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Abstract 

Short Rotation Forestry (SRF) for bioenergy could be used to meet biomass 

requirements and contribute to achieving renewable energy targets. As an important 

source of biomass it is important to gain an understanding of the implications of 

large-scale application of SRF on the soil-atmosphere greenhouse gas (GHG) 

exchange. This study examined the effects of land use change (LUC) from grassland 

to SRF on soil fluxes of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2), 

and the important drivers in action. 

Examining soils from a range of sites across the UK, CO2 emission potentials were 

reduced under SRF with differences between coniferous and broadleaved transitions; 

these changes were found to be related to changes in soil pH and microbial biomass. 

However, there were limited effects of SRF tree species type on CH4 and N2O fluxes. 

A detailed study at an experimental SRF site over 16 months demonstrated a 

reduction in CH4 and net CO2 emissions from soils under SRF and revealed intriguing 

temporal dynamics of N2O under Sitka spruce and common alder. A significant 

proportion of the variation in soil N2O fluxes was attributed to differences between 

tree species, water table depth, spatial effects, and their interactions. The effects of 

microtopography (ridges, troughs, flats), and its interactions with water table depth 

on soil GHG fluxes under different tree species was tested using mesocosm cores 

collected in the field. Microtopography did not significantly affect soil GHG fluxes 

but trends suggested that considering this spatial factor in sampling regimes could 

be important. N2O fluxes from Sitka spruce soils did not respond to water table depth 

manipulation in the laboratory suggesting that they may also be determined by tree-

driven nitrogen (N) availability, with other research showing N deposition to be 

higher in coniferous plantations. An N addition experiment lead to increased N2O 

emissions with greatest relative response in the Sitka spruce soils.  

Overall, LUC from rough grassland to SRF resulted in a reduction in soil CH4 

emissions, increased N2O emissions and a reduction or no change in net CO2 

emissions. These changes in emissions were influenced both directly and indirectly 



 

by tree species type with Sitka spruce having the greatest effect on N2O in particular, 

thus highlighting the importance of considering soil N2O emissions in any life cycle 

analysis or GHG budgets of LUC to SRF for bioenergy. This research can help inform 

decisions around SRF tree species selection in future large-scale bioenergy planting.  

  



 

Table of contents 

1 Introduction and research aims ...................................................................................... 1 

1.1 Bioenergy and policy ............................................................................................ 1 

1.2 Bioenergy and land use change .......................................................................... 3 

1.3 Soil-atmosphere greenhouse gas exchange ....................................................... 8 

1.4 Short rotation forestry for bioenergy................................................................ 13 

1.5 Research aims and experimental approach ..................................................... 17 

2 Bioenergy driven land use change impacts on soil greenhouse gas regulation 

under Short Rotation Forestry ..................................................................................... 19 

2.1 Abstract ................................................................................................................ 20 

2.2 Introduction ......................................................................................................... 21 

2.3 Materials and methods ....................................................................................... 23 

2.4 Results ................................................................................................................... 29 

2.5 Discussion ............................................................................................................ 36 

2.6 Conclusions .......................................................................................................... 41 

3 Differential effects of tree species considered for SRF on soil GHG fluxes ....... 42 

3.1 Abstract ................................................................................................................. 43 

3.2 Introduction ......................................................................................................... 45 

3.3 Materials and methods ....................................................................................... 49 

3.4 Results ................................................................................................................... 57 

3.5 Discussion ............................................................................................................ 68 

3.6 Conclusions .......................................................................................................... 76 

4 Effects of tree species, water table and microtopography on soil GHG fluxes .. 77 

4.1 Abstract ................................................................................................................. 78 

4.2 Introduction ......................................................................................................... 79 

4.3 Materials and methods ...................................................................................... 83 

4.4 Results .................................................................................................................. 87 

4.5 Discussion ............................................................................................................ 99 

4.5 Conclusions ........................................................................................................ 108 

 



 

5 Discussion and conclusions ........................................................................................ 109 

5.1 Land use change and SRF ................................................................................ 110 

5.2 Sources of variation in field GHG fluxes ....................................................... 115 

5.3 Limitations and future study ........................................................................... 120 

6 References ....................................................................................................................... 123 

7 Appendix ........................................................................................................................ 154 

7.1 PLFA extraction and analysis (Chapter 2) ..................................................... 154 

7.2 Rainfall lags and N2O fluxes (Chapter 3) ....................................................... 156 

7.3 CO2 efflux data (Chapter 4) ............................................................................. 157 

7.4 CH4 flux data (Chapter 4) ................................................................................. 158 

7.5 N2O efflux data (Chapter 4) ............................................................................. 159 

 

 

 

  



Abbreviations 

BD – bulk density 

C – carbon 

CH4 – methane 

CO2 – carbon dioxide 

CO2eq. – carbon dioxide equivalent 

ECD – electron capture detector 

FID – flame ionisation detector 

GC – gas chromatograph 

GHG – greenhouse gas 

GMC – gravimetric moisture content 

GWP – global warming potential 

N – nitrogen 

N2O – nitrous oxide 

NH4+ – ammonium 

NO3- – nitrate 

PPM – parts per million 

PPB – parts per billion 

SOC – soil organic carbon 

SOL – soil organic layer 

SOM – soil organic matter 

SRC – short rotation coppice 

SRF – short rotation forestry 

WHC – water holding capacity 

WFPS – water-filled pore space 



 

 

Chapter 1. Introduction and research aims 

The global rise in temperature over the last century has been driven by increasing 

concentrations of atmospheric greenhouse gases (GHGs) such as carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O), among others. Anthropogenic 

activities such as fossil fuel combustion and land use change (LUC) have been the 

main contributors to these rising GHG concentrations (IPCC, 2007). Global warming 

is set to continue through the 21st century, with predicted increases in temperature of 

more than 2 °C combined with a more frequent occurrence of extreme weather events, 

which will greatly affect ecosystem functioning if urgent action is not taken (IPCC, 

2014). Climate stabilisation can be best achieved by reducing GHG emissions through 

the replacement of fossil fuels with renewable energy sources and by enhancing 

sequestration by maximising uptake of GHGs in the biosphere (Schulze et al., 2009; 

Ter-Mikaelian et al., 2015).  

Bioenergy is part of a suite of renewable energy sources under consideration as an 

alternative to fossil fuels with potential for GHG mitigation (Field et al., 2007; Don et 

al., 2012; Timilsina & Shrestha, 2011). Short rotation forestry (SRF) is one of the 

bioenergy crops currently being considered due to its high biomass yield capability, 

and its potential for GHG uptake and carbon (C) storage (Mckay, 2011). However, 

knowledge is currently limited regarding its large-scale potential and sustainability 

(Harris et al., 2015). This study focuses on the effects of LUC from grassland to various 

SRF species on soil GHG emissions and soil C. 

1.1 Bioenergy and policy 

Bioenergy is the production and use of energy or fuels from biomass feedstocks on a 

renewable basis. It is one of the most versatile forms of low C and renewable energy, 

with the potential to contribute to the generation of energy for electricity, heat and 

transport (Don et al., 2011; DECC, 2012). Bioenergy includes first and second 

generation biofuels for transport (bioethanol and biodiesel), gaseous fuels (e.g. 

Methane (CH4) captured from landfills) as an alternative to natural gas, and solid 
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biomass fuels such as firewood and biomass pellets for heating and electricity 

generation (Field et al., 2007; Whitaker et al., 2010; Don et al., 2011). First-generation 

bioenergy is produced from food crops, while second-generation bioenergy is 

derived from cellulosic, typically woody materials (Bartle & Abadi, 2010). Bioenergy 

provides approximately 10 % of the global renewable energy supply and accounts for 

about 80 % of the total renewable energy contribution (IEA, 2011). Some estimates 

suggest that 15-25 % of the world’s global energy demands by 2050 could be met 

through biomass production (Beringer et al., 2011), but this depends on land 

availability and sustainable yields (Smith et al., 2010). The European Union has 

committed to increase the proportion of renewable energy from 9% in 2010 to 20% of 

total energy consumption by 2020 (EU, 2009) and currently bioenergy contributes 

approximately two-thirds of total renewable energy in Europe (IEA, 2011). As set out 

in the 2011 UK Renewable Energy Roadmap, bioenergy is an important part of the 

Government’s plans to meet the Renewable Energy Directive objectives in 2020 

(target of 15% renewable energy by 2020). Bioenergy also has a role to play if the UK 

is to meet its low carbon objectives by 2050, which is a reduction in GHG emissions 

by at least 80% below 1990 levels (DECC, 2011). Only 3% of primary energy in the 

UK, however, is currently produced from bioenergy feedstocks (DECC, 2012). This is 

expected to increase in response to growing pressures for the decarbonisation of 

energy supply and as a result of technical advances in the use of lignocellulosic 

biomass for the production of liquid or gaseous fuels as well as for combustion for 

heat and power (Chum et al., 2012). 

The cost effectiveness of bioenergy (biomass) compared with other renewable energy 

technologies (Timmons et al., 2015) makes it an attractive option for contributing 

towards the delivery of renewable energy targets. Despite this, there are a number of 

concerns associated with biomass production and its sustainability: its C and GHG 

reduction potential, regarding land availability of bioenergy production and the 

consequences for food production, and the potential environmental impacts on air 

quality, biodiversity and water resources (Cowie et al., 2006; Rowe et al., 2009; 
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Whitaker et al., 2010; Don et al., 2011; Osborne & Jones, 2012). The original rationale 

for supporting bioenergy relied largely on the assumption that it could deliver 

genuine GHG emissions savings based on the principal that there is a negative 

balance between the C emitted during combustion and that fixed during 

photosynthesis. This was an oversimplification and it is now recognised that the 

production of biomass energy is not C neutral due to GHG emissions released during 

establishment and ground preparation, crop growth, land management, harvesting, 

processing and transportation (Field et al., 2007; Searchinger et al., 2009; Don et al., 

2011; Haberl et al., 2012). In addition, there may also be significant consequences of 

land use change (LUC) to bioenergy crops on soil C and GHG emissions (Fargione et 

al., 2008; Searchinger et al., 2008; Keith et al., 2015; Parmar et al., 2015). These 

previously neglected GHG emissions could potentially offset any C savings via 

reduced fossil fuel use and could increase the risk of bioenergy crops becoming C 

positive (Don et al., 2011; Zenone et al., 2015). Despite this, research and modelling 

work to date, albeit limited, suggests that bioenergy has the potential to mitigate GHG 

emissions and increase soil C storage (Hastings et al., 2009; Rowe et al., 2009; Dondini 

et al., 2014; Keith et al., 2015). However, in a meta-analysis carried out by Harris et al. 

(2015) it was identified that this potential for C saving and GHG mitigation is 

dependent on the original land use and the bioenergy crop being planted.  

1.2 Bioenergy and land use change 

Land use change (LUC) is second only to fossil fuel combustion as a source of global 

GHG emissions (IPCC, 2007). Djomo and Ceulemans (2012) define LUC as “changes 

in the areal extent of a particular land use over a given time period and within a given 

spatial entity”. From 1850-1998 approximately 270 Gt of C was emitted to the 

atmosphere as CO2 from fossil fuel combustion, and approximately 136 Gt as a result 

of LUC, with most of this coming from deforestation (Watson et al.,2000). 

Land use patterns have changed through time as a result of human needs, affected by 

advances in technology, government objectives and targets, environmental issues, 

and economic change (Rounsevell & Reay, 2009). Now, in order to help meet 
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international and European renewable energy and GHG emissions reduction targets, 

a significant amount of land may be converted to bioenergy production (DECC, 2011, 

Zona et al., 2013; Harris et al., 2015). The demand for land for biomass energy 

production augments the existing demands of agriculture and forestry which are 

already under pressure due to rising demands for food, goods and recreation from a 

growing population (Timilsina & Shrestha, 2011). Competition for land between 

energy crops and food should be minimal with second generation bioenergy crops, 

since they are generally established on abandoned agricultural land or marginal land 

(Dondini et al., 2014). In most cases soil C in this land is already substantially 

depleted, compared to its starting state, (>30%) as a result of cultivation or erosion 

(Grigal & Berguson, 1998). Recent estimates indicated that 35,000 km2 of land could 

potentially be made available for perennial energy crops in the UK without impacting 

on high quality agricultural land used for food production (Lovett et al., 2014). If this 

was achieved then up to 66% of the UK’s heat and 62% of electricity demands could 

be met (Wang et al., 2014a). Therefore, if considerable LUC takes place as a 

consequence of wide-scale bioenergy production, it is important to quantify the direct 

effects that this will have on the GHG balance and soil C stocks. 

Changes in land use greatly affect the cycling and storage of C and soil-atmosphere 

GHG exchange in ecosystems (Guo and Gifford, 2002; Rounsevell & Reay, 2009; 

Neumann-Cosel et al., 2011), and the magnitude of change in C storage depends on 

how physical, chemical and biological processes are altered over time under different 

land uses and management scenarios (Watson et al., 2000). Over recent years there 

has been an on-going debate about the C and GHG balance associated with bioenergy 

crop production and the direct and indirect effects of LUC (Harris et al., 2015). The 

direct effects are dependent on the transition type (i.e. the original land use and the 

type of bioenergy crop planned), due to differences in initial C stocks, crop related 

inputs and nutrient turnover, fertiliser requirement, ground preparation, 

management and harvesting regime, amongst others. For example, a recent meta-

analysis of 138 studies by Harris et al. (2015) found that the transition from arable 
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land use to short rotation coppice (SRC) or perennial grasses resulted in an increase 

in soil organic carbon (SOC), transition from grassland to SRC left SOC unchanged, 

and transitions from grassland to perennial grasses and forest to SRC both resulted 

in a reduction in SOC. Harris et al. (2015) found insufficient data to carry out a full 

meta-analysis for GHGs and highlighted the significant knowledge gap existing for 

the effects of LUC to bioenergy on soil-atmosphere GHG exchange. A further multi-

site study by Keith et al. (2015), examining the effects of LUC from agriculture (mostly 

grasslands) to different SRF species types on soil C, found that planting coniferous 

SRF species resulted in increased C stock compared to broadleaved species, which 

had no effect, while Eucalyptus species reduced soil C. Keith et al. (2015) also flag the 

need for bioenergy LUC effects on soil GHGs to be quantified, so that changes in soil 

C can be considered together with changes in soil-atmosphere GHG exchange in 

order to better predict the impacts of different transitions overall. It is also important 

to consider initial soil C stocks and crop rotation length when attempting to quantify 

LUC impacts. Land uses with high initial SOC such as grasslands on organic soils 

could be more susceptible to the effects of LUC to bioenergy crops (Poeplau et al., 

2011) as conversion could deplete soil C quite rapidly (Don et al., 2011) while it can 

take years to recover (Poeplau et al., 2011).  

Based on existing research, in the UK there are a number of potential LUC transitions 

scenarios to first and second generation bioenergy crops from grassland, arable and 

forestry land uses, and these are summarised in Table 1. Some transitions are more 

likely than others; for example, LUC from forestry to non-forest bioenergy crops is 

unlikely, and transitions to first generation crops are being increasingly challenged 

on sustainability grounds (Hill, 2007; Gomez et al., 2008). It has been suggested that 

first generation crops are unlikely to have a role in UK bioenergy supply post 2020 

due to developments in the production of second generation bioenergy crops for 

transport fuels (Heaton et al., 2008; Rowe et al., 2009). Hence, it is important to focus 

current and future research on transitions that are most likely such as from grassland 

or arable land to SRF, where greater uncertainties lie due to their novelty. 
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A number of non-bioenergy related meta-analyses on LUC and soil C have been 

published in the last decade on particular land use transitions, for example, from 

forest to agricultural land use (Murty et al., 2002), afforestation of agricultural land 

(Paul et al., 2002; Laganière et al., 2010), and across a range of transitions (Guo and 

Gifford, 2002). The meta-analysis by Guo and Gifford (2002) looked at the effects of 

LUC on soil C using 74 primary studies from across 16 countries. Increases in soil C 

were shown for LUC from forest to pasture (+8%), crop to pasture (+19%), crop to 

plantation forest (+18%) and crop to secondary forest (+53%), while decreases were 

shown for pasture to crop (-59%), forest to crop (-42%), forest to plantation (-13%), 

and pasture to plantation (-10%) (Guo & Gifford, 2002). These findings highlight the 

importance of previous land use on observed changes in soil C, with the greatest 

potential for soil C gains deriving from changing from crops to forestry (Laganière et 

al., 2010). Furthermore, tree species type appears to have an effect on soil C content; 

Guo and Gifford (2002) found that broadleaf plantations had little effect on soil C 

change while conifers such as pine reduced soil C by up to 12%. A later study by 

Laganière et al. (2010) found broadleaved plantations to have a positive effect on soil 

C following transition from agricultural land to forestry compared to pine and 

Eucalyptus species. Therefore, it is not only important to consider the original land use 

and the transitional land use in general terms, but also to consider the effects that 

LUC to and from individual species may have on soil C and GHG emissions.
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Table 1.1 Summary table of possible bioenergy land use transition in the UK, the likelihood of certain transitions both currently and in the future and our 

knowledge of the possible effects on soil properties. Likelihood refers to the likelihood of a given transition to bioenergy happening now. Arrows under 

future likelihood simply indicate direction of change, not the magnitude of direction (Anderson-Texeira et al., 2006; Dawson and Smith 2007; Gomez et 

al., 2008; Guo and Gifford, 2002; Heaton et al. 2008; Hill 2007; Post and Kwon 2000; RFA, 2008; Rowe et al., 2009). 

Bioenergy crop 

Original land use 

Grass Arable Forest 

Likelihood Future  
Likelihood Knowledge Likelihood Future 

Likelihood Knowledge Likelihood Future  
Likelihood 

Knowledge 

1st 

gen.  

Sugar Beet Med  Good V. High  Good Low  Good 

Wheat Med  Good V. High  Good Low  Good 

Oil Seed 
Rape Med  Good V. High  Good Low  Good 

2nd 

gen. 

Miscanthus Med  Poor High  Poor Low  Poor 

SRC Med  Poor High  Poor Low  Poor 

SRF Med  Poor High  Poor Low  Poor 
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The effects of LUC to bioenergy on soil C and GHG exchange may be dependent on 

the environmental context (Hastings et al., 2009; Hillier et al., 2009). Laganière et al. 

(2010) showed that climatic zone had a significant effect on change in SOC following 

afforestation of agricultural land, with the greatest increase found under a temperate 

maritime climate, such as that in the UK. However, climatic differences at a smaller 

regional scale could impact bioenergy crop yields and the soil environment (Aylott et 

al., 2010). Soil type could also modify the impact of LUC to bioenergy on soil C and 

GHG emissions. Laganière et al. (2010) showed that there is a greater increase in SOC 

following afforestation of agricultural land in soils with a high clay content and with 

a high pH. Paul et al. (2002) also noted the clay content of soil can influence changes 

in soil C following afforestation. Identifying scenarios (e.g., particular combinations 

of climate, soil type and crop) where changes in soil C are positive and soil GHG 

emissions are reduced is of great importance. 

1.3 Soil-atmosphere greenhouse gas exchange 

1.3.1 Soil greenhouse gases 

Greenhouse gases exist naturally in the atmosphere absorbing and emitting radiation 

within the thermal infrared range, and without them the earth would be too cold for 

human habitation (IPCC, 2007). However, since pre-industrial times atmospheric 

concentrations of the three primary GHGs (CO2, CH4 and N2O) have risen 

dramatically from 280 ppm to 391 ppm, from 715 ppb to 1803 ppb and from 270 ppb 

to 324 ppb in 2011, respectively (IPCC, 2013). This increase has been attributed to 

anthropogenic activities such as fossil fuel burning, land use change and intensified 

agriculture, resulting in the net effect of global warming through increased radiative 

forcing (IPCC, 2014). These GHGs are long lived in the atmosphere and have assigned 

global warming potentials (GWP’s) based on their radiative forcing, mean lifetime 

and emissions. Although, CH4 and N2O are termed trace gases, due to their relative 

low concentrations compared to CO2, their GWP on a molar mass basis over 100 years 

are 298 and 34 times greater than a unit of CO2, respectively (IPCC, 2013). Soils are 

8



 

 

important sources and sinks for these three major radiative forcing GHGs (Smith et 

al., 2007). 

1.3.1.1 Soil carbon and respiration 

Globally soils contain approximately 2500 Gt C (Lal, 2004), almost as much C as that 

of the atmosphere and terrestrial vegetation combined (Schimel, 1995). The 

distribution of this C varies with depth in the soil profile, with higher concentrations 

in the top one metre (Batjes, 1996). The amount of C in any soil depends on the type 

of ecosystem, the land use (current and historical) and the management scenario 

(Jobbágy and Jackson 2000). Carbon accumulation in soil represents the long-term net 

balance of photosynthesis and total respiration in terrestrial ecosystems (Schlesinger, 

1990).  

CO2 is removed from the atmosphere by plants during photosynthesis and 

approximately half is assimilated into the plant biomass where it is then allocated to 

leaves, stems, roots, branches and seeds (Raich & Schlesinger, 1992; Morison et al., 

2012). The remainder is released again to the atmosphere via a variety of processes 

termed collectively as ecosystem respiration (Trumbore, 2006). Ecosystem respiration 

is a product of both autotrophic respiration (i.e. that derived from living plant leaves 

stems and roots), and heterotrophic respiration which is as a result of the 

decomposition of non-living SOM and soil surface litter by soil organisms (Trumbore, 

2006). The difference between photosynthesis and ecosystem respiration is termed 

net ecosystem exchange (NEE) (Luo & Zhou, 2006). Soil respiration is the second 

largest global C flux after photosynthesis, estimated annually at around 80 Gt C 

(Raich & Potter, 1995) which is almost 10 times the annual amount of C emitted by 

burning fossil fuels (Marland et al., 2008), making it a key component of the global C 

balance (Raich et al., 2002). Heterotrophic respiration is most responsive to variables 

that control microbial activity such as temperature, soil moisture, nutrient availability 

and the quantity and quality of substrate available for decomposition (Hartley & 

Ineson, 2008; Bradford et al., 2010; Strickland et al., 2010). Whereas, autotrophic 

respiration is predominantly driven by photosynthetic rates (Tang et al., 2005; 
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Gomez-Casanovas et al., 2012) with some influence of temperature, the quantity of 

biomass, nutrient content and the supply of sugars for photosynthesis (Ryan et al., 

1997).  

1.3.1.2 Soil methane (CH4) fluxes 

CH4 is produced in soils mainly by methanogenic bacteria during the decomposition 

of organic material under anaerobic conditions and accounts for more than a third of 

all CH4 emissions (Smith & Conen, 2004; McNamara et al., 2008). In upland soils CH4 

can also be produced inside soil aggregates where anaerobic microsites occur (Dutaur 

and Verchot, 2007). Net CH4 emissions are commonly associated with poorly drained 

organic soils (McNamara et al., 2008), peatlands (Frolking et al., 2011) and rice paddy 

fields (Neue and Sass, 1994). Soils can also act as a sink for CH4, through the oxidation 

(uptake) of CH4 in the soil by methanotrophic bacteria under aerobic conditions 

(Hanson & Hanson, 1996). Uptake rates are generally low in agricultural soils due to 

the disturbance from agricultural practices and the addition of nitrogen (N) fertiliser 

which is known to inhibit CH4 oxidation (Steudler et al., 1989; Hütsch, 2001; Smith et 

al., 2000). Soil CH4 emissions to the atmosphere are calculated from the net balance 

between production and oxidation (Chan and Parkin, 2001). However, in many soils 

methanogenic and methanotrophic bacteria co-exist making it difficult to determine 

if certain soils are net sources or net sinks for CH4 (McNamara et al., 2008). CH4 

emissions are affected by a range of environmental and edaphic factors that regulate 

the activities of methanogenic and methanotrophic bacteria and the exchange of gases 

(McNamara et al., 2008). Important factors include water table depth (Moore & Dalva, 

1993; Ball et al., 1997; Frenzel & Karofeld, 2000; Mojeremane et al., 2010), soil moisture 

(Castro et al., 1994a; Gundersen et al., 2012), temperature (Crill et al., 1994; 

Christiansen & Gundersen, 2011), and soil diffusion (Ball et al., 1997; Dong et al., 

1998). The influence of these factors on the direction and magnitude of CH4 fluxes 

will vary depending on soil type, habitat, and plant species.  
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1.3.1.3 Soil nitrous oxide (N2O) fluxes 

Soils are a major source of atmospheric N2O emissions which occur from both natural 

and agricultural sources (IPCC, 2007; Wang et al., 2014b). Although emissions are 

highest from agricultural soils (Mosier et al., 1998), mainly due to the application of 

nitrogen rich fertilisers (Dobbie et al., 1999; Skiba & Smith, 2000), it is now recognised 

that forest soils may also represent a significant source of N2O (Zhang et al., 2008). 

N2O in soils is mainly produced from the two contrasting microbial processes of 

nitrification (De Boer & Kowalchuk, 2001) and denitrification (Gillam et al., 2008), and 

overall contributes approximately 70% to global N2O emissions (Syakila & Kroeze, 

2011). Nitrification and denitrification can occur simultaneously in soils but the rate 

at which each is occurring will depend on soil abiotic conditions (Butterbach-bahl et 

al., 2013; Wang et al., 2014b). Nitrification is an aerobic process and involves oxidation 

of ammonium (NH4+) to nitrite (NO2-) and then to nitrate (NO3-). When the 

concentration of oxygen is limited nitrifying bacteria can use NO2- and reduce it to 

NO and N2O (Smith et al., 2003). Denitrification is an anaerobic process and involves 

the reduction of NO3- to N2O (and N2). The largest emissions of N2O are generally 

linked to denitrification but conditions for nitrification are more common so these 

fluxes are not trivial (Skiba & Smith, 2000). N2O can also be consumed by soil 

microbes if environmental conditions are suitable, however, this process is still under 

debate (Chapuis-Lardy et al., 2007; Schlesinger, 2013). A number of abiotic and biotic 

factors control N2O fluxes in soils. Depth to water table (Martikainen et al., 1993; 

Hutttunen et al., 2003; Ball et al., 2007; Zenone et al., 2015) and soil water content 

(which determines water filled pore space (WFPS)) (Davidson, 1991; Dobbie et al., 

1999; Davidson et al., 2000; Christiansen & Gundersen, 2011; Gundersen et al., 2012; 

Butterbach-bahl et al., 2013) are important. Research has shown that N2O emissions 

are optimum at 70–80% (WFPS) depending on soil type (Davidson et al., 2000). Other 

important factors include, Soil N availability (Ryden & Lund, 1980; Liu & Greaver, 

2009; Gundersen et al., 2012; Zenone et al., 2015), depth of the organic (O) horizon 

(Borken & Brumme, 1997; Borken & Beese, 2006), soil pH (Weislien et al., 2009; 
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Gundersen et al., 2012), and temperature (Keeney et al., 1979; Skiba & Smith, 2000; 

Smith et al., 2003; Borken & Beese, 2006; Butterbach-bahl et al., 2013). N2O fluxes and 

the abiotic and biotic factors controlling them will be discussed in the context of SRF 

in more detail below. 

