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Abstract 1	

Regime shifts have been reported in many marine ecosystems, and are often expressed as an 2	

abrupt change occurring in multiple physical and biological components of the system. In the 3	

Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase 4	

in sea surface temperature and major shifts in the catch of many fish species. A thorough 5	

understanding of the extent and mechanisms leading to such regime shifts is challenged by 6	

data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry 7	

models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining 8	

the presence of abrupt changes in time series of physical variables (sea surface temperature 9	

and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity 10	

and plankton biomass) using change-point analysis. Our results show that some ocean 11	

biogeochemical models are capable of simulating the late 1970s shift, manifested as an 12	

abrupt increase in sea surface temperature followed by an abrupt decrease in nutrients and 13	

biological productivity. Models from low to intermediate complexity simulate an abrupt 14	

transition in the late 1970s (i.e. a significant shift from one year to the next) while the 15	

transition is smoother in higher complexity models. Our study demonstrates that ocean 16	

biogeochemical models can successfully simulate regime shifts in the Gulf of Alaska region. 17	

These models can therefore be considered useful tools to enhance our understanding of how 18	

changes in physical conditions are propagated from lower to upper trophic levels. 19	

  20	



	 3	

1 Introduction 1	

Although there is no universal definition of a marine regime shift, they are typically 2	

described as an abrupt change in the ecosystem from one state to another, which is detectable 3	

in multiple physical and biological components of the system (Lees et al., 2006; Daskalov et 4	

al., 2007; deYoung et al., 2008; Andersen et al., 2009; Schwing, 2009). Generally, the 5	

magnitude of the regime shift is large and it occurs rapidly relative to the time spent in the 6	

different states (e.g. a shift from one year to the next that persists on decadal or longer time 7	

scales). The regime shift can be a linear response to an abrupt change in forcing (e.g. climate 8	

shift), a nonlinear response to a small change in forcing or driven by the internal dynamics of 9	

the system (Andersen et al., 2009; Bestelmeyer et al., 2011), but the exact mechanisms are 10	

often unknown. 11	

Key drivers of marine regime shifts include changes in ecosystem habitat, biotic processes 12	

such as dynamics of the foodweb and abiotic processes such as changes in physical and 13	

chemical conditions (deYoung et al., 2008). These drivers can be natural or anthropogenic, or 14	

a combined influence, which can increase the vulnerability of ecosystems (e.g. an ecosystem 15	

which has less resilience due to increasing human pressure tends to respond differently to an 16	

ecosystem subject only to natural disturbances) (Folke et al., 2004). Excessive fishing is an 17	

example of an anthropogenic biotic driver where a decrease in top predators (top-down 18	

control) can cause a trophic cascade, resulting in a new bottom-up controlled state (Daskalov 19	

et al., 2007). Abiotic factors such as climate change or ocean and atmosphere oscillations 20	

may initiate bottom-up regime shifts in the food web via changes affecting the abundance of 21	

phytoplankton or zooplankton (Cury and Shannon, 2004). Typically, bottom-up driven shifts 22	

in biological components of the ecosystem generated by climate shifts manifested in changes 23	

in sea surface temperature or mixed layer depth are considered the most easily identified 24	

(deYoung et al., 2008) and are the focus of this study.  25	

Temporal and spatial scales of regime shifts may also affect their detectability (e.g. from a 26	

small scale coral reef regime shift occurring within a single year to a North Pacific - wide 27	

ecosystem regime shift taking a few years to transition) (Drinkwater, 2006; deYoung et al., 28	

2008). Hence, detection of a shift in a large complex marine ecosystem such as the North 29	

Pacific or North Atlantic, in which there may be lags between the expression of the shift in 30	

the abiotic and biotic components of the system, may be more difficult than detecting a 31	

regime shift in a small coral reef (deYoung et al., 2008).  32	
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Regime shifts associated with changes in physical conditions have been previously reported 1	

in the North Atlantic (Drinkwater, 2006; Beaugrand et al., 2009; Alheit et al., 2014), North 2	

Sea (Reid et al., 2001; Beaugrand, 2004; McQuatters-Gollop et al., 2007) and North Pacific 3	

(Polovina et al., 1995; Mantua et al., 1997; Hare and Mantua, 2000; Litzow and Mueter, 4	

2014), among others. The late 1970s North Pacific regime shift has been comprehensively 5	

studied (Mantua et al., 1997; McGowan et al., 1998; Francis et al., 1998; Hare and Mantua, 6	

2000; Yatsu et al., 2008). It was observed in a composite time series of 100 physical and 7	

biological variables, which revealed an abrupt and sustained change during 1976/77 (Hare 8	

and Mantua, 2000). At that time, there was a deepening of the Aleutian low pressure system 9	

which doubled the eastward wind stress and brought cooler winds over the central North 10	

Pacific, causing a drop in sea surface temperature (SST) and a deepening of the mixed layer 11	

depth (MLD). This resulted in moister and warmer air settling over the California Current 12	

region and the Gulf of Alaska, which caused an increase in SST in these two regions (Mantua 13	

et al., 1997). This mechanism has been described as the Pacific Decadal Oscillation (PDO), 14	

which switched from a negative to a positive state in 1976/77 (Mantua et al., 1997). The late 15	

1970s shift is thereby implicitly related to El Niño Southern Oscillation (ENSO) variability, 16	

whose shorter timescale fluctuations combined with random atmospheric forcing enforce 17	

decadal variability in the PDO (Newman et al., 2003). Alternatively, other large-scale climate 18	

patterns such as the North Pacific Gyre Oscillation (NPGO) may impact on marine 19	

ecosystem dynamics. Concurrent with the switch in the PDO state, an increase in 20	

zooplankton biomass was observed in the Gulf of Alaska between the periods of 1956-1962 21	

and 1980-1989 (Brodeur and Ware, 1992). In upper trophic levels, abrupt increases in 22	

groundfish recruitment and salmon catches were observed, while some forage fish 23	

populations collapsed with consequences for piscivorous sea birds and marine mammal 24	

populations (Anderson and Piatt, 1999). Overall the yield of fish stocks in the Gulf of Alaska 25	

increased from the 1970s to the 1990s (McGowan et al., 1998).  26	

Although a climate shift occurred over the entire North Pacific, the ecological response 27	

varied between regions depending on their respective dominant processes (Schwing, 2009). 28	

For example, in the California Current region the ecological changes associated with the 29	

1977 climate shift were different from those that occurred in the Gulf of Alaska with lower 30	

salmon catches after 1977 (Mantua et al., 1997). Investigation of the magnitude and extent of 31	

the regime shift and the proposed mechanism is challenged by the paucity of data covering 32	

adequate time and space scales in the Gulf of Alaska. Most support for the observed 33	
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biological changes comes from fisheries stock assessments, which are not designed to study 1	

how climate shifts are affecting marine ecosystems (McGowan et al., 1998). A few modelling 2	

studies have attempted to simulate the chain of events for the late 1970s shift, but the 3	

direction of changes in the simulations of the physical and biological parameters are 4	

sometimes opposite, and also vary according to the space/time scale of the study (e.g. 5	

Polovina et al., 1995; Haigh et al., 2001; Capotondi et al., 2005; Alexander et al., 2008). By 6	

using the late 1970s regime shifts in the Gulf of Alaska as a case study we aim to assess the 7	

ability of five global ocean biogeochemical models to simulate this shift. The models were 8	

part of the UK Integrated Global Biogeochemical Modelling Network (iMarNet) 9	

intercomparison, which aimed to evaluate the models’ ability to simulate global-scale bulk 10	

biogeochemical properties using the same ocean general circulation model and atmospheric 11	

forcing (Kwiatkowski et al., 2014). These physically identical hindcast simulations allow any 12	

model differences to be ascribed only to their representation of biogeochemical processes, 13	

thereby providing insight into the mechanisms leading to marine regime shifts. 14	

