Hydrological Summary for the United Kingdom

General

After the first week, June was a month dominated by unsettled conditions with localised thundery showers bringing substantial rainfall. For the UK as a whole, rainfall was above average, particularly so in parts of south-east England, the Midlands and eastern Scotland. In contrast, below average rainfall was mainly confined to western Scotland. In response to the wet June, soil moisture deficits decreased and were below average in the vast majority of regions in the UK; June deficits were the second lowest (behind 2012) for the Chalk outcrop, in a series from 1961. Average river flows for June were generally in the normal range or above, with below normal flows confined to some north-western catchments. Flows were notably high, and in some catchments exceptionally so, across much of the English Lowlands and in parts of north-east Scotland. Groundwater levels followed their seasonal recessions at almost all index sites, but generally remained in the normal range or above. Despite the above average rainfall, stocks in the majority of reservoirs fell during June, with large decreases in some western impoundments. However, for England and Wales overall reservoir stocks remain slightly above average. With normal to above normal groundwater levels across the main aquifers and healthy reservoir stocks, the water resources outlook for the rest of the summer remains healthy.

Rainfall

June started relatively dry and settled, but showers and thunderstorms occurred from the 5th and dominated the rest of June, bringing some intense rainfall (e.g. 40mm recorded in one hour at Kenley (London) on the 7th). In a period from the 11th to the 16th, convective downpours brought significant rainfall around the UK with 39mm at Wattisham (Suffolk) on the 11th, 62mm at Aboyne (Scotland) on the 15th and 50mm at Winterbourne (Midlands) on the 16th; notable sub-daily falls were also recorded, with 33mm in thirty minutes recorded at Wallingford (Oxfordshire) on the 16th. Associated surface water flooding caused a wide range of impacts: schools, roads and a hospital were closed in Birmingham on the 14th, and on the 16th cars were submerged in London while there were transport delays in Sheffield and north Wales. On the 23rd, heavy rain and thunderstorms (with 44mm rainfall in six hours at Farnborough, leading to a 54mm daily total) caused significant disruption in south-east England; trains were delayed at London Waterloo due to lightning strikes and some polling stations for the EU referendum had to be relocated due to surface water flooding. At the national scale, June rainfall totals were above average (147%) and several regions recorded more than 150%. As a whole, north-east Scotland received 196% of average, with >200% across a large swathe of Aberdeenshire. Due to the localised nature of the rainfall, parts of East Anglia, the Midlands, Wales and Northern Ireland also recorded >200% of average. Despite some rainfall deficiencies in May, rainfall for May-June was above average across most of the UK, with below average rainfall confined to the England-Scotland border, parts of north-east England and the far north of Scotland.

River flows

With settled conditions continuing from late May into early June, recessions dominated river flows in the majority of catchments in the first week. There were modest interruptions to the recessions on the 7th, but many continued to mid-month. Flows on some rivers approached their seasonal minima and new daily minimum flows were recorded on the Eden and Bervie for ten and thirteen consecutive days, respectively. By contrast, on the 15th new June maximum peak flows were recorded on the Don and Dee in north-east Scotland (in records since 1969 and 1972, respectively). Further rainfall in the second half of the month triggered flood alerts and

increased river flows, although there were few reported instances of fluvial flooding. New maximum June peak flows were registered on the 23rd on the Colne (in a series from 1960) and on the Stringside on the 26th (in a series from 1966). In the same catchments, new daily maximum flows were also recorded for more than eight consecutive days, demonstrating the prolonged nature of the rainfall in parts of the south-east. Average river flows for June were generally in the normal range or above in England, Wales and eastern Scotland, with notably high flows in many catchments across the English Lowlands. Flows were exceptionally high across East Anglia – the Colne recorded five times the average flow for June, exceeding its previous record by a wide margin (in a series from 1960). In contrast, flows in western Scotland and northern England were low and the Eden recorded its second lowest June average flow (in a series from 1968). For May-June, average river flows show a similar spatial pattern to June, although some larger deficiencies are evident in south-west England, northern England and Northern Ireland – all areas that received below average rainfall in May.