1.3.2 Role of soil microbes in the GHG and C balance 

Soil microbes are central to the functioning of terrestrial ecosystems, and as 

mentioned above they play important roles in carbon and nitrogen cycling, SOM 

decomposition, and soil-atmosphere GHG exchange (Zak et al., 2003; Waldrop & 

Firestone, 2006). The soil biological community is extremely diverse with up to 50 000 

bacterial species and 200 m of fungal hyphae existing in just 1 g of soil (Bardgett et 

al., 1993). Soil bacteria and fungi both decompose organic matter via the production 

of extracellular enzymes and the abundance of each in any soil is greatly determined 

by the chemical composition of the litter inputs (Waldrop & Firestone, 2004; Bray et 

al., 2012). Generally, microbial communities in soils that have poor quality litter 

inputs tend to have higher fungal:bacterial biomass than those with high quality litter 

inputs (Paustian & Schnürer, 1987; Gallo et al., 2004; Waldrop & Firestone, 2004). Soil 

bacteria can be further divided in to Gram-negative and Gram-positive bacterial 

groups. Gram-negative tend to dominate in soils with higher available organic matter 

and nitrogen availability (Fierer et al., 2003; Potthoff et al., 2006; Hossain et al., 2010), 

whereas Gram-positive bacteria and fungi are more abundant in soils with lower 

quality litter inputs (Bray et al., 2012). Microbes respond to changes in C dynamics 

driven by changes in the plant community (Kampichler et al., 1998; Kowalchuk et al., 

2002), therefore, LUC to bioenergy could result in shifts in microbial community 

composition which could affect soil-atmosphere GHG exchange. 
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1.4. Short Rotation Forestry for bioenergy 

1.4.1 What is Short Rotation Forestry? 

SRF is the practice of growing high density plantations (>2500 trees ha-1) of 

fast-growing native and non-native tree species on short rotational lengths (>10 years) 

and harvesting when the diameter at breast height (DBH) is 10—20 cm (Hardcastle, 

2006; McKay, 2011; Leslie et al., 2012). This silvicultural system is particularly suitable 

for bioenergy crop applications as it provides relatively high yields over short time 

frames (Proe et al., 2002; Hardcastle et al., 2006; Hoffmann & Weih, 2005; McKay, 

2011). SRF could provide added flexibility to the woody bioenergy supply in the UK 

as, unlike coppice crops, harvesting can take place year round, and the product has a 

lower bark and moisture content and a higher density making it an ideal fuel source 

(Hardcastle et al., 2006; Leslie et al., 2012). Biomass yields of SRF may also be higher 

than coppice systems per unit area (McKay, 2011).There are a number of coniferous 

and broadleaved species currently being considered as potential biomass sources 

(Hardcastle, 2006; McKay, 2011; Leslie et al., 2012; Keith et al., 2015). However, 

experience of SRF in Britain is currently limited, although the Forestry Commission 

have been carrying out DECC funded trails at seven sites across England using 

various species including Eucalyptus species. Eucalypts are also grown successfully in 

warmer countries for biomass production such as in north-western Spain, where 

conditions are favourable for the globulus variety of this non-native species (González-

García et al., 2009). 

1.4.2 Current understanding of SRF effects on soil C and GHG emissions 

As a result of its novelty, current knowledge and datasets on SRF effects on soil C and 

soil GHG emissions are limited. A review carried out by McKay (2011) on the growth 

and environmental impacts of SRF suggested that LUC from arable crops to SRF 

could result in significant increases in soil C but that the effect of LUC from grassland 

was uncertain. McKay (2011) also suggested that any C gain would be tree species 

dependent due to differences in the quality and quantity of inputs between 
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broadleaves and coniferous species and their differential effects on the soil 

environment in general. A recent meta-analysis of 138 studies by Harris et al. (2015) 

examined the effects of LUC to second generation bioenergy crops on soil C and GHG 

and reported no change in soil C following transition from grassland to short rotation 

coppice systems. However, they were unable to quantify transitions from grassland 

to SRF as a result of insufficient available data and highlighted this as an area of 

research importance. 

Subsequently, the first detailed UK study and dataset on LUC effects of planting SRF 

for bioenergy on soil C stocks was carried out by Keith et al. (2015). This study 

examined soils following LUC from agricultural systems (mainly grasslands) to SRF 

collected from 11 different sites across the UK. It was observed that planting 

coniferous species led to an increase in soil C compared to the original land use as a 

result of high litter accumulation. While planting broadleaved species, although 

results were highly variable, resulted in no change in soil C stocks compared to the 

original land use. This work contributed to filling the knowledge gap surrounding 

the sustainability of SRF as a bioenergy feedstock, but no measurements of soil-

atmosphere GHG exchange were made. In order to determine the true GHG 

mitigation potential of an energy crop changes in GHG fluxes need to be quantified 

(Smith et al., 2013). 

Although there is a lack of data on SRF and soil GHG emissions, knowledge can be 

drawn on from what is known about forestry in general. A review carried out by 

Dalal and Allen (2008) quantified GHG fluxes from natural ecosystems at a global 

scale and found that temperate forests have the highest CH4 uptake rates of all natural 

systems. Dalal and Allen (2008) also recognised that contrary to prior belief, 

temperate forest soils could also be significant sources of N2O emissions. The strength 

of a forest soil’s sink or source potential will be affected by soil environment, climatic 

characteristics, tree species and forest growth stage (Barrena et al., 2013). In general 

terms CH4 uptake rates are larger in forest systems as a result of physical and 

biogeochemical changes in the soil environment that favour methanotrophic bacteria. 
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For example, porosity in forest soils is usually larger than in agricultural soils as a 

result of increased SOM and reduced compaction and disturbance, which increases 

the soil diffusion potential of the soil which aids CH4 oxidation (Ball et al., 1997; 

Prieme et al., 1997; Christiansen & Gundersen, 2011). Water table drawdown as a 

result of high demand for water by trees can create aerobic conditions in the soil that 

are optimal for methanotrophic activity (Hanson & Hanson, 1996). Certain tree 

species may enhance soil CH4 uptake more than others as a result of their differential 

effects on the soil (Borken & Beese, 2006; Yavitt & Williams, 2015). For example, 

coniferous trees are known to reduce soil pH which can in-turn regulate the activity 

of soil methanotrophs which are sensitive to soil acidity (Amaral et al., 1998). Borken 

et al. (2003) reported higher CH4 uptake in beech forest soils compared to Scots pine 

whilst other studies have found no difference in soil CH4 fluxes between tree species 

on similar soils (McNamara et al., 2008; Christiansen & Gundersen 2011). CH4 uptake 

suppression in response to high levels of available N can also occur in forest systems, 

where N-fixing species are planted or in areas of high atmospheric N deposition 

(Butterbach-bahl et al., 1998; Reay et al., 2001; Reay & Nedwell, 2004). 

Dalal & Allen (2008) have estimated that temperate forests have the potential to emit 

up to 8.07 kg N2O-N ha-1 y-1 which is by no means insignificant considering the high 

GWP of this species. Soil N2O production via the microbial processes of nitrification 

and denitrification is largely regulated by the availability of inorganic N (NH4+ and 

NO3-) (Liu & Greaver, 2009). This inorganic N can be delivered to the soil system via 

atmospheric deposition, via litter inputs or by fixation. This is of particular 

importance in forests where N deposition is known to be very high and in tree species 

selection, for example common alder fixes atmospheric N via actinomycorrhizal 

nodules and can therefore have high levels of NO3- in the soil and its litter (Reay et 

al., 2005). It is also well documented that deposition of atmospheric inorganic N is 

larger in coniferous forests than in deciduous (Rothe et al., 2002; Gundersen et al., 

2009). Therefore, coniferous stands receiving more N than adjacent broadleaved 

stands could potentially release more N2O as a result of increased N availability in 
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the soil. It has recently been discovered that soil fungi can directly contribute to soil 

N2O production, however, its significance is still under debate (Prendergast-Miller et 

al., 2011; Chen et al., 2014; Maeda et al., 2015). Prendergast-Miller et al. (2011) 

demonstrated under laboratory conditions that ectomycorrhizal fungi extracted from 

Sitka spruce root tips could produce N2O from nitrate production. As soil fungi are 

particularly dominant in acidic forest soils and are tolerant of high inorganic N 

concentrations (Chen et al., 2014) their contribution to N2O emissions may not be 

insignificant.  
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1.5 Research aims and experimental approach 

The urgent need to reduce global GHG emissions through the use of alternative 

energy sources to fossil fuels has been highlighted in this review. SRF is a promising 

biomass source that could contribute to such mitigation, and as a crop it is well suited 

to temperate climates such as that in the UK. Although forests soils are generally 

significant C sinks and have the potential to offset anthropogenic atmospheric GHG 

increases, the magnitude and dynamics of LUC effects could be impacted by the 

original land use, tree species, soil type and climatic conditions. 

The recent multi-site study by Keith et al. (2015) found that LUC from grassland to 

coniferous species resulted in an increase in soil C stock but did not take soil GHG 

emissions into consideration. The consideration of GHGs (CO2, CH4 and N2O) could 

have an impact on the overall sustainability of LUC and in some cases there is a risk 

of soil GHG emissions offsetting the CO2 uptake by the plantation (Zenone et al., 

2015). 

The overall aim of this research was to investigate the effects of LUC from grassland 

to various SRF species on soil emissions of the primary greenhouses gases (CO2, CH4 

and N2O), and to examine the importance of key factors and potential mechanisms 

underlying these effects. To address this aim, a combination of laboratory (Chapter 

2), field (Chapter 3) and mesocosm (Chapter 4) studies were undertaken. 

Chapter 2 first investigated GHG flux potentials in short term laboratory incubations 

from soils under grassland and a variety of tree species across six different sites in the 

UK. Differences between tree species type were examined and the effects of LUC on 

CO2 efflux were then related to changes in soil C stock and soil microbial community 

composition. This work was integrated as part of a UK wide campaign being 

undertaken for the Ecosystem Land Use Modelling consortium project led by the 

Centre for Ecology & Hydrology in Lancaster. This broad approach was followed by 

more focused in-depth approaches utilising a single experimental site.  
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Having identified broad LUC effects across a range of sites, Chapter 3 went on to 

investigate soil GHG emissions under grassland and monocultures of three different 

tree species over a 16 month period at the Gisburn Forest Experimental site (this site 

was examined in Chapter 2). The relative importance of a range of soil physical and 

chemical variables for GHG fluxes were assessed.  

Chapter 4 describes a medium-term manipulation study and an additional N addition 

experiment using intact mesocosms collected from the field site used in Chapter 3. 

This work extended the investigation of tree species effects on soil GHG emissions to 

focus on how water table depth and microtopography (as created during planting) 

may modify tree species effects on GHG emissions. 
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2.1 Abstract 

Second-generation bioenergy crops, including Short Rotation Forestry (SRF), have the 

potential to contribute to greenhouse gas (GHG) emissions savings through reduced 

soil GHG fluxes and greater soil C sequestration. If we are to predict the magnitude 

of any such GHG benefits a better understanding is needed of the effect of land use 

change (LUC) on the underlying factors which regulate GHG fluxes. Under 

controlled conditions we measured soil GHG flux potentials, and associated soil 

physico-chemical and microbial community characteristics for a range of LUC 

transitions from grassland land uses to SRF. These involved ten broadleaved and 

seven coniferous transitions. Differences in GHGs and microbial community 

composition assessed by phospholipid fatty acids (PLFA) profiles were detected 

between land uses, with distinctions between broadleaved and coniferous tree 

species. Compared to grassland controls, CO2 flux, total PLFAs and fungal PLFAs 

(expressed per g C), were lower under coniferous species but unaffected under 

broadleaved tree species. There were no significant differences in N2O and CH4 flux 

rates between grassland, broadleaved and coniferous land uses, though both CH4 and 

N2O tended to have greater uptake under broadleaved species in the upper soil layer. 

Effect sizes of changes across LUC transitions of CO2 flux and, soil pH, total PLFA 

and fungal PLFA were positively related. These relationships between fluxes and 

microbial community suggest that LUC to SRF may drive change in soil respiration 

by altering the composition of the soil microbial community. These findings support 

that LUC to SRF for bioenergy can contribute towards C savings and GHG mitigation. 
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2.2 Introduction 

Bioenergy currently accounts for almost two-thirds of the total renewable energy in 

Europe and much of this comes from energy crops (Osborne & Jones, 2012). 

Furthermore, the European Union has committed to increase the proportion of 

renewable energy from 9% in 2010 to 20% of total energy consumption by 2020 (EU, 

2009). Although there are competing land demands from activities such as food 

production, infrastructure, recreation and biodiversity (Smith et al., 2013), the 

rationale remains for converting certain land to bioenergy crop production (POST, 

2012). For a bioenergy crop to be considered as a viable and sustainable option in the 

future it must provide GHG savings in comparison to the use of fossil fuels (Rowe et 

al., 2009; Don et al., 2012). Impacts of LUC on GHG emission reduction are dependent 

on the land uses involved, but LUC to bioenergy has the potential to deliver GHG 

emissions savings through soil C sequestration, with the greatest potential following 

LUC from arable crops to forestry (Guo & Gifford, 2002; Laganière et al., 2010). In 

addition, and linked to changes in soil C, LUC can also influence GHG fluxes between 

the soil and the atmosphere (Houghton, 2003). 

Short Rotation Forestry (SRF) could contribute to biomass requirements for 

renewable energy targets (Mckay, 2011; Leslie et al., 2012). Although not currently 

widely practised in the UK commercially, a suite of species is under consideration for 

SRF, including coniferous and broadleaved species types (Hardcastle et al., 2006; 

Mckay, 2011; Leslie et al., 2012). Tree species can influence soil organic carbon (SOC) 

sequestration and GHG fluxes due to varying rates of rhizodeposition (Paterson et 

al., 2007), differences in above and below-ground C partitioning (Mokany et al., 2006) 

and differences in litter inputs and decomposition rates (Vesterdal et al., 2008). 

Litter decomposition rates are generally distinct between coniferous and broadleaved 

species, with litter decomposition most rapid for broadleaved species (Wedderburn 

& Carter, 1999; Peterken, 2001; Morison et al., 2012). Litter decomposition rates are 

strongly related to litter qualities including, litter N and lignin content, C/N ratio, and 

leaf area (Peterken, 2001; Reich et al., 2005; Hobbie et al., 2006; Vesterdal et al., 2008) 
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and these can vary greatly between tree species. Litter quality can also affect soil pH, 

which in turn can alter soil microbial activity affecting decomposition of soil organic 

matter (Morison et al., 2012). Roots also directly add organic material to the soil 

through exudation (rhizodeposition), fine root turnover and through coarse root 

shedding (Morison et al., 2012). Root-derived inputs (rhizodeposits) are chemically 

diverse and range in complexity from labile exudates to senescent material released 

as a consequence of tissue turnover (Paterson et al., 2009). These compounds provide 

a diverse source of substrate to soil microbial communities and are responsible for 

the stimulation of microbial biomass and activity in the rhizosphere (Paterson et al., 

2009). Soil microbial community composition can be measured by analysis of 

phospholipid fatty acids (PLFAs). PLFA analysis has become widely used to study 

soil microbial communities (Zelles, 1997; Zelles, 1999) and quantifies total soil 

microbial biomass and the proportions of bacteria and fungi. Total PLFA is well-

correlated with other methods for microbial biomass estimation and readily 

discriminate land use, soil type and land management practises (e.g. Bardgett et al., 

1996). 

Around half of soil respiration is derived from plant root respiration; the remaining 

respiration is associated with the decomposition of organic matter by the microbial 

community (Paterson et al., 2009; Morison et al., 2012). In the absence of root 

respiration, the rate of heterotrophic respiration (the CO2 mainly derived from soil 

microbial activity) is largely a function of microbial community composition and 

organic matter quality, and ultimately organic matter quality is regulated by plant 

inputs (Wardle et al., 2004; Bardgett et al., 2008). Examining this component of 

respiration following LUC to SRF may give an indication of how changes in organic 

matter quality, or differences between species types, influence CO2 fluxes. As 

emissions of methane (CH4) and nitrous oxide (N2O) contribute to climate change 

they must also be considered in LUC to forestry (Morison et al., 2012). It is generally 

accepted that forests are strong sinks for CH4 (Smith et al., 2000). N2O is a powerful 

GHG and has a global warming potential (GWP) 298 times that of CO2 (IPCC, 2007). 
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Unlike CH4 and CO2, N2O can be produced under both aerobic and anaerobic 

conditions and can be consumed in wet, nitrogen-poor soils (Chapuis-Lardy et al., 

2007). Recent studies indicate a tendency towards higher N2O emissions from 

deciduous than coniferous forest soils (Ambus et al., 2006; Pilegaard et al., 2006) due 

to differences in tree litter quality and soil moisture (Morison et al., 2012). 

Previous work examining changes in soil C stock following the establishment of 

different SRF species has shown greater litter accumulation, and an overall increase 

in soil C stock in coniferous soils (relative to agricultural controls) compared to 

broadleaved soils (Keith et al., 2015). Despite broadleaved species having no overall 

effect on soil C stock, the response was more variable suggesting that individual 

species influence soil C accumulation differently. When combined with estimates of 

C stocks in aboveground biomass the likelihood of C accumulation under conifers 

was further strengthened (Keith et al., 2015).  In addition to these findings on soil C, 

knowledge on GHG fluxes under SRF is needed to contribute to a better 

understanding of sustainability of this bioenergy land use. Therefore, this study 

examined potential soil GHG fluxes, under standardised conditions, from LUC 

transitions, and the associated changes in soil physico-chemical and soil microbial 

community characteristics. The gas flux measurements also yield additional 

information on the potential for the biological consumption and production of GHGs 

such as N2O and CH4. Specifically, this study tested for i) differences in GHG potential 

fluxes, soil physico-chemical (pH, % C) and microbial community characteristics 

between land uses (controls and different SRF species types), and ii) whether changes 

in soil physico-chemical (pH, % C) and microbial community characteristics could 

explain changes in CO2 flux. 

2.3 Materials and methods 

2.3.1 Site selection and sampling strategy 

Sampling was undertaken at six sites across the UK from replicated experimental and 

commercial SRF sites. A paired plots approach was used where SRF species and 
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adjacent land continuing in former land use could be identified at each location. To 

confirm that the soil for the control land use was comparable to the transitional SRF 

land use, data on management history and soil type had been collected and examined 

(Table. 1). Following soil sampling, texture analysis was carried out and was used to 

confirm similarity in soil type between control land use and transitional land use at 

each site (Table. 1). Expert advice and current literature on potential SRF tree species 

was also used to make an informed decision regarding suitable site selection (Proe et 

al., 2002; Hardcastle et al., 2006; McKay, 2011). The tree species chosen for this study, 

which have been broadly classified as coniferous (7 transitions) and broadleaved (10 

transitions), included common alder (Alnus glutinosa), Ash (Fraxinus excelsior), Downy 

birch (Betula pubescens), Hybrid larch (Larix x eurolepis), Poplar (Populus spp.), Scots 

pine (Pinus sylvestris), Silver birch (Betula pendula), Sitka spruce (Picea sitchensis), and 

Sycamore (Acer pseudoplatanus). All sites with the exception of the site in North-West 

England (20 years into its second rotation; Table. 1) are in their first rotation ranging 

in age from 12 to 24 years. 

A hierarchical sampling design was used to capture spatial variability (Keith et al., 

2015). Five sampling locations were randomly selected within each paired plot 

(transition) (i.e. control or tree species) using an overlain grid. At each randomly 

selected sampling location, soil cores were taken from three positions, resulting in 15 

spatially nested samples per transition. 

Three soil cores (30 cm x 4.8 cm) were taken at each sampling location using a split-

tube soil corer (Eijkelkamp Agrisearch Equipment BV, Giesbeek, The Netherlands), 

at the grid intersect and then at distances of 1 m and 1.5 m in random compass 

directions. Prior to soil sampling, the litter (L) and fermentation layers (Lf) were 

removed. Soil cores were divided into 0–15 cm and 15–30 cm sections in the field, 

bagged, and returned immediately to the laboratory where they were stored at 4 ° C.
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Table 2.1 Details and soil characteristics of sampling locations used to examine the effects of Short Rotation Forestry on soil greenhouse gas regulation in GB. 

Land uses in bold represent control land use. Management terms; Pasture = grazed grassland, Rough Pasture = seasonally or un-grazed grassland, F = fertilised, 

NF = No Fertiliser applied. Soil type based on the Avery soil classification; texture class derived based on the Soil Survey of England & Wales texture classes. 

C stock values represent means ± SD; n = 15. Table adapted from Keith et al. (2015).  

 

Region 
Lat

. 

Long

. 
Land use 

transition  
Established Management Soil type Texture class 

C stock  

(0–30 cm) 

t C ha-1 

Sampling  

Date 

Powys,  

Wales 
52.0 -3.6 

Grassland Pre 1988 Pasture. F: ’98 -’09 160kg N ha-1 
yr-1 

Brown earth Silt loam 76.2 ± 9.0 10 /02/2012 

H. Larch 1988 N F Brown earth Silt loam 76.3 ± 8.4 10 /02/2012 

Sycamore 1988 N F Brown earth Silt loam 65.1 ± 7.3 10 /02/2012 

Moray,  

Scotland 
57.6 -3.2 

Grassland Pre 1988 Rough Pasture. N F Podzol Sandy loam 94.8 ± 22.4 14/03/2011 

D. Birch 1998 

 

N F Podzol Sandy loam 111.5 ± 31.4 15/03/2011 

S. Birch 1998 N F Podzol Sandy loam 81.5 ± 21.3 14/03/2011 

Sitka 

spruce 

1999 N F Podzol Sandy loam 136.9 ± 44.5 15/03/2011 

Moray,  

Scotland 
57.7 -3.3 

Grassland 1994 Pasture. N F Ground-water gley Loamy sand 39.3 ± 8.5 17/03/2011 

Poplar 1994 N F Ground-water gley Loamy sand 35.2 ± 6.2 17/03/2011 

Alder  1996 N F Ground-water gley Loamy sand 38.8 ± 8.5 18/03/2011 

Ash 1996 N F Ground-water gley Loamy sand 35.6 ± 6.6 18/03/2011 

North-West,  

England 
54.0 -2.4 

Grassland Pre 1956 Rough Pasture. N F Surface-water gley Sandy silt loam 117.2 ± 46.3 18/10/2011 

Alder 1956 (1991) N F Surface-water gley Sandy silt loam 122.3 ± 25.7 18/10/2011 

Scots pine 1956 (1991) N F Surface-water gley Sandy silt loam 146.8 ± 45.7 18/10/2011  

Sitka 

spruce 

1991 N F Surface-water gley Sandy silt loam 143.4 ± 43.7 18/10/2011  

Aberdeenshire

, Scotland 
56.9 -2.6 

Grassland 1988 Pasture. F: ’02 -’09 0.97 t N ha-1 Podzol Sandy silt loam 80.6 ±9.9 26/10/2011 

Sycamore 1988 N F Podzol Sandy silt loam 83.1 ± 14.5 26 /10/2011 

Scots pine 1988 N F Podzol Sandy silt loam 76.2 ±20.9 25/10/2011 

H. Larch 1988 N F Podzol Sandy silt loam 74.5 ± 13.1 19/03/2012 

North 

Lanarkshire, 

Scotland 

55.8  -3.8 

Grassland Pre 1990 Pasture. F: Unknown Surface-water gley Sandy silt loam 122.9 ± 24.1 24/11/2011 

Alder 1990 F: Unknown Surface-water gley Sandy silt loam 100.8 ± 25.0 23/11/2011 

Poplar 1990 F: Unknown Surface-water gley Sandy silt loam 92.0 ±10.7 24/11/2011 

Sitka 

spruce 

1990 F: Unknown Surface-water gley Sandy silt loam 140.9 ± 27.8 23/11/2011 
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2.3.2 Laboratory Processing 

Soil core sections were quartered lengthways, with quarters being allocated for 

different subsequent analyses; one quarter was used to derive soil C concentration 

and pH, and others allocated for microbial analysis and to the controlled GHG 

potentials laboratory incubation experiment. For further details on the soil processing 

methods see Keith et al. (2015). 

2.3.2.1 Soil C concentration and pH analysis 

Sieved (< 2 mm) oven-dried subsamples of soil were ball-milled using a Fritsch 

Planetary Mill (Fritsch, Idar-Oberstein, Germany) to a fine powder, and then a 100 

mg sub-sample was used for the assessment of C concentration using a LECO Truspec 

total CN analyser (Leco, St. Joseph, MI, USA). Fresh, bulked samples were sieved to 

2 mm to remove stones and roots. 10 g of bulk soil was then mixed well with 25 ml of 

deionised water and allowed to stand for 30 minutes, before the pH of the liquid layer 

was recorded using a Hanna pH 210 Benchtop Meter (Hanna Instruments, RI, USA). 

2.3.2.2 Phospholipid fatty acid (PLFA) analysis 

Subsamples of frozen soil were bulked at plot level (i.e. cores within plots bulked with 

0–15 cm and 15–30 cm depths kept separate) and then freeze-dried prior to PLFA 

analysis. PLFAs were extracted using a modified Bligh-Dyer extraction (White et al., 

1979). Total microbial biomass was estimated as the sum of all extracted PLFAs 

(Zelles et al., 1995). Bacterial biomass was estimated from the total concentration of 

the markers i-15:0, a-15:0, 15:0, i-16:0, 16:1ω7c, 16:1ω7t, i-17:0, a-17:0, cy-17:0, 18:1ω7c 

and 7,8, cy-19:0 (Frostegård & Bååth 1996). Fungal biomass was estimated from the 

concentration of the marker 18:2ω6 (Frostegård & Bååth 1996) and 18:9ω1 (Bååth, 

2003). For more detailed methods of PLFA extraction and analysis see Appendix A.1. 
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2.3.2.3 Soil incubations (soil GHG potentials) 

Fresh soil samples were used for laboratory incubations. Samples were bulked at plot 

level and homogenized, resulting in five samples per transition for each of the two 

depths (0–15 cm and 15–30 cm). 

Bulk soil samples were sieved (<2 mm) and 5 g dry soil wt. equivalent weighed into 

160 ml glass Wheaton bottles (Wheaton Science Products, USA). These were pre-

incubated in the dark for 72 hours at 10 °C and 20 °C (target incubation temperatures 

for experiment) to allow equilibration (Fang & Moncrieff, 2001; Case et al., 2012). To 

maintain controlled moisture across all soils, water holding capacity (WHC) was 

adjusted to 60 % using a WHC method adapted from Ohlinger (1995) where 100 % 

saturation is calculated as the amount of water remaining in the soil after being 

saturated and left to drain for 12 h in a fully humid airspace. A water holding capacity 

of 60% was chosen as being approximate to field capacity (Schaufler et al., 2010) and 

optimum for microbial respiration (Reay et al., 2005; Vanhala et al., 2011). Following 

equilibration all bottles were flushed with standard compressed air for 1 minute and 

crimp-sealed with gas-tight septa. To compensate for gas sampling over the enclosure 

period, 15 ml of air was added to each bottle following closure. Bottles were then 

incubated at two temperatures (10 °C and 20 °C) for 7 days with headspace gas 

samples (5 ml) taken at 0, 24, 48 and 168 hours. Gas samples were stored in 3 ml 

evacuated exetainers (Labco, Lampeter, UK) for up to 2 weeks prior to analysis. 

Gas samples were analysed for CO2, CH4 and N2O concentrations on a PerkinElmer 

Autosystem XL Gas Chromatograph (GC) (PerkinElmer, Waltham, MA, USA) with 

flame ionization detector and electron capture detector equipped with a poropack Q 

column operated at 60 °C with an argon carrier gas. Certified gas standards (Air 

Products, Crewe, UK) within the range of the samples being analysed were used to 

calibrate the GC. Gas fluxes (CO2, CH4 and N2O) were calculated using the approach 

of Holland et al. (1999) by plotting the linear accumulation of each gas over the seven 

day enclosure period. For CO2, CH4 and N2O data to be included as results a linear 
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response (R2 > 0.95) in CO2 concentrations with time was required.  Where N2O and 

CH4 were non-linear they were still considered in the analysis as concentration 

changes were often negligible e.g. no flux, resulting in a low R2 value. The CO2 fluxes 

were also expressed per g C, in addition to being expressing by dry soil mass, in order 

to standardise fluxes for potential differences in soil C across land use types and 

transitions. 