A substantial part of the literature on regime shifts uses principal component analysis to 15	

compress a large number of time series representing the state of the ecosystem to a smaller 16	

number of uncorrelated ones, which indicates to what extent the different components of the 17	

system are responding coherently. For example, Hare and Mantua (2000) reduced a total of 18	

100 time series of physical and biological variables representing the state of the North Pacific 19	

to two leading modes of variability. The presence of regime shifts in the reduced set of time 20	

series may render the presence of shifts more evident to visual inspection, but this is often 21	

done without further significance testing (Andersen et al., 2009). In order to objectively 22	

identify the timing of a shift and distinguish it from a random fluctuation, change-point 23	

techniques can be used, especially methods designed to detect multiple shifts in the mean of a 24	

time series (e.g. Andersen et al., 2009). For example, the shift detection methodology 25	

proposed by Rodionov (2004) consists of applying a t-test successively to compare the means 26	

of two segments of a time series, considering all possible timings for a shift, and repeats this 27	

until all shifts have been detected. This method has been applied widely in the marine regime 28	

shift literature (e.g. Daskalov et al., 2007; DeYoung et al., 2008; Overland et al., 2008; Yatsu 29	

et al., 2008; Möllmann et al., 2009; Overland et al., 2010). However, it is not designed to 30	

distinguish a shift from a trend, which may lead to the detection of a series of spurious shifts 31	

in the presence of a background long-term trend (e.g. Spencer et al., 2011). Furthermore, it 32	

may lead to the detection of spurious shifts in the presence of red noise, which creates 33	
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patterns that may be interpreted as shifts, but which are purely random (e.g. Wunsch, 1999). 1	

Red noise is often present in biological time series such as chlorophyll (e.g. Beaulieu et al., 2	

2013) or plankton abundance (e.g. Di Lorenzo and Ohman, 2013), and manifests through a 3	

slow integrated response to random weather forcings (Di Lorenzo and Ohman, 2013). 4	

Therefore, we opt for a methodology capable of separating a long-term trend from an abrupt 5	

change signal (e.g. which occurs from one year to the next) and distinguishing these signals 6	

from red noise (Beaulieu et al., 2012). In order to provide further insights as to whether the 7	

shifts detected are a linear response to a shift in the forcing itself (e.g. climate shift) from 8	

shifts generated through a nonlinear response of some change in the forcing, also called 9	

thresholds or “tipping points” (Scheffer et al., 2009), the relationship between the forcing and 10	

the response was explored using regression models (Bestelmeyer et al., 2011).  11	

Our analysis is organised as follows.  First, we investigate whether shifts are present in the 12	

Gulf of Alaska as predicted in a multiple model intercomparison hindcast experiment, 13	

iMarNet (Kwiatkowski et al., 2014; imarnet.org). Specifically, we analyse model physical 14	

and biological variables for regime shifts and verify whether these shifts are internally 15	

coherent. Then, we investigate the contribution of the different physical and biological 16	

variables to the observed late 1970s and late 1980s shifts in the Gulf of Alaska and the type 17	

of forcing-response relationship that led to abrupt changes.  18	

 19	

2 Methodology 20	

2.1 Ocean biogeochemical models 21	

This study uses ocean biogeochemistry model (OBGC) outputs from the iMarNet 22	

intercomparison project. The primary aim of iMarNet was to investigate the model 23	

complexity required to adequately represent marine ecosystems (Kwiatkowski et al., 2014).  24	

The participating models were HadOCC (Palmer and Totterdell, 2001), Diat-HadOCC 25	

(Halloran et al., 2010), MEDUSA-2 (Yool et al., 2011; 2013), PlankTOM10 (Le Quéré et al., 26	

2005) and ERSEM (Baretta et al., 1995; Blackford et al., 2004).  These models cover a large 27	

span of model complexity from 7 state variables (including 2 plankton functional types; 28	

PFTs) in HadOCC through to 57 state variables (including 8 PFTs) in ERSEM. The hindcast 29	

simulations (covering the period 1957 to 2007) from each of the models were used in this 30	

study. 31	

The key focus of the iMarNet intercomparison was to evaluate the models’ ability to simulate 32	
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global-scale bulk properties, such as carbon and nutrient cycles, as a representation of marine 1	

biotic activity (Kwiatkowski et al., 2014). The different OBGC models were implemented 2	

within a common physical framework to eliminate confounding differences due to the 3	

physics that would otherwise occur if different physical models were involved. This 4	

framework used the Nucleus for European Modelling of the Ocean (NEMO) physical ocean 5	

general circulation model (Madec, 2008) coupled to the Los Alamos sea-ice model (CICE; 6	

Hunke and Lipscomb, 2008), with surface atmospheric forcing drawn from the common 7	

ocean-ice reference experiment (CORE2; Large & Yeager, 2009). The model grid was 8	

configured at approximately 1°-degree horizontal resolution, with 75 vertical levels 9	

increasing in thickness from 1m at the surface to 200m at 6000m depth. 10	

The models were initialised from an identical physical state in 1890 using the same 3D 11	

biogeochemical tracer fields (although not all of these tracers were used in every model). 12	

Macronutrients (nitrate, phosphorus, silicic acid) and dissolved oxygen initial condition fields 13	

were drawn from the World Ocean Atlas 2009 (Garcia et al., 2010a, 2010b), while fields of 14	

dissolved inorganic carbon and alkalinity were drawn from the Global Ocean Data Analysis 15	

Project (GLODAP) database (Key et al., 2004). Each model used its own source for iron 16	

fields as currently there is no comprehensive global dataset available. The remaining fields 17	

such as plankton and particulate and dissolved organic matter were initialized with arbitrary 18	

small initial conditions. Below is a brief description of the structure of each OBGC model, 19	

which is also summarised in Table 1. Additional details can be found in Kwiatkowski et al. 20	

(2014). 21	

• The Hadley Centre Ocean Carbon Cycle (HadOCC) model is a simple NPZD (Nutrient, 22	

Phytoplankton, Zooplankton, Detritus) model consisting of one phytoplankton group and 23	

one zooplankton group. There is one nutrient pool, nitrogen, to which the cycling of 24	

carbon and alkalinity is coupled. Further details can be found in Palmer and Totterdell 25	

(2001).   26	

• Diat-HadOCC is a descendant of HadOCC with the primary difference being the presence 27	

of 2 phytoplankton groups: diatoms and mixed phytoplankton. Further differences 28	

include the addition of the nutrients silica and iron and the effect of nutrient limitation on 29	

growth is multiplicative, where light limitation is multiplied by successive nutrient 30	

limitation terms. Further details can be found in Halloran et al. (2010). 31	

• Model of Ecosystem Dynamics, nutrient Utilization, Sequestration and Acidification 32	

(MEDUSA) is an intermediate complexity model comprising two phytoplankton and two 33	
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zooplankton groups. The ecosystem is split into small (nanophytoplankton and 1	

microzooplankton) and large (diatom and mesozooplankton) components, and non-living 2	

detrital material is similarly split to reflect its sources. Nutrient pools included in this 3	

model are nitrogen, silica and iron and the effect of nutrient limitation on growth is also 4	

multiplicative.  Cycles of carbon, alkalinity and dissolved oxygen are also included. 5	

Further details can be found in Yool et al. (2011) and Yool et al. (2013). 6	

• PlankTOM10 is a relatively complex model and has 10 PFTs (diatoms, coccolithophores, 7	

Phaeocystis, nitrogen fixers, picophytoplankton, mixed phytoplankton, protozoa, 8	

mesozooplankton, macrozooplankton and bacteria). The nutrient cycles included in 9	

PlankTOM10 are carbon, nitrogen, oxygen, phosphorous, silica and a simplified iron 10	

cycle. Phytoplankton growth is regulated by the minimum of nutrient limitation terms. 11	

All zooplankton groups eat smaller PFTs, with preference based on size. Further details 12	

can be found in Le Quéré et al. (2005) and Buitenhuis et al. (2013). 13	

• The European Regional Seas Ecosystem Model (ERSEM) was originally used for shelf 14	

seas and consists of both pelagic and benthic ecosystems. Four phytoplankton groups 15	