Groundwater

Soil moisture deficits decreased in June, a reversal of the normal pattern seen at the start of summer, and are substantially below average across much of the UK as a result of the above average rainfall. In the Chalk, levels in the index boreholes fell during June and were generally in the normal range or above, with the exception of Dial Farm where levels continued to rise slightly but remain below the seasonal average. In Yorkshire and central southern England, levels fell more rapidly than is typical for June, dropping from above normal to within the normal range. In the Permo-Triassic sandstones, levels generally fell or were stable, however they continued to rise at Heathlanes and Nuttalls Farm. Levels were in the normal range or above for time of year, substantially so in south-west Scotland where a record June level was recorded at Newbridge. In the Jurassic limestones, levels fell and remained in the normal range at New Red Lion, and above normal at Ampney Crucis. Levels remained above average in the Magnesian Limestone, and were exceptionally high at Brick House Farm. In the Carboniferous Limestone, levels fell to below normal in south-west Wales, and decreased but remained in the normal range in the Peak District. In contrast, levels rose overall in south-east Wales and were notably high for the time of year.

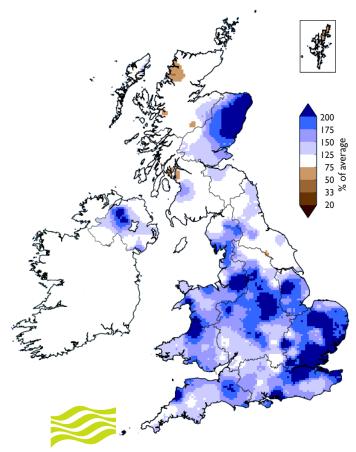
Rainfall . . . Rainfall . . .

Rainfall accumulations and return period estimates

Percentages are from the 1971-2000 average.

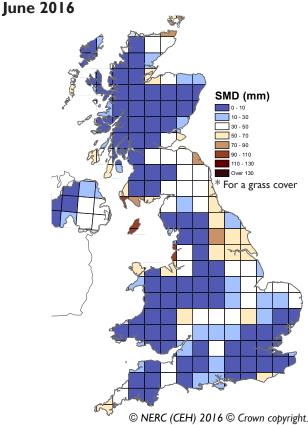
Area	Rainfall	Jun 2016	May I 6 – Jun I 6		Jan I 6	– Jun I 6	Octl	5– Jun I 6	Jul15 – Jun16		
		2010		RP		RP		RP		RP	
United Kingdom	mm %	102 147	166 125	5-10	634 129	50-80	1098 132	>>100	1363 126	>100	
England	mm %	101 163	153 131	5-10	506 134	>100	818 131	70-100	1041 128	25-40	
Scotland	mm %	95 121	174 115	2-5	794 123	10-20	1456 130	>100	1775 123	50-80	
Wales	mm %	140 170	228 144	8-12	854 139	>100	1507 141	>>100	1822 134	>100	
Northern Ireland	mm %	97 136	158 113	2-5	600 118	10-20	1080 128	>>100	1366 123	>100	
England & Wales	mm %	106 164	163 134	5-10	554 135	>100	913 133	>100	1149 129	40-60	
North West	mm %	130 167	177 123	2-5	701 135	50-80	1367 153	>>100	1619 139	>100	
Northumbrian	mm %	79 130	111 94	2-5	497 128	15-25	951 151	>>100	1173 142	>100	
Severn-Trent	mm %	110 177	164 142	8-12	489 136	>100	749 131	25-40	933 124	10-15	
Yorkshire	mm %	82 130	129 109	2-5	512 134	20-35	910 147	>>100	1123 139	40-60	
Anglian	mm %	102 188	151 150	15-25	385 136	40-60	552 123	10-15	743 124	8-12	
Thames	mm %	95 168	160 146	10-20	461 140	>100	659 124	8-12	857 124	8-12	
Southern	mm %	96 173	155 147	10-20	491 139	>100	717 119	5-10	969 126	8-12	
Wessex	mm %	96 159	168 144	8-12	546 136	>100	795 119	5-10	1047 122	8-12	
South West	mm %	105 145	155 110	2-5	661 119	8-12	1071 112	2-5	1413 118	5-10	
Welsh	mm %	134 168	222 143	5-10	822 138	>100	1438 140	>100	1745 133	>100	
Highland	mm %	87 97	189 113	2-5	860 	2-5	1577 117	10-15	1902 110	5-10	
North East	mm %	129 196	168 130	2-5	632 146	>>100	994 138	>100	1265 134	30-50	
Тау	mm %	115 167	176 124	2-5	759 128	10-20	1442 145	>100	1780 141	>100	
Forth	mm %	92 133	151 111	2-5	659 127	10-20	1257 144	>>100	1535 136	>100	
Tweed	mm %	73 112	119 91	2-5	606 137	25-40	1145 157	>>100	1394 147	>>100	
Solway	mm %	86 109	157 102	2-5	853 136	80-120	1605 148	>>100	1938 139	>>100	
Clyde	mm %	94 105	197 117	2-5	942 123	10-15	1780 134	>100	2150 124	40-60	