2.3.3 Statistical Methods 

The influence of SRF transitions on soil C, soil pH, microbial community variables, 

GHG fluxes and GHG temperature response ratios was tested using linear mixed 

effect models with the nlme package in the R statistical program (R Development Core 

Team, 2011; Pinheiro et al., 2013). The significance of these models was examined 

using the anova.lme function. The effect of the different land uses (control and SRF 

types) was tested, with a fixed effect containing levels for Control, Coniferous, and 

Broadleaved transitions. The effect of depth and its interaction with SRF types was 

included in each model. To meet model assumptions, CH4 and N2O data were 

transformed prior to analysis, with data made positive by addition of the lowest value 

+ 1 before log-transformation. For CH4, variance was not heterogeneous across 

treatments and therefore data were weighted by treatment using the varIdent 

function. Data on all CO2 fluxes and temperature response ratios were also log-

transformed prior to testing. 

Standardised effect sizes (Cohens’ D) of change across LUC transitions were also 

calculated for CO2 fluxes per g C, soil pH, total PLFA and fungal PLFA. Linear 

regressions between the LUC effect sizes for CO2 flux and, soil pH, total PLFA and 

fungal PLFA were then undertaken to assess whether changes in soil characteristics 

were related to changes in CO2 flux across transitions. 
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2.4 Results 

2.4.1 Land use change to broadleaved and coniferous SRF 

2.4.1.1 Soil C concentration and pH 

Soil C concentration responded significantly to land use type (F2,207 = 15.96, p < 0.001) 

with higher soil C concentration in the coniferous soils compared to the grassland 

controls or the broadleaved soils (Fig. 2.1A). Although the magnitude of differences 

in soil C concentration varied with depth the pattern remained the same, leading to 

no interaction between land use and depth (F2,207 = 2.78, p = 0.064, Fig. 2.1A). 

Land use type had a significant effect on soil pH (F2,207 = 13.53, p < 0.001) with, as 

expected, the most notable differences between the coniferous soils and both the 

grassland and broadleaved soils (Fig. 2.1B), and more acidic conditions measured 

under the coniferous land use. Little difference was observed between pH in the 

grassland control and broadleaved soils (Fig. 2.1B). There was also a significant effect 

of depth on soil pH (F1,207 = 24.85, p < 0.001) where, across all land use types, pH was 

slightly higher at 15–30 cm compared to 0–15cm depth but with no interaction 

between land use type and depth (F2,207 = 1.22, p = 0.297, Fig. 2.1B).  

2.4.1.2 Microbial community (PLFAs) 

Considering total PLFA data on a soil mass basis there was an effect of land use type 

(F2,205 = 18.64, p < 0.001) and depth (F1,205 = 413.05, p < 0.001), and an interaction between 

land use type and depth (F2,205 = 10.54, p < 0.001) (Fig. 2.1C). At 0–15 cm total PLFA in 

the control (105.70 ± 9.27 μg g-1 dry mass) was similar to the coniferous soils (101.26 ± 

11.18 μg g-1 dry mass), but noticeably lower in the broadleaved soils (66.35 ± 3.22 μg 

g-1 dry mass). However, when considering total PLFA on a grams C basis the pattern 

changes to reflect that of CO2 on a g C basis with lower total PLFA present in the 

coniferous soils compared to the grassland controls or broadleaved soils (Fig. 2.1D). 

The effect of land use type (F2,205 = 18.64, p < 0.001) and depth (F1,205 = 413.05, p < 0.001) 

were still significant but not their interaction (F2,205 = 10.54, p = 0.193) (Fig. 2.1D).  
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On a soil mass basis there was also an interaction between land use type and depth 

in the fungal PLFA data (F2,205 = 4.36, p = 0.014), with higher fungal PLFA in the 

coniferous soil at 0–15 cm compared to the other land use types, but no differences 

apparent between the land use types in the 15–30 cm soils (Fig. 2.1E). Fungal PLFA 

concentration was lower in the 15–30 cm soils than in the 0–15 cm soils in all land uses 

(F1,205 = 198.14, p < 0.001) but most noticeably in the coniferous soils. As with the total 

PLFA, considering fungal PLFA on a g C basis resulted in a switch, with lower 

concentrations of fungal PLFA measured in the coniferous soils compared to other 

land uses, although this was not significant (Fig. 2.1F). Depth was also significant 

(F1,205 = 198.14, p < 0.001) but not the interaction between land use and depth (F2,205 = 

4.36, p = 0.364) (Fig. 2.1F). Bacterial PLFAs followed the same pattern as total PLFA 

with differences between the land uses (F2,205 = 10.79, p < 0.001) decreasing from 

control > coniferous > broadleaved at 0–15 cm depth, and from control > broadleaved 

> coniferous at 15–30 cm depth (data not shown). 
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Figure 2.1 Measured (A) Soil carbon concentration (g kg-1), (B) Soil pH, (C) Total PLFA (μg g-

1 soil), (D) Total PLFA (μg g-1 C), (E) Fungal PLFA (μg g-1 soil) and (F) Fungal PLFA (μg g-1 C) 

from soils under different land uses (control, broadleaved and coniferous) and different 

depths. Data in (C) and (E) are based on soil dry weight. Note scales are not consistent; error 

bars represent standard error.  

 

2.4.1.3 GHG Fluxes 

An effect of land use type (F2,207 = 15.41 , p < 0.001) on CO2 flux on a soil mass basis 

was found, and fluxes were lower in broadleaved soil than in either coniferous land 

uses or grassland control. There was little difference in soil CO2 flux between control 

and coniferous land use and no interaction between land use and depth, although 

fluxes were lower in the 15–30 cm layer than in the 0–15 cm layer (p < 0.001, Fig. 2.2A). 

However, when considering soil CO2 flux on a soil C basis the output is considerably 
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different. Although the effects of land use type (p = 0.028), depth (p < 0.001) and the 

interaction between land use and depth (p = 0.136) were consistent, CO2 fluxes are 

now considerably lower in coniferous soils compared to the grassland control and 

broadleaved land use. The CO2 flux was similar between grassland control and 

broadleaved land uses at 0–15 cm when accounting for soil C concentration (Fig. 

2.2B). 

The temperature response ratio of soil CO2 flux was greater under coniferous than 

under broadleaved or grassland land uses at both depths, though not significantly so. 

The coniferous and grassland land uses demonstrated a trend towards higher 

temperature responses ratios at 15–30 cm depth compared to 0–15 cm, this was not 

the case for the broadleaved land use where the temperature response ratio was 

slightly lower at 15–30 cm compared to 0–15 cm. The temperature responses followed 

the same pattern across land use types on a soil mass and g C basis (Table. 2.2). 

CH4 flux was mostly negative and very small (range: -0.58 – 0.20 ng CH4 g-1 soil dwt 

hr-1) across all land uses and depths, indicating that CH4 was being consumed under 

all species (Fig. 2.2C). Although greatest consumption was measured from 

broadleaved soils and the lowest in coniferous soil, there was no significant effect of 

land use on CH4 flux (F1,207 = 0.148, p = 0.862). There was an effect of depth on CH4 

flux (F1,207 = 18.46, p < 0.001) with lower uptake measured at 15–30 cm depth across all 

land uses but no interaction between land use and depth (F2,207 = 1.78 , p = 0.171). 

Soil N2O flux rates were also very low, ranging from -0.16 – 0.05 ng N2O-N g-1 soil 

dwt hr-1, and there was no difference between the land uses (Fig. 2.2D). There was a 

depth effect (F1,207 = 22.72 , p < 0.001) and higher flux rates were measured in the 0–15 

cm soils but there was no interaction between land use and depth (F2,207 = 2.62, p = 

0.075). 
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Figure 2.2 Potential fluxes of (A) CO2 (μg g-1 soil hr-1), (B) CO2 (μg g-1 C hr-1), (C) CH4 (ng g-1 

soil hr-1), and (D) N2O (ng g-1 soil hr-1) from soils under different land uses (control, coniferous 

and broadleaved) and different depths. Fluxes in (A), (C) and (D) are based on soil dry weight. 

Note scales are not consistent; error bars represent standard error. 
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Table 2.2 Soil CO2 flux temperature response ratio’s (ratio between CO2 flux at 10° C and 20° 

C) and summary statistics from linear mixed effect models on the effect of land use type 

(grassland control, coniferous and broadleaved), depth and their interaction on CO2 fluxes in 

soils. CO2 (µg g-1 soil h-1) data are based on soil dry weight. Values represent means ± standard 

error. 

 

2.4.1.4 Effect sizes across land use change transitions 

Linear regressions were performed on effect sizes of soil characteristics and CO2 

fluxes per g C across grassland to SRF transitions to determine the variables in which 

changes were most strongly related. There were positive relationships between LUC 

effect sizes of soil pH and CO2 flux (0–15 cm: F = 4.0, p = 0.067, R2 = 0.176; Both depths: 

F = 4.8, p = 0.038, R2 = 0.115; Fig. 2.3A). Stronger positive relationships, however, were 

shown between LUC effect sizes of both total and fungal PLFA, and CO2 flux. Total 

PLFA effect sizes had a significant relationship with CO2 flux effect sizes considering 

only 0–15 cm samples (F = 117.2, p < 0.001, R2 = 0.893) and both depths (F = 220.2, p < 

Land Use/Depth CO2 

(µg g-1 soil h-1) 

CO2 

(µg g-1 C h-1) 

Grassland 0-15 cm 2.88 (± 0.35) 2.83 (± 0.32) 

Grassland 15-30 cm 3.28 (± 0.36) 3.40 (± 0.45) 

Coniferous 0-15 cm 3.27 (± 0.46) 3.21 (± 0.43) 

Coniferous 15-30 cm 3.57 (± 0.51) 3.70 (± 0.63) 

Broadleaved 0-15 cm 2.72 (± 0.86) 2.75 (± 0.09) 

Broadleaved 15-30 cm 2.61 (± 0.96) 2.57 (± 0.08) 

Mixed model fixed effect   

Land Use P = 0.874 P = 0.862 

Depth P = 0.719 P = 0.790 

LU: Depth Interaction P = 0.131 P = 0.066 
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0.001, R2 = 0.887), with the slope of the relationship virtually identical (Fig. 2.3B). 

Likewise, fungal PLFA effect sizes also had a significant relationship with CO2 flux 

effect sizes considering only 0–15 cm samples (F = 8.9, P < 0.001, R2 = 0.378) and both 

the 0–15 cm and 15–30 cm depths (F = 12.8, p < 0.001, R2 = 0.312), with similar slopes 

(Fig. 2.3C). 

 

Figure 2.3 The relationship between Land Use Change (LUC) transition effects on soil CO2 (on 

a mass of C basis) potential flux, pH and soil microbial community measures. Effect sizes of 

(A) pH and CO2 potential flux, (B) Total PLFA and CO2 potential flux and (C) Fungal PLFA 

and CO2 potential flux. The effect size of LUC transitions measured as standardised effect 

sizes, Cohen’s D. Black and grey symbols represent samples from 0–15 cm and 15–30 cm, 

respectively; dashed and dotted lines represent significant relationship between effect sizes 

for 0–15 cm samples only and both depths, respectively. 
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2.5 Discussion 

Utilising laboratory soil incubations under standardised temperature and moisture 

conditions, we examined potential GHG fluxes in soils from LUC transitions to SRF. 

This study demonstrated clear differences in CO2 flux but not N2O or CH4 fluxes 

between grassland and SRF land uses and, in line with a previous study at these sites 

looking at soil C stocks (Keith et al., 2015), distinctions between transitions to 

broadleaved and coniferous tree species were also observed. Such laboratory 

approaches are important to disentangle different factors influencing soil respiration 

and C turnover and they allow exploration of the direction and magnitude of 

relationships (Schaufler et al., 2010). However, they are not without their limitations 

due to the unnatural and standardised conditions. Short-term incubations, such as 

those carried out in this study, only measure the initial response of soil GHG 

processes to changes in temperature and therefore may not reflect the effect of long-

term changes in temperature (Li et al., 2012). Soil is also disturbed during sample 

preparation as a result of sieving, homogenising and removing roots, and this may 

alter the soil structure and environment resulting in artificial aeration of soils which 

can affect soil atmosphere GHG exchange (Reichstein et al., 2005; Schaufler et al., 

2010). Nonetheless, where reductionist laboratory experiments are required, using 

fresh sieved soils has been recommended as having the least impact on microbial 

communities and C cycling processes (Thomson et al., 2010). 

2.5.1 Differences between transitions to broadleaved and coniferous species 

Soil GHG fluxes are influenced by many natural and anthropogenic factors such as 

soil type, pH, nutrient status, forest type, stand age and land management (Morison 

et al., 2012), and therefore measurements are generally very variable reflecting the 

diversity of these factors. In this study, there were differences in CO2 flux expressed 

by soil mass between coniferous and broadleaved soils, with no apparent change 

under coniferous tree species. However, once CO2 flux had been expressed per g C to 

account for differences in soil C between land use type and across transitions, LUC 
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from grassland to coniferous SRF resulted in greatly reduced CO2 fluxes while in the 

broadleaf SRF CO2 fluxes were generally unchanged. A reduction in CO2 flux may be 

expected to be associated with lower decomposition rates and hence increased soil C 

concentration. Indeed, the reduced CO2 fluxes in transitions from grassland to 

conifers (this study) and increased soil C concentration and C stocks (Keith et al., 

2015) suggest that there is good potential for enhanced C storage under coniferous 

SRF as a bioenergy crop. The similar CO2 fluxes and soil C concentration under 

grassland controls and broadleaved SRF suggests that, while there is less potential for 

soil C storage under this type of SRF, its overall effect will not be negative. This is 

supported by previous analysis of soil C in the same SRF transitions which showed 

that broadleaved species contained similar stocks of soil C to controls (Keith et al., 

2015).  

Other studies have also found mixed outcomes with respect to differences between 

conifer and broadleaved species. Brüggemann et al. (2005) found a similar pattern in 

a laboratory experiment measuring soil respiration from under different tree species 

with highest rates being measured from spruce soils in both the organic layers and 

Ah horizons compared to four deciduous species. In contrast to the results of this 

study and those of Brüggemann et al. (2005) soil respiration rates were found to be 

~10 % lower in coniferous stands compared to adjacent deciduous stands in a review 

by Raich and Tufekciogul (2000). Results of some studies have been variable, for 

example Schaufler et al. (2010) looked at the effect of land use on soil GHG emissions 

under controlled laboratory conditions and discovered that tree species had variable 

effects on GHG flux rates, with CO2 flux declining in the order of beech > pine > oak 

> spruce. Others have found no differences in CO2 fluxes/respiration rates between 

coniferous and deciduous species types (Ladegaard-Pedersen et al., 2005; Subke et al., 

2006; Wunderlich et al., 2012; Vesterdal et al., 2012). These variable findings suggest 

that how CO2 flux is expressed may be important to the outcome determining 

whether there are broad differences between coniferous and broadleaved tree species.  
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In this study the temperature sensitivity of CO2 flux (for both soil mass and g C basis) 

was higher, though non-significant, in the coniferous soils at both depths, and lowest 

in broadleaved soils (Table. 2). In the grassland and coniferous soils the temperature 

response of respiration also increased at depth. C-rich coniferous soils are formed 

from high volumes of lignin-rich recalcitrant needle litter which decomposes slowly, 

leading to the formation of a thick C-rich humic layer (Morison et al., 2012). Mixed 

findings exist regarding the response of recalcitrant C to increased temperature (Chen 

et al., 2010) but generally it is thought that temperature sensitivity increases with 

recalcitrance of a substrate (Craine et al., 2010) as more energy is required for the 

enzymatic decomposition of recalcitrant substances than more labile substances 

(Davidson & Janssens, 2006).   

Differences in N2O fluxes were not significant but values suggested a potential for 

N2O consumption in the broadleaved compared to N2O production in the other land 

uses. The trend of higher emissions under coniferous compared to broadleaved 

species may in part be attributed to soil N availability, though this was not measured. 

Soil N availability is a key driver of soil N2O emissions and it is known that coniferous 

stands receive more N via deposition than adjacent deciduous stands (Christiansen 

& Gundersen, 2011; Hansson et al., 2011). However, other studies indicate there may 

be higher N2O production from broadleaved than coniferous forest soils (Ambus et 

al., 2006; Pilegarrd et al., 2006; Ullah et al., 2008) which highlights the complexity 

surrounding the multiple interacting drivers of soil N2O production and consumption 

(Butterbach-Bahl et al., 2013). CH4 was consumed under all land uses in this study 

but there were no significant differences in consumption rates. This is consistent with 

the knowledge that aerobic forest soils and grasslands are important terrestrial sinks 

for CH4 (Borken et al., 2003; Menyailo & Hungate, 1998). There was a trend towards 

greater methane consumption in broadleaved soils which follows the work of others. 

Our results showed that CH4 oxidation rates were higher in the surface 0–15 cm soils 

which supports the notion that methanotrophy in forests has a sub-surface maximum 

in the upper soil layers (Hütsh, 1998; Adamsen & King, 1993).  
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Soil physico-chemical properties and soil microbial community characteristics were 

also found to differ between coniferous and broadleaved land uses following 

conversion to SRF. As expected soil acidity increased in the coniferous soils, but there 

was no change in pH between the control grassland and broadleaved soils. It is well 

known that growing conifers affects soil pH, by creating more acidic soil conditions 

due to the poorer quality of their litter inputs (Wedderburn & Carter, 1999; Peterken, 

2001; Morsion et al., 2012). These acidic conditions created under coniferous tree 

species can inhibit microbial activity and reduce decomposition rates leading to 

potential increases in soil C (Morison et al., 2012). In this study, greater C 

concentrations were measured in the coniferous soils compared to the grassland 

control and broadleaved soils and, once PLFAs had been expressed per g C to account 

for differences in soil C, a reduction in total PLFA. However, biomass is not 

necessarily a direct measure of activity but related to a range of other factors including 

microbial community composition (Bardgett et al., 2008). Differences in microbial 

composition were also observed with higher fungal PLFA concentrations per g C in 

broadleaved soils compared to both grassland control and coniferous soils. Other 

authors have observed greater fungal PLFA under coniferous species compared to 

broadleaved species (Hackl et al., 2005). In contrast Priha et al. (2001) measured higher 

total PLFA and fungal PLFA in birch soil compared to pine or spruce soils. 

Nevertheless, these differences in soil physico-chemical and microbial characteristics 

may be important drivers of the GHG fluxes observed in this study. 

2.5.2 Links between respiration and microbes across LUC transitions 

In order to assess which variables were most strongly related to changes in CO2 flux 

across LUC transitions in this study, effect sizes were assessed to determine whether 

changes in CO2 flux were related to changes in soil pH and microbial community 

characteristics. While the effect sizes of soil pH significantly related to effect sizes of 

CO2 flux, R-squared values were relatively low. In contrast, the positive relationships 

found between PLFA effect sizes and CO2 effect sizes were stronger. In particular, 

reductions in CO2 flux were strongly associated with reductions in total PLFA across 
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transitions. These data suggest that shifts in microbial communities across these LUC 

transitions have a greater impact than the direct effect of changes in soil pH.  

Changes in the microbial communities observed due to LUC to SRF may be linked to 

impacts on microclimate and/or litter and root inputs (Prescott & Grayston, 2013). A 

study by Vesterdal et al. (2012) found different soil C turnover rates among six tree 

species (beech, lime, spruce, maple, ash, oak) despite having similar quantities of 

aboveground litterfall; the authors suggest that tree species have the greatest impact 

on soil C stocks via the indirect effects of litter quality on microbial activity and 

decomposition rates. Although not measured, the tree species in this study are likely 

to have had similar differences in litter quality. The quality of tree inputs from litter 

and rhizodeposition also vary due to differences in plant chemistry between 

coniferous and broadleaf species which in turn influences soil microbial composition 

and more specifically the relative abundance of fungi and bacteria. Clear differences 

in the abundance of soil fungal and bacterial PLFAs were observed in this study 

between land uses, with higher concentration per g C of both measured in the 

broadleaved compared to the coniferous soils. Fungi are considered to promote 

slower decomposition cycles with increased nutrient retention (Wardle et al., 2004) 

and are important for degrading more complex substrates compared to bacteria 

(Rousk & Bååth, 2011). As in this case, differences in the composition of the microbial 

communities (e.g. the relative abundance of fungi and bacteria) have been shown to 

influence CO2 fluxes from soil in other studies (Kant et al., 2011; Whitaker et al., 2014). 
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2.6 Conclusion 

SRF is a growing bioenergy land use in temperate climates which has the potential 

for reduced GHG emissions and increased C storage but understanding of its effects 

on these factors is limited. Comprehensive data on C changes associated with LUC to 

bioenergy crops are essential to be able to assess their sustainability. This study 

provides evidence that LUC to SRF for bioenergy could lead to GHG savings through 

reduced C loss via soil respiration. These findings strongly suggest that careful 

consideration should be given to the selection of SRF species in order to optimise soil 

C storage and GHG reduction. 

Changes in land use and management has significant impacts on the microbial 

community, and there is a challenge to better understand the effect of LUC to 

bioenergy on GHG fluxes and their relationship with the soil microbial community. 

Here, lower soil CO2 fluxes under SRF appeared to be associated with reductions in 

microbial biomass and changes in broad community composition (i.e. bacteria and 

fungi). Consequently, both direct and indirect effects of planting SRF on the soil 

microbial community may be important mechanisms by which GHG emissions are 

reduced.  
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3.1 Abstract 

Short Rotation Forestry (SRF) could be used to meet biomass requirements in the 

future. Although not currently widespread in the UK, a suite of species is under 

consideration for SRF including a range of coniferous and broadleaved species. It is 

important to identify and understand tree species effects on soil greenhouse gas 

(GHG) fluxes so that informed decisions can be made regarding suitable SRF to 

ensure genuine GHG emissions savings in the future.  

Plots at the Gisburn Experimental Forest site, north-west England, were studied over 

16 months to investigate the influence of LUC from grassland to tree species that 

could be grown as SRF, on soil GHG fluxes (CH4 & N2O) and net CO2 flux from soil 

and understorey. GHG’s were sampled from stands of common alder (Alnus 

glutinosa), Scots pine (Pinus sylvestris), Sitka spruce (Picea sitchensis) and rough 

grassland on a monthly basis from May 2013 to August 2014. 

Lower CH4 and lower net CO2, and higher N2O emissions were recorded under SRF 

compared to the grassland. There were also significant differences between tree 

species in net CO2 and N2O fluxes which switched through time. There was an 

interactive effect of tree species and sampling time for N2O fluxes; common alder 

treatments exhibited greatest N2O emission from May-July but Sitka spruce had 

greatest N2O emission from August onwards. Net CO2 fluxes were driven largely by 

soil temperature. Random spatial effects explained a large proportion of the variation 

in soil CH4 flux. Whereas N2O flux was driven by habitat and the interaction between 

habitat and water table depth. 

Using this method it has been demonstrated that LUC from grassland to SRF can lead 

to lower soil emissions of CH4, indicating a potential benefit to C sustainability, 

however, it has also been demonstrated that increases in N2O must be considered 

with respect to climate abatement. The interactive effects between tree species and 

season on N2O emissions also suggest that SRF species must be considered carefully 
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for future GHG mitigation. Future work should focus on whether these patterns are 

consistent across other soil types and geographical zones. 
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3.2 Introduction 

Land use change (LUC) to bioenergy crops is likely to be an important component of 

the strategy to meet growing energy demands whilst meeting UK greenhouse gas 

(GHG) emission reduction targets and European renewable energy targets (DECC, 

2012). Compared to other renewable energy sources, bioenergy is more cost-effective 

making it an attractive option to meet targets (POST, 2012). To date, there has been 

strong environmental rationale for supporting bioenergy as a fossil fuel alternative as 

it has the potential to deliver genuine GHG savings (Hastings et al., 2009; Rowe et al., 

2009; Thornley et al., 2015) but the belief that it is “carbon neutral” due to the C 

accumulated during biomass growth being released during burning is now 

recognised as an oversimplification (Field et al., 2008; Ter-Mikaelian et al., 2015). In 

fact, pre-harvest emissions could potentially offset any C savings via reduced fossil 

fuel use and therefore any loss of C could increase the risk of bioenergy crops 

becoming carbon positive (Don et al., 2011). There is a clear need to quantify the 

effects of planting perennial bioenergy crops on soil C and the GHG balance (Don et 

al., 2011; Keith et al., 2015) and to date there are few, if any, long-term data sets 

available.  

Short-Rotation Forestry (SRF) is a perennial woody crop which has potential as a 

bioenergy crop. SRF differs from conventional commercial forestry in that high 

density plantations of fast-growing single stemmed broadleaved or coniferous 

species are grown on shorter rotational lengths and harvested for biomass when a 

breast height of 10–20 cm has been reached (Hardcastle et al., 2006; McKay, 2011). 

Previous land use and tree type could impact the direction and magnitude of the 

effect of LUC to woody bioenergy on soil C accumulation and GHG exchange (Guo 

& Gifford 2002; Laganiere et al. 2010; Keith et al., 2015). A meta-analysis carried out 

by Harris et al. (2015) to quantify the effects of LUC to second generation bioenergy 

crops, found that changes in soil C were dependent on the original land use (arable, 

forest or grassland). Harris et al. (2015) found that LUC from arable crops to 

bioenergy crops resulted in increased soil C, LUC from forestry to bioenergy resulted 

45



 

 

in decreased soil C, and LUC from grassland to bioenergy showed variable results 

which were transition dependent. The authors found insufficient data to carry out the 

meta-analysis for soil GHG emissions, but reported trends showed a reduction in soil 

GHG emissions following LUC from arable to bioenergy, a general increase in GHG 

emissions following LUC from grassland to bioenergy and a clear increase in GHG 

emissions following LUC from forestry to bioenergy. However, there was very 

limited data available on grassland transitions, and no data available on LUC to SRF 

(Harris et al., 2015).  

SRF species type could have an impact on the direction and magnitude of soil GHG 

emissions and soil C storage potential, mainly due to differences in tree species inputs 

and effects on soil properties, and particularly in regard to coniferous and 

broadleaved species. A recent study by Keith et al. (2015) measuring changes in soil 

C following LUC from grasslands to SRF across 11 sites in the UK, found greater soil 

C accumulation under coniferous species compared to broadleaved species. 

Transitions to eucalypts showed a trend, albeit insignificant, towards soil C loss 

whereas transitions to broadleaved species resulted in no change from the 

agricultural land use but displayed the most variable response suggesting species 

related effects may be at play. A meta-analysis carried out by Guo and Gifford (2002) 

examining LUC effects on soil C, using 74 individual studies across 16 countries, also 

found that broadleaf plantations had little effect on soil C change while conifers 

reduced soil C by up to 12%. However, a study by Laganière et al. (2010) found 

broadleaved plantations to have a positive effect on soil C following transition from 

agricultural land to forestry compared to pine and Eucalyptus species. Vesterdal et 

al. (2013) conducted a review on tree species effects on soil C stocks in temperate 

forests and found many contrasting results and suggest that this is due to the 

existence of species-specific and site-specific influences. Due to these contrasting and 

variable results, a study carried out at a single site with a range of tree species, similar 

to common garden experiments by Reich et al. (2005), Trum et al. (2011) and Vesterdal 
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et al. (2008, 2012), could help to clarify species-specific effects on soil C and soil GHG 

emissions following LUC to SRF. 