(picophytoplankton/flagellates, flagellates, large phytoplankton and diatoms), three 16	

zooplankton groups (heterotrophic flagellates, microzooplankton and mesozooplankton) 17	

and heterotrophic bacteria are represented.  Each zooplankton group grazes on a preferred 18	

phytoplankton group or groups based on size. The nutrient pools consist of carbon, 19	

nitrogen, phosphorous, silica and dissolved oxygen allowing for dynamic stoichiometric 20	

internal quotas. The effect of nutrient limitation on growth is a combination of 21	

multiplicative and maximum limitation factors. More details can be found in Blackford 22	

(1997), Blackford et al. (2004) and Butenschön et al. (2015). 23	

2.2 Simulation 24	

For each biogeochemical model, conventional simulations from the same physical initial state 25	

were performed identically from year 1890 through to 2007. For the first 60 years of these 26	

simulations (1890-1949 inclusive), CORE2 (Common Ocean-ice Reference Experiments, 27	

version 2; Large and Yeager, 2009) seasonal climatology (i.e. without interrannual 28	

variability) was used, the so-called "normal year forcing". Subsequently (1950-2007 29	

inclusive), interannually-varying CORE2 forcing was used to complete the simulations. 30	

CORE2 provides observationally-derived geographical fields of downwelling irradiance 31	

(short- and long-wave), precipitation (rain and snow), air temperature, humidity, and 32	

meridional and zonal winds. These are used in conjunction with bulk formulae to calculate 33	
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net heat, freshwater and momentum exchange between the atmosphere and the ocean. In 1	

addition, sea surface salinity was weakly relaxed (characteristic timescale of 180 days) 2	

towards observations to minimise drift. Note that the simulations were "online", in that 3	

physics and biogeochemistry were both formally simulated simultaneously. Feedbacks 4	

between the model biology and ocean physics (e.g. by the absorption of downwelling solar 5	

radiation) were disabled so that all of the biogeochemical models experienced consistent 6	

simulated physics. Additional details on the simulations can be found in Kwiatkowski et al. 7	

(2014). 8	

For each model, where available, time series of sea surface temperature (SST), mixed layer 9	

depth (MLD, defined as a density difference from the surface of 0.1 kg m-3), surface 10	

dissolved inorganic nitrogen (DIN), silica (SI), iron (FE), surface chlorophyll (CHL), 11	

integrated primary production (PP), total surface phytoplankton (PHY) and zooplankton 12	

(ZOO) biomass were extracted from 1957-2007 (same period as the observational dataset 13	

used, see section below) for the Gulf of Alaska region. The time series were averaged from 14	

monthly means to annual means and then averaged spatially across the region defined by the 15	

boundaries of 54°N to 62°N and 130°W to 160°W (same region as the observational dataset 16	

used, see section below).  17	

2.3 Observational dataset 18	

To compare shifts found in model time series to observed ones, SST data were extracted from 19	

the Extended Reconstructed Sea Surface Temperature (ERSST) dataset (version 3b) 20	

downloaded from https://www.ncdc.noaa.gov/ersst/. This analysis uses the International 21	

Comprehensive Ocean-Atmosphere Data Set SST data and combines ship and buoy data 22	

(Smith and Reynolds, 2003; Smith et al., 2008). The data were available as monthly means 23	

with a spatial resolution of 2° x 2° from 1957 to 2007. The ERSST dataset was averaged 24	

spatially for each year over the Gulf of Alaska to form a time series of annual mean SST. 25	

Comparison with observed time series for other variables (i.e. MLD, DIN, SI, FE, CHL, PP, 26	

PHY, ZOO) is not possible due to lack of data over suitable space and time scales. Time 27	

series of large-scale oscillations representing the climate over the North Pacific were 28	

obtained. The PDO index (Mantua et al., 1997) was downloaded from 29	

http://www.atmos.washington.edu/~mantua/abst.PDO.html. The Multivariate ENSO Index 30	

(MEI; Wolter and Timlin, 1998) was downloaded from 31	

http://www.esrl.noaa.gov/psd/enso/mei/ and the NPGO index (DiLorenzo et al., 2008) was 32	
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downloaded from http://www.o3d.org/npgo/npgo.php. Annual time series of PDO, ENSO 1	

and NPGO indices were produced by averaging monthly time series. 2	

 3	

2.4 Statistical analyses 4	

For the regime shift detection, we use the change-point detection method presented in 5	

Beaulieu et al. (2012), which distinguishes shifts in a time series from long-term trends and 6	

red noise. It consists of fitting a suite of regression models to a time series with (I) constant 7	

mean, (II) shift in the mean, (III) trend, (IV) shift in the intercept of the trend and (V) shift in 8	

both the intercept and trend, and discriminates between them. Figure 1 illustrates the five 9	

regression models tested in this study and their equations are presented in Table 2. This 10	

methodology is based on the Schwarz Information Criterion (SIC), which is a measure of 11	

goodness of fit based on the maximum likelihood function of a given model penalised by the 12	

number of parameters estimated to ensure balance between good fit and parsimony. We use 13	

the SIC to 1) identify the timing of the shift under a model formulation containing a shift and 14	

2) determine which regression model (among the five fitted) provides the best fit. The SIC 15	

formulations for the five models are presented in Table 2. For the models with a shift (II, IV, 16	

V), the SIC is calculated for each possible timing of a shift – the timing with the lowest SIC 17	

corresponds to the year that the shift is most likely to have occurred. The search for the most 18	

likely timing for a shift excludes the first and last five data points in the time series to avoid 19	

spurious detection (Beaulieu et al., 2012). For example, the most likely timing for a shift for 20	

model II would be: 21	

SICII (p) =min SICII (k), k = 5,...,n− 5{ }       (1) 22	

The most likely timing for a shift under models IV and V can be found similarly, and are 23	

denoted SICIV (p)  and SICV (p) , respectively.  24	

Once the SIC of the five models are computed, the smallest one is selected as the most 25	

appropriate to represent the time series (Table 2). If the SIC of a model without a shift 26	

(constant mean (I) or trend (III)) is lower than the SIC of the models with a shift (shift in the 27	

mean (II), shift in the intercept (IV) or shift in the intercept and trend (V)), no abrupt change 28	

is detected in that time series. On the other hand, if a model with a shift has the smallest SIC, 29	

this indicates that there could be a shift in that time series.  30	
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There is no significance level involved with the decision rule presented above and shifts tend 1	

to be too easily detected (Beaulieu et al., 2012). Therefore, a critical value can be added to 2	

the decision rule to assess the significance of the shift based on the difference in SIC between 3	

the shift model and the null model and is determined using Monte Carlo simulations. For 4	

example, if model II is selected with the smallest SIC, the null model to compare with is 5	

model I. The shift detected in model II will be significant if 6	

SICII (p)− SICI < cα          (2) 7	

where cα is the critical value at the α  critical level and is determined by Monte Carlo 8	

simulation. Similarly, when models IV or V have the smallest SIC, the shift will be 9	

significant if  10	

SICIV (p)− SICIII < cα           (3) 11	

or  12	

SICV (p)− SICIII < cα          (4) 13	

We generate 1000 synthetic time series randomly drawn from a Normal distribution with the 14	

same length (i.e. number of years), variance and first-order autocorrelation (if present) as the 15	

data. The presence of autocorrelation usually indicates the presence of external factors not 16	

accounted for in the model and the AR(1) should act as a parameter which roughly comprises 17	

these factors. The SIC differences between the model with a shift (e.g. model II) and the 18	

corresponding null model (e.g. model I) are calculated. This produces a null distribution for 19	

cα against which the observed SIC difference is compared to estimate the p-value. The p-20	

value here is the probability of observing a SIC difference at least as extreme as that observed 21	

under the null hypothesis of no shift in the time series. We use a 5% critical level, i.e. we 22	

reject the null hypothesis of no shift if the p-value is smaller than 0.05. This analysis is based 23	

on the assumption that the residuals of the selected model are normally distributed with a 24	

constant variance, which is verified using a Lilliefors test and Fisher test (5% critical level) 25	

respectively. Violation of these assumptions could indicate the presence of additional shifts 26	

in the time series.  27	

This method is flexible and allows for the detection of shifts that are more complex than 28	

simply a shift in the mean. Furthermore, it distinguishes potential shifts from red noise, 29	

which is important given the background climate change trend and long memory of the 30	
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climate system (characterized as high first-order autocorrelation). However, this method can 1	

detect at most one shift in the time series, while there could possibly be multiple shifts over a 2	

multidecadal time period. Therefore, the shift identified will be the largest to occur in a time 3	

series, which for the Gulf of Alaska is expected to be the 1977 regime shift. 4	

To unveil shifts in SST in and around the Gulf of Alaska, we first apply this methodology to 5	

observed annual SST time series over the North Pacific (from 40-70oN and 180-120oW).  6	