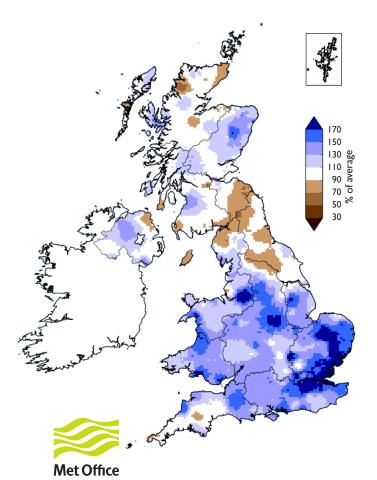
% = percentage of 1971-2000 average


RP = Return period

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1910; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. Note that precipitation totals in winter months may be underestimated due to snowfall undercatch. All monthly rainfall totals from January 2016 (inclusive) are provisional.

Rainfall . . . Rainfall . . .


June 2016 rainfall as % of 1971-2000 average

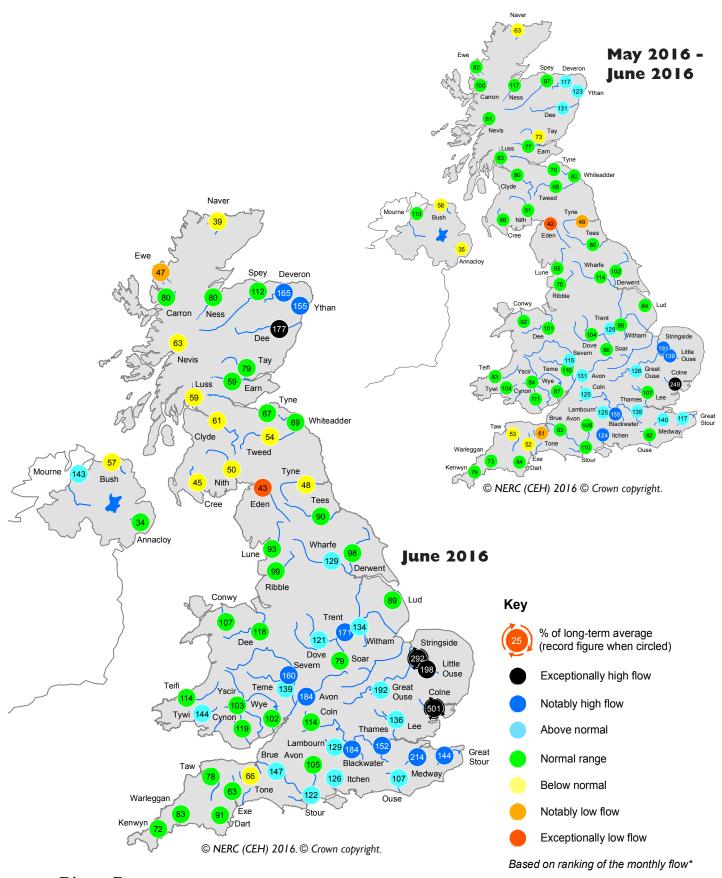

May 2016 - June 2016 rainfall as % of 1971-2000 average

Met Office

MORECS Soil Moisture Deficits*

Met Office

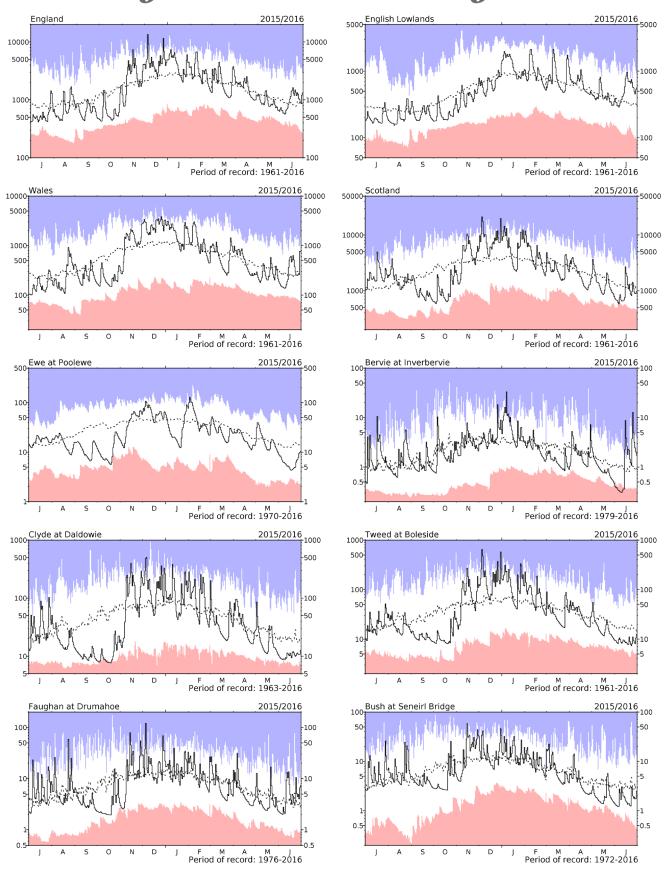
Met Office 3-month outlook Updated: June 2016