Tree species directly affect soil physical, chemical and biological properties due to 

differences in the quantity, quality (C/N ratio, N content, lignin) and decomposition 

rates (faster in broadleaved species compared to coniferous) of litter inputs, and as a 

result of differences in root litter inputs and root architecture, all of which in turn 

influence nutrient turnover rates, soil structure, soil moisture content and GHG 

exchange (Hansson et al. 2011; Vesterdal et al., 2008). Ambus and Zechmeister-

Boltenstern (2007) reported increased nutrient turnover rates and microbial activity 

from broadleaf soils compared to coniferous soils. Changes in water table levels and 

subsequent soil aeration can have a significant effect on soil GHG emissions (Ball et 

al., 2007). Afforestation of organic soils in particular can cause an increase in water 

table depth, leading to a decrease in soil CH4 flux (Hughes et al., 1999). Jungkunst et 

al. (2004) found highest N2O emissions from soils with intermediate aeration, as a 

consequence of having water tables in the depth range of 15-35 cm. 

European forest ecosystems are predicted to act as significant GHG sinks (Schulze et 

al., 2010) as afforestation is seen as a means of mitigating rising CO2 levels in the 

atmosphere by means of increased C storage in soil and biomass (Christiansen & 

Gundersen, 2011). Trees absorb CO2 from the atmosphere via photosynthesis, much 

of this is released again via heterotrophic and autotropic respiration and the 

remainder is allocated to leaves, roots, stems and branches which can lead to above 

and belowground C storage (Morison et al., 2012). Soil C stocks are controlled by the 

balance between inputs (via litterfall, root exudates) and the outputs via microbial 

decomposition and subsequent soil respiration (Vesterdal et al., 2012). Although CO2 

emissions contribute the largest percentage to global GHG emissions afforestation 

can also affect the dynamics of soil/atmosphere CH4 and N2O exchange. These two 

gases are of particular importance due to their higher global warming potentials 

(GWPs) (34 and 298 for CH4 and N2O respectively) compared to CO2. 
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Soil CH4 fluxes result from the microbial processes of methanogensis (production), 

which generally occurs under anaerobic conditions, and methanotrophy 

(consumption) which generally occurs in aerobic conditions. Afforestation is known 

to generally promote methanotrophy (Smith et al., 2000) as forest soils are usually 

quite porous and therefore more aerated which provides a soil environment more 

favourable for CH4 consumption (Christiansen & Gundersen, 2011), although CH4 

uptake can be suppressed in soils where there is high available N (Reay & Neadwell, 

2004; Reay et al., 2005). In forest systems where the soils have a high organic content 

and high water table levels, significant CH4 emissions may be produced via 

methanogensis despite increased soil porosity (Don et al, 2011). Some studies have 

shown greater CH4 uptake from broadleaved soils compared to coniferous soils and 

attributed this to reduced diffusion potential in coniferous soils due to the presence 

of a deep soil organic layer (Hudgens & Yavitt, 1997; Butterbach-Bahl & Papen, 2002; 

Borken et al., 2006; Degelmann et al., 2009). 

Nitrous oxide (N2O) from soil is produced via two primary pathways, nitrification 

and denitrification (Khalil et al., 2004; Wrage et al., 2005; Gillam et al., 2008). 

Nitrification is dominant under aerobic conditions, whereas under increasingly 

anaerobic conditions denitrification is the dominant pathway (Bateman & Baggs, 

2005). Nitrous oxide production is also constrained by temperature, inorganic-N 

content, pH and the form and concentration of labile C (Hofstra & Bouwman, 2005). 

Temperate forest soils may be a significant source of N2O, estimated to emit up to 8.07 

kg N2O-N ha-1 yr-1 (Dalal and Allen, 2008). The effect of forest type (coniferous or 

broadleaved) on N2O emissions is uncertain (Christiansen and Gundersen, 2011) and 

soil N status rather than forest type may be a greater driver of this flux (Liu and 

Greaver, 2009). 

It is important to quantify soil GHG fluxes in order to evaluate sustainability and 

viability of LUC to SRF and to determine which tree species offer the best GHG 

savings. However, there are limited data regarding soil-atmosphere GHG exchange 

following LUC to SRF. For example, Keith et al. (2015) estimated changes in soil and 
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aboveground C across a range of SRF transitions but didn’t examine changes in soil  

GHGs. Earlier work (Chapter 2) using the same transitions as Keith et al. (2015) 

showed differences in laboratory GHG potentials between SRF and grassland, and 

differences between tree types. Here, we describe in situ GHG fluxes over a 16 month 

period under different SRF species (common alder, Scots pine, and Sitka spruce) and 

make comparisons to the original ungrazed rough grassland land use. Whilst net CO2 

flux from soil and understorey is reported here, we are unable to separate 

contributions from different components of respiration [Soil respiration was 

measured in mesocosms from Gisburn habitats in the absence of plants in Chapter 4]. 

We hypothesised that 1) LUC from rough ungrazed grassland to SRF would reduce 

soil CH4 emissions through lower water table depth and conditions more favourable 

for soil CH4 consumption, and increase N2O emissions because of increased N 

availability and lower water table, 2) there would be differences in soil GHG fluxes 

between tree species, and 3) different soil and environmental variables will be the key 

drivers of soil GHG fluxes under different tree species. Overall, we would like the 

information derived from this work to be used in tree species selection for SRF that 

provides the greatest soil GHG savings. 

3.3 Materials and methods 

3.3.1 Site description 

This field study was carried out at Gisburn Forest experimental site in the NW 

England (54° 1’ N; 2°22 W) which was established in 1955 and is managed by the 

Forestry Commission. This long-term, fully replicated and randomised plot 

experiment (Fig. 3.1) is located on a gentle southwest facing slope and ranges in 

altitude from 260-290 m above sea level. The underlying geology consists of 

Carboniferous grits, shales and sandstones overlain by acid clayey till. Soils are 

predominantly cambic stagnogleys and stagnohumic gleys (Avery, 1980), with 

variation in depth to clay horizon between experimental blocks (Moffat and Boswell, 

1990). The mean annual rainfall (1981-2010) is 1294 mm with an average 168 days of 

rain per year (Met Office Climate Data for Stonyhurst Weather Station, Lancashire). 
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Due to the combined effect of high rainfall and the presence of clayey soils the site is 

poorly drained with a projected soil moisture deficit of approximately 100 mm 

(Mason & Connolly, 2014). The original Gisburn experimental design consisted of 

three blocks containing pure and mixed 0.2 ha plots of Sessile Oak (Quercus petraea), 

Scots pine (Pinus sylvestris), Norway spruce (Picea abies), common alder (Alnus 

glutinosa) with a rough ungrazed grassland control (Festuca-Agrostis with Nardus 

stricta, Fig. 3.2C), and was fully fenced to keep deer and rabbits out (Fig 3.1). For the 

purposes of this study only the pure plots of Scots pine, Sitka spruce, common alder 

and the grassland controls were used from each block (the use of the term ‘habitat’ 

throughout this chapter refers to the different land covers including Scots pine, Sitka 

spruce, common alder and grassland). The site was clear felled in 1989 due to wind 

throw and replanted in the original design in 1991, but with the addition of Sitka 

spruce (Picea sitchensis). Prior to replanting in 1991 the plots were ploughed, resulting 

in a local microtopography consisting of a planting ridge with a hollow (trough) on 

one side and an undisturbed flat area on the other. No fertilisers have been applied 

to the soils at or since establishment. Weed control using propyzamide and 

glyphosate was carried out between 1992 and 1996 (Mason & Connolly, 2014). 

Understory cover varied in the SRF plots, with almost full grass/moss cover in the 

common alder, ~ 70% grassy cover in the Scots pine, but no ground cover in the Sitka 

spruce plots (Fig. 3.2A, B, D, E & F). Soil properties for different habitats are 

summarised in Table 3.1. 
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Figure 3.1. Map of Gisburn Forest experimental site in Lancashire. Dashed squares are 

individual plots; black dots indicate GHG static chamber locations within each sampled plot. 

Sitka spruce plots have been added by hand as there were not part of the original design. 

 

 

Table 3.1. Summary of soil properties under rough grassland, Scots pine, Sitka spruce and 

common alder at the Gisburn Forest experimental site. Bulk density, C, N, C:N ratio and C 

stock data were calculated from 15 cm deep cores taken as part of the Ecosystem Land Use 

Modelling dataset which was gathered in 2012, n = 15 (Keith et al., 2015). Values for pH and 

organic layer depth were calculated from cores collected monthly over the duration of this 

field study, n =108. Concentrations of ammonium (NH4+) and nitrate (NO3-) were calculated 

from soil cores collected during this field study in May ‘13, August ‘13, November ‘13, 

February ‘14, May ’14, n = 108. Values in parentheses represent standard errors. 

 

3.3.2 Methods 

3.3.2.1 GHG fluxes 

Soil GHG measurements (CH4 and N2O) and net CO2 flux from soil and understorey 

were made using the static opaque chamber method adapted from Livingston and 

 grassland Scots pine Sitka spruce common alder 

Bulk Density 0.45 (± 0.06) 0.47 (± 0.07) 0.43 (± 0.10) 0.45 (± 0.06) 

pH 4.68 (± 0.15) 4.12 (± 0.28) 4.28 (± 0.16) 4.00 (± 0.15) 

Carbon (%) 7.61 (± 1.36) 13.72 (± 2.25) 17.80 (± 4.62) 11.38 (± 0.96) 

Nitrogen (%) 0.57 (± 0.08) 0.74 (± 0.08) 0.80 (± 0.15) 0.75 (± 0.05) 

C:N Ratio 12.93 (± 0.85) 18.10 (± 1.26) 20.69 (± 1.96) 15.15 (± 0.37) 

C Stock (t C ha-1) 
(0-30 cm) 

117.20 (± 46.30) 146.80 (± 45.70) 143.40 (± 43.70) 122.30 (± 25.70) 

GMC (%) 49.55 (± 4.70) 51.22 (± 0.02) 33.31 (± 1.89) 41.68 (± 4.70) 

Organic layer depth 
(cm) 

2.32 (± 0.13) 2.76 (± 0.13) 4.35 (± 0.18) 2.22 (± 0.15) 

NO3--N (mg kg-1) 0.83 (± 0.16) 0.73 (± 0.16) 0.81 (± 0.29) 1.94 (± 0.26) 

NH4+-N (mg kg-1) 22.25 (± 2.82) 20.29 (± 2.43) 23.24 (± 3.46) 17.75 (± 1.71) 
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Hutchinson (1995). The net CO2 flux includes aerobic and anaerobic decomposition 

processes, respiration of other soil organisms, total dark respiration of ground 

vegetation and root respiration of trees where present (Yamulki et al. 2013). Three 

PVC chambers (40 cm w x 20 cm h) were installed to a depth of ~ 5 cm in each of the 

Sitka spruce, Scots pine (Fig. 3.2A), common alder and rough grassland plots within 

each of the three blocks (total 36 chambers) in May 2013. Within each of the 45 x 45 m 

plots the central quadrant, representing 20% of the total plot area, was excluded from 

sampling at the request of Forest Research. One corner of each plot (representing 25% 

of total plot area) was randomly selected to position GHG chambers (Fig. 3.1). As the 

corners of each plot were directed approximately to the cardinal compass points one 

of these were randomly selected for each plot using the sample function in the base 

package in R (R Development Core Team, 2011). At each plot corner, the first chamber 

was positioned 8 m from the selected corner to avoid edge effects, and a second and 

third chamber were positioned 10 m away from, and perpendicular to, the corner 

chamber (Fig. 3.1). All of the chambers remained in the soil for the 18 month duration 

of field sampling. Following chamber installation a settling period of one week was 

allowed before first sampling took place. Sampling took place approximately every 

four weeks from May 15th 2013 to August 13th 2014 by enclosing each chamber with a 

reflective aluminium lid fitted with a rubber seal to prevent leakage and a self-sealing 

rubber septa. Between the hours of 11:00 and 14:00 on the day of sampling, 10-ml 

headspace gas samples were collected using a needle and syringe every 15 minutes 

over a 45 minute enclosure period into pre-evacuated 3-ml exetainers (Labco, 

Lampeter, UK). We acknowledge that GHG fluxes can vary diurnally and, in 

particular, that net CO2 fluxes may be overestimated (Tang et al. 2005; Yamulki et al. 

2013).Gas samples were analysed for CO2, CH4 and N2O concentrations on a 

PerkinElmer Autosystem XL Gas Chromatograph (GC) (PerkinElmer, Waltham, MA, 

USA) with flame ionization detector and electron capture detector fitted with a 

Poropack Q column operated at 60 °C with an argon carrier gas. Certified gas 

standards (Air Products, Crewe, UK) within the range of the samples being analysed 

(497, 1063, 4110 ppm CO2, 1.07, 3.03, 10.26 ppm CH4 and 0.41, 0.99 and 2.04 ppm N2O) 
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were used to calibrate the GC. Gas fluxes (CO2, CH4 and N2O) which were calculated 

using the approach of Holland et al. (1999) by plotting the linear accumulation of each 

gas over the 45 minute enclosure period. 

3.3.2.2 Climatic measures 

At each sampling time micro-environmental conditions were measured along with 

the GHG samples at each chamber location. Soil temperatures were recorded using a 

Tiny Tag temperature logger with internal stab probe (Gemini Data Loggers, 

Chichester, UK), soil temperature was measured at a depth of 7 cm. Volumetric soil 

moisture was measured to a depth of 6 cm using a ML2x Theta Probe and HH2 Meter 

(Delta T Devices, Cambridge, UK) at three locations around each chamber from which 

a mean was calculated. Continuous measurements of precipitation were made from 

an automated WXT 520 weather station (Vaisala, Vantaa, Finland) which was 

installed in the grassland in block 2. 

3.3.2.3 Soil sampling and processing 

Soil cores (5 cm × 15 cm) were collected adjacent to (within 2 m) each chamber location 

on each sampling date (May 2013 – May 2014) and returned to the laboratory where 

they were stored at 4° C. Soil samples were used to determine the depth of the soil 

organic layer, soil pH, gravimetric soil moisture and available N (NH4+-N and NO3--

N) (5 months only; May 2013, August 2013, November 2013, February 2014, May 

2014).  

To determine pH, fresh sub-samples were sieved to 2 mm to remove stones and roots 

and then 10 g of soil was mixed well with 25-ml of deionised water and allowed to 

stand for 30 minutes, before the pH of the liquid layer was recorded using a Hanna 

pH 210 Benchtop Meter (Hanna Instruments, Woonsocket, RI, USA). Gravimetric 

moisture was determined from a 10 g subsample placed in an oven at 105° C for 24 

hours. Inorganic N concentration was determined by extraction with 6% KCl 

extraction. The extracts were analysed for NH4+-N and NO3-N colourimetrically using 

an AQ2 discrete analyser (Seal Analytical, Southampton, UK). 
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3.3.2.4 Litter input and decomposition 

Litter input was measured using litter interception trays (50 cm × 50 cm) (Stewart 

Garden, Banbury, UK) installed adjacent to each chamber from June 2013. Litter was 

collected from the trays monthly, bagged and returned to the laboratory where it was 

dried in a controlled temperature room at 30° C until a constant mass was achieved. 

Litter decomposition was measured over 11 months from October 2013 to September 

2014 using litterbags (Fig. 3.2E and 3.2F). The 10 cm × 10 cm litterbags were 

constructed from 1 mm nylon mesh (PlastOK, Birkenhead, UK) and filled with 3 g of 

air-dried litter which had been collected from the SRF plots in September 2013. The 

litterbags were sealed using a heat sealer, tagged with individual numbers and then 

pinned to the soil surface using metal pins in the litter layer at each chamber location. 

Litterbags were removed after 1, 3, 6, 9 and 11 months, returned to the laboratory 

where litter was carefully removed from the bags and then dried at 80° C for 24 hours 

to determine mass loss. A decomposition constant was derived for each plot by 

regression of the log of litter mass remaining against years.  

3.3.2.5 Water table depth 

Water table depth was measured on each sampling date using dip wells (Fig. 3.2D). 

Dip wells made from 1.5 m lengths of PVC pipe with 6 mm holes drilled at 5 cm 

intervals (from 0-1 m) to allow water in were installed using a pneumatic corer to 1 

m depth in each plot at a location roughly equidistant from each of the three static 

chambers.  

3.3.2.6 Data processing and statistical analyses 

To estimate a GWP for each habitat, soil fluxes of CH4 and N2O were converted to 

CO2 equivalents based on their GWPs of 34 and 298 respectively according to the 100-

year time-frame (IPCC, 2013), and then added to the CO2 flux. A cumulative measure 

for monthly GHG fluxes and the derived GWP as CO2 equivalents were calculated 
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for each habitat by summing data from each plot across all sampling dates. A mean 

value for N2O flux as a percentage of GWP was also calculated for each plot.  

Linear mixed effects models were used to examine the differences between habitats 

using the nlme package. The effect of habitat on summed GHG, soil and litter 

decomposition variables was tested with a random effect for block. Differences 

between habitats were tested using post-hoc multiple comparison tests with the ‘ghlt’ 

function in the ‘multcomp’ package (Hothorn et al., 2008). The effect of tree species, 

time and their interaction on GHG fluxes was tested with a random effect for block 

and plot nested within block; these analyses included only tree species data (i.e. no 

grassland). 

Drivers of GHG fluxes were explored by plotting GHG data from all sampling 

months against measured variables (soil temperature, soil pH, volumetric moisture, 

water table depth and litterfall). The relative importance of habitat and soil variables 

as explanatory variables for GHG fluxes was examined following Chen et al. (2015). 

Initial models contained fixed effects for habitat, soil temperature, soil pH, volumetric 

moisture, water table depth, litterfall, and interactions between habitat and these 

variables, and random effects for block and plot nested within block. Estimating the 

proportion of variance (R2) explained by the fixed, random, and residual effects was 

conducted using the rsquared.lme function by Jon Lefcheck (R code available at < 

http://jonlefcheck.net/2013/03/13/r2-for-linear-mixed-effects-models/ >). The total R2 

of fixed effects was assigned to factors using the pamer.fnc function from the 

‘LMERConvenienceFunctions’package. The relative importance of different drivers 

of soil GHGs was subsequently examined under each habitat separately. The 

relationship between N2O flux and rainfall at 24, 48 and 72 hours prior to GHG 

sampling was tested to assess rainfall lag effects.  
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Figure 3.2. Examples of plots and set-up at Gisburn Forest Experimental site. (A) Static 

chamber on a planting ridge in the Scots pine plot in Block 3, (B) Static opaque chamber in a 

trough of the common alder plot in Block 3, (C) Block 1 grassland with Sitka spruce plot in the 

background, (D) Water table dipwell in the Sitka spruce plot in Block 2; also shows lack of 

understory cover and dense litter cover, (E) Freshly placed litter bags in Block 3 common alder 

plot; also shows understory and litter cover, and (F) Litter bags in Block 2 Scots pine; also 

indicating grassy understory and pine needle cover. All images taken by Kim Parmar, 

2013/2014. 
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3.4 Results 

3.4.1 LUC impacts on soil GHG fluxes across tree species 

There was an effect of habitat on net CO2 flux (F3,30 = 19.89, p < 0.001) and cumulative 

fluxes were lower under all SRF species compared to the grassland. The greatest 

difference in net CO2 flux following LUC was observed in the pine soils (p < 0.001), 

followed by alder soils (p < 0.001) then Sitka soils (p < 0.001). Despite this variation, 

there was only a significant difference in net CO2 flux between Sitka and pine (p = 

0.015) (Fig. 3.1A).  

 

Figure 3.1. Cumulative net greenhouse gas fluxes to atmosphere for all habitats, summed from 

16 monthly in situ gas measurements. Data are presented for individual gases in fluxes of net 

CO2-C, CH4-C and N2O-N. Significantly different (P < 0.05) mean values are indicated by 

different letters; error bars represent standard error. 
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LUC from grassland to SRF resulted in the soil system becoming a small sink for CH4 

with the greatest consumption of CH4 measured in soils under pine. Alder and Sitka 

soils had a similar CH4 sink strength to each other but grassland soil was generally a 

minor source of CH4 (Fig. 3.1B). 

In contrast to the CH4 and net CO2 results, LUC to SRF resulted in the soils becoming 

significant sources of N2O (F3,30 = 35.06, p < 0.001) with highest cumulative emissions 

recorded from soils under Sitka spruce. Although N2O emissions were not as high 

from the common alder or Scots pine soils they were significantly higher than the 

grassland but significantly lower than the Sitka spruce N2O emissions (Fig. 3.1C)  

3.4.2 Differences between SRF species through time 

There were differences in net CO2 flux between SRF species (F2,22 = 8.15, p = 0.002) and 

sampling date (F15,360 = 67.16, p < 0.001) (Table 3.2; Figure 3.2A). Fig. 3.2A illustrates 

the apparent seasonal differences in net CO2 fluxes with emissions peaking in the 

summer months before declining in the winter under all SRF species. The variation 

between species in terms of when fluxes increase and decrease across the sampling 

period, was supported by a significant interaction between species and sampling date 

(F30,360 = 11.33, p < 0.001; Table 3.2).  

Although there was no difference between species (F2,22 = 12.20, p = 0.398; Table 3.2) 

there was an effect of sampling date on soil CH4 fluxes (F15,360 = 5.02, p < 0.001; Table 

3.2) illustrated in Fig. 3.2B. Despite the lack of a significant interaction between date 

and species (F30,360 = 0.79, p = 0.785; Table 3.2), there did appear to be species-related 

patterns. In the grassland CH4 flux is either negative or positive depending on the 

time of year, with most of the consumption occurring in summer months and 

production in the autumn, winter and spring. The SRF soils were net sinks for CH4 

but were variable in terms of net consumption with peaks occurring in October 2013, 

March 2014 and July 2014 and a general decline in consumption in the winter months 

across all tree species. 
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Table 3.2. Summary statistics for the effects of tree species, sampling date and their interaction 

on soil GHG fluxes and net CO2, NS = not significant, * = p ≤ 0.05, *** = p ≤ 0.001 

 

 

Figure. 3.2. Soil GHG fluxes for all habitats over 16 months. (A) net CO2, (B) CH4, (C) N2O. 

Error bars represent standard error; n = 9. 

 

  

 Tree species (T) Sampling date (S) T×S 

CO2 – C * *** *** 

CH4 – C NS *** NS 

N2O – N * *** *** 
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Soil N2O flux was strongly affected by sampling date (F15,360 = 4.16, p < 0.001) as well 

as by species type (F15,360 = 8.05, p = 0.002), with emissions declining in the late autumn 

through to early spring (Fig. 3.2C). The interaction between species and sampling date 

(F30,360 = 11.33, p < 0.001) highlights the variation between tree species with regard to 

when emissions increase and decrease. N2O emissions from common alder soils 

reached their highest in May 2013, and was similar to the peak in August 2014. Sitka 

spruce soils, which emitted the greatest amount of N2O across the sampling period 

peaked in August 2013 and May 2014. 

3.4.3 Litterfall and litter decomposition 

Over the 12 month period in which litterfall quantity was measured cumulative 

values of the mass of dry litter collected from the interception trays decreased in the 

order of Scots pine (5481.52 g m-2) > common alder (4291.64 g m-2) > Sitka spruce 

(3533.88 g m-2) > grassland (186.44 g m-2). As well as species variation in litter mass 

input there was also temporal variation apparent (Fig. 3.3). The litterfall for Scots pine 

increased between June and July 2013 before reaching its maximum in August 2013 

(207.84 g m-2), from which point litterfall started to decline fairly steadily until 

November 2013. The opposite occurred in common alder plots where there was 

minimal litterfall until September 2013 after which point litterfall increased until it 

peaked in November 2013 (232.24 g m-2) before decreasing to near-zero in December 

2013. Generally, litterfall in the Sitka spruce plots was very low (2.8–106.02 g m-2) but 

consistent throughout the year, there were small peaks in input in July 2013, October 

2013 and December 2013. There was little or no litterfall in the grassland plots 

regardless of sampling date (0 – 14.12 g m-2). 
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Figure 3.3. Litterfall data for all species. Data represents mean mass of litter collected from the 

litter interception trays and dried at 30 °C. Error bars represent standard error, n = 9. 

 

There were differences (p < 0.001) between tree species in final litter mass remaining 

over the 337 day period for which litter bags were in-place in the field, decreasing in 

the order of common alder (57%) > Scots pine (64%) > Sitka spruce (74%) (Fig. 3.4A). 

As well as there being differences in the total mass remaining between species, the 

dynamics of mass loss varied between the tree species over the 11 month period. After 

30 days there was no difference in mass remaining between Scots pine and Sitka 

spruce (p = 0.960) but thereafter there were generally significant differences between 

all species, with the exception of Scots pine and common alder after 180 days (p = 

0.092). Annual decomposition constants (k) showed that after 11 months there was no 

difference between common alder and Scots pine (p = 0.20) with regard to litter 

decomposition. However, the decomposition constant of Sitka spruce was 

significantly lower (p < 0.001) than both the Scots pine and common alder litters (Fig. 

3.4B). 
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Figure 3.4. (A) Mass of litter remaining in litterbags extracted from the field for each tree 

species after 30, 90, 180 and 337 days. (B) Annual decomposition constants (k) for each litter 

species. Error bars represent standard error (n = 9). 

 

3.4.4 Drivers of soil GHG fluxes under different habitats 

Habitat and the interactions between habitat and measured variables were important 

drivers of GHGs and explained 17% of variation for net CO2, 14% of variation for CH4 

and 26% of variation for N2O (Table 3.3). For net CO2 and N2O fluxes the most 

important driving interactions were between habitat and soil temperature and habitat 

and water table depth. Whereas, habitat and soil moisture, and habitat and litterfall 

were the greatest driving interactions for CH4 flux (Table 3.3). The highest 

unexplained variation (residuals) applied to N2O flux, this was similar for CH4 but 

A 

B 
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there was a lot less unexplained variation in the net CO2 flux due to a large percentage 

being explained by soil temperature (Table 3.3). 

 

Table 3.3. The percentage of variation (as determined by linear mixed models) in soil GHG 

fluxes and net CO2 flux as explained by habitat, measured variables and their interactions at 

Gisburn Forest experimental site.  

 

  

 
CO2  CH4  N2O 

% P  % P  % P 

FIXED EFFECTS         

Habitat 6.14 <0.001  5.05 <0.001  8.34 <0.001 

Soil Temp. 42.82 <0.001  5.12 <0.001  3.83 <0.001 

pH 1.13 <0.001  0.66 0.106  0.11 0.481 

Soil moisture 0.12 0.266  3.12 <0.001  1.07 0.026 

Water table depth 0.00 0.973  2.06 0.005  0.75 0.062 

Litterfall 0.62 0.012  0.36 0.230  0.13 0.440 

Habitat × Soil temp. 6.17 <0.001  1.55 0.106  3.50 0.001 

Habitat × pH 0.76 0.054  1.85 0.064  0.46 0.540 

Habitat × Soil moisture 0.63 0.095  2.44 0.022  1.61 0.059 

Habitat × Water table 2.49 <0.001  0.95 0.287  10.93 <0.001 

Habitat × Litterfall 1.17 0.008  2.64 0.016  1.41 0.088 

RANDOM EFFECTS         

Block/Plot 9.09   20.21   11.41  

RESIDUALS 28.83   53.98   56.43  
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Focusing on habitat-specific drivers of GHGs it is evident that the influence of certain 

variables on fluxes is species dependent (Fig. 3.5). In the grassland habitat, most of 

the variation in net CO2 flux was explained by soil temperature and sampling location 

(block & plot), soil pH and litterfall also contributed in small proportions (Fig. 3.5A). 