Second, we apply this methodology to time series of physical and biological variables 7	

simulated from each of the five ocean biogeochemical models, and to observed SST, 8	

averaged over the Gulf of Alaska as described in sections 2.1 and 2.2 respectively. As a 9	

visual aid, we also calculate cumulative sums of the z-scores of each time series. Cumulative 10	

sums are useful for monitoring time series as they exhibit a change of slope when a shift in 11	

the time series occurs (e.g. Page, 1954).  12	

We apply principal component analysis to the z-scores of the physical and biological time 13	

series averaged over the Gulf of Alaska for each model to reduce the dimensions of all 14	

variables analysed here into uncorrelated principal components. We also apply the change-15	

point methodology to the first principal component (PC1) obtained for each model, which 16	

explains most of the variability, and test whether PC1 also exhibit a shift in the late 1970s. 17	

We then investigate which variables are contributing most to the late 1970s shift, by 18	

comparing their individual contributions to PC1 for each model.  19	

We further investigate the physical forcing – biological response relationship in models that 20	

simulate a significant shift in the late 1970s in PC1. We investigate the presence of changes 21	

in physical-biological relationships before and after the shift by comparing the regression 22	

slopes, following the approach proposed by Bestelmeyer et al. (2011). Similar slopes before 23	

and after the shift could indicate a linear response to the physical forcing, while a change in 24	

the slopes might rather suggest a change in the relationship and thus, a nonlinear response. 25	

More specifically, we fit simple linear regression models, such as: 26	

yt = a1 + b1xt + et t =1,..., p
yt = a2 + b2xt + et t = p +1,...,n

       (5) 27	

where yt  represents the biological response (either CHL, PP, PHY or ZOO), xt  is the 28	

physical forcing (either SST or MLD), a1  and b1  are the intercept and regression slope before 29	

the shift at time p, a2  and b2  are the intercept and regression slope after the shift and et  are 30	
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the white noise errors. To verify whether the relationships are similar before and after the 1	

shift, we test whether the slopes are equal (b1  = b2 ) using the Student test statistic (with n-4 2	

degrees of freedom) described by Paternoster et al. (1998): 3	

t = b1 − b2
sb1−b2

          (6) 4	

sb1−b2 = sb1
2 + sb2

2          (7) 5	

where b1  and b2  are estimated using least squares with sb1  and sb2  being the respective 6	

standard errors. 7	

 8	

3 Results 9	

Figure 2 presents the results of the change-point analysis on gridded SST observations for the 10	

North Pacific. This reveals a predominant shift in 1977 over the Gulf of Alaska region, which 11	

also extends as a coastal band towards the California Current region and the Bering Sea. A 12	

late 1980s shift is detected in a smaller area in the middle of the gyre. It must be noted that 13	

spatial homogeneity of the shift is to be expected here given that the ERSST dataset is 14	

produced using empirical orthogonal functions (Smith and Reynolds, 2003). 15	

In the observed SST time series averaged over the Gulf of Alaska, a statistically significant 16	

shift is detected and manifests as a rapid increase in the mean of ~1°C after a decreasing 17	

trend (Fig. 3a). In the model physical time series (which are identical in all 5 OBGC models), 18	

SST exhibits the same signal as the observations: a shift in the intercept and gradient 19	

occurring in 1976, while the MLD is best represented by a linear trend. However, the model 20	

MLD time series shows strong decadal variability with large changes occurring in the mid-21	

1970s and at the beginning of the 1990s (Fig. 3b-c). Results of change-point analysis on 22	

large-scale oscillations characterizing the climate over the region are also presented in Fig. 3 23	

(d-f) and show a significant shift in the PDO in the late 1970s while the NPGO and MEI 24	

annual time series do not indicate a shift. 25	

The change-point analysis was performed on PC1 for each model (Figure 4, Table 3), which 26	

explains most of the variance for each model (except MEDUSA, 36% of variance explained) 27	

(Table 4). HadOCC exhibits a shift in 1977 in PC1 (Table 3), for which all variables except 28	

MLD have large relative contributions (>10% relative contribution, Table 4). The first 29	



	 14	

principal component in Diat-HadOCC exhibits a shift in 1976 and explains 63% of the total 1	

variance. The variable offering the smallest relative contribution is again the MLD (Table 4). 2	

In MEDUSA, a shift is also detected in the late 1970s in the first component, which explains 3	

only 36% of the variance. The SST, CHL and nutrients are the most important variables with 4	

relative contributions larger than 10% (Table 4). The MLD has a relative contribution of 5	

0.94% to PC1 (Table 4). The relative contributions of the nutrients in the HadOCC, Diat-6	

HadOCC and MEDUSA late 1970s shift detected in the first principal component suggests 7	

the controlling factor is nutrient limitation (i.e. bottom up control) in these models. In 8	

ERSEM and PlankTOM10, there are no shifts detected in the first principal component. 9	

Similar results are obtained when excluding SST and MLD from PC1 (Appendix A). 10	

The results of the change-point analysis on all observational and model individual time series 11	

are presented in Appendix B (Table B1). The fit of the most appropriate statistical models for 12	

the biological variables for each OBGC model are also presented in Appendix B (Figs. B1-13	

B5). Statistically significant shifts are found more often in the simpler OBGC models 14	

(HadOCC, Diat-HadOCC and MEDUSA) than the complex ones (Table B1), which is 15	

consistent with the results obtained on the first principal component for each model. Of the 16	

statistically significant shifts identified in these models, the majority occurred in the late 17	

1970s. In HadOCC, the late 1970s shift corresponds to a decrease in DIN, CHL, PHY and 18	

ZOO, while a large increase in PP is detected in 1991. Nevertheless, PP is decreasing over 19	

the period 1957-1990 (Fig. B1). In Diat-HadOCC, all parameters exhibit a shift in the late 20	

1970s, although it is not significant in PHY and ZOO. The significant shifts in the late 1970s 21	

manifest as a decrease in SI, FE, CHL and PP.  In MEDUSA, shifts in DIN and FE (although 22	

not significant) are identified in the late 1970s. ERSEM exhibits a significant shift in CHL in 23	

the late 1970s, while PlankTOM10 does not have any significant shifts for that period.  24	

As a visual support for the change-point analysis, cumulative sums of the z-scores of each 25	

time series within each model are presented in Fig. 5. A shift in a time series is revealed by a 26	

change of slope of the cumulative sums. The change of slope in SST is sharp, as one would 27	

expect given the significant shift detected. Even though our analysis suggests a long-term 28	

deepening of the MLD rather than an abrupt change, subtle decreases are suggested by 29	

smooth change of slope in the cumulative sum in the late 1970s and 1980s. These changes 30	

are clearly propagated to the other parameters in HadOCC, DiatHadOCC and MEDUSA with 31	

a sharp change of slope, but smoother change in ERSEM and PlankTOM10. 32	
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We further investigate the forcing-response relationship between SST and the biological 1	

variables (CHL, PP, PHY, ZOO) in HadOCC, DiatHadOCC and MEDUSA (Fig. 6) before 2	

and after 1977, as a significant shift is present in PC1 in these models. The slopes of the 3	

linear relationships between SST and the biological variables are mostly similar before and 4	

after 1977 (Table 5). This is consistent with a linear, rather than nonlinear, response to 5	

changes in SST forcing. There is one exception for ZOO for which the difference in slopes is 6	

significant with a stronger relationship after 1977 in HadOCC and DiatHadOCC (Table 5, 7	