For July-August-September, the forecast for UK precipitation suggests that the chances of above- and below-average rainfall are fairly balanced. The probability that UK precipitation for July-August-September will fall into the driest of our five categories is around 20% and the probability that it will fall into the wettest of our five categories is around 20% (the 1981-2010 probability for each of these categories is 20%)

The complete version of the 3-month outlook may be found at: http://www.metoffice.gov.uk/publicsector/contingency-planners
This outlook is updated towards the end of each calendar month.

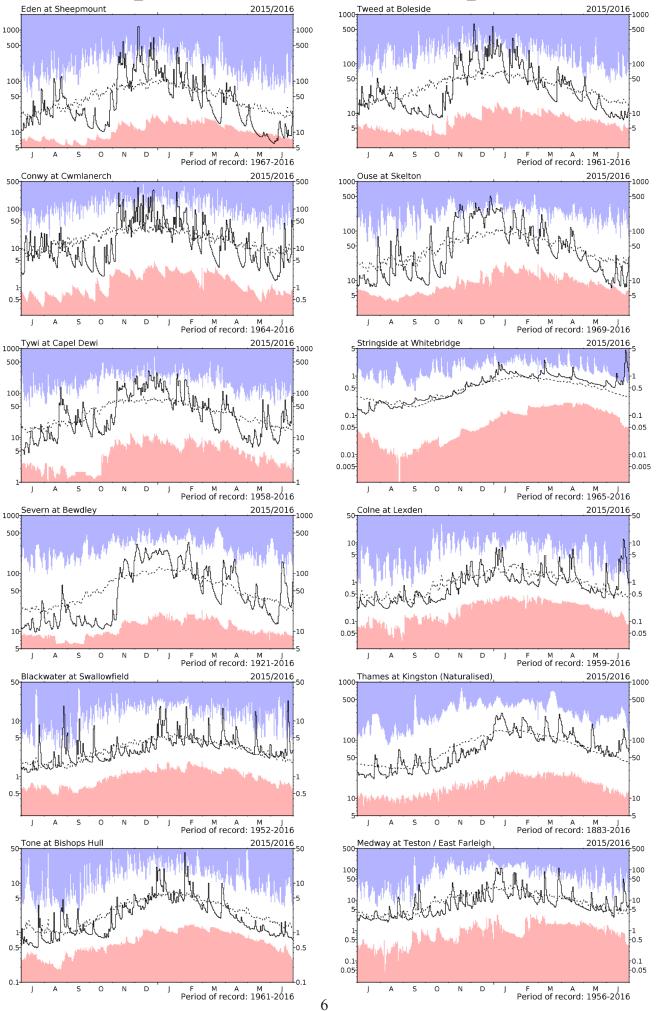
The latest shorter-range forecasts, covering the upcoming 30 days, can be accessed via:

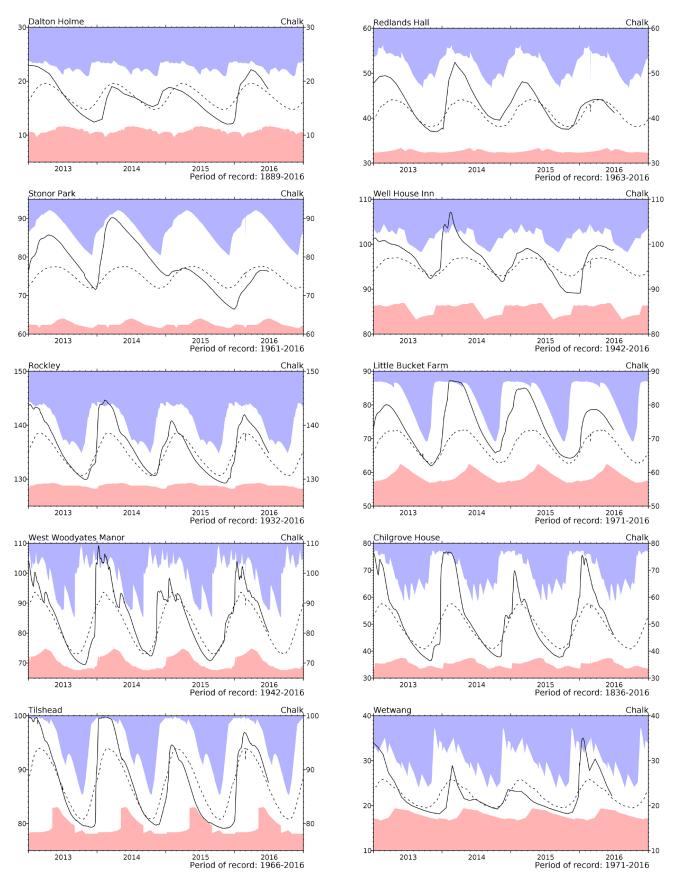
 $\frac{http://www.metoffice.gov.uk/weather/uk/uk_forecast_weather.html}{These forecasts are updated very frequently.}$


River flow ... River flow ...

