.
Freshwater Biology 57, 1360–1372.

Dos Santos, V. M., Matheson, F. E., Pilditch, C. A. & Elger, A. (2012). Is
black swan grazing a threat to seagrass? Indications from an observational study in
New Zealand. Aquatic Botany 100, 41–50.
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