Fig. 6), which could suggest an amplified nonlinear response.  8	

 9	

4 Discussion and Conclusions 10	

Using the Gulf of Alaska as a case study, our results demonstrate the usefulness of OBGC 11	

models to infer the chain of events responsible for regime shifts, especially in regions where 12	

observations are scarce. Although there are many definitions of regime shifts in the literature, 13	

they can be generally described as an abrupt change (e.g. from one year to the next) that 14	

occurs across both physical and biological parts of the ecosystem. Therefore, to determine if 15	

a regime shift has occurred in the five OBGC models tested here the shift has to be traceable 16	

from physical parameters through to biological parameters. With the change-point detection 17	

method used here, we found statistically significant shifts in the late 1970s in the Gulf of 18	

Alaska simulated in five OBGC models. A shift in model SST occurred in 1976 and matched 19	

a shift in observed SST. This abrupt change in SST was followed by an overall decrease in 20	

nutrients and productivity. The three OBGC models simulating an abrupt change in 1977 in 21	

PC1 (i.e. HadOCC, DiatHadOCC and MEDUSA) are consistent in the direction of change 22	

(Fig. 4). The decrease in nutrients after 1977 seems to be the dominant driver in the reduction 23	

in productivity and outweighs changes due to fluctuations in light availability. The 24	

dominance of declining nutrients in explaining the variability in the principal components of 25	

HadOCC, Diat-HadOCC and MEDUSA, supports this hypothesis. 26	

Previous studies have linked the late 1970s shift in the North Pacific with the PDO, which 27	

switched from a negative to a positive state in 1976/77 (Mantua et al., 1997). The PDO 28	

fluctuations have been suggested to exhibit a red noise response to atmospheric noise and 29	

ENSO events (Newman et al., 2003), thereby raising the possibility of a link between ENSO 30	

and the North Pacific shift in the late 1970s. Nevertheless, the PDO (and implicitly ENSO) 31	

alone is not enough to characterize the North Pacific climate (Bond et al., 2003). 32	
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Alternatively, the North Pacific Gyre Oscillation (NPGO) has been suggested as a global-1	

scale mode of variability that plays an important role in decadal changes in marine 2	

ecosystems (DiLorenzo et al., 2008). For example, in the California Current, the PDO 3	

correlates with SST while NPGO is more closely related to variability in salinity, nutrient and 4	

primary production (DiLorenzo et al., 2008). Thus, if both the PDO and NPGO fluctuations 5	

drive changes in the North Pacific climate and ecosystem functioning, the question arises 6	

whether either or both of these indices exhibit a shift at a similar time. Underscoring some of 7	

the conclusions of the prior work discussed above, the shift in 1976/77 manifests in the PDO 8	

index, but notably we find no significant shifts in the multivariate ENSO index or the NPGO 9	

index. Clearly, by detecting a shift in the late 1970s in PDO only we cannot conclusively tie 10	

the PDO and untie the NPGO and ENSO to the shift in climate and ecosystem dynamics of 11	

the Gulf of Alaska. However, these corresponding changes are an important piece of 12	

information to future work aimed at determining causal mechanisms, mode of teleconnection 13	

and coupled physical/biogeochemical dynamics that link global climate patterns to ocean 14	

fertility of the Gulf of Alaska.  15	

In conclusion, the 1977 regime shift in the Gulf of Alaska was observed in sea surface 16	

temperature and in the abundance of a range of commercial fish species (McGowan et al., 17	

1998). Here, we infer the behaviour of the nutrients and lower trophic levels using OBGC 18	

models, and the relationship of these changes to physical variables that are plausible drivers. 19	

Our novel approach based on change-point detection offers a helpful framework to evaluate 20	

previous modelling studies that have attempted to reproduce the extent of changes from 21	

physics to biology for the late 1970s shift in the Gulf of Alaska (e.g. Polovina et al., 1995; 22	

Haigh et al., 2001; Capotondi et al., 2005; Alexander et al., 2008). For example, Haigh et al. 23	

(2001) used the Miami isopycnic coordinate ocean model combined with an ecosystem 24	

model of 4 compartments (Denman and Peña, 1999) to show that a year-round deepening of 25	

the mixed layer depth after 1976 led to a slight decrease in nutrients and phytoplankton as 26	

well as zooplankton biomass. These findings are broadly consistent with the model 27	

simulations analysed here. Other studies instead suggest that the MLD shoaled after 1977 28	

resulting in increased plankton production in the region. This is the case in the Polovina et al. 29	

(1995) study, which suggested that shoaling in the spring/winter MLD led to increased 30	

productivity in a plankton population dynamics model. More recently, Alexander et al. 31	

(2008) used the National Center for Atmospheric Research Climate System Model Ocean 32	

Model (NCOM) combined with a biological model that contains 10 compartments (Chai et 33	
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al., 2002) to simulate the chain of events in the region. In that study, an increase in SST 1	

simulated in the late 1970s is accompanied by a shoaling in the winter mixed layer depth, 2	

giving rise to an early spring increase in primary production, phytoplankton and zooplankton 3	

biomass followed by a late spring decline in both phytoplankton and zooplankton biomass. 4	

Despite the caveat that we are analysing annual mean time series it is important to point out 5	

the contradictory direction of change in mixed layer depth. Possibly reconciling this 6	

discrepancy, Capotondi et al. (2005) suggest, based on NCOM model simulations, a 7	

deepening trend in MLD in a broad band along the coast and shoaling in the central part of 8	

the Gulf of Alaska. Thus, the comparison of the various attempts to simulate the late 1970s 9	

regime shift of the Gulf of Alaska raises the possibility that the observed abrupt and spatially 10	

coherent ecosystem change was actually caused by a previously unappreciated heterogeneous 11	

set of environmental changes with distinct spatial pattern and timing in the annual cycle. If 12	

so, the inherent assumption underpinning our own and previous work to understand the Gulf 13	

of Alaska ecosystem shift as a single mechanistic causal sequence may be overly simplistic.  14	

Consequently, future analysis aimed at spatial and temporal heterogeneity of abrupt regional 15	

ecosystem change has the potential to greatly improve our understanding of the underlying 16	

dynamics and the vulnerability of marine ecosystems to abrupt future changes.  17	

A second major outcome of this study involves the role of model complexity in determining a 18	

system’s propensity for abrupt ecosystem change. All the OBGC models used in this study 19	

have the same underlying physical model, and were run with the same initial conditions and 20	

forcing fields. Their performance in terms of a fit to observations has been assessed globally 21	

in a previous study by Kwiatkowski et al. (2014), showing that all models have skills in 22	

simulating some variables, but simpler models were broadly closer to observations overall. In 23	

the Gulf of Alaska, the five models systematically differ in nutrient and biological responses 24	

as a function of model ecosystem complexity. Simple to intermediate complexity models 25	

such as HadOCC, Diat-HadOCC, and MEDUSA simulate a shift in the late 1970s, which 26	

manifests as an abrupt change in SST and many nutrients and biological parameters. As the 27	

model complexity increases to PlankTOM10 and ERSEM, these changes are mostly in the 28	

same direction but become less abrupt. The simpler models have fewer plankton groups 29	

responding to environmental changes (both HadOCC and Diat-HadOCC have one 30	

zooplankton group, and Diat-HadOCC has two phytoplankton groups), which might explain 31	

a more direct response than a model with a larger number of plankton groups interacting with 32	

each other. More complex models could potentially unveil shifts in the community structure 33	
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(i.e. increase of a certain type of plankton and decrease of another one), as regime shifts can 1	

affect different species in opposite ways (Benson and Trites, 2002). Feedbacks and 2	

interactions between groups in the models are in need of thorough exploration to determine 3	

how they affect the simulation of observed regime shifts. Such differences between model 4	

results raise the question as to what degree of model complexity is needed to appropriately 5	

simulate the complexity of regime shifts in the real world. Extremely simple models are easy 6	

to interpret but may not be able to reproduce realistic behaviour, while too much complexity 7	

will lead to uncertainty and problems in interpretation of the model (Allen et al., 2010). 8	