River flows

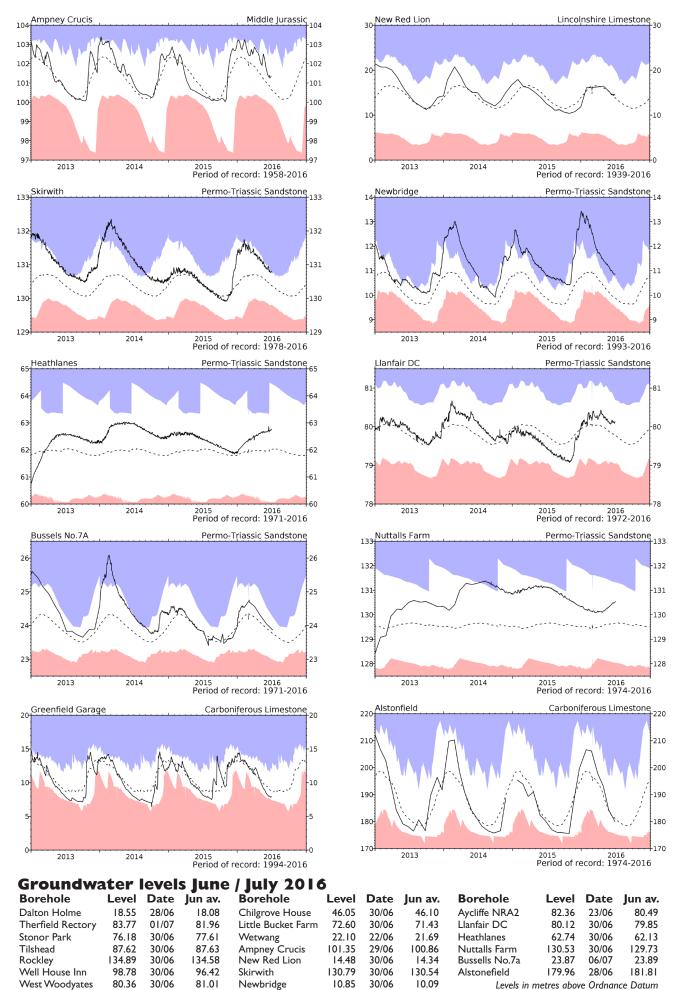
*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.


River flow ... River flow ...

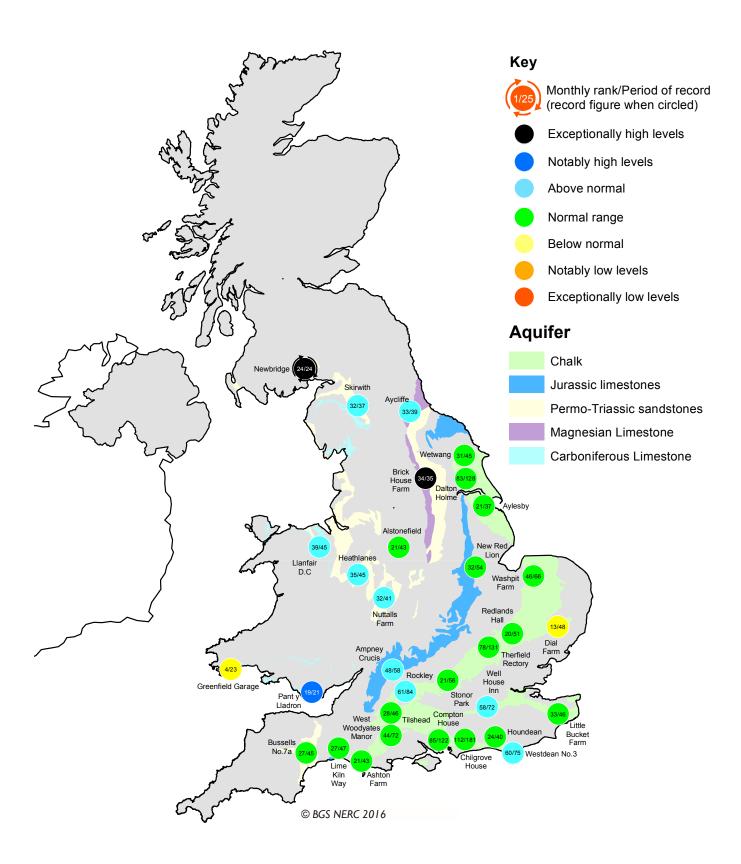

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to July 2015 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. Mean daily flows are shown as the dashed line.

River flow ... River flow ...



Groundwater...Groundwater

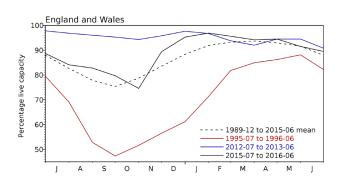


Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation. The latest recorded levels are listed overleaf.

Groundwater... Groundwater

Groundwater...Groundwater

Groundwater levels - June 2016


The calculation of ranking has been modified from that used in summaries published prior to October 2012. It is now based on a comparison between the most recent level and levels for the same date during previous years of record. Where appropriate, levels for earlier years may have been interpolated. The rankings are designed as a qualitative indicator, and ranks at extreme levels, and when levels are changing rapidly, need to be interpreted with caution.