For CH4 in grassland, variation was mostly generally explained by sampling location, 

there was also some influence of soil moisture, water table depth, pH, soil 

temperature and litterfall (Fig. 3.5B). There was no effect of sampling location on N2O 

fluxes in grassland where N2O was mostly driven by moisture, both as percentage 

soil moisture and depth to water table, and by soil pH (Fig. 3.5C).  

Soil temperature and spatial effects (block & plot) were also the greatest drivers of net 

CO2 flux in the Scots pine habitat. Of the other measured variables, only water table 

depth appeared to have any influence on net CO2 fluxes in Scots pine (Fig. 3.5A). The 

spatial effects of block and plot were a key driver of CH4 in the Scots pine habitat, 

explaining over half of the total variation in flux, and there were small but equal 

influences of litterfall, soil temperature, water table depth and soil moisture on Scots 

pine CH4 fluxes (Fig. 3.5B). Soil N2O fluxes were mostly driven by the spatial effects 

of block and plot and by soil temperature, soil moisture also had a small influence on 

N2O flux (Fig. 3.5C). 

In the Sitka spruce soils spatial variation and soil temperature affected net CO2 

equally and there was also a small effect of water table depth (Fig. 3.5A). CH4 fluxes 

in the Sitka spruce plots were mostly driven by spatial variation but percentage soil 

moisture also had an effect (Fig. 3.5B). The spatial effects of block and plot and depth 

to water table were the most important drivers of N2O flux from Sitka spruce soils, 

but there were also small effects of soil temperature and soil moisture (Fig. 3.5C). 

Soil temperature was the greatest driver of net CO2 fluxes in common alder soils (Fig. 

3.5A) and only small amounts of variation were explained by water table depth and 

soil moisture. In contrast to the other habitats there was very little variation in soil 

GHGs explained by the spatial effects of block and plot (Fig. 3.5). Soil temperature 

and pH were stronger drivers of CH4 fluxes in common alder soils compared to other 

64



 

 

habitats and there was also a small effect of litterfall (Fig. 3.5B). Alder N2O fluxes were 

driven by soil temperature, water table depth (Fig. 3.5C). 

The variables measured did not explain all of the variation in soil GHG fluxes and for 

each habitat unexplained variation was captured in the residuals. For net CO2 flux 

there was more than double the variation (71%) left unexplained in the Sitka spruce 

soils compared to the others. Common alder soils had the greatest amount of 

unexplained variation (75%) for CH4 fluxes and Scots pine had far less unexplained 

variation in N2O fluxes compared to grassland, common alder and Sitka spruce which 

were all over 60%. 
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Figure 3.5. Percentage variation (as determined by linear mixed models) in soil GHG fluxes 

as explained by measured variables in each habitat. (A) net CO2 flux, (B) CH4 flux, and (C) 

N2O flux. Block & Plot were random factors in the model. Values for residuals have been 

omitted from these plots. 
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No effect of rainfall (mm) on N2O flux was found considering lag times of 24 hr (P = 

0.984), 48 hr (P = 0.858) and 72 hr (P = 0.951) prior to GHG sampling. N2O fluxes from 

all species showed consistent rates irrespective of rainfall events in the 72 hours 

preceding measurements. (Appendix A.2.). 
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3.5 Discussion 

3.5.1 How does LUC from grassland to SRF impact GHG emissions? 

Land use change is the second largest source of anthropogenic GHG emissions, 

mainly due its effect on the cycling and storage of soil C and the soil-atmosphere 

exchange of CO2, CH4 and N2O (Rounsevell & Reay, 2009; Arevalo et al., 2011; Don et 

al., 2011). Increased bioenergy production, as an alternative energy source to fossil 

fuels, may result in considerable LUC to SRF (amongst other bioenergy crops). As 

part of the rationale for growing bioenergy is that they can contribute to mitigating 

GHG emissions (Osborne & Jones, 2012) there is an urgent need to quantify the effects 

this could have on the GHG balance.  

This study set out to examine the effects of LUC to SRF on soil GHG and net CO2 

fluxes at Gisburn experimental forest site in Lancashire, north-west England. It was 

expected that LUC to SRF would result in a reduction in CH4 emissions and an 

increase soil N2O emissions. Decreased CH4 emissions were predicted due to the 

existence of conditions favourable for CH4 consuming methanotrophic bacteria 

(Christiansen & Gundersen, 2011), increased soil diffusion of oxygen and lower water 

table depths (Ball et al. 2007). Increased N2O emissions were expected due to higher 

levels of available N (Liu & Greaver, 2009), increased soil acidity (Weslien et al., 2009), 

conditions favourable for N2O producing microbial activity (Ambus et al., 2006), 

increased soil aeration due to lower water table and the presence of thick soil organic 

layers (Ball et al., 2007). Decreased CH4 emissions and increased N2O emissions were 

found in this study. All three tree species transitions resulted in a significant 

reduction in CH4 fluxes compared to the ungrazed rough grassland, and there was a 

significant increase in soil N2O emissions with species related differences in 

magnitude. 

Decreased CO2 emissions may be expected due to tree related increased recalcitrant 

C inputs above and below ground and slower litter decomposition rates (Morison et 

al., 2012). In this study, using the method described, a decrease in net CO2 fluxes was 
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measured following LUC from ungrazed rough grassland to SRF. It was not possible, 

however, to separate the components of respiration and a large proportion of the net 

CO2 flux measured may be due to dark respiration of grass. Grass was abundant in 

the alder and Scots pine but not in the Sitka spruce plots, and therefore care must be 

taken in drawing conclusions from the CO2 flux results. 

3.5.2 Are there differences in GHG fluxes between tree species following LUC 

and do they change over time? 

It was predicted that there would be differences in GHG emissions following LUC 

between tree species due to known differences between broadleaved and coniferous 

species and as a result of N-fixation by common alder. While this was found to be 

true for net CO2 and N2O, there were no differences in CH4 fluxes between tree species. 

The effect of sampling date on CO2 and N2O fluxes is well known as the microbial 

production of these gases is sensitive to temperature and moisture conditions which 

tend to be more favourable in the summer months (Davidson et al., 2002; Smith et al., 

2003; Trumbore, 2006). 

Of all natural systems, temperate forests have the highest CH4 uptake potential (Skiba 

et al., 2009; Rowlings et al., 2012) with a mean rate of 3.6 kg CH4-C ha-1 y-1 (Dalal & 

Allen, 2008) and a upper limit of 8.9 kg CH4-C ha-1 y-1 (Bowden et al., 2000). Higher 

consumption rates are usually recorded in broadleaved compared to coniferous 

forests (Jang et al., 2006; Skiba et al., 2009). This is likely to be because of a reduction 

in diffusion capacity under conifers compared to broadleaves due to the presence of 

a thick surface organic layer, and because of the tree species influence on the 

abundance and composition of the methanotrophic microbial community 

(Butterbach-Bahl & Papen, 2002; Borken et al., 2006). In our study, net cumulative CH4 

consumption was found under all tree species, this was in contrast to net production 

in the grassland soils (0.13 kg CH4-C ha-1 y-1). However, the mean CH4 uptake rates at 

Gisburn Forest were below the global mean for temperate forests. This is not unusual, 

a recent study by Barrena et al. (2013) measuring soil GHG fluxes from forest soils in 

the Basque Country also found lower than average annual CH4 uptake in mature 
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beech (1.26 kg CH4-C ha-1 y-1), mature pine (0.59 kg CH4-C ha-1 y-1) and Douglas fir 

(0.23 kg CH4-C ha-1 y-1) soils. The authors attributed this to a lack of available mineral 

N due to the study sites being in an area of very low N deposition (5-7 kg N ha-1 y-1) 

which is thought to be a pre-requisite to induce CH4 consumption (Bodelier & 

Laambroek, 2004). As well as below average CH4 consumption rates, we also failed 

to find higher uptake in the broadleaved alder soils compared to the coniferous pine 

or Sitka soils, and in fact Sitka and alder had almost the same uptake rates. This is 

likely due to alder being an N-fixer which can lead to CH4 uptake in soil being 

supressed by high levels of available N (Butterbach-Bahl et al., 1998; Reay & Nedwell, 

2004). Nitrate levels in the alder soils in this study were 62% higher than in the pine, 

and 90% higher than in the Sitka soils. In contrast to the Basque Country location of 

the study by Barrena et al. (2013), the overall low CH4 uptake rates across all species 

may be a result of Gisburn Forest being in an area of exceptionally high atmospheric 

N deposition (44.38 kg N ha-1 yr-1 for deposition years 2010-2012) (APIS, 2015). 

The measured mean soil N2O fluxes in this study were within the range reported by 

Dalal & Allen (2008) for temperate forests of 7.04 – 7744 g N2O-N ha-1 y-1. However, 

the means for all tree species (Sitka spruce, 7356.2, common alder, 2934.9, Scots pine, 

2152.7 g N2O-N ha-1 y-1) were considerably higher than Dalal & Allen’s (2008) reported 

mean of 1513.6 g N2O-N ha-1 y-1 indicating that the Gisburn Forest site soils are a 

relatively large source of N2O compared to other temperate forests but that there are 

key species related differences effecting the magnitude of emissions. Although 

variable results exist within the literature with regard to tree species type effects on 

soil N2O emissions, many studies have found higher N2O emissions from 

broadleaved compared to coniferous soils mainly due to differences in litter quality 

and soil moisture (Ambus et al., 2006; Pilegaard et al., 2006). Therefore, it was 

surprising that N2O emissions from common alder soils were so much lower than 

from Sitka spruce soils. As well as being broadleaved, common alder is also an N-

fixing species, and through its symbiotic relationship with dinitrogen (N2) fixing 

bacteria from the Frankia group (Rytter et al., 1989) it can have large amounts of 
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available N in the soil system (Reay et al., 2005). As reported above we found higher 

levels of nitrate in the common alder soils compared to the others, however 

ammonium values were lowest in Alder soils (Sitka spruce, 23.24, Scots pine, 20.29, 

common alder, 17.75 mg NH4-N kg-1). The availability of N is one of the key regulators 

of N2O production as NH4+ and NO3- are the precursors for nitrification and 

denitrification, respectively (Pihlatie et al., 2007). It is known that atmospheric N 

deposition is higher in coniferous stands compared to broadleaved stands 

(Gunderson et al., 2009) as a result of conifers having a higher leaf area index and 

longer foliage longevity (De Schrijver et al., 2007). This could have led to greater N2O 

emissions from Sitka spruce soils compared to common alder, but does not explain 

the lower fluxes from Scots pine soils. 

Both nitrification and denitrification are moisture sensitive due to the effects moisture 

has on oxygen availability (Barnard et al., 2005; Gillam et al., 2008), when moisture 

content is high N2O production from incomplete denitrification dominates (Bateman 

& Baggs, 2005) whereas nitrification peaks at intermediate moisture (< 60% water 

holding capacity) (Case et al., 2012). At Gisburn Forest soil volumetric moisture was 

higher in the common alder plots (81%), compared to the Sitka spruce plots (57%), 

with Scots pine intermediate (78%) but the depth to water table was higher in the 

Sitka spruce plots (24 cm) compared to common alder and Scots pine, which had the 

same mean depth (31 cm). This suggests that the low rates of N2O production in the 

common alder plots at Gisburn are due to conditions generally not being favourable 

(too wet) for incomplete denitrification despite the higher levels of NO3 availability. 

The explanation for the higher N2O emissions in the Sitka spruce plots might be due 

to a combination of processes for which favourable conditions exist at different times. 

For instance, N2O emissions were highest in the Sitka spruce plots when water table 

depth was intermediate (20-30 cm) and negligible when the water table was low 

(below 40 cm), suggesting that incomplete denitrification was occurring. This was in 

agreement with the findings of Jungkunst et al. (2004) who measured lower N2O 

emissions at a water table depth of 65-75 cm but higher emissions when the water 
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table was intermediate at 15-35 cm. Soil volumetric moisture conditions in the Sitka 

spruce habitat (mean 57%) might also be optimum for N2O production at certain 

times, a study by Ball et al. (2007) measuring GHG fluxes under Sitka Spruce in 

Northumberland identified 40-50% vmc as being optimum for N2O production. It is 

also possible that N2O is being produced in the deep soil organic layer (mean 4.35 cm) 

that exists in the Sitka spruce plots due to the abundance of ectomycorrhizal fungi. 

All of these processes could be supported by high available N due to increased N 

deposition as a result of a dense canopy and lack of understory vegetation in the Sitka 

spruce plots. A study carried out by Prendergast-Miller et al. (2011) using Sitka spruce 

root tips demonstrated for the first time that ectomycorrhizal fungi can produce N2O 

from nitrate reduction in soils receiving high rates of N deposition. 

Soil CO2 fluxes in forests can be very variable, largely due to site variation which is a 

product of the interactions between climate, soil type, topography, soil microbial 

community and species type, all of which directly or indirectly affect CO2 fluxes 

(Raich & Tufekcioglu, 2000; Saiz et al., 2006; Schaulfler et al., 2010; Vesterdal et al., 

2012; Barrena et al., 2013). By carrying out a study at a single site we controlled for 

variation in CO2 fluxes driven by soil type and climate, thus allowing us to better 

focus on species related effects, an approach recommended by Vesterdal et al. (2012). 

We were, however, unable to account for the contribution that dark respiration of 

ground vegetation to soil CO2 fluxes; ground vegetation cover was complete in the 

grassland (100%) and the common alder plots (100%), and high in the Scots pine 

(~70%).  

While species related differences were observed, we did not find support for the 

hypothesis that alder would have the greatest net CO2 emissions. This was 

anticipated, as alder is an N-fixing species with a higher predicted rate of nutrient 

turnover and therefore higher subsequent CO2 flux compared to non N-fixing species 

(Kim et al., 2012). Alder litter also had the highest decomposition rate in this study, 

with only 57% remaining after 11 months compared to 64% in pine and 74% in Sitka. 

It was also unexpected due other research that coniferous forests have lower rates of 
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CO2 flux than adjacent broadleaved forests growing on the same soil type (Raich & 

Tufekcioglu, 2000). However, a meta-analysis by Subke et al. (2006) found no 

significant difference in soil respiration between temperate coniferous and 

broadleaved species, a finding that was shared by a recent study by Vesterdal et al. 

(2013). Similarly to our findings, Barrena et al. (2013) observed higher annual CO2 

emissions from pine soils compared to beech and Douglas fir soils, and attributed 

these differences to the presence of a high percentage of ground cover vegetation in 

the pine (80 - 90%) compared to the beech (< 20%) and fir (< 20%). This cannot be the 

case at Gisburn Forest as there is little ground cover vegetation in the Sitka plots, 

compared with almost complete ground vegetation cover in the alder and pine plots. 

Instead, the reason for higher CO2 flux from the Sitka soils might be related to the 

presence of ectomycorrhizal fungi that are often most abundant in the deep litter 

layers of acidic forests (Genney et al., 2006). A study by Moyana et al. (2008) looking 

at soil respiration in relation to photosynthetic activity in Germany found that 

mycorrhizal mycelium respiration was 8% in a Norway spruce forest compared to 3% 

in a beech forest. Ectomycorrhizal fungi will also be present in the alder and pine 

soils, but development is promoted where litter inputs are more recalcitrant, organic 

layers are deep and where there is a lack of understory growth for mycorrhizal 

development (Prendergast-Miller et al., 2011). 

3.5.3 Which soil and environmental variables are the key drivers of GHG fluxes 

under different tree species? 

Soil greenhouse gas fluxes in forests are controlled by a range of natural and 

anthropogenic factors and interactions between these factors including soil moisture, 

water table depth, soil aeration, pH, soil temperature, soil type, land management, 

species selection and stand age (Morison et al., 2012). In particular, soil temperature 

and moisture influence soil-atmosphere GHG exchange due to their effects on soil 

microorganisms and roots (Smith et al., 2003). Rates of these processes responsible for 

GHG exchange generally increase exponentially with temperature as long as other 

factors are not limiting (Meixner & Yang, 2006). Our findings were in agreement with 
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this where we found a significant proportion of the variation in each GHG was 

attributed to soil temperature, and it was in fact the most important driver of net CO2 

fluxes across all habitats. Soil moisture is an important driver of soil GHGs as it is an 

important substrate for soil microorganisms (Meixner & Yang, 2006), and influences 

gas diffusivity (Smith et al., 2003). Generally, CO2 emissions increase exponentially 

with increasing soil moisture, however emissions may be reduced under very wet or 

very dry conditions (Schaufler et al., 2010). Under anaerobic conditions CH4 is 

produced and under aerobic conditions CH4 is consumed (McNamara et al., 2008), 

whereas N2O can be produced under both aerobic and anaerobic conditions. Despite 

the large range of soil moisture conditions (10 – 100 % vmc) measured over the 16 

month gas sampling period at Gisburn Forest we found no relationship between soil 

moisture and net CO2 fluxes. Soil moisture did explain a significant percentage of the 

variability in soil CH4 and N2O fluxes overall. We also found that habitat was an 

important driver of all soil GHG fluxes, as were the interactions between habitat and 

other measured variables suggesting that different species have different GHG 

drivers even in the same soil type. 

Depth to water table and its effects on soil aeration can have a significant impact of 

soil GHG fluxes, particularly in organic soils. Water table drawdown increases soil 

aeration in the upper soil layer which can increase microbial soil organic matter 

decomposition and subsequent N mineralisation leading to a rise in CO2 and N2O 

production (Freeman et al., 1996; Minkkinen et al., 2002; Martikainen et al., 1993). 

Increased aeration has the opposite effect on CH4 production which favours anaerobic 

conditions (McNamara et al., 2008). In this study we found that water table depth had 

a significant effect on CH4 fluxes regardless of habitats, with increased CH4 

consumption measured under all tree species where soils were generally drier than 

in the grassland which was a net CH4 producer. This matches the results from a study 

by McNamara et al. (2008) examining the influence of afforestation and tree species 

on soil CH4 fluxes at Gisburn Forest, where positive CH4 fluxes were measured from 

the grassland soils and negative fluxes from Norway spruce, Sessile oak, common 
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alder and Scots pine soils and attributed to water table depth and soil moisture 

content. We also found that the interaction between habitat and water table depth 

was an important driver of net CO2 and N2O fluxes. It was clear to see from the habitat 

specific analysis that this influence of water table was in the Sitka spruce and common 

alder soils and might therefore be linked to N availability via N-fixation and N 

deposition, and the physical and biological conditions favourable for CO2 and N2O 

production as discussed previously. A study by Ball et al. (2007) found higher N2O 

emissions in soils from 30 year old Sitka spruce stands compared to 20 year old stands 

due to better aeration of older soils as a result of deeper water table which facilitated 

the release of substrate required for N2O production. 

The generally high percentage of variation explained by the random effect for block 

and plot, particularly for CH4 and N2O fluxes under Scots pine and Sitka spruce, 

suggest that in these habitats sampling location may also be a driver of soil GHG 

fluxes. These block and plot factors will encompass variation attributable to 

microtopography created during forest planting. It is thought that land management, 

in terms of ground preparation prior to planting and subsequent creation of 

microtopographies (ridges, furrows (troughs), undisturbed flats) can have an effect 

on both initial and long-term soil GHG emissions and C storage. Before carrying out 

their work on stand related effects on soil respiration in a Sitka spruce 

chronosequence, Saiz et al. (2006) did a preliminary study testing the effects of 

microtopography (furrows, ridges, flats) and chamber position on soil CO2 flux. They 

found that there were differences in respiration rates depending on chamber location, 

with the highest rates measured from furrows. Whether gas sampling chambers were 

situated on flats, furrows or ridges in Gisburn Forest could be influencing GHG fluxes 

due to microtopographical differences in depth to water table, organic layer depth, 

location of roots, litterfall and decomposition, and soil temperature. 
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3.6 Conclusion 

In this single site study LUC from rough ungrazed grassland to SRF resulted in, 

increased CH4 uptake, and increased soil N2O emissions. There were also significant 

differences between tree species with higher net CO2 and N2O emissions measured 

from Sitka spruce soils compared to common alder and Scots pine. Net CO2 fluxes 

were driven largely by soil temperature. Random spatial effects explained a large 

proportion of the variation in soil CH4 flux. Whereas, N2O flux was driven by habitat 

and the interaction between habitat and water table depth. The interactive effects 

between tree species and season on N2O emissions also suggest that SRF species must 

be considered carefully for potential GHG mitigation. Future work should focus on 

whether these patterns are consistent across other soil types and geographical zones. 
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4.1 Abstract 

LUC from grassland to forest has been shown to change soil C and GHG fluxes but generally 

with high variability. This variability may be due to differences between tree species and the 

effects they can have on soil hydrological properties. Management of forests (e.g. site 

preparation) can also impact the physical structure of the soil and this may modify the impacts 

of trees on soil C and GHG fluxes. 

Soil mesocosms were collected from under different tree species (Scots pine, Sitka spruce and 

common alder) and grassland at the Gisburn Forest Experiment. The mesocosms were taken 

from different microtopographies (undisturbed flats, ridges, troughs) under each tree species, 

which occurred as a result of pre-planting site preparation. These were subjected to high water 

table (3 cm) and low water table (27 cm) treatments, and GHGs were measured over 134 days. 

A nitrogen (N) addition experiment was also performed after 169 days to determine whether 

soils were N limited under different tree species and grassland. 

Water table impacted fluxes of N2O and CH4 but not CO2, with higher N2O at low water table 

and higher CH4 at high water table. There was an interactive effect of tree species and water 

table on N2O emissions, with high water table decreasing N2O in common alder and Scots 

pine soils, but not Sitka spruce. The effect of microtopography on N2O flux appeared to be 

influenced by water table, but varied depending on SRF species, though this was not 

significant. Tree species had an effect on CO2 emissions, and highest rates were measured 

from Sitka spruce soils under both water tables. Overall, water table was the only significant 

driver of soil CH4 fluxes. Comparing the tree species effects to the grassland reference, CO2 

emissions were lower under common alder and Scots pine but higher from Sitka spruce, net 

emissions of CH4 were measured from grassland irrespective of water table and N2O fluxes 

were negligible from grasslands. 

This study demonstrates that water table depth can modify the pattern of soil-atmosphere 

GHG exchange but this is also dependent on tree species. Therefore, consideration should be 

given to the impact that temporal fluctuations in water table will have on the magnitude and 

direction of soil GHG fluxes. Furthermore, these findings suggest that in forest sites GHGs 

need to be measured across representative microtopographies, in order for more accurate 

calculation of GHG budgets.  
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4.2 Introduction 

Short Rotation Forestry (SRF) for bioenergy could deliver greater volumes of biomass from 

the same land area as alternative bioenergy crops such as Short Rotation Coppice (SRC) 

(McKay, 2011). Therefore, SRF is being seriously considered as a potential bioenergy crop to 

meet biomass demand and renewable energy targets (Leslie et al., 2012). As current experience 

of SRF in the UK is limited there is an urgent need to evaluate its viability as a fossil fuel 

alternative, and increased knowledge from systematic research is required to ensure that 

commercial SRF offers multiple environmental benefits, including GHG mitigation and C 

sequestration. 

Forest ecosystems can store carbon (C) in the long term and, because of this, afforestation is 

viewed as a means to mitigate rising CO2 concentrations in the atmosphere (Christiansen & 

Gundersen, 2011; Vesterdal et al., 2012). Afforestation also affects the soil-atmosphere 

exchange of other important greenhouse gases (GHGs) such as methane (CH4) and nitrous 

oxide (N2O), due to tree-related alteration of soil and micro-climatic conditions (Peichl et al., 

2014). Since the global warming potential (GWP) of CH4 and N2O is greater than CO2 (34 and 

298 times, respectively) on a molar mass basis over 100 years (IPCC, 2013), increases in 

emissions of these GHGs could offset any C savings made as result of planting SRF (Zenone 

et al., 2015). Temperate forest soils have the strongest CH4 sink potential of all natural systems 

with soil uptake rates up to 8.9 kg CH4-C ha-1 y-1 and a mean if 3.6 kg CH4-C ha-1 y-1 (Bowden 

et al., 2000; Dalal and Allen, 2008). However, temperate forests may also be significant sources 

of soil N2O emissions (Kesik et al., 2005; Zhang et al., 2008) with estimated emission rates of 

0.01-8.07 kg N2O-N ha-1 y-1 (Dalal & Allen, 2008). Therefore, it is also important to consider the 

soil-atmosphere exchange of these three important GHGs when estimating the mitigation 

potential of a forest system. This mitigation potential may be further modified by tree species, 

for example, some studies have found that broadleaved forest soils can emit more N2O than 

coniferous forest soils (Butterbach-Bahl et al., 2002; Pilegaard et al., 2006; Strange et al., 2013). 

A study by Barrena et al. (2013), however, measured higher N2O emissions from coniferous 

soils but found there were large differences between species, with 17 times higher emissions 

from Douglas fir soils compared to radiata pine soils. These variable results highlight the need 

to evaluate species-specific effects on soil GHG emissions in order to make more informed 

decisions on SRF species selection in the future. 
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Tree species differences in root development, litter quantity and quality, soil microbial 

community composition, canopy shading and rainfall interception can lead to changes in soil 

physical, biogeochemical and hydrological properties, all of which can affect soil GHG 

exchange with the atmosphere (Smith et al., 2003; Borken & Beese, 2005; Ball et al., 2007; 

Christiansen & Gundersen, 2011; Peichl et al., 2014). For example, it is reported that nutrient 

turnover rates are higher in soils under broadleaved species compared to under coniferous 

species (Ambus & Zechmeister-Boltenstern, 2007) due to broadleaved litter having more labile 

C available which is easily decomposed by microbes. Furthermore, species such as alder 

which is a nitrogen-fixing species can affect soil nutrient status by depositing litter high in N 

concentration (Wedderburn & Carter, 1999), whilst soils under coniferous species such as pine 

and spruce generally have higher C:N ratios and lower pH than broadleaved soils (Menyailo 

et al., 2002). Soil N availability is also greatly influenced by rates of N deposition which vary 

as result of location, e.g. temperate forests in NW Europe that experience increased N 

deposition from air pollution (Butterbach-Bahl et al., 2002), and species type, with higher rates 

of N deposition usually recorded in coniferous soils compared to broadleaved soils (De 

Schrijver et al., 2007; Gundersen et al., 2009; Rothe et al., 2002). 

The direction and magnitude of soil-atmosphere exchange of these GHGs is mainly controlled 

by the cycling of soil C and N. These biogeochemical cycles are in turn controlled by soil 

temperature and moisture due to their effects on microbial activity (Davidson et al., 1998; 

Bardgett, 2005), water table depth due to its effect on the oxic/anoxic boundary and soil 

aeration (Ball et al., 2007). Tree species type can also influence C and N cycling due to their 

effects on the quantity and quality of available organic substrate and soil physical and 

biological properties (Gleixner et al., 2005; Vesterdal et al., 2012; Prescott & Grayston, 2013). 

In addition, N deposition (Reay et al., 2005; Christiansen & Gundersen, 2011; Barrena et al., 

2013), and management practices such as ground preparation pre-planting, and harvesting 

techniques (Saiz et al., 2006; Mckay, 2011) impact soil C and N, and soil-atmosphere GHG 

exchange. 

