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Abstract 1 

 2 

The Kettara shear zone is a regional wrench shear zone within the Jebilet massif of Western 3 

Morocco, part of the Variscan orogenic belt. This massif is characterized by bimodal 4 

magmatism, largely intrusive, and by a number of polymetallic massive sulfide deposits. A 5 

syntectonic mafic-ultramafic intrusion and an adjacent, deformed pyrrhotite-rich massive 6 

sulfide deposit are located within a ‘compressional jog’ of the shear zone. Hydrothermal 7 

alteration in both the intrusion and the wall rocks adjacent to the deposit is characterized by 8 

syntectonic replacement processes leading to formation of chlorite-schists and quartz ± calcite 9 

veins. Fluid inclusions in mineralized (pyrrhotite-bearing) quartz veins from the wall rocks 10 

adjacent to the deposit and in veins associated with chlorite-schists within the intrusion 11 

indicate a prevalence of H2O-CO2-CH4-N2 and H2O-salt fluid systems. In the mineralized 12 

veins the fluid shows reducing conditions, with gas dominated by CH4 and N2 and salinities 13 

around 7.5 wt.% NaCl, whereas in the chlorite shear zones fluid is CO2 dominated and 14 

salinities are higher than 23 wt.% NaCl. Hydrogen and oxygen isotopic compositions of 15 

chlorite and quartz are similar and demonstrate involvement of metamorphic water in both the 16 

deposit and the intrusion.  17 

The data are consistent with a regional metamorphic fluid flow through the Kettara shear 18 

zone. The migrating metamorphic fluids were reduced in the organic matter-rich host rocks 19 

leading to deposition of sulfides in the mineralized veins. There are two possible hypotheses 20 

for the origin of these mineralized veins: either they were formed during deformation and 21 

remobilization of a syn-sedimentary massive sulfide deposit, or they were formed 22 

synchronously with the sulfide deposit during development of the Kettara shear zone. 23 

 24 

Keywords Kettara · Shear zones ·Massive sulfide deposits · Stable isotopes · Fluid inclusions 25 

· Variscan Belt · Morocco  26 
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1. Introduction 1 

Crustal shear zones form narrow zones of low strength and high permeability within the upper 2 

crust, and may serve as fluid pathways, capable of focusing ore-forming processes (Oliver, 3 

1996; Cox et al., 2001; Chernicoff et al., 2002). The association of many hydrothermal 4 

mineral deposits with shear zones and crustal discontinuities is widely documented in the 5 

literature (e.g., Groves et al., 1998; Sillitoe, 2000). Examples of mineralization that display a 6 

spatial relationship with fault and shear zones include orogenic gold deposits (e.g., Sibson et 7 

al., 1988; Cox et al., 1991; Bouchot et al., 2000). Polymetallic sulfide mineralization 8 

associated with shear zones has been described at a range of structural levels (Glen, 1987; 9 

Nicol et al., 1997; Gaouzi et al., 2001; Piessens et al., 2002; Bellot, 2004) and emphasizes the 10 

importance of this type of mineralization in collisional belts. Hydrothermal fluid flow 11 

associated with syntectonic intrusions may be concentrated along shear zones and, when 12 

combined with a precipitation mechanism operating in a restricted space (e.g., Hedenquist and 13 

Lowenstern, 1994), may lead to ore deposition. This work focuses on a shear zone hosting a 14 

mafic-ultramafic intrusion and a massive sulfide deposit in the Variscan belt of Morocco, and 15 

considers the relationship between deformation, fluid flow and sulfide mineralization.  16 

The central unit of the Jebilet massif, in the Marrakech region of Western Morocco, is a block 17 

of Carboniferous sedimentary rocks deformed during the Variscan orogeny. The block is 18 

located along the southern branch of the West Meseta shear zone (Piqué et al., 1980; Lagarde 19 

and Michard, 1986). This block and its southern extension (the Guemassa massif) host a 20 

bimodal intrusive magmatic suite (Bordonaro, 1983; Essaifi et al., 2014) and significant 21 

massive sulfide mineralization (Huvelin, 1972; Bernard et al., 1988). The origin of the 22 

massive sulfide deposits is the subject of continuing debate. They have been variously 23 

considered as deformed syngenetic VMS or SEDEX bodies (Belkabir et al., 2008; Marcoux et 24 
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al., 2008; Moreno et al., 2008; Lotfi et al., 2008) or as later syntectonic bodies (Essaifi and 1 

Hibti, 2008). 2 

The Kettara deposit is a pyrrhotite-rich, near-vertical massive sulfide lens located near the 3 

mafic-ultramafic Kettara intrusion. Both are located within a shear zone interconnected with a 4 

regionally anastomosing network of sub-vertical shear zones (Essaifi et al., 2001; Essaifi and 5 

Hibti, 2008).The deposit has previously been interpreted as a mineralized dyke filling a sub-6 

vertical fracture (Agard et al., 1952), or as a deformed pre-tectonic, synsedimentary deposit 7 

(Huvelin, 1970). 8 

The Kettara deposit was the first massive sulfide deposit to be discovered and mined in 9 

central Jebilet. The gossan was exploited for limonite and ochre from 1938–1963. The 10 

extracted quantities are 150 000 t grading 45–52% Fe and 50 000 t grading 50–58 % Fe, 11 

respectively (Essaifi, 2011 and references therein).  Below the gossan a cementation zone 12 

with mineralization composed of native copper, pyrite, chalcocite (Cu2S), covellite (CuS), 13 

with traces of gold and silver (Souaré, 1988) is present. Pyrite was extracted from this zone 14 

between 1955 and 1966, and used in the manufacture of sulfuric acid with recuperation of Cu 15 

contained in chalcocite and covellite. Its total reserves have been estimated as 180 000 t 16 

grading 38% sulfur. Below the cementation zone, the primary mineralization is pyrrhotite-rich 17 