Reservoirs ... Reservoirs ...

Guide to the variation in overall reservoir stocks for England and Wales

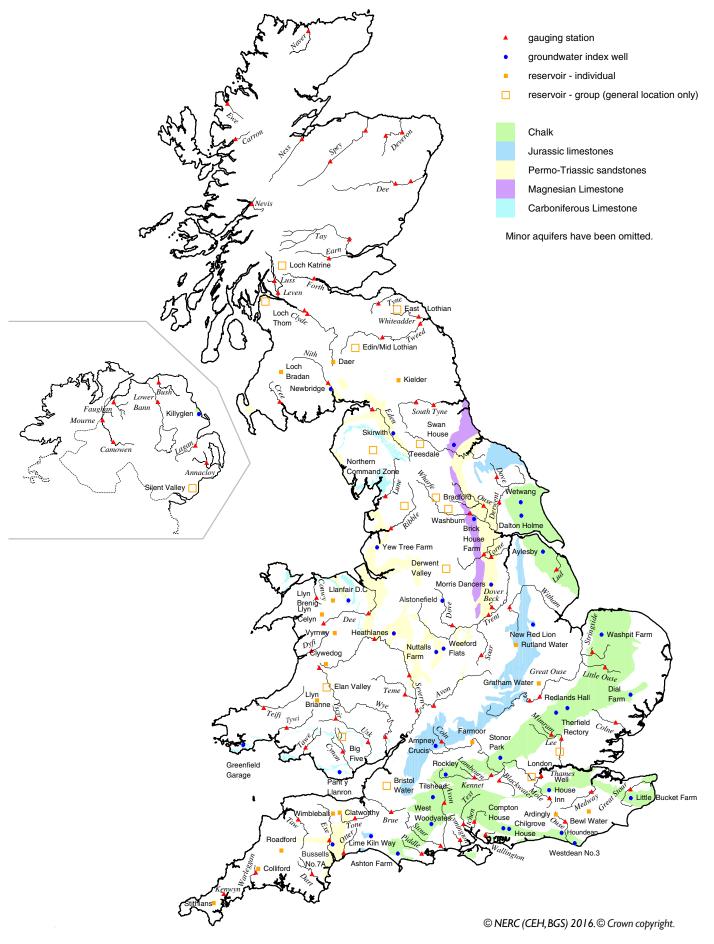
20 England and Wales 10 2008 2009 2010 2011 2012 2013 2014 2015

Comparison between overall reservoir stocks for England and Wales in recent years

Percentage live capacity of selected reservoirs at end of month

Area	Reservoir	Capacity (MI)	2016 Apr	2016 May	2016 Jun	Jun Anom.	Min Jun	Year* of min	2015 Jun	Diff 16-15
North West	N Command Zone	• 124929	8 5	7 4	65	-7	38	1984	81	-15
	Vyrnwy	55146	98	96	95	13	58	1984	91	4
Northumbrian	Teesdale	• 87936	91	80	74	-7	58	1989	83	-9
	Kielder	(199175)	89	90	90	-1	71	1989	90	-1
Severn-Trent	Clywedog	44922	99	100	100	8	32	1976	97	4
	Derwent Valley	• 39525	99	95	91	10	53	1996	90	- 1
Yorkshire	Washburn	• 22035	91	84	77	-3	63	1995	74	4
	Bradford Supply	• 41407	93	82	76	-3	54	1995	85	-9
Anglian	Grafham	(55490)	95	93	89	-4	70	1997	95	-6
	Rutland	(116580)	93	94	95	6	75	1997	90	5
Thames	London	• 202828	97	97	98	6	85	1990	86	12
	Farmoor	 13822 	98	98	96	-2	94	1995	95	- 1
Southern	Bewl	28170	96	94	93	10	52	1990	84	10
	Ardingly	4685	100	100	100	5	82	2005	89	- 11
Wessex	Clatworthy	5364	90	79	76	-6	61	1995	76	0
	Bristol	• (38666)	99	94	89	6	64	1990	81	8
South West	Colliford	28540	99	96	90	7	51	1997	85	4
	Roadford	34500	93	89	90	8	49	1996	87	2
	Wimbleball	21320	98	90	80	-6	63	2011	87	-7
	Stithians	4967	99	91	81	I	53	1990	76	5
Welsh	Celyn & Brenig	• 131155	100	100	97	3	77	1996	99	-2
	Brianne	62140	99	97	100	7	76	1995	97	3
	Big Five	• 69762	94	95	92	7	61	1989	87	5
	Elan Valley	• 99106	99	93	93	5	68	1976	91	2
Scotland(E)	Edinburgh/Mid-Lothian		98	94	86	-1	54	1998	89	-3
	East Lothian	• 9374	100	99	98	4	81	1992	98	0
Scotland(W)	Loch Katrine	• 110326	88	87	76	-4	55	2010	85	-9
	Daer	22 4 12	89	84	78	-6	62	1994	88	-10
	Loch Thom	• 10798	100	100	100	13	69	2000	100	0
Northern	Total ⁺	• 56800	93	86	79	-3	61	2008	86	-7
Ireland	Silent Valley	• 20634	94	87	79	0	54	1995	86	-7