Soil water content is important as it aids substrate supply to microorganisms (Schindlbacher 

et al., 2004) and influences gas diffusivity (Smith et al., 2003). Rates of soil chemical and 

biological processes generally increase exponentially with temperature, as long as factors such 

as moisture are not limiting (Meixner & Yang, 2006). Depth to water table and its effect on soil 
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aeration is linked to soil GHG fluxes (Ball et al., 2007). Water table drawdown increases soil 

aeration which can lead to increased microbial soil organic matter decomposition and N 

mineralisation, resulting in a rise in CO2 and N2O production (Martikainen et al., 1993; 

Freeman et al., 1996; Minkkinen et al., 2002). However, increased aeration has the opposite 

effect on CH4 production which favours anaerobic conditions (McNamara et al., 2008). Trees 

are known to use more water than shorter vegetation types (Nisbet, 2005), and although no 

studies have yet measured water usage in the context of SRF it is predicted that SRF 

plantations will exceed those of conventional forests due to faster growth rates (McKay, 2011). 

Coniferous SRF species are likely to have higher water usage than broadleaved species and 

this could further impact water table dynamics (McKay, 2011). Interactions between tree 

species and water table could influence the direction and magnitude of soil GHG fluxes and, 

therefore, it is important to consider water table depth when collecting GHG measurements. 

Forest management can significantly impact soil GHG emissions, in part due to soil 

disturbance during extensive ground preparation. Some ground preparation techniques such 

as ploughing and overturning soil, to create planting ridges and improve drainage result in 

local microtopography being created (McNamara et al., 2008). The effect of microtopography 

and the interaction between microtopography and tree species on GHG exchange is uncertain. 

Saiz et al. (2006) tested the effects of microtopography (furrows (troughs), ridges, flats) on soil 

CO2 flux in a Sitka spruce chronosequence in central Ireland and found the highest respiration 

rates from furrows, and linked this to the presence of thicker soil organic layers in furrows 

compared to flats or ridges. In contrast, Ball et al. (2007) measured higher mean CO2 fluxes 

from ridges in a Sitka spruce chronosequence in Northumberland and attributed this to water 

table depths being lower in ridges compared to ditch sides (flats) or ditches (furrows/troughs). 

Whether or not the interactions between water table depth and microtopography are 

consistent under different tree species could have an impact on soil GHG fluxes. In order to 

get a representative sample of field-scale GHG fluxes in SRF, multiple samples should be 

taken from flats, troughs and ridges.   

An earlier field study at the Gisburn Forest Experimental site (Chapter 3) examined the effects 

of land use change to SRF on soil-atmosphere GHG exchange. This work showed that soil 

temperature, depth to water table, tree species, spatial variation and interactions between 

these variables all explained variation in soil fluxes of CO2, CH4 and N2O. It is challenging to 
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determine the relative influence of driving factors and their interactions in the field because 

soil variables, such as soil temperature and soil moisture, often co-vary through time (Fang & 

Moncrieff, 2001; Schaufler et al., 2010). Different tree species are also likely to have varying 

water demands throughout the year depending on the species growth pattern. Other variables 

such as N deposition, litterfall and soil N availability also vary temporally (Davidson et al., 

2000; Pilegaard et al., 2006). For CO2 fluxes there is the added complication which arises from 

the contribution of autotrophic respiration in field studies, this can account for up to 50 % of 

total CO2 flux (Högberg et al., 2001; Bahn et al., 2006; Byrne & Kiely, 2006). In order to tease 

apart measures which co-vary temporally and drive GHG fluxes in field studies, controlled 

core (mesocosm) laboratory experiments are often used (Fang & Moncrieff, 2001; Schaufler et 

al., 2010; Gabriel & Kellman, 2014). 

Spatial variability in soil GHG fluxes is known to be large, even in homogenous stands of tree 

species (Raich et al., 1990). It may be affected by root distribution (Saiz et al., 2006), the mass 

of litter accumulation and quality and quantity of soil C pools (Klopatek, 2002; Fang et al., 

1998), and organic layer thickness (Saiz et al., 2006). These physical differences may interact 

with the depth to water table to modify GHG fluxes (Ball et al., 2007). Consequently, 

microtopography and its interactions with these variables may be particularly important (Ball 

et al., 2007; Fang et al., 1998; Nungesser, 2003; Saiz et al., 2006).  

In order to better understand the driving effects of, and interactions between, water table, 

microtopography and tree species on soil GHG emissions observed in the field (Chapter 3), a 

laboratory controlled intact core experiment was carried out. This study  examined the effects 

of interactions between tree species, water table and microtopography on soil GHG emissions 

from soils under 23 year old stands of Picea sitchensis (Sitka spruce) (first rotation), Pinus 

sylvestris (Scots pine) (second rotation), Alnus glutinosa (common Alder) (second rotation) and 

compare these with long-term rough grassland. This study is the first to examine these effects 

in a SRF bioenergy context and the results could contribute to strategies that maximise GHG 

mitigation potential of SRF as a fossil fuel alternative. 

The hypotheses for the main part of this study were that: (i) GHG emissions will be influenced 

by depth to water table with higher CO2 and N2O emissions expected with a lower water table 

(intermediate aeration) and higher CH4 emissions at higher water table (saturated) in all 
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species, (ii) there will be tree species differences in soil GHG fluxes with higher N2O emissions 

expected from Sitka spruce and Common alder soils compared to Scots pine (and Grassland) 

and there will be interactions between tree species and water table depth (iii) 

microtopography and interactions between microtopography and tree species will modify soil 

GHG emissions. In order to test whether N limitation was having an impact on N2O 

production under particular species a further N addition experiment was carried out using 12 

additional mesocosms at the conclusion of the main experiment.  

4.3 Materials and methods 

4.3.1 Site description and field sampling methods 

Soil cores (mesocosms) were collected from Gisburn Forest experimental site in the NW 

England (54° 1’ N; 2°22 W) in May 2014. A full site description and table of soil properties are 

detailed in chapter 3. As a result of ground preparation prior to forest replanting in 1991 three 

different microtopographies now exist within the 1.5 m spacing between tree rows; ridges, 

troughs (furrows) and undisturbed flats. The raised ridges (~50 cm wide) into which trees 

were planted and adjacent troughs (~25 cm deep × ~50 cm wide) were created by overturning 

soil on one side the ridge line using a mouldboard plough, and the ~50 cm wide undisturbed 

flats exist on the other side of the ridge lines. Soil mesocosms were extracted by gently 

hammering 30 cm deep × 11 cm diameter sections of PVC pipe into the soil, then cutting 

around the outside with a sharp knife and pulling out with pliers. Two soil mesocosms were 

extracted from each microtopograpy in Sitka spruce, Scots pine and common alder habitats 

(the use of the term ‘habitat’ throughout this chapter refers to the different land covers 

including Scots pine, Sitka spruce, common alder and grassland) and from each of the three 

blocks. Mesocosms were also extracted from the grasslands to use as a reference but these 

were only taken from undisturbed flats as this is the only existing topography. This resulted 

in a total of 60 mesocosms. A further three soil mesocosms were collected from the flat 

microtopography, in each habitat for the N addition experiment. Following extraction, all 

mesocosms were transported back to the laboratory and stored at 4° C for 2 days prior to the 

experiment set-up. 
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4.3.2 Experimental design 

Each of the 72 mesocosms comprising the soil in the PVC pipe were weighed, numbered and 

placed in sturdy 13-L plastic containers (315 mm × 275 mm) (Smithers-Oasis Company, 

Washington, UK). All mesocosms were kept in a controlled temperature room at 11° C 

(temperature at which GHG in situ emissions peaked, Chapter 3) for the duration of the 

experiment. To limit the effects of understory plants on soil GHG emissions any visible 

vegetation (mainly grasses) were carefully removed before starting the experiment. To 

maintain water tables at one of two set levels (“high” and “low”), 5 mm holes were drilled 

into the mesocosm at either 3 cm from the surface or 27 cm from the surface. The mesocosms 

were allowed to equilibrate at 11° C for 1 week prior to water table treatment application to 

allow time for the soil environment to stabilise and recover following disturbance. Half of the 

mesocosms from each combination of block and microtopograhy were assigned to either a 

high or low water table treatment, and water was added to the buckets to a level that aligned 

with the top of the drilled holes. Mesocosms were then allowed to equilibrate for 18 days 

before starting measurements, with water table monitored by daily inspection and maintained 

by manually topping up with deionised water when required. An additional set of 12 test 

mesocosms were used to monitor volumetric moisture content (VMC) using a ML2x Theta 

Probe and HH2 Meter (Delta T Devices, Cambridge, UK) to avoid disturbing the mesocosms 

from which GHG measurements were made. 

4.3.3 Laboratory sampling methods 

4.3.3.1 GHG measurements – main experiment 

Mesocosms were incubated for a period of 134 days, and GHG fluxes were measured at six 

time points 18, 26, 40, 54, 69 and 134 days. To measure GHG flux rates, headspace gas samples 

were taken using the unvented static enclosure method (Livingston and Hutchinson, 1995). 

Plastic opaque chambers made from Lock & Lock containers cut in half (Lock & Lock, 

Anaheim, CA, USA, W 110 mm, H 180 mm) were attached to each mesocosm (mean 

headspace volume 669.65 ± 12.34 cm3) and sealed using wrist sections of rubber gloves and 

layers of duct tape. A 10 mm hole was drilled into each of the Lock & Lock lids and a rubber 

septum (Sigma Aldrich, St. Louis, MO, USA) was inserted into the hole and the air tightness 

of the chambers pre-tested. 10-ml headspace gas samples were collected through the rubber 
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septum using a 20-ml syringe fitted with a 0.5 mm needle, chambers were flushed three times 

with headspace gas before filling the syringe and transferring to 3-ml pre-evacuated 

exetainers (Labco, Lampeter, UK). Sampling was carried out over a 45 minute enclosure 

period with samples taken immediately after sealing the lid, then at three fifteen minute 

intervals. Gas samples were analysed for CO2, CH4 and N2O concentrations on a PerkinElmer 

Autosystem XL Gas Chromatograph (GC) (PerkinElmer, Waltham, MA, USA) with flame 

ionization detector and electron capture detector equipped with a poropack Q column 

operated at 60° C with an argon carrier gas. Certified gas standards (Air Products, Crewe, UK) 

within the range of the samples being analysed (497, 1063, 4110 ppm CO2, 1.07, 3.03, 10.26 

ppm CH4 and 0.41, 0.99 and 2.04 ppm N2O) were used to calibrate the GC. Gas fluxes (CO2, 

CH4 and N2O) were calculated using the approach of Holland et al. (1999) by plotting the 

linear accumulation of each gas over the 45 minute enclosure period. 

4.3.3.2 Destructive sampling 

At the end of the main water table manipulation experiment the 60 mesocosms used for this 

experiment were destructively sampled and the depth of the soil organic layer of each was 

measured. Subsamples were used to calculate bulk density (BD), gravimetric moisture content 

(GMC), water filled pore space (WFPS) and for available N analysis (NH4+-N and NO3--N). 

Gravimetric moisture was determined from a quarter mesocosm subsample placed in an oven 

at 105° C for 24 hours. BD was calculated using these values of moisture loss following 

methods in the GB Countryside Survey (Emmett et al., 2008; Reynolds et al., 2013). Inorganic 

N concentration was determined by extraction with 6% KCl extraction. The extracts were 

analysed for NH4+-N and NO3--N colourimetrically using an AQ2 discrete analyser (Seal 

Analytical, Southampton, UK). 

4.3.3.3 Nitrogen addition experiment 

A subset of twelve mesocosms were retained at the end of the main experiment and a further 

N addition experiment conducted to test relative N limitation across habitats. These 

mesocosms were from low water table treatments and from the flat microtopography. 

Ammonium nitrate in water solution (58-ml) was added at a concentration equivalent to 

monthly (winter months) N deposition at Gisburn Forest (4.16 kg N ha-1) (APIS, 2014). 

Headspace GHG samples were collected over a 45 minute enclosure period, using the same 
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method as above, on 18 occasions: 1 hour before N addition, 1 hour after, 4 hours after, then 

after 1, 2, 3, 4, 5, 6, 7, 11 and 14 days. The gas samples were stored in 3-ml pre-evacuated 

exetainers and analysed by GC (as above). At the end of this additional experiment these 

twelve mesocosms were also destructively sampled, and analysed as per the sixty original 

mesocosms for BD, GMC, soil organic layer depth, NH4+-N and NO3--N. 

4.3.4 Data processing and statistical analyses 

The effects of time, SRF tree species, water table, microtopography, and their interactions, on 

GHG fluxes were examined in a fully factorial design using linear mixed-effect models. Core 

was included as a random effect in these models to account for the repeated measures made 

on each mesocosm. Grassland mesocosms were not included in these analyses since they were 

represented by only one microtopography. However, a separate analyses including both SRF 

and grassland mesocosms but using only the ‘flat’ microtopography tested whether there was 

a difference between these land uses. Measures made on mesocosm soils at the conclusion of 

the main experiment were used to test the effects of species, water table and their interaction 

on GMC, WFPS, NH4+-N and NO3--N, and the effects of species, microtopography and their 

interaction on BD and the depth of the soil organic layer. 

The effects of N addition, and whether soils under different species responded differently to 

N addition, were assessed by testing a ‘before-after’ dummy variable for N addition and its 

interaction with species, respectively. The ‘before-after’ variable omitted the sampling times 

1 h, 4 h and 24 h after N addition, when GHG fluxes were considered to represent the 

disturbance of water and N addition. 
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4.4 Results 

4.4.1 Water table depth and microtopography effects on GHG fluxes across SRF 

species 

4.4.1.1 CO2 efflux 

Time had a significant effect on CO2 efflux during incubation (Table 4.1). CO2 efflux rate 

decreased over the 134 day incubation time across all tree species and the grassland, 

microtopographies and water table treatments, from a mean of 30.33 mg CO2-C m-2 h-1 

(Appendix A.3.), to 21.16 mg CO2-C m-2 h-1 (Appendix A.3.). Tree species had a significant 

effect on soil CO2 efflux (Table 4.1). Sitka spruce mesocosms showed higher soil efflux rates 

(34.21 ± 1.55 mg CO2-C m-2 h-1) compared to Scots pine (24.09 ± 0.90 mg CO2-C m-2 h-1) and 

common alder (22.45 ± 1.06 mg CO2-C m-2 h-1) mesocosms. Only Sitka spruce mesocosms had 

a higher CO2 efflux rate than the grassland (27.21 ± 1.73 mg CO2-C m-2 h-1). 
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Table 4.1. Summary statistics for the effects of tree species, sampling time, water table depth, 

microtopography (ridge, trough, flat) and their interactions on soil GHG fluxes. Bold indicates values 

are significant at P <0.05. 

 

There was no overall or interactive effects of water table depth on CO2 emissions from SRF 

mesocosm soils (Table 4.1), despite there being higher CO2 efflux at low water table depth in 

the Sitka spruce, similar emissions in Scots pine at both water table depths, and higher 

emissions at high water table in common alder mesocosms (Fig. 4.1A).  

 CO2 CH4 N2O 

time P = 0.004 P = 0.859 P = 0.613 

tree species P = 0.025 P = 0.230 P < 0.001 

water table  P = 0.905 P = 0.026 P = 0.036 

topography P = 0.810 P = 0.402 P = 0.335 

time : species P = 0.123 P = 0.707 P = 0.170 

time : water table P = 0.527 P = 0.286 P < 0.001 

time : topography P = 0.103 P = 0.189 P = 0.475 

species : water table P = 0.665 P = 0.361 P = 0.043 

species : topography P = 0.239 P = 0.815 P = 0.294 

water table : topography P = 0.158 P = 0.810 P = 0.841 

time : species : water table P = 0.403 P = 0.612 P = 0.149 

time : species : topography P = 0.215 P = 0.898 P = 0.062 

time : water table : topography P = 0.345 P = 0.328 P = 0.581 

species : water table : topography P = 0.068 P = 0.520 P = 0.949 

time : species : water table : topography P = 0.551 P = 0.547 P = 0.545 
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Figure 4.1. Soil GHG fluxes for all habitats. (A) CO2, (B) CH4, (C) N2O, at high (3 cm below surface) and 

low water table (27 cm below surface) depths. Error bars represent standard error. n= 3 for Grassland 

mesocosms; n = 9 for tree species mesocosms. 

 

Microtopography also had no effect on CO2 efflux and no significant interactions with other 

factors (Table 4.1). There were, however, apparent trends in the interaction between water 

table depth and microtopography (Fig. 4.2A). At high water table CO2 efflux was higher from 

ridges (31.17 ± 2.36 mg CO2-C m-2 h-1) compared to flats and troughs which had similar mean 

efflux rate (24.75 ± 0.87 and 24.15 ± 1.56 mg CO2-C m-2 h-1, respectively). Whereas, at low water 

table CO2 efflux rates were higher from troughs (31.18 ± 2.36 mg CO2-C m-2 h-1), a trend that 

appears to be largely driven by Sitka spruce, and effluxes from flats and ridges were the same 

(26.01 ± 1.14 and 26.47 ± 2.05 mg CO2-C m-2 h-1, respectively) (Fig. 4.2A).
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Figure 4.2. Soil GHG fluxes for all habitats. (A) CO2, (B) CH4, (C) N2O, at high and low water table from each microtopography (ridges, flats and troughs). Error 

bars represent standard error. n= 3. 
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4.4.1.2 CH4 fluxes 

There was no effect of time on soil CH4 fluxes (Table 4.1) and over the 134 days of 

incubation there was mean net CH4 uptake in the Sitka spruce (-1.80 µg CH4-C m-2 h-

1) and common alder soils (-0.69 µg CH4-C m-2 h-1) and Scots pine mesocosms (-4.76 

µg CH4-C m-2 h-1). Grassland soils (177.06 µg CH4-C m-2 h-1) were not significantly 

different from the flats of the tree species mesocosms (Appendix A.4.).  

Water table had an effect on CH4 flux (Table 4.1), and in SRF overall there was net 

CH4 production from soils with high water table (21.76 ± 19.47 µg CH4-C m-2 h-1) and 

net uptake in soils at low water table depth (-10.52 ± 3.73 µg CH4-C m-2 h-1) (Fig. 4.1B). 

There was no interaction between water table depth and tree species (Table 4.1). In 

comparison, net CH4 production was measured in all grassland mesocosms 

irrespective of water table treatment, but CH4 production rates were much greater at 

high water table (Fig. 4.1B). At low water table there was still net CH4 production 

from the grassland mesocosms, compared to uptake in the tree species mesocosms 

with rates declining in the order of Sitka spruce > common alder > Scots pine (Fig. 

4.1B).  

Overall, microtopography had no significant effect on soil CH4 fluxes (Table 4.1). 

There were no interactions between species, water table and microtopography, 

however interesting trends existed (Fig. 4.2B). In the common alder mesocosms at 

high water table CH4 production was greatest from the flat microtopography and 

lowest from troughs, with ridges intermediate (Fig. 4.2B). Whereas, at low water 

table, where net CH4 uptake was measured, uptake declined in the order of troughs 

> ridges > flats (Fig. 4.2B). CH4 production was highest from troughs in Scots pine 

mesocosms at high water table compared to ridges, and even at high water table there 

was net CH4 uptake in the undisturbed flats. At low water table depth in Scots pine 

there was net CH4 uptake, with rates decreasing in the order of ridges > flats > troughs 

(Fig. 4.2B). The pattern was again different in Sitka spruce mesocosms where highest 

rates of CH4 production at high water table were measured in ridges lowest in troughs 
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and flats intermediate (Fig. 4.2B). Greatest uptakes rates at low water table were 

found in ridges followed by troughs, with lowest uptake in flats (Fig. 4.2B). The effect 

of microtopography in grassland could not be tested as only flats existed. 

4.4.1.3 N2O fluxes 

As with CH4 flux, there was no effect of time on overall N2O fluxes in mesocosms 

(Table 4.1) (Appendix A.5.). There was, however, an interactive effect of time and 

water table on N2O flux rates (Table 4.1). N2O flux generally decreased over the 

duration of the study at high water table (T1: 27.19 ± 6.97, T2: 50.95 ± 13.65, T3: 32.51 

± 6.28, T4: 28.98 ± 9.69, T5: 22.53 ± 6.37 and T6: 21.42 ± 7.74 µg N2O-N m-2 h-1), but 

increased over the duration of the study at low water table treatment ((T1) 23.23 ± 

6.00, (T2) 34.89 ± 8.82, (T3) 47.68 ± 7.16, (T4) 50.37 ± 10.61, (T5) 56.81 ± 11.95 and (T6) 

82.76 ± 15.94 µg N2O-N m-2 h-1) (Appendix A.5.). 

Tree species affected N2O fluxes significantly (Table 4.1) and net N2O emissions were 

measured in all species, decreasing in the order of common alder (73.72 ± 5.93 µg 

N2O-N m-2 h-1) > Scots pine (46.77 ± 5.37 µg N2O-N m-2 h-1) > Sitka spruce (14.48 ± 3.92 

µg N2O-N m-2 h-1). All tree species mesocosms had higher mean N2O flux rates than 

the grassland over the course of the experiment (10.73 ± 2.78 µg N2O-N m-2 h-1). Water 

table depth had an effect on N2O fluxes (Table 4.1) and net emissions were measured 

from both water table treatments, but with higher flux rates from mesocosms with 

low water table treatment (60.98 ± 16.98 µg N2O-N m-2 h-1) compared to high water 

table treatment (33.07 ± 13.85 µg N2O-N m-2 h-1) (Fig. 4.1C). This water table effect on 

N2O fluxes was also influenced by species, with common alder and Scots pine having 

greater fluxes at low water table compared to high water table, whereas Sitka spruce 

fluxes were greater at high water table than at low water table depth (Fig. 4.1C). N2O 

emissions in grassland flat mesocosms were significantly lower than common alder 

(P < 0.01) but not Sitka spruce or Scots pine (Appendix A.5.). 

There was no overall effect of microtopography on N2O fluxes (Table 4.1). There were 

also no interactions between microtopography, water table or tree species (Table 4.1). 
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There were, however, trends between microtopography and tree species. For 

instance, N2O fluxes in common alder mesocosms at low water table were highest 

from flats and lowest from ridges, whereas at high water table N2O emissions were 

highest from troughs and lowest from ridges. (Fig. 4.2C). In Sitka spruce mesocosms 

at both high and low water table treatments, N2O emissions declined in the order of 

ridges > flats > troughs. Whereas, in Scots pine mesocosms, at both high and low 

water table, the highest emissions were from flats and lowest from ridges (Fig. 4.2C). 

4.4.1.4 Available N concentrations 

At the end of the main experiment there were differences in available N levels 

between high and low water table treatments (Fig. 4.3). Overall (considering the mean 

of all habitats) both NH4+ and NO3- were higher in the low water table mesocosms 

compared to the high water table mesocosms (Fig. 4.3), however the effect of water 

table was only significant for NO3- (F1,50 = 28.84, p < 0.001). Although there were no 

significant effects on NH4+ concentrations or interactions with habitat (F3,50 = 1.30, p = 

0.28) or water table depth (F1,50 = 0.51, p = 0.48) there were differences observed 

between species at low water table. Highest NH4+ was found in the Sitka spruce soils 

and the Scots pine and common alder soils had similar concentrations (Fig. 4.3A). All 

tree species mesocosms had higher available NH4+ than the grassland (Fig. 4.3A). In 

contrast, there was a significant effect of habitat (F3,50 = 3.89, p = 0.01) on 

concentrations of NO3- which were lowest in Sitka spruce mesocosms at low water 

table and increased in the order of Sitka spruce < grassland < Scots pine < common 

alder (Fig. 4.3B). At high water table there was almost no NO3- , likely to be as result 

of complete denitrification, and only small amounts measured in Scots pine, common 

alder and Sitka spruce, and none in the grassland mesocosms (Fig. 4.3B). NH4+ 

concentrations were similar across all tree species and only slightly lower in the 

grassland (Fig. 4.3A). 
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Figure 4.3. Soil available N at high and low water table depths in mesocosms at the end of the 

main experiment (141 days). (A) ammonium NH4+, (B) nitrate NO3-. Error bars represent 

standard error. n= 3 for Grassland mesocosms; n = 9 for tree species mesocosms. 

 

4.4.1.5 Factors affected by water table depth 

Gravimetric moisture content (GMC) was affected by water table depth (F1,49 = 6.05, 

p = 0.02) with higher GMC in mesocosms at high water table compared to low water 

table. There was no difference in GMC between species (F3,49 = 2.51, p = 0.07) or any 

interaction between species and water table depth (F3,49 = 1.23, p = 0.31). Water filled 

pore space (WFPS) was also influenced by water table depth (F1,49 = 8.47, p = 0.01) 

with 100.20 ± 14.07 (%) WFPS measured in high water table mesocosms, and 66.79 ± 

6.81 (%) in low water table mesocosms. There was no effect of species (F3,49 = 0.49, p = 

0.67), or any interaction between species and water table depth (F3,49 = 1.65, p = 0.19) 

on WFPS.  
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4.4.1.6 Factors affected by microtopography 

There were differences in soil bulk density (BD) with microtopography (F2,43 = 3.14, p 

= 0.05) declining in the order of flats (0.45 ± 0.03 g cm-3) > troughs (0.36 ± 0.03 g cm-3) 

> ridges (0.34 ± 0.03 g cm-3). Tree species had no effect on soil BD (F2,43 = 2.12, p = 0.13) 

and there was no interactive effect of species and microtopography (F4,43 = 0.38, p = 

0.82). There was no difference in depth of soil organic layer between 

microtopographies (F2,42 = 0.62, p = 0.54), however there was a highly significant effect 

of species (F2,42 = 19.86, p < 0.001) on depth of the organic layer and there was also an 

interaction between species and topography (F4,42 = 2.83, p = 0.04). Overall, soil 

organic layer was deepest in Sitka spruce mesocosms (3.92 ± 0.32 cm), followed by 

grassland (3.17 ± 0.70 cm) and Scots pine (3.03 ± 0.33 cm), but more shallow in 

common alder mesocosms (only 1.61 ± 0.25 cm). In the Scots pine and common alder 

mesocosms the soil organic layer was deepest on ridges (3.33 ± 0.21 cm, 2.17 ± 0.64 

cm) whereas in the Sitka spruce mesocosms it was deepest in troughs (4.83 ± 0.75 cm). 

4.4.2 N addition experiment 

4.4.2.1 CO2 fluxes 

There was no difference in soil CO2 efflux between habitats (F3,8 = 1.81, p = 0.22). Soil 

CO2 efflux was higher in the grassland (31.00 ± 0.39 mg CO2-C m-2 h-1) and Sitka spruce 

(30.81 ± 0.29 mg CO2-C m-2 h-1) mesocosms than those in Scots pine (14.82 ± 0.05 mg 

CO2-C m-2 h-1)  and common alder (12.37 ± 0.14 mg CO2-C m-2 h-1) mesocosms (Fig. 