Given the observed differences between models, our results suggest caution on relying on a 9	

single “ultimate” model for understanding regime shifts behaviour and rather favour multiple 10	

lower to intermediate complexity models, as recommended by Fulton et al. (2003). However, 11	

our results should not be generalised too easily, as we focused uniquely on the Gulf of Alaska 12	

region here. More complex models could outperform simple models in different ecosystems. 13	

For example, higher complexity models have been suggested to be more portable (i.e. ability 14	

to perform well in diverse regions and physical settings) in a comparative study focusing on 15	

the equatorial Pacific and Arabian Sea (Friedrichs et al., 2007). Future work should involve a 16	

regime shift analysis in several ecosystems using models with traceable complexity. 17	

Furthermore, an ensemble approach to quantify the effects of model and internal variability 18	

uncertainty in regime shift detection would be beneficial.  19	

Our analysis suggests that the Gulf of Alaska regime shift is consistent with a linear response 20	

to physical forcings on lower trophic levels, showing a bottom-up response due to changes in 21	

the physical environment controlled via nutrient limitation, with a potential amplified 22	

response from ZOO (only in HadOCC and Diat-HadOCC). This result is in agreement with 23	

the linear tracking window hypothesis (Hsieh and Ohman, 2006), which suggests that some 24	

populations can respond linearly to abrupt changes in physical forcing, as opposed to an 25	

amplified nonlinear response to small changes in forcing (e.g. Scheffer et al., 2009). 26	

However, it must be noted that our analysis is lacking top-down controls from upper trophic 27	

levels beyond zooplankton, and thus only partly resolves possible explanations for the 28	

observed regime shifts in the Gulf of Alaska. Many drivers (and their synergistic effects) may 29	

combine to fully explain regime shifts (Lindegren et al., 2012; Litzow et al., 2014). Models 30	

including upper trophic levels able to simulate regime shifts would also be beneficial to better 31	

understand the mechanisms leading to the shift and estimate critical thresholds. 32	
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Finally, beyond model complexity and the spatial and temporal resolution at which the output 1	

is analysed, the state-of-the-art in statistical techniques for regime shift detection is an active 2	

area of research. Here we employ an approach to detect shifts and distinguish them from a 3	

long-term trend and background red noise, i.e. evaluate if the shift is unusually large given 4	

the fluctuations that would be expected in the presence of autocorrelation and/or a trend 5	

(Beaulieu et al., 2012), which is an improvement over previous methodologies. A main 6	

current limitation of this methodology is the ability to detect at most one shift and in one time 7	

series at a time (univariate), but work to extend the methodology to detect multiple shifts in a 8	

multivariate setting is under way. Furthermore, we distinguish against a background of red 9	

noise, which is assumed constant through the time series, but the presence of changes in the 10	

red noise through time could affect the results. For example, a recent study suggests a 11	

“reddening” of the PDO and North Pacific SST as an explanation for occurrences of abrupt 12	

changes in the North Pacific ecosystem (Boulton and Lenton, 2015). However, this is 13	

unlikely to affect our results given the time scale (annual means) and length of the time series 14	

(51 years) used in this study. Further, we suggest here that analysis of the forcing-response 15	

relationship helps to distinguish between a regime shift with a linear response to a shift in 16	

forcing, and a nonlinear response after crossing a forcing threshold, as originally proposed by 17	

Bestelmeyer et al. (2011). Here we used a test that is based on a quantitative comparison of 18	

the forcing-response relationship before and after the shift. This approach can be used to 19	

detect other marine or terrestrial regime shifts and distinguish between a linear and a 20	

nonlinear response to external forcing. For management purposes, distinguishing between 21	

these two types of forcing-response relationship producing regime shifts is critical, as they 22	

will lead to different management and policy incentives (Kelly et al., 2015). For example, a 23	

routine monitoring of threshold-based systems leads to better management outcomes than 24	

“threshold-blind” management, i.e. when ignoring the possibility of a threshold and assuming 25	

a linear forcing-response relationship (Kelly et al., 2015). 26	

	27	

  28	
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Appendix A 1	

This appendix presents the results of the principal component analysis and change-point 2	

analysis on PC1 of each model excluding the physical parameters (SST and MLD).  3	

	4	
	5	
Table A1. Results from change-point detection analysis on the first principal component 6	

(PC1) of each model. Years in bold have a significant shift (p-value < 0.05).  7	

Model Shift 
year Shift type SIC SIC 

(Null model) p-value 

HadOCC 1977 mean 176.15 220.43 <0.01	a,	c 

DiatHadOCC 1976 mean 181.69 236.08 <0.01	c 

MEDUSA 1978 trend and intercept 175.85 205.84 <0.01	 

PlankTOM10 1987 intercept 133.19 144.83 0.19	c 

ERSEM 1987 intercept 188.46 192.14 0.64	c 
 8	
a residuals not normally distributed (Lilliefors test, 5% critical level) 9	
b residual variance not constant (Fisher test, 5% critical level) 10	
c residuals not independent (Durbin-Watson test, 5% critical level): the Monte Carlo simulations to estimate the 11	
p-value incorporates the first-order autocorrelation of the residuals. 12	
 13	
	14	

Table A2. Results of the principal component analysis: percentage of variance explained by 15	

the first principal component (PC1) and relative contributions of the different variables to this 16	

component.  17	

Model 
Variance 
explained 

(%) 

Relative contribution (%) 

CHL PP PHY ZOO DIN FE SI 

HadOCC 77.13 22.62 13.93 22.70 19.67 21.09 - - 

DiatHadOCC 74.90 15.60 14.52 15.74 15.23 13.68 14.50 10.74 

MEDUSA 45.29 15.34 13.30 15.38 12.68 17.26 12.34 13.70 

PlankTOM10 79.37 16.52 16.44 16.85 16.16 16.67 1.71 15.64 

ERSEM 61.99 14.77 16.84 9.21 14.30 11.95 17.01 15.91 
	18	
	  19	
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Appendix B 1	

This appendix presents the results of the change-point analysis for all parameters simulated 2	

from the five models. The physical parameters (SST and MLD) are omitted here as they are 3	

presented in Fig. 3. The chosen model for each variable and each OBGC model is presented 4	

in Table B1. 5	

6	
Figure B1. Time series of a) surface chlorophyll, b) integrated primary production, c) total 7	

surface phytoplankton, d) zooplankton biomass and e) surface dissolved inorganic nitrogen 8	

simulated with the HadOCC model and averaged over the Gulf of Alaska region. The dotted 9	

lines represent the statistical model selected. 10	

  11	
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 1	

Figure B2. Time series of a) surface chlorophyll, b) integrated primary production, c) total 2	

surface phytoplankton, d) zooplankton biomass and e) surface dissolved inorganic nitrogen, 3	

f) silica and g) iron simulated with the DiatHadOCC model and averaged over the Gulf of 4	

Alaska region. The dotted lines represent the statistical model selected. 5	

  6	
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 1	

Figure B3. Time series of a) surface chlorophyll, b) integrated primary production, c) total 2	

surface phytoplankton, d) zooplankton biomass and e) surface dissolved inorganic nitrogen, 3	

f) silica and g) iron simulated with the MEDUSA model and averaged over the Gulf of 4	

Alaska region. The dotted lines represent the statistical model selected.  5	
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 1	