^() figures in parentheses relate to gross storage


Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2012 period except for West of Scotland and Northern Ireland where data commence in the mid-1990s. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. Monthly figures may be artificially low due to routine maintenance or turbidity effects in feeder rivers.

denotes reservoir groups

^{*}last occurrence

^{*} excludes Lough Neagh

Location map...Location map

NHMP

The National Hydrological Monitoring Programme (NHMP) was started in 1988 and is undertaken jointly by the Centre for Ecology & Hydrology (CEH) and the British Geological Survey (BGS). The NHMP aims to provide an authoritative voice on hydrological conditions throughout the UK, to place them in a historical context and, over time, identify and interpret any emerging hydrological trends. Hydrological analysis and interpretation within the Programme is based on the data holdings of the National River Flow Archive (NRFA; maintained by CEH) and National Groundwater Level Archive (NGLA; maintained by BGS), including rainfall, river flows, borehole levels, and reservoir stocks.

Data Sources

The NHMP depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged. River flow and groundwater level data are provided by the Environment Agency (EA), Natural Resources Wales - Cyfoeth Naturiol Cymru (NRW), the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (high flow and low flow data in particular may be subject to significant revision).

Details of reservoir stocks are provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The Hydrological Summary and other NHMP outputs may also refer to and/or map soil moisture data for the UK. These data are provided by the Meteorological Office Rainfall and Evaporation Calculation System (MORECS). MORECS provides estimates of monthly soil moisture deficit in the form of averages over 40 x 40 km grid squares over Great Britain and Northern Ireland. The monthly time series of data extends back to 1961.

Rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA, NRW and SEPA. The areal rainfall figures have been produced by the Met Office National Climate Information Centre (NCIC), and are based on 5km resolution gridded data from rain gauges. The majority of the full rain gauge network across the UK is operated by the EA, NRW, SEPA and Northern Ireland Water; supplementary rain gauges are operated by the Met Office. The Met Office NCIC monthly rainfall series extend back to 1910 and form the official source of UK areal

rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Perry MC and Hollis DM (2005) available at http://www.metoffice.gov.uk/climate/uk/about/methods

Long-term averages are based on the period 1971-2000 and are derived from the monthly areal series.

The regional figures for the current month in the hydrological summaries are based on a limited rain gauge network so these (and the associated return periods) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office NCIC and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

For further details on rainfall or MORECS data, please contact the Met Office:

Tel: 0870 900 0100

Email: <u>enquiries@metoffice.gov.uk</u>

Enquiries

Enquiries should be directed to the NHMP:

Tel: 01491 692599 Email: <u>nhmp@ceh.ac.uk</u>

A full catalogue of past Hydrological Summaries can be accessed and downloaded at:

http://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

- Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
- ii. Land and Property Services data. © Crown copyright and database right, S&LA 145.
- iii. Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © NERC (CEH) 2016 unless otherwise stated and may not be reproduced without permission.