4.4A). There was a small decrease in CO2 efflux following the addition of N (1 hour 

after addition) in the grassland and Scots pine mesocosms with the rates beginning 

to increase from the decreased level after 4 hours. There was also no overall effect of 

N addition on CO2 efflux (F1,116 = 2.47, p = 0.12) or any interaction between CO2 efflux 

and tree species in SRF (F3,116 = 0.99, p = 0.41) owing to the small increase in Sitka 

spruce mesocosms but absence of change in Scots pine, and a small decrease in 

common alder (Fig. 4.4A). 
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4.4.2.2 CH4 fluxes 

Similar to CO2 response there were no differences in CH4 flux between habitats (F3,8 = 

3.03, p = 0.09) and there was no effect of N addition (F1,116 = 1.51, p = 0.22), or any 

interaction between tree species and N addition (F3,116 = 0.58, p = 0.63). The addition 

of N to the Scots pine mesocosms did not significantly increase net CH4 uptake, but 

the mean net efflux was -2.44 ± 0.99 µg CH4-C m-2 h-1 before compared to -6.32 ± 0.81 

µg CH4-C m-2 h-1after N addition. The Sitka spruce mesocosms remained a net sink 

for CH4, though the sink strength decreased from -15.43 ± 1.57 µg CH4-C m-2 h-1 to - 

7.22 ± 1.45 µg CH4-C m-2 h-1 (Fig. 4.4B). Despite a peak in CH4 uptake 2 days after N 

addition, the common alder mesocosms showed similar CH4 uptake rates before and 

after N addition (-4.57 ± 0.71 µg CH4-C m-2 h-1 and - 4.52 ± 1.80 µg CH4-C m-2 h-1, 

respectively) (Fig. 4.4B). In grassland mesocosms there was an initial reduction in CH4 

emissions following N addition followed by, two peaks followed after 2 days and 4 

days. After this point CH4 emissions returned to a steady rate that was approximately 

double that prior to N addition (12.96 ± 0.14 µg CH4-C m-2 h-1 to 26.98 ± 1.54 µg CH4-

C m-2 h-1) (Fig. 4.4B). 

4.4.2.3 N2O fluxes 

There was a significant effect of N addition on N2O emissions (F1,116 = 13.96, p = 0.003) 

with an overall 142% increase in N2O emissions following N addition from 39.94 ± 

7.74 to 96.58 ± 26.34  µg N2O-N m-2 h-1. As for CO2 and CH4, there was no effect of 

habitat on soil N2O fluxes (F3,8 = 2.16, p = 0.17), nor any interaction between habitat 

and N addition (F3,116 = 0.26, p = 0.86). Despite the lack of significant interaction 

between habitat and N addition, there was interesting variation in magnitude of 

response between habitats. In all habitats there was a reduction in N2O emissions 

following N addition for ~ 24 hours, after which time rates started to increase again. 

Following N addition the highest emissions of N2O were measured in the Scots pine 

mesocosms where rates more than doubled from 113.01 ± 9.00 µg N2O-N m-2 h-1 to 

247.29 ± 7.22 µg N2O-N m-2 h-1, followed by grassland where emissions more than 
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trebled from 31.59 ± 4.52 to 106.16 ± 3.68 µg N2O-N m-2 h-1. However, the greatest 

proportional response was in the Sitka spruce mesocosms where N2O emissions 

increased from 7.53 ± 1.58 to 66.37 ± 2.71 µg N2O-N m-2 h-1, despite N2O emission rates 

being lower than those from Scots pine and grasslands. N2O emissions also increased 

in common alder mesocosms from 35.69 ± 1.19 to 73.47 ± 4.39 µg N2O-N m-2 h-1 (Fig. 

4.4C). 

 

 

 

Figure 4.4 Soil GHG fluxes for all habitats. (A) CO2, (B) CH4, (C) N2O from an additional set 

of 12 mesocosms (undisturbed flat microtopography only) following the addition of H2O + 

NH4NO3 equivalent to 4.62 kg N ha-1 on day 169 (arrow indicates timing of N addition). Three 

GHG measurements were made on day 169, 1 hour before N addition, 1 hour after N addition, 

and a further measurement 4 hours after N addition. Error bars represent standard error. n= 

3. 
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4.4.2.4 Available N concentrations 

Seven days after the end of the N addition experiment (184 days from start of main 

experiment) NH4+ was highest in the Sitka spruce mesocosms. Similar concentrations 

of NH4+ were measured in common alder and Scots pine and the lowest in grassland. 

There was large variation in grassland, common alder and Scots pine results (Fig. 4.5). 

Concentrations of NO3- at the end of the experiment were considerably higher in the 

common alder mesocosms compared to the grassland, Sitka spruce and Scots pine 

(Fig. 4.5). There was less variability in the NO3- measurements compared to the NH4+ 

measurements from the same samples (Fig. 4.5). Comparing NH4+ concentrations 

after N addition to those measured at the end of the main experiment for mesocosms 

of flat microtopography at low water table, there was a decrease from beginning to 

end in all species (Fig. 4.3, Fig. 4.5). 

 

 

Figure 4.5. Soil available N (Ammonium NH4+ and Nitrate NO3-) in mesocosms at the end of 

the N addition experiment (184 days). Error bars represent standard error. n = 3. 
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4.5 Discussion 

GHG fluxes are highly variable in field studies of LUC as a result of differences in 

physical, environmental and climatic conditions, both spatially and temporally 

(Gundersen et al., 2012; Kern et al., 2012; Zona et al., 2013). It is also difficult to 

quantify soil heterotrophic respiration due to the contribution of autotrophic 

respiration to overall CO2 efflux, which in forests in particular is difficult to partition. 

One means of overcoming these field related issues is to extract soil core mesocosms 

from the field and maintain them intact under controlled conditions in the laboratory 

(Kirschbaum, 2006; Schaufler et al., 2010). Soils are initially disturbed, but less so than 

when using sieved homogenous soils and having experimental control allows one to 

independently manipulate variables to better understand what is driving soil GHG 

emissions (Jungkunst et al., 2008).  

4.5.1 Effects of tree species and water table on soil GHG fluxes 

For this study two water table treatments were used to investigate the effects of 

saturated soils (3 cm below surface) and soils of intermediate water table depth (27 

cm below surface) on soil-atmosphere GHG exchange under different tree species. 

Saturated conditions were chosen due to the known relationship between soil CH4 

emissions and high soil moisture (Smith et al., 2003; Dinsmore et al., 2009). 

Intermediate water table was chosen as N2O emissions have been known to peak 

when water table depths are in the region of 15—35 cm below the surface (Jungkunst 

et al., 2004), or with soil moisture within the range of 40—50% volume (Ball et al., 

2007).  

In support of the first hypothesis, water table depth had a significant effect on N2O 

and CH4 fluxes in mesocosms. N2O emissions from the tree species mesocosms were 

within the range estimated for temperate forests (0.01-8.07 kg N2O-N ha-1 y-1; Dalal & 

Allen, 2008) for both low water table (5.35 ± 1.49 kg N2O-N ha-1 y-1) and high water 

table (2.91 ± 1.21 kg N2O-N ha-1 y-1) treatments. Although considerably higher, 

Jungkunst et al. (2008) also recorded higher N2O emissions at lower water table from 
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laboratory incubated mesocosms collected from a temperate forest in Germany (-40 

cm depth = 23.14 ± 1.30, -5cm depth = 7.27 ± 1.39 kg N2O-N ha-1 y-1). The higher N2O 

emissions measured at intermediate water table depth are also in agreement with the 

conceptual model of Davidson et al. (2000) which predicts highest N2O production as 

a result of incomplete denitrification at intermediate WFPS. This is expected because 

nitrifier activity is greatest at a moderate WFPS (up to 60%), while denitrifier activity 

increases greatly with soil WFPS > 60% (Bateman & Baggs, 2005) as result of decreased 

O2 diffusion into the soil (Ruser et al., 2006). When water table depth is ‘intermediate’ 

(i.e. 15—35 cm), aeration in the surface layers increases leading to an elevated rate of 

decomposition releasing more N by mineralisation which acts as a substrate for N2O 

production (Freeman et al., 1996). Although there was no correlation between WFPS 

and soil N2O fluxes in this study it is worth noting that at high water table WFPS was 

on average 100%, whilst at intermediate water table the WFPS was 66.79 ± 6.81%. 

Therefore, in this study it is possible that at both water table depths N2O production 

was mostly a product of incomplete denitrification, but rates were higher at 

intermediate water table as conditions were more favourable for production. There 

were some mesocosms with low water table where WFPS was lower than 60% and, 

therefore, nitrification may have been the primary pathway for N2O production in 

these cores. These likely pathways are further supported by the concentrations of soil 

available N found in this study. Across all habitats there were higher concentrations 

of NH4+ than NO3-, suggesting that nitrification in these soils may be limited with 

NH4+ not being used efficiently, or it could also suggest that nitrification is the 

dominant pathway for N2O production. Johnson (1992) suggests that high 

concentrations of NH4+ in soils almost always lead to high rates of nitrification. Low 

concentrations of NO3- are not unusual as it is known to be less strongly absorbed in 

the soil system and is more susceptible to leaching in most soils (Johnson & Turner, 

2014). The higher concentration of NO3- measured in the common alder soils is likely 

to be as a result of N2 fixation by the actinomycorrhizal nodules (Frankia sp.) of alder 

root tips and subsequent conversion of NH3/NH4+ to NO3- in the surrounding soil 

(Reay et al., 2005). 
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The second hypothesis was also partly supported for N2O with different effects of 

water table on N2O found in soils under different species. At low water table 

(intermediate aeration) N2O emissions were higher in common alder and Scots pine 

mesocosms compared to high water table mesocosms. Higher N2O emissions at 

‘intermediate’ water table depth were expected as increased aeration facilitates more 

efficient release of substrate necessary for incomplete denitrification (Ball et al., 2007). 

In Sitka spruce mesocosms, it was therefore surprising that N2O emissions were 

greater, although very variable, at high water table (saturated) compared to low water 

table. However, N2O emissions were very small from Sitka spruce mesocosms at both 

water table depths (high: 29.36 ± 16.18; low: 6.10 ± 2.35 µg N2O-N m-2 h-1), compared 

to field measurements (Chapter 3) of 83.92 ± 10.81µg N2O-N m-2 h-1. This suggests that 

N2O emissions from Sitka spruce soils are driven by factors that were not controlled 

in the mesocosm experiment, such as N input to the soil via atmospheric deposition. 

It was hypothesised that there would be higher N2O emissions from Sitka spruce 

mesocosms and common alder mesocosms, which were expected as a response to 

higher concentrations of available N likely to be found under these species. This was 

found to be true for common alder but not for Sitka spruce. As discussed above, 

higher concentrations of NO3- were measured in soils under common alder as a likely 

result of N fixation and have been recorded in field studies previously (Reay et al., 

2005; Lu et al., 2015). As N deposition is known to be higher in dense canopied 

coniferous plantations (Erisman & Draaijers, 2003; de Vries et al., 2007; Michopoulos 

et al., 2007) it was expected that there would be more available N in the Sitka spruce 

soils, this was true for NH4+ but not NO3-. A recent study by Carnol and Bazgir (2013) 

measured a significantly higher annual return of NO3--N via throughfall under 

Norway spruce compared to six other species, including common alder, at a site in 

Belgium with a similar atmospheric N deposition rate, climate, and soil type to 

Gisburn forest. This research, and the high N2O emission rates measured in the field 

(Chapter 3), might suggest that NO3- in the Sitka spruce soil as a result of throughfall, 

is efficiently reduced to N2O via incomplete denitrification at intermediate moisture. 

Alternatively, NO3- may be reduced to NO (not measured in this study) in saturated 
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soils as a result of complete nitrification, which could explain the low concentrations 

found in the mesocosm soils and the lack of N2O flux overall. 

In comparison to the grassland reference mesocosms (low water table, 0.84 ± 0.58 kg 

N2O-N ha-1 y-1 and high water table, 0.57 ± 0.46 kg N2O-N ha-1 y-1) it appears that LUC 

to SRF has had an adverse effect on net N2O emissions irrespective of depth to water 

table. This confirms the findings of the earlier work in the field (Chapter 3) and 

indicates that afforestation of grassland in this soil type, regardless of species related 

differences leads to an increase in soil N2O emissions. 

Water table depth was the only significant determinant of CH4 fluxes, with net 

emissions measured at high water table and net consumption at low water table, 

across all tree species. This was as expected as CH4 is produced by methanogens 

under anaerobic, low oxygen (O2) conditions, and CH4 is consumed by 

methanotrophs when soils are well aerated. The importance of water table depth on 

CH4 fluxes has been reported in other field studies (von Arnold et al., 2004; Ball et al., 

2007; Jungkunst et al., 2008; Zona et al., 2013; Zenone et al., 2015) and laboratory 

studies (Dinsmore et al., 2009). The CH4 emissions rates measured in this study are 

low compared to some others published for forest soils at high water table (e.g. 50-

100 µg CH4-C m-2 h-1 at water table 5 cm below surface, Jungkunst et al., 2008) but not 

as low as the 3.42 µg CH4-C m-2 h-1 from a wet Swedish beech and Norway spruce site 

measured by Gundersen et al. (2012). Net CH4 uptake rates were also low compared 

to other published rates for European forests (e.g. mean ± SE: -46 ± 20 µg CH4-C m-2 

h-1, Skiba et al., 2009) and compared to the estimate for global temperate forests in 

general (mean 41.07 µg CH4-C m-2 h-1, Dalal & Allen, 2008). They are, however, similar 

to rates previously published for this site (mean ± SE: -5.05 ± 7.61 µg CH4-C m-2 h-1, 

McNamara et al., 2008). The relatively low CH4 uptake may be due to the suppression 

of this process by high levels of N deposition (44.38 kg N ha-1 yr-1 for deposition years 

2010-2012) (APIS, 2015) at this site, and as a result of N fixation in the common alder 

soils (Butterbach-Bahl et al., 1998; Reay & Neadwell, 2004; McNamara et al., 2008). 

The grassland reference mesocosms were net producers of CH4 at both water table 
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depths indicating that LUC from grassland to SRF could have a positive sink effect 

for atmospheric CH4 when water table is not at the surface. As for N2O, this finding 

on CH4 confirms earlier work (Chapter 3), and it is also in agreement with the findings 

of McNamara et al. (2008) who also measured net CH4 emissions from the grasslands 

at Gisburn Forest (mean ± SE: 39.0 ± 36.68 µg CH4-C m-2 h-1) compared to net uptake 

under common alder, Scots pine and Sitka spruce. Since the grassland soil always 

tend to be wetter in field conditions it may be that the microbial community are 

adapted to these conditions.  

Support for hypotheses one was not found with regard to soil CO2 efflux which was 

similar under both water table treatments. However, in agreement with the first part 

of hypothesis two, there were significant differences in CO2 flux between species, 

with higher fluxes measured from Sitka spruce mesocosms, compared to Scots pine 

or common alder overall. This pattern was similar to the findings from the field 

measurements of Chapter 3, but respiration rates from the mesocosms were 

considerably lower compared to field measurements (e.g. Sitka spruce: mesocosms, 

34.21 ± 1.55 mg CO2-C m-2 h-1, field 97.66 ± 4.41 mg CO2-C m-2 h-1). This is likely to be 

as a result or understorey vegetation removal and subsequent dark respiration, and 

reduced root inputs and nutrient supply in the mesocosms which may have led to a 

reduction in soil microbial activity (Fang & Moncrieff, 2001; Schaufler et al., 2010).  

4.5.2 Does microtopography modify soil GHG fluxes? 

Although we found no significant effects of microtopography or interactions with 

tree species, there were trends which indicated that microtopography could modify 

the influence of water table and tree species on GHG fluxes. Similar to the findings of 

Saiz et al. (2006), this study measured highest CO2 efflux from Sitka spruce troughs, 

but only at low water table depth. Saiz et al. (2006) attributed their findings from 

across multiple stands to the deeper organic layer in the furrows (troughs) (e.g. 3.9 ± 

0.3 cm in 31 year old Sitka spruce stand) compared to ridges and flats, which contains 

a high proportion of total fine root biomass. In this study the soil organic layer in the 

Sitka spruce troughs (4.8 ± 0.2 cm) was also deeper than in ridges or flats. Spatial 
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variability of soil CO2 efflux has been previously related to the soil organic layer 

thickness. In a Canadian boreal forest study an increase in soil CO2 efflux was 

positively related to the thickness of the soil organic layer as a result of 

microtopographical differences (Rayment & Jarvis, 2000). It is possible, therefore, that 

the CO2 efflux measured from Sitka spruce trough mesocosms may have been driven 

by the decomposition of severed fine roots (as a result of soil coring) in the deep soil 

organic layer, and increased aeration at ‘intermediate’ water table depth. However, 

Ball et al. (2007) measured higher mean CO2 fluxes from ridges in a Sitka spruce 

chronosequence in Northumberland, and attributed this to water table depths being 

lower in ridges compared to ditch sides (flats) or ditches (furrows/troughs). This 

finding of Ball et al. (2007) is in agreement with this study because at high water table 

depth higher CO2 efflux was also measured from Sitka spruce ridges, further 

suggesting an interaction between microtopographical-related differences in soil 

properties and water table. 

Microtopographical effects, and interactions with tree species were also examined for 

soil N2O fluxes. Consistent patterns were limited as results were very variable 

between species at different water table depths. Only Scots pine soils had a consistent 

pattern at both water table depths, with higher N2O emissions from flat 

microtopography. This consistency suggests that N2O production pathways in Scots 

pine soils are partly affected by microtopography, but any effect is further modified 

by water table depth as a result of its effect on aeration. In Sitka spruce mesocosms, 

despite the lower fluxes compared to other tree species, there was a trend towards 

higher N2O emissions from ridges at high water table. This may be related to the 

higher CO2 flux also measured from Sitka spruce ridges at high water table explained 

above, and to the increased C input from severed decomposing fine roots. An increase 

in soil C inputs could have an indirect effect on soil N2O emissions as heterotrophic 

microorganisms responsible for soil N transformation depend on a supply of 

available organic C (Hodge et al., 2000). Other than assuming that there is a greater 

abundance of fine roots in ridges (i.e. closer to the tree) it is difficult to explain why 
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there would be increased C as a result of fine root decomposition in any one particular 

microtopography. Considering the common alder mesocosms, from which N2O 

fluxes were greatest overall, the pattern at low water table was the same as for Scots 

pine declining in the order of flats > troughs > ridges.  This could be attributed to the 

abundance and distribution of N-fixing actinomycorrhizal nodules in flats and 

troughs compared to ridges. In a study by Rytter (1989) nodules were found up to 35 

cm away from the tree stump, but were most abundant closer to the stump, this study 

was however conducted on young alder stands (4 years old), and distribution may be 

different in older stands. These species and water table trends highlight the 

importance of measuring soil-atmosphere GHG exchange across different 

microtopographies in order to capture this aspect of spatial variability.  

4.4.3 N addition 

The low N2O emissions measured from Sitka spruce mesocosms, as explained 

previously, was the reason behind undertaking the supplementary N addition 

experiment. Using a subset of 12 mesocosms (3 from each habitat) from flat 

microtopography and low water table only, NH4+ NO3- was added at a rate equivalent 

to one month’s N deposition for Gisburn Forest. The expectation was that N addition 

would stimulate the microbial processes responsible for N2O production as a result 

of increased substrate availability in Sitka spruce soils, and further increase N2O 

production in Scots pine and common alder soils. This was based on previous 

published studies and an extensive meta-analysis which found that N addition in this 

form significantly increased soil N2O emissions (Zhang et al., 2008; Liu & Greaver, 

2009; Wang et al., 2014). Nitrogen addition had a significant effect on soil N2O 

emissions overall, with a mean increase of 142% relative to pre-addition levels, but 

there was no significant difference in N2O emissions between species. This overall 

N2O response to N addition is similar to that of Wang et al. (2014) who found a 125% 

increase in soil N2O emissions following N addition to forest plots in China in the wet 

season (WFPS > 60%). In their wet season, the peak rate of N2O emissions was 97.4 µg 

N2O-N m-2 h-1 following N addition, which is similar to the mean of this study 96.58 
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± 26.34 µg N2O-N m-2 h-1 after N addition. Mesocosm N2O flux rates after N addition 

were higher than the in situ rates of Chapter 3 (35.92 ± 3.68 µg N2O-N m-2 h-1), further 

confirming the effect of N addition on soil N2O emissions.  

Although there were no significant differences in habitat response to the N addition, 

or any interaction between habitat and N addition, there was a varied magnitude of 

response between species that is worth mention. N2O emissions were highest from 

the Scots pine mesocosms, both before and after the addition of N, indicating that soil 

conditions for N2O production were already favourable and the added N substrate 

further stimulated production (by 118%). Even though the highest emissions were 

from Scots pine mesocosms, it was the Sitka spruce mesocosms that showed the 

greatest relative response with a 780% increase in N2O emissions after N addition. 

Despite this high relative response, Sitka spruce soil N2O emissions were still lower 

than those measured in situ (Chapter 3), 66.37 ± 2.71 µg N2O-N m-2 h-1 versus 83.92 ± 

10.81 µg N2O-N m-2 h-1. An explanation for this shortcoming may be due to a lack of 

ectomycorrhizal fungi in the mesocosms which were possibly severed during the soil 

coring process. Certain N-tolerant fungi, such as Paxillus involutus and Tylospora 

fibrillosa, which can dominate the microbial biomass in acidic temperate forest soils 

(Smith & Read, 2008), have been found to produce N2O through nitrate reduction 

under low oxygen conditions (Prendergast-Miller et al., 2011). These species of fungi 

are known to be highly competitive when inorganic N concentrations are high 

(Carfrae et al., 2006). As atmospheric N deposition is expected to be higher in the Sitka 

spruce habitat, it is possible that a proportion of N2O emitted from these soils comes 

from ectomycorrhizal fungi. 

At the end of the N addition experiment concentrations of inorganic N were 

measured from the mesocosms. Across all habits there were higher concentrations of 

NH4+ than NO3- detected, with the highest concentration found in the Sitka spruce 

mesocosms. As ammonium is oxidised to nitrate in the three step process of 

nitrification (Thomson et al., 2012) it is unlikely that this was a primary pathway for 

N2O production in the N addition mesocosms. With the exception of the common 
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alder mesocosms, NO3- concentrations were very low in the mesocosms at the end of 

the experiment. This might suggest that incomplete denitrification was the primary 

pathway for N2O production as this process involves the enzymatic reduction of NO3. 

Comparing available soil inorganic N at the end of the N addition experiment to 

concentrations measured in situ from cores collected in the same sampling month 

(May 2014), values were similar for all habitats except common alder. For example, 

Sitka spruce soils contained 21.51 ± 1.23 mg NH4+ kg-1 and 0.15 ± 0.01 mg NO3- kg-1 in 

situ, compared to 22.12 ± 4.83 mg NH4+ kg-1 and 1.21 ± 0.43 mg NO3- kg-1 in the 

mesocosms. This similarity in inorganic N concentrations for Sitka spruce might 

further suggest that NO3- is used very efficiently in this habitat and that N2O 

emissions are a product of high N deposition and incomplete denitrification. 

In this study N addition had no effect on soil CO2 efflux. Although it was expected 

that the effect of increased N substrate availability would increase microbial activity 

and subsequent CO2 emissions in the short-term as a result if increased C 

decomposition (Brumme & Beese, 1992; Contosta et al., 2011), this finding is not 

unusual. Many studies have found that N addition has not had an effect on soil CO2 

efflux (Allison et al., 2008; Ambus & Robertson, 2006; Castro et al., 1994b; Micks et al., 

2004; Mo et al., 2007). Even long-term in situ N addition experiments in forests have 

had no effect on soil CO2 emissions (Koehler et al., 2009; Koehler et al., 2012; Krause 

et al., 2013). Futhermore, some studies have found that N addition reduces CO2 efflux 

(Bowden et al., 2004; Burton et al., 2004; Janssens et al., 2010; Micks et al., 2004). There 

was also no significant effect of N addition on CH4 fluxes. It was expected that the 

addition of N might decrease CH4 uptake rates due to the known suppressive effect 

that increased N can have on CH4 oxidation (Castro et al., 1995; Sitaula et al., 1995; 

MacDonald et al., 1996). This lack of response might be as result of the low dose of N 

applied to the mesocosms, and the short duration of the N addition experiment.  
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4.6 Conclusions 

The results of this study demonstrate that water table depth can modify the pattern 

of soil-atmosphere CH4 and N2O exchange but has little impact on CO2 efflux. 

Therefore, consideration should be given to the impact that temporal fluctuations in 

water table will have on the magnitude and direction of soil GHG fluxes. Tree species 

had a significant effect on soil GHG fluxes overall, with highest CO2 efflux from Sitka 

spruce, and highest N2O emissions from common alder soils. These species 

differences highlight the need for careful consideration in species selection for SRF, 

to ensure that tree species will offer the greatest C and GHG savings for a given soil 

type. Furthermore, these findings suggest that in forest sites N2O may need to be 

measured across representative microtopographies, in order for more accurate 

calculation of GHG balances.  
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Chapter 5. Discussion and conclusions 

A substantial amount of grassland across Europe could be converted to SRF for 

biomass production in the near future (Zenone et al., 2015). This LUC will be driven 

by the requirement to achieve renewable energy and GHG emissions targets and to 

find a sustainable alternative to fossil fuel combustion. As a result of this, it is 

important to understand the implications of planting trees into grassland, especially 

for soil-atmosphere GHG exchange and soil C storage, to ensure that maximum 

mitigation potential is reached. Although conventional forestry has been practiced 

and studied for many years, little is known about the effects of growing high density 

plantations of trees on shorter rotations. As tree species have differential effects on 

the soil environment it is important to carefully select species for SRF that can offer 

the greatest benefits. This study investigated the effects of LUC from grassland to 

different SRF species on the soil-atmosphere exchange of the three primary GHGs 

(CO2, N2O and CH4) and the important mechanisms underlying these effects. 

Chapter 2 - Soil GHG potentials were measured under controlled laboratory 

conditions using sieved soil sub-samples incubated in Wheaton bottles (sensu Reay et 

al., 2001; Reay et al., 2005). These soils were collected from under a variety of 

coniferous and broadleaved tree species along with soils from adjacent paired 

grasslands from six different UK sites. Associated soil physico-chemical properties 

were measured and microbial community composition was assessed by phospholipid 

fatty acids (PLFA) profiling. 

Chapter 3 - The soil-atmosphere exchange of CH4, N2O and net CO2 (which includes 

dark respiration of the ground vegetation) was monitored in situ under rough 

ungrazed grassland and monocultures of Scots pine, Sitka spruce and common alder, 

over 16 months at the Gisburn Forest Experimental site. The relative importance of a 

range of soil physical and chemical variables for GHG fluxes were assessed.  

Chapter 4 – The effects of Scots pine, Sitka spruce and common alder SRF on soil 

GHG fluxes were further investigated in a medium-term (184 days) manipulation 
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study and an additional N addition experiment using intact mesocosms collected 

from the Gisburn Forest Experimental site. This experiment focused on how water 

table depth (3 cm vs 27 cm), microtopography (flats, ridges and troughs), and the 

interactions between them could modify tree species effects on soil GHG fluxes.  

5.1 Land use change to SRF 

5.1.1 Soil CH4 fluxes 

Key findings 

1. Under controlled laboratory conditions there was a small net CH4 uptake 

in both grassland and SRF soils but no significant differences between 

these land uses (Chapter 2). 

2. There were net CH4 emissions from grassland soils and net uptake in all 

tree species soils in-situ, but the difference between grassland and SRF was 

not significant (Chapter 3). 