Figure B4. Time series of a) surface chlorophyll, b) integrated primary production, c) total 2	

surface phytoplankton, d) zooplankton biomass and e) surface dissolved inorganic nitrogen, 3	

f) silica and g) iron simulated with the PlankTOM10 model and averaged over the Gulf of 4	

Alaska region. The dotted lines represent the statistical model selected.  5	
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 1	

Figure B5. Time series of a) surface chlorophyll, b) integrated primary production, c) total 2	

surface phytoplankton, d) zooplankton biomass and e) surface dissolved inorganic nitrogen, 3	

f) silica and g) iron simulated with the ERSEM model and averaged over the Gulf of Alaska 4	

region. The dotted lines represent the statistical model selected. 5	

  6	
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Table B1. Results from change-point detection analysis for all observational and modelled 1	

time series. Years in bold have a significant shift (p-value < 0.05). 2	

 

Parameter 
 

Shift 
year 

Shift type 
 

SIC 
 

SIC  

(Null model) 
p-value 
 

Observations 

SST 1976 trend and intercept 52.79 70.63 <0.01 

PDO 1976 intercept 104.94 120.11 0.02 

ENSO 1976 mean 116.04 120.42 0.11 

NPGO 1998 trend and intercept 137.79 147.12 0.28 c 

All models 
SST 1976 trend and intercept 58.39 74.15 <0.01 

MLD 1987 intercept 230.22 234.25 0.25 

HadOCC 

CHL 1977 mean -138.40 -108.32 <0.01 c  

PP 1991 intercept -264.06 -235.87 <0.01b, c 

PHY 1977 mean -211.46 -177.59 <0.01 c  

ZOO 1977 mean -339.68 -315.70 <0.01 

DIN 1977 mean 139.52 175.85 <0.01 c  

DiatHadOCC 

CHL 1976 mean -44.93 -13.82 <0.01 

PP 1976 mean -216.45 -190.71 <0.01 c  

PHY 1976 intercept -157.13 -155.59 0.53 

ZOO 1976 intercept -298.90 -297.33 0.59 

DIN 1978 trend and intercept 151.10 202.7 <0.01 c  

SI 1978 trend and intercept 167.04 230.11 <0.01 c  

FE 1978 mean -1035.5 -990.86 <0.01 c  

MEDUSA 

CHL 1997 intercept -287.1 -274.71 0.01 

PP 1991 intercept -308.90 -293.98 0.02 c 

PHY 1961 mean -342.52 -328.88 <0.01 

ZOO 1961 mean -260.89 -243.23 <0.01 

DIN 1978 trend and intercept 157.02 180.64 <0.01 c  

SI 1966 trend and intercept 201.11 217.83 0.09 c 

FE 1977 intercept -946.48 -938.51 0.10 c 

PlankTOM10 

CHL 1978 intercept -221.06 -214.48 0.24 c 

PP 1991 trend and intercept -277.74 -258.29 <0.01b, c 

PHY 1986 intercept -1481.6 -1472.22 0.18 c 
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ZOO 1988 intercept -1427.8 -1414.98 0.16 a, b, c 

DIN 1978 trend and intercept 48.07 62.65 0.07 c 

SI 1987 intercept 233.68 240.68 0.29 c 

FE 1983 intercept -960.84 -954.91 0.12 a, c 

ERSEM 

CHL 1976 mean -162.70 -151.07 0.01 c  

PP 1961 trend and intercept -211.38 -207.73 0.49 b, c 

PHY 2002 mean 95.40 101.6 0.04  

ZOO 1961 trend and intercept 175.98 185.44 0.07 c 

DIN 1964 trend and intercept 6.58 16.48 0.10 c 

SI 1991 intercept 122.52 153.74 0.01 c  

FE 1986 intercept -414.51 -412.18 0.57 c 
a residuals not normally distributed (Lilliefors test, 5% critical level) 1	
b residual variance not constant (Fisher test, 5% critical level) 2	
c residuals not independent (Durbin-Watson test, 5% critical level): the Monte Carlo simulations to estimate the 3	
p-value incorporates the first-order autocorrelation of the resduals. 4	
	 	5	
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Table 1. Nutrient cycles and Plankton Functional Types represented in each model. 1	

  HadOCC Diat-
HadOCC 

MEDUSA PlankTOM10 ERSEM 
N

ut
rie

nt
s 

Nitrogen x x x x x 

Phosphorous    x x 

Silica  x x x x 

Iron  x x x x 

Carbon x x x x x 

Alkalinity x x x x x 

Pl
an

kt
on

 F
un

ct
io

na
l T

yp
e 

Generic 
phytoplankton x x  x  

Diatoms  x x x x 

Large phytoplankton     x 

Picoplankton   x x x 

Coccolithophores    x  

N2 fixers    x  

Flagellates     x 

Phaeocystis    x  

Generic zooplankton x x    

Microzooplankton   x x x 

Mesozooplankton   x x x 

Macrozooplankton    x  

Heterotrophic 
nanoflagellates     x 

Bacteria    x x 

 Tracers 7 13 15 39 57 

  2	
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Table 2. List of models fitted in this study with their associated Schwarz Information 1	

Criterion (SIC) formulation. 2	

Model 
description  Equations 

(I) Constant 
mean  

 

yt = µ +εt (t =1,...,n)  
where yt represents the time series, µ is the mean, εt  are the random errors, t is the time 

and n is the length of the time series 
SICI = n log(RSS)+ n(1+ log(2π ))+ (2− n)log(n)  

RSS = (yt
t=1

n

∑ − µ̂)2 , where µ̂  is the maximum likelihood estimates of µ  

(II) Shift in 
the mean  

 

yt =
µ1 +εt (t =1,..., p)
µ2 +εt (t = p+1,...,n)
!
"
#  

whereµ1 and µ2 are the means before and after the shift at time p 
SICII (p) = n log(RSS)+ n(1+ log(2π ))+ (3− n)log(n)  

RSS = (yt
t=1

p

∑ − µ̂1)
2 + (yt

t=p+1

n

∑ − µ̂2 )
2 , where µ̂1 and µ̂2  are the maximum likelihood 

estimates of µ1 andµ2   

(III) Linear 
trend  

 

yt = λ +βt +εt (t =1,...,n)  
whereλ  is the intercept and β the trend of the linear regression model 

SICIII = n log(RSS)+ n(1+ log(2π ))+ (3− n)log(n)  

RSS = (yt
t=1

n

∑ − λ̂ − β̂t)2 , where λ̂ and β̂  are the maximum likelihood estimates of λ

andβ   

(IV) Shift in 
the intercept 

and same 
linear trend  

 

yt =
λ1 +βt +εt (t =1,..., p)
λ2 +βt +εt (t = p+1,...,n)
!
"
#  

whereλ1 and λ2 are the intercept before and after the shift 
 SICIV (p) = n log(RSS)+ n(1+ log(2π ))+ (4− n)log(n)  

RSS = (yt
t=1

p

∑ − λ̂1 − β̂t)
2 + (yt

t=p+1

n

∑ − λ̂2 − β̂t)
2  , where λ̂1 , λ̂2 and β̂  are the 

maximum likelihood estimates of λ1 , λ2  and β  

(V) Shift in 
both the 

intercept and 
linear trend  

 

yt =
λ1 + β1t + ε t (t =1,..., p)
λ2 + β2t + ε t (t = p +1,...,n)

⎧
⎨
⎩  

where β1  and β2  are the trend before and after the shift 

 

, where λ̂1 , λ̂2 , β̂1  and β̂2  are the 

maximum likelihood estimated of λ1 , λ2 , β1  and β2  
* All these models rely on the assumption that the random errors are independent and identically normally 3	
distributed εt ~ N(0,σ

2 )   4	

SICV (p) = n log(RSS)+ n(1+ log(2π ))+ (5− n)log(n)