Soil CH4 fluxes were very small throughout this study but there was a consistent 

pattern of net CH4 uptake in SRF soils compared to net emissions in the grassland 

soils. This finding was anticipated as temperate forest soils are known to act as a 

significant sink for atmospheric CH4 (Bowden et al., 2000). Even though this trend 

was clear, there was no significant difference in soil CH4 fluxes between grassland 

and SRF in the GHG potential study of Chapter 2. This may be partly a result of the 

experiment being optimised for CO2 production. There was a significant difference in 

soil CH4 fluxes between grasslands and SRF in situ (Chapter 3) but soil uptake rates 

across all species were low (mean 0.9 kg CH4-C ha-1 y-1) compared to the mean for 

temperate forests (mean 3.6 kg CH4-C ha-1 y-1, Dalal & Allen, 2008). These low soil CH4 

uptake rates were higher than those measured by McNamara et al. (2008) at Gisburn 

Forest over a 12 month period in 1999—2000 (mean uptake of 0.4 kg CH4-C ha-1 y-1). 

This suggests that the soil CH4 sink potential increases with plantation age, which is 

consistent with a range of other studies (Smith et al. 2000). There were differences in 
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CH4 uptake rates between tree species types (Chapter 2) with higher uptake in 

broadleaved soils compared to coniferous. There were also differences between tree 

species (Chapter 3) with higher uptake in Scots pine and lowest in Sitka spruce soils, 

but again these differences were not significant. This trend is contrary to the norm, 

where CH4 uptake rates are generally higher in broadleaved soils compared to 

coniferous (Jang et al., 2006; Skiba et al., 2009). The reason for higher uptake in the 

Scots pine soils might be due to CH4 uptake in common alder and Sitka spruce soils 

being supressed as a result of greater N availability (Reay et al., 2005). Overall, the 

evidence from this thesis suggests that LUC from grassland to SRF would have a 

positive effect on the soil sink strength for CH4. 

5.1.2 Soil N2O fluxes 

Key findings 

1. There was a trend towards higher N2O emissions from SRF and, within 

SRF, greater N2O emissions from soils under coniferous species compared 

to soil under broadleaved species under controlled laboratory conditions. 

Differences in soil N2O flux between grassland and SRF soils were, 

however, not significant (Chapter 2). 

2. In the field N2O emissions were significantly higher from SRF soils 

compared to grassland soils and, within SRF, Sitka spruce soil emitted 

significantly more N2O compared to Scots pine and common alder soil 

(Chapter 3). 

3. In the laboratory nitrogen addition had a significant positive effect on N2O 

emissions with the highest relative response from Sitka spruce 

mesocosms, but highest absolute rates of N2O emissions were from Scots 

pine soils (Chapter 4). 

Until recent years N2O emissions from forest soils were considered negligible 

compared to those from fertilised agricultural soils which can emit up to ~18 kg N2O-

N ha-1 y-1 (Dobbie et al., 1999). Now it is understood that forest soils could be 
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significant sources of N2O with emission rates up to 8.07 kg N2O-N ha-1 y-1 (Dalal & 

Allen, 2008). In Chapter 2, N2O fluxes were very small as a result of the experiment 

being optimised for CO2 production but there was a trend towards higher net N2O 

emissions from coniferous soils compared to broadleaved, and unchanged compared 

to grasslands. In contrast, N2O emissions from the in-situ study (Chapter 3) were 

significantly higher from SRF soils (4.1 kg N2O-N ha-1 y-1) compared to the negligible 

emissions of the grasslands (0.2 kg N2O-N ha-1 y-1). Considering that most temperate 

forests emit less than 0.5 kg N2O-N ha-1 y-1 (Brumme et al., 1999), the rate of emission 

at Gisburn Forest is comparably high and likely a result of the soil environment. 

Further, N2O emissions were higher from Sitka spruce soils and, with a mean rate of 

7.4 kg N2O-N ha-1 y-1, at the upper end of the range estimated by Dalal & Allen (2008). 

Other studies have measured higher rates of N2O emission from soils under 

coniferous species compared to deciduous (Barrena et al., 2013). Zechmeister-

Boltenstern et al. (2002) measured N2O emissions of 4 kg N2O-N ha-1 y-1 from a mature 

beech forest in Austria and attributed this high emission rate to high atmospheric N 

inputs (~ 35 kg N ha-1 y-1). This is also likely to be the reason for high N2O emissions 

at Gisburn Forest (Chapter 3) where total atmospheric N deposition is ~44 kg N ha-1 

y-1. Based on the outcome of the single site study of Chapter 3, and other published 

studies, LUC from grassland to SRF can lead to increased soil N2O emissions which 

vary depending on tree species. 

5.1.3 Soil C and CO2 efflux 

Key findings  

1. Under controlled laboratory conditions CO2 efflux was significantly reduced 

in soils from SRF compared to soils from grasslands (Chapter 2). 

2. In-situ chambers in field revealed net CO2 efflux (including dark respiration) 

was significantly higher from grassland soils compared to SRF soils and, 

within SRF, higher from Sitka spruce soils compared to Scots pine and 

common alder soils (Chapter 3). 
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3. In mesocosms where vegetation had been removed, CO2 efflux was highest 

from Sitka spruce soils compared to Scots pine and common alder soils, but 

with no effect of water table depth on CO2 efflux (Chapter 4). 

 

It has been identified that land uses that are high in SOC stocks, such as grasslands 

could be particularly susceptible to LUC to bioenergy crops compared to low C soils 

such as croplands (Poeplau et al., 2011). However, to date, there has been limited 

research into the transition from grasslands to bioenergy as the focus has been on 

arable land transitions (Harris et al., 2015). This LUC effect will be greatly influenced 

by the type of energy crop that is to be planted and in the case of planting SRF, a 

positive effect would be expected. This is mainly because planting of trees is known 

to generally promote soil C storage (Vesterdal et al., 2012) and because grasslands are 

known to be smaller sinks for CO2 compared to forests (Raich & Tufekcioglu, 2000). 

While this may be an oversimplification due to the effects of other factors on soil C 

and soil-atmosphere GHG exchange such as plantation age, species type, land 

management, understorey abundance and composition and soil conditions, the recent 

meta-analysis carried out by Harris et al. (2015) concluded that of all bioenergy 

transitions, the largest uncertainty is in quantifying the impacts of LUC from 

grasslands to SRF on soil GHG emissions. 

In this thesis we provide support for the expectation that LUC to SRF could result in 

reduced soil CO2 emissions and increased soil C (Chapter 2). Examining soils from 

across six different sites we found that the magnitude of change in soil CO2 efflux was 

influenced by tree species type (coniferous or broadleaved). However, this magnitude 

of change was also modified depending on whether CO2 flux was calculated on a soil 

mass or a soil C mass basis, especially with regard to coniferous soils. A greater 

reduction in the broadleaved soils was shown when expressing soil CO2 efflux on a 

soil mass basis, whereas a greater reduction in coniferous soils was shown when soil 

CO2 efflux was expressed in relation to the amount of C in the soil. This highlights the 

importance of careful consideration when deciding how to express CO2 efflux before 
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drawing conclusions about LUC effects. The greater reduction in CO2 efflux on a mass 

of C basis from the coniferous soils (Chapter 2), strengthens the findings of Keith et 

al. (2015), who measured higher soil C stock in coniferous soils compared to 

broadleaved soils across multiple sites (including these six sites).  

The more focused single site approach of Chapter 3 also suggested a reduction in soil 

CO2 emissions following transition from grassland to SRF, though this effect may be 

overestimated because the measured CO2 flux may also result from the dark 

respiration of ground vegetation. However, this overall reduction in soil CO2 efflux 

from SRF is in agreement with the findings of Raich & Tufekcioglu (2000) who 

analysed data from 10 different paired-site studies on the effects of LUC from 

grassland to forest and found on average a 20% reduction in soil CO2 efflux from 

forests. Chapter 3 also identified species-specific differences, with a smaller reduction 

of CO2 emissions in Sitka spruce soils compared to common alder and Scots pine. 

Other authors have found tree species differences in soil CO2 efflux, however, efflux 

rates have generally been reported as being higher from broadleaved soils compared 

to coniferous as a result of more labile litter inputs and faster nutrient turnover 

(Borken & Beese, 2005; Berger et al., 2010; Vesterdal et al., 2012). The rate of CO2 efflux 

from the Sitka spruce soils in situ (97.66 ± 4.41 mg CO2-C m-2 h-1, Chapter 3) were 

similar to those measured by Saiz et al. (2006) from Sitka spruce soils in Ireland (103.69 

± 10.22 mg CO2-C m-2 h-1), and therefore appear to be robust. Higher CO2 efflux from 

Sitka spruce soils is likely to be as a result of the higher C concentration and C stock 

in the soil (Chapter 3, Keith et al. 2015).  

Considering the data derived from the in situ study of Chapter 3, LUC from rough 

grassland to SRF is likely to result in reduced annual soil net CO2 emissions or no 

change depending on tree species. As other similar studies on transitions to SRF do 

not exist it is difficult to make a direct comparison between the outcome of this study 

and others. However, LUC from grasslands to SRC for bioenergy has been reported 

to increase in soil CO2 efflux by 6.7 t ha-1 y-1, whereas transitions from grasslands to 

perennial grasses for bioenergy have resulted in a decrease in efflux of 0.8 t ha-1 y-1 
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(Harris et al., 2015). Based on the sites measured in this study, it would appear that 

LUC from grassland to SRF for bioenergy has a greater impact on soil CO2 efflux than 

SRC and a similar impact to perennial grasses. Soil CO2 efflux in forests has been 

found to be dependent on plantation age, with a trend towards efflux increasing with 

stand age (Ball et al., 2007). In this thesis, plantations studies ranged from 16 to 23 

years (23 year old site was in its 2nd rotation), and therefore, the magnitude of change 

in soil CO2 emissions could be related to plantation age.  

5.2 Sources of variation in field GHG fluxes 

5.2.1 Water table depth 

Key findings 

1. Water table depth and interactions between tree species and water table were 

important drivers of GHG fluxes in the field (Chapter 3). 

2. There were net soil CH4 emissions at high water table and net uptake at low 

water table, with no effect of tree species on CH4 fluxes (Chapter 4). 

3. Both common alder and Scots pine had higher soil N2O emissions at low water 

table compared to at high water table. In contrast, Sitka spruce soils emitted 

more N2O at high water table compared to at low water table (Chapter 4). 

 

Water table depth can have a significant effect on soil-atmosphere GHG exchange due 

to its influence on soil aeration and subsequently water filled pore space, and on the 

supply of substrate and oxygen to the soil microbial community (Davidson et al., 

1998; Ball et al., 2007; Dinsmore et al., 2009). Planting trees can lead to water table 

draw down, well below the depth of the prevailing vegetation (Smith et al., 2003), due 

to their high demand for water (McKay, 2011). Water table drawdown has been 

shown to lead to increased decomposition rates and subsequent CO2 efflux (Chivers 

et al., 2009), increased N2O emissions (Martikainen et al., 1993; Huttunen et al., 2003), 

and increased CH4 uptake (Hughes et al., 1999). This high requirement for water is 

likely to be greater in SRF systems than in conventional forest systems due to the 
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shorter rotation lengths and faster growth rates (McKay, 2011). Previous studies have 

shown that tree water use is directly related to growth rate and declines with age 

(Vertessy et al., 1995; Watson et al., 1999; Almeida et al., 2007).  

In Chapter 3 of this thesis, water table depth was found to be an important regulator 

of soil CH4 fluxes in the field, where net emissions were measured under the 

permanently saturated grasslands, compared to net uptake under SRF. This 

relationship was further investigated in the laboratory water table manipulation 

experiment of Chapter 4, where water table depth had the greatest effect of soil CH4 

fluxes of all measured variables. The outcome showed that at high water table CH4 

was emitted from all soils but at a far greater magnitude from grasslands, and at low 

water table CH4 uptake occurred in all tree species soils but not in the grassland. This 

relationship between water table and CH4 fluxes in forest systems has been found by 

others (von Arnold et al., 2005; Ball et al., 2007; Jungkunst et al., 2008; Zenone et al., 

2015) and is expected due to the known requirement of CH4 oxidising methanotrophic 

bacteria for aerobic conditions (Hanson & Hanson, 1996). This evidence suggests that 

the high water demand of SRF compared to grassland, and its subsequent influence 

on water table depth could lead to an increase in the soil sink potential for 

atmospheric CH4. 

Water table and its interaction with species explained a considerable amount of the 

variation (11%) in N2O fluxes in situ (Chapter 3). For example, in the Sitka spruce soils, 

where the highest net N2O emission rates were measured overall, emissions peaked 

when water table was at 20—30 cm below the surface, but were negligible when the 

water table was >40 cm below the surface. This trend suggests that incomplete 

denitrification is the primary pathway for N2O production in these soils as emissions 

are very sensitive to moisture concentrations and peak at intermediate moisture 

conditions (> 60%), whereas nitrification favours drier soil conditions (< 60%) 

(Bateman & Baggs, 2005). In the grassland soils in situ (Chapter 3) where soils were 

permanently saturated, N2O emissions were negligible across the entire 16 month 

sampling period. In the mesocosm water table manipulation experiment (Chapter 4) 
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this relationship between intermediate water table depth (27 cm below surface) and 

N2O emissions was further tested. In contrast to the outcome of the field study, at 

intermediate water table depth in this study N2O emissions peaked in common alder 

and Scots pine soils, whereas N2O emissions were very small for the Sitka spruce soils. 

Through a further additional N addition experiment it was determined that this 

observation was as a result of N limitation in the Sitka spruce soils which were usually 

subjected to high atmospheric N inputs in the field. Once again, N2O emissions were 

much lower from grassland soils compared to all SRF species in the mesocosm study 

(Chapter 4). This influence of ‘intermediate’ water table depth on N2O emissions in 

forests has been measured and modelled by others (Davidson et al., 2000; Ball et al., 

2007). For example, Jungkunst et al. (2004) measured lower N2O emissions at a water 

table depth of 65—75 cm but higher emissions when the water table was intermediate 

at 15—35 cm. The outcome of the experiments carried out in this thesis together with 

other published data on forests, suggests that LUC from grasslands to SRF could 

result in increased N2O emissions which could be further modified by the direct 

influence of trees on water table depth.  

Soil CO2 efflux was not greatly influenced by water table depth (Chapters 3 and 4) 

despite the known relationship between respiration and soil moisture (Davidson et 

al., 1998). In Chapter 4, CO2 efflux rates were similar at both high and low water table 

depth across all species, including the grassland. This is likely to be as a result of CO2 

efflux being more a product of C input quality and differences in decomposition rates 

between species (Chapter 3). In Chapter 2, LUC from grassland to SRF lead to 

decreased CO2 efflux as a result of changes in the soil microbial community 

composition and reduced soil pH. Therefore, although soil moisture is an important 

regulator of respiration, LUC from grassland to SRF and its impact on water table 

depth is likely to be less important for soil CO2 efflux. 

  

117



 

 

5.2.2 Spatial effect of microtopography 

Key findings 

1. A substantial proportion of variation in soil GHG fluxes in the field was 

explained by spatial factors, accounting for up to ~20% in the case of CH4 

(Chapter 3). 

2. While microtopography and its interaction with tree species and water table 

depth was not significant in laboratory mesocosms, there were trends of 

specific patterns of N2O fluxes for each tree species, which were influenced by 

water table depth (Chapter 4). 

 

The issue of spatial variability as a result of topographical differences in soil 

environments was a shortcoming identified by Butterbach-Bahl et al. (2013) with 

regard to field based N2O measurements in their influential paper on processes and 

controls of N2O emissions in soils. In Chapter 3, a large proportion of the variability 

in soil GHG fluxes in situ was attributed to spatial effects, which encompassed the 

random effects of block and plot. However, a proportion of this spatial variability 

could have been partly due to microtopography, and as GHG sampling chambers 

were installed at random in the field it was difficult to test for the effect of 

microtopography independent of block and plot. Thus, the effect of microtopography 

on soil GHG fluxes was tested systematically in the Chapter 4 mesocosm experiment. 

While no significant effects of microtopography or any interactions with water table 

and tree species were found, there were trends that indicated that microtopography 

could modify the influence of water table and tree species on soil GHG fluxes. For 

example, soil CO2 efflux was higher from Sitka spruce troughs compared to from 

ridges or furrows, at low water table. This finding is shared with Saiz et al. (2006) who 

attributed higher CO2 efflux from Sitka spruce troughs to the deeper organic layer 

which contains a greater abundance of fine roots. A study by Rayment and Jarvis 

(2000) confirmed that soil CO2 efflux is positively related to organic layer thickness. 

The soil organic layer in the Sitka spruce troughs was also thicker than under other 
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microtopographies (Chapter 3) and, therefore, this is also a likely explanation for the 

higher CO2 efflux measured. Few consistent patterns were found in mesocosms for 

N2O fluxes from different microtopographies (Chapter 4) with fluxes varying greatly 

with water table depth for each species. Both Scots pine and common alder soils 

emitted higher rates of N2O from mesocosms collected from flat microtopography at 

low water table (i.e. when emission rates were highest). In the case of the common 

alder, this outcome may be related to the distribution of N-fixing actinomycorrhizal 

nodules (Rytter, 1989). Whereas, the Sitka spruce soils emitted highest N2O at high 

water table from ridges. Ball et al. (2007) measured higher CO2 efflux from Sitka 

spruce ridges compared to flats or troughs in Harwood Forest, Northumberland, and 

attributed this to variation in depth to water table between microtopographies. This 

may also be the case for N2O, and although water table depth was controlled across 

all mesocosms (Chapter 4), the soil environment in the mesocosms may have been 

already conditioned in the field leading to increased N2O production. 

Microtopography had the least effect on soil CH4 fluxes despite spatial effects 

explaining ~ 20% variation in CH4 fluxes in the field (Chapter 3). These highlighted 

trends, together with the findings of others, suggest that LUC from grassland (flat 

topography only) to SRF, using the pre-planting method that creates ridges, troughs 

and flats, could have further implications for the magnitude of change in CO2 efflux 

and N2O emissions. 
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5.3 Limitations and future study 

This thesis and the work of Keith et al. (2015) has demonstrated that SRF in the UK 

has the potential to deliver GHG and C savings at the field scale. For example, 

converting rough grasslands to SRF can lead to soil C savings in the region of 1400 kg 

C ha-1 y-1 depending on tree species and the soil environment (Keith et al., 2015). The 

work in Chapters 2 and 3 may be considered to provide support for the expectation 

that LUC to SRF can result in reduced soil CO2 emissions. However, the in situ field 

measurements of soil CO2 efflux also includes dark respiration, which can account for 

up to 50% of overall CO2 flux (Epron et al., 2001; Subke et al, 2006). Therefore, it is 

possible that CO2 effluxes have been over-estimated making it difficult to determine 

the LUC effect of converting rough grassland to SRF. The comparison of tree species 

and the grassland may be influenced by the respiring biomass of ground vegetation 

and further work in these experimental plots should remove ground vegetation 

throughout the measurement campaign. In addition, the removal or exclusion of roots 

from the areas where soil respiration is measured would allow for partitioning of soil 

respiration into heterotrophic and autotrophic respiration. This would provide a 

more robust understanding of the effect of LUC to SRF on soil CO2 fluxes. 

Despite our consistent N2O flux results, it was not possible to determine the ultimate 

biological responses accounting for differing N2O production in the field or in the 

laboratory studies. Soil N2O emissions increased under SRF compared to the original 

grassland land use (Chapters 3 and 4), with differences between species. This increase 

in N2O emissions was more pronounced in coniferous soils compared to broadleaved, 

and in particular from Sitka spruce soils. Ectomycorrhizal fungi are often abundant 

in the organic litter layers of acidic coniferous forest soils. Under laboratory 

conditions, Prendergast-Miller et al. (2011) showed that ectomycorrhizal fungi 

extracted from Sitka spruce root tips could produce N2O. To date, this has not been 

demonstrated under field conditions, and therefore with regard to soils under Sitka 

spruce at Gisburn Forest it would be interesting to investigate if N2O is being 

produced by ectomycorrhizal fungi in the deep litter layer. This might be done by 
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using techniques such as litter layer removal or by inserting ectomychorrizal 

exclusion cores and taking GHG samples in the absence/presence of the litter layer 

and ectomycorrhizal fungi. 

Tree species can directly and indirectly affect water table depth due to their species 

specific variation in; demand for water, depth and composition of the soil litter layer, 

canopy densities and subsequent interception of rainfall, and as a result of varied root 

architecture. This influence on water table depth can affect soil microbial activity, 

which is known to be sensitive to soil moisture which in-turn influences soil-

atmosphere GHG exchange. N2O production is particularly sensitive to water table 

depth with N2O produced as a result of nitrification at lower water table and at 

intermediate water table as a result of incomplete denitrification. Future work should 

investigate whether the soil N2O fluxes found from soils in-situ and in laboratory 

mesocosms from Gisburn Forest are a product of nitrification or incomplete 

denitrification under different tree species.  

Beyond carrying out further experimental work, it is also recognised that the results 

of the work in this thesis need to be put into the wider context of the overall GHG 

balance including downstream processes for producing energy (Whitaker et al., 2010; 

Rowe et al., 2013). In this work studies were carried out on existing plantations and it 

is likely that additional GHG savings might be achieved through improved methods 

of cultivation. For example, choosing the most beneficial tree species for a given soil 

and climate and/or through improved planting methods which deliver reduced 

disruption of soils and their carbon stocks.  

The experiments throughout this thesis focussed on a defined range of tree stand ages 

(16-23 years) and additional work could further reduce uncertainty in GHG 

assessments by following transitions from establishment through to the harvesting 

stage, and through multiple rotations. For example, it has been reported that large 

amounts of soil N2O can be emitted during the establishment phase of tree species 

such as Poplar (Zona et al. 2013; Zenone et al., 2015). Beyond C and soil-atmosphere 

GHG exchange, the sustainability of SRF needs to be confirmed through a wider 
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assessment of impacts on other ecosystem services such as water availability and 

quality. Currently there is a major shortfall in available data to carry out such a study 

(Milner et al., 2015). However, further field-based studies capturing soil GHG fluxes 

from establishment to harvesting and into multiple rotations would further 

strengthen the outcome of this work. 
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Chapter 7. Appendix 

A.1. Phospholipid Fatty Acid (PLFA) Extraction and Analysis 

PLFAs were extracted as part of the total lipid extract of freeze-dried soils (ca. 2 g dry 

weight) using a modified Bligh-Dyer extraction (White et al., 1979). In brief, soils were 

placed in glass culture tubes and extracted with dichloromethane 

(DCM)/MeOH/citrate buffer (5:10:4 v/v/v; citrate buffer 0.15M adjusted to pH 4 using 

NaOH pellets). Soil/solvent solutions were placed in an ultrasonic bath (20 min), and 

then centrifuged (5 min, 1900 rpm). The supernatant was transferred to a second glass 

tube, and the soil extracted with fresh solvent (x 2). The organic and aqueous phases 

of the combined solvent extracts were broken with the addition of 2 ml citrate buffer 

and 2-ml DCM, the organic layer removed, and the aqueous layer washed with 3 x 2 

ml DCM. Combined DCM extracts were blown down under N2 (heating block, 40° 

C). 

PLFAs were separated from other lipids using an aminopropyl solid phase extraction 

cartridge (Phenonenex). The column was conditioned with DCM/IP (2:1, 6-ml), and 

the total lipid extract added to the column dissolved in a small amount of the same 

solvent. Neutral lipids were eluted with 8-ml 2:1 DCM/Iso-propyl alcohol (IPA), 

followed by elution of the acidic lipids with 6-ml 2% glacial acetic acid in diethyl 

ether. Polar lipids, including PLFAs, were eluted using 8-ml MeOH. The polar lipid 

fraction was blown down under N2 (heating block, 40° C). 

Prior to saponification of the polar lipids, nonadecane in known concentration was 

added to all samples, to enable quantification of PLFAs. Samples were saponified 

with the addition of 2-ml 0.5M NaOH in MeOH, heated at 70° C for 90 min. Samples 

were acidified to pH 2 using 0.5M HCl, and lipids extracted with 3 x 2 ml DCM. 

Samples were reduced to dryness using N2. 

Fatty acids were methylated using boron trifluoride-methanol complex (14% w/v, 30 

μl, 70° C, 10 min) and the reaction quenched with water. The resultant fatty acid 

methyl esters (FAMEs) were extracted into hexane (3 x 0.5-ml) and the solvent 
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concentration adjusted as appropriate for analysis by gas chromatography (GC), gas 

chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-

isotope ratio mass spectrometry (GC-C-IRMS). 

GC analysis was carried out on an Agilent 6890 GC fitted with a CP-Sil 5CB fused 

silica capillary column (60 m x 0.32 mm ID; 0.25 μm film thickness). Carrier gas was 

hydrogen, and the flow was set to a constant velocity of 40 cm sec-1. The temperature 

was raised, following an isothermal hold at 50° C for 2 min, to 150° C at 20° C min-1, 

then to 220° C at 3° C min-1, followed by an increase to 340° C at 25° C min-1 and a 

hold time of 5 min. Fatty acids were identified on an Agilent 6890 GC, fitted with an 

identical GC column, connected to an Agilent 5973 Mass Selective Detector. 

Representative fatty acid samples were also derivatised to produce fatty acid 

picolinyl esters following the method of Christie (1998); GC-MS analysis of these 

derivatives allows the determination of the positions of double bonds in the fatty acid 

chain. 

GC-C-IRMS analysis of FAMEs was carried out on a Micromass Isoprime isotope 

ratio mass spectrometer connected to an Aglient 6890 GC via a combustion interface 

(630 mm x 0.3 mm i.d. containing a copper oxide/platinum catalyst, 850° C). Reference 

gas CO2 of known δ13C value was introduced at the start and end of each analytical 

run, and the performance of the IRMS checked with FAME standards of known δ13C 

values 
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A.2. Cumulative rainfall lags and soil N2O fluxes 

 

Figure 7.1 Relationships between cumulative rainfall lags (1 day, 2 days and 3 days before 

sampling) and soil N2O flux. 
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A.3. Soil CO2 efflux data for habitat, microtopography and water table over 

time 

 

Figure 7.2 Soil CO2 fluxes for all habitats, microtopographies and water table treatments over 

134 incubation period. Microtopographies; (F) Flat, (R) Ridge and (T) Trough (Furrow). (LO) 

Low water table treatment 27 cm below surface and (Hi) High water table treatment 3 cm 

below surface. Habitats; (AL) Common alder, (GR) Grassland control (note only topography 

in grassland is (F) Flat), (SP) Scots pine and (SS) Sitka spruce. Error bars represent standard 

error. n = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

157



 

 

A.4. Soil CH4 fluxes data for habitat, microtopography and water table over 

time 

 

Figure 7.3 Soil CH4 fluxes for all habitats, microtopographies and water table treatments over 

the 134 day incubation period. Microtopographies; (F) Flat, (R) Ridge and (T) Trough 

(Furrow). (Lo) Low water table treatment 27 cm below surface and (Hi) High water table 

treatment 3 cm below surface. Habitats; (AL) Common alder, (GR) Grassland control (note 

only topography in grassland is (F) Flat), (SP) Scots pine and (SS) Sitka spruce. Error bars 

represent standard error. n = 3. 
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A.5. Soil N2O fluxes data for habitat, microtopography and water table over 

time 

 

Figure 7.5 Soil N2O fluxes for all habitats, microtopographies and water table treatments over 

134 incubation period. Microtopographies; (F) Flat, (R) Ridge and (T) Trough (Furrow). (LO) 

Low water table treatment 27 cm below surface and (Hi) High water table treatment 3 cm 

below surface. Habitats; (AL) Common alder, (GR) Grassland control (note only topography 

in grassland is (F) Flat), (SP) Scots pine and (SS) Sitka spruce. Error bars represent standard 

error. n = 3. 
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