RSS = (yt
t=1

p

∑ − λ̂1 − β̂1t)
2 + (yt

t=p+1

n

∑ − λ̂2 − β̂2t)
2
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Table 3. Results from change-point detection analysis on the first principal component (PC1) 1	

of each model. Years in bold have a significant shift (p-value < 0.05).  2	

Model Shift 
year Shift type SIC SIC 

(Null model) p-value 

HadOCC 1977 mean 180.62 225.69 <0.01	a,	c 

DiatHadOCC 1976 mean 185.55 240.42 <0.01	c 

MEDUSA 1978 trend and intercept 184.54 207.00 <0.01	c 

PlankTOM10 1987 intercept 141.14 152.90 0.21	c 

ERSEM 1987 intercept 189.09 192.55 0.63	c 
 3	
a residuals not normally distributed (Lilliefors test, 5% critical level) 4	
b residual variance not constant (Fisher test, 5% critical level) 5	
c residuals not independent (Durbin-Watson test, 5% critical level): the Monte Carlo simulations to estimate the 6	
p-value incorporates the first-order autocorrelation of the residuals. 7	
 8	
	 	9	
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Table 4. Results of the principal component analysis: percentage of variance explained by 1	

the first principal component (PC1) and relative contributions of the different variables to this 2	

component.  3	

Model 
Variance 
explained 

(%) 

Relative contribution (%) 

SST MLD CHL PP PHY ZOO DIN FE SI 

HadOCC 61.09 13.53 2.69 19.02 11.08 18.91 16.82 17.94 - - 

DiatHadOCC 63.42 10.41 1.92 13.88 12.84 13.93 13.51 11.85 12.50 9.16 

MEDUSA 36.33 10.16 0.94 15.91 7.34 9.90 6.18 19.07 16.31 14.18 

PlankTOM10 66.05 7.74 6.25 14.29 13.99 14.59 14.27 14.30 1.10 13.48 

ERSEM 50.74 8.88 1.31 14.08 15.05 8.32 12.71 9.63 15.86 14.18 
 4	
  5	
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Table 5. Forcing-response regressions in HadOCC, Diat-HadOCC and MEDUSA with sea 1	

surface temperature (SST) as the physical forcing and surface chlorophyll (CHL), integrated 2	

primary production (PP), total surface phytoplankton (PHY) and zooplankton biomass (ZOO) 3	

as the responses. The slopes of the linear regressions between the forcing and response before 4	

and after the shift are compared using a test of equality of two regression slopes. Bold 5	

indicates significant slope differences (p-value < 0.05). 6	

HadOCC 
Forcing Response Slope 1957-1976 

(standard error) 
Slope 1977-2007 
(standard error) 

Test statistic  p-value 

SST CHL -0.025 (0.028) -0.008 (0.024) 1.407 0.166 
PP 0.000 (0.005)  0.021 (0.011) -1.703 0.095 

PHY -0.008 (0.014) -0.030 (0.013) 1.179 0.245 
ZOO 0.002 (0.004) -0.012 (0.003) 2.823 0.007 

Diat-HadOCC 
Forcing Response Slope 1957-1976 

(standard error) 
Slope 1977-2007 
(standard error) 

Test statistic  p-value 

SST CHL -0.121 (0.071) -0.217 (0.052) 1.095 0.279 
PP -0.033 (0.012) b -0.022 (0.012) -0.666 0.508 

PHY -0.028 (0.025) -0.069 (0.018) 1.345 0.185 
ZOO -0.002 (0.006) -0.018 (0.005) 2.034 0.048 

MEDUSA 
Forcing Response Slope 1957-1976 

(standard error) 
Slope 1977-2007 
(standard error) 

Test statistic  p-value 

SST 
CHL 

0.002 (0.006) -0.013 (0.007) 1.476 0.146 
PP 0.019 (0.004) 0.020 (0.005)  -0.129 0.898 

PHY 
0.014 (0.004) 0.006 (0.004) 1.458 0.151 

ZOO 
0.039 (0.007) 0.027 (0.007) b 1.132 0.263 

a residuals not normally distributed (Lilliefors test, 5% critical level) 7	
b residual variance not constant (Breusch Pagan test, 5% critical level) 8	
  9	
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 1	

Figure 1. Five types of statistical models that were fitted to the data. The solid lines are 2	

synthetic time series drawn from a model with (I) a constant mean, (II) shift in the mean, (III) 3	

trend, (IV) shift in the intercept of the trend (the trend is the same before and after the shift) 4	

and (V) shift in both the intercept and trend. The constant mean (I) is the null model for a 5	

shift in the mean (II) when testing for significance. Similarly, the trend model (III) is the null 6	

model to test the shift significance when the model selected is either a shift in the intercept 7	

(IV) or a shift in both the intercept and trend (V). The corresponding models are further 8	

described in Table 2. Figure adapted from Beaulieu et al. (2012).   9	

Time
0 50 100

(I) Constant mean

Time series
Model fit

Time
0 50 100

(II) Shift in the mean

Time
0 50 100

(III) Trend

Time
0 50 100

(IV) Shift in the intercept

Time
0 50 100

(V) Shift in the intercept and trend



	 42	

 1	

 2	

Figure 2. Timing of shift detected in observed sea surface temperature in the North Pacific 3	

using change-point analysis showing a predominant signal in 1977.  White areas indicate 4	

where a shift is not significant (p-value < 0.05). The black box indicates the Gulf of Alaska 5	

region used in this study. 6	

 7	

  8	
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 1	

 2	

Figure 3. Time series of (a) simulated sea surface temperature (SST), (b) observed SST and 3	

(c) simulated mixed layer depth (MLD) for the Gulf of Alaska. The simulated time series of 4	

SST and MLD are the same in the five ocean models used. Time series of large-scale 5	

oscillations representing the climate in the Gulf of Alaska: (d) Pacific Decadal Oscillation 6	

(PDO) index, (e) North Pacific Gyre Oscillation (NPGO) index and (f) Multivariate El Niño 7	

Southern Oscillation index (MEI). The grey dotted lines represent the statistical model 8	

chosen (see Table A1) to fit these time series.  Both the simulated SST and observed SST 9	

exhibit a significant shift in intercept and trend occurring in 1976 (p-value < 0.05, see Table 10	

A1). The MLD time series does not exhibit a significant shift and is best represented by a 11	

linear trend. Among the large-scale oscillations, only the PDO exhibits a significant shift in 12	

1976. 13	

  14	
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 1	
Figure 4. First principal component (PC1) of sea surface temperature, mixed layer depth, 2	

surface dissolved inorganic nitrogen, silica, iron, surface chlorophyll, integrated primary 3	

production, total surface phytoplankton and zooplankton biomass (if available) averaged over 4	

the Gulf of Alaska for each model. 5	

 6	

  7	
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1	
Figure 5. Cumulative sums of the z-scores of simulated sea surface temperature (SST), 2	

mixed layer depth (MLD), surface dissolved inorganic nitrogen (DIN), silica (SI), iron (FE), 3	

surface chlorophyll (CHL), integrated primary production (PP), total surface phytoplankton 4	

(PHY) and zooplankton (ZOO) biomass for each model averaged over the Gulf of Alaska 5	

region. Z-scores are calculated by subtracting the mean and dividing by the standard 6	

deviation of each time series. Cumulative sums of the z-scores are then calculated. The 7	

vertical lines in 1977 provide a guide to the eye showing where the slopes change after 1977. 8	

  9	
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 1	

Figure 6. Relationships matrix between simulated sea surface temperature (SST) and the 2	

biological variables over the Gulf of Alaska region. Columns represent different models 3	

(HadOCC, DiatHadOCC and MEDUSA) and rows represent different biological variables 4	

(surface chlorophyll (CHL), integrated primary production (PP), total surface phytoplankton 5	

(PHY) and zooplankton biomass (ZOO)). Linear relationships are inferred for the periods 6	

1957-1976, 1977-2007 and 1957-2007 using least square regression. Table 5 presents test 7	

results on the similarity of these relationships. 8	
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