(up to 95%) and forms an elongate sub-vertical lens 500 m deep, 40–70 m thick and 1500 m 18 

long (Huvelin and Permingeat, 1980; Bernard et al., 1988). The ore reserves are estimated as 19 

30 Mt of pyrrhotite grading 0.7% Cu; with 8 Mt extracted between 1964 and 1982, and used 20 

in the manufacture of sulfuric acid. Difficulties related to pyrrhotite storage (fast oxidation), 21 

poor sulfur content (25%), and to the volume of mine wastes resulted in the closure of the 22 

operation in 1982. 23 

This paper presents new structural, chemical and fluid inclusion evidence of regional fluid 24 

migration along the Kettara shear zone, leading to synkinematic hydrothermal alteration 25 
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around the polymetallic sulfide mineralization, and discusses the significance of this fluid 1 

migration on the genesis of the Kettara massive sulfide deposit. 2 

 3 

2. Geological Framework 4 

2.1. The Moroccan Meseta 5 

The Variscan orogenic belt of Morocco is subdivided into the eastern and western Meseta 6 

domains (Fig. 1A, B), which were folded and metamorphosed respectively during late 7 

Devonian and late Carboniferous (mainly early Westphalian) Variscan tectonic events  8 

(Hollard, 1978; Hoepffner et al., 2005; Michard et al., 2010). The Jebilet massif, together with 9 

the Rehamna and the central Paleozoic massifs to the north, and the high Atlas Paleozoic 10 

block to the south, form the Western Meseta. A late Devonian-early Carboniferous foreland 11 

sedimentary basin was developed in the western Meseta and was bounded by relatively rigid 12 

blocks to the north (Sehoul block) and west (Coastal block) and by the Anti-Atlas and West 13 

African craton to the south (Piqué and Michard, 1989; Hoepffner et al., 2006; Burkhard et al., 14 

2006). Basin closure during the late Carboniferous was accompanied by strongly 15 

heterogeneous ductile deformation. Narrow, highly deformed regional shear zones of low to 16 

medium metamorphic grade contrast with wide moderately deformed areas with very low-17 

grade metamorphism (Piqué et al., 1980, Lagarde and Michard, 1986; Piqué and Michard, 18 

1989). The narrow deformed zones and are commonly spatially associated with syn- to late-19 

kinematic granitic intrusions (Lagarde et al., 1990). Among these shear zones, the western 20 

boundary of the Devonian-Carboniferous basin is a major lithospheric structure, the West 21 

Meseta Shear Zone (WMSZ), which extends from Rabat in the north to the High Atlas in the 22 

south (Piqué et al., 1980; Lagarde and Michard, 1986). Most geodynamic models relate 23 

formation of the Moroccan Meseta to a westward continuous compression of the Variscan 24 

foreland in which the Rheic suture is hidden at the eastern boundary of the eastern Meseta 25 
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(Kharbouch et al., 1985; Boulin et al., 1988; Roddaz et al., 2002, 2006; Essaifi et al., 2014). 1 

Recent structural and geochronological work in the Rehanma Massif by Chopin et al. (2014) 2 

indicates a more complex (polyphase) history beginning with southward thrusting, followed 3 

by N-S directed bulk crustal shortening, in turn followed by E-W crustal shortening, all  4 

occurring from late Carboniferous to Lower Permian times. 5 

2.2. The Jebilet massif 6 

The Jebilet massif, just north of Marrakech provides an E-W section through the western 7 

Meseta domain. It is composed of three structural units (Fig. 1C): 8 

i) The western Jebilet unit is a weakly deformed block composed of unmetamorphosed 9 

Cambro-Ordovician limestones, shales and sandstones with north-south trending kilometer-10 

scale folds. It is part of the Coastal block, which was emergent since Devonian times (Piqué et 11 

al., 1980). 12 

(ii) The central Jebilet unit consists of a schistose low-grade metamorphosed (anchizone and 13 

epizone) block of marine Visean shales (the Sarhlef schists) deposited in an anoxic platform 14 

setting (Beauchamp, 1984). This unit is also characterized by the occurrence of massive 15 

sulfide deposits together with numerous magmatic mafic and felsic intrusions which form a 16 

bimodal magmatic association (Bordonaro, 1983; Essaifi et al., 2014). The boundary between 17 

the central and western Jebilet is a NNE–SSW dextral thrust-wrench shear zone (Le Corre and 18 

Bouloton 1987; Mayol and Muller, 1985), and this is the southern extension of the West 19 

Meseta Shear Zone (WMSZ, Fig. 1B, C). 20 

(iii) The eastern Jebilet unit is a weakly metamorphosed to unmetamorphosed block separated 21 

from the central unit by a sinistral shear zone with a NNW-SSE trend, the Marrakech Shear 22 

Zone (Lagarde and Choukroune, 1982). It is composed of Upper Visean syntectonic ‘flysch’ 23 

(Kharrouba flysch) including olistostromes and inliers of Ordovician to Devonian 24 

sedimentary rocks. Such Carboniferous syntectonic deposits also characterize the eastern part 25 
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of central Morocco and were deposited in a compressional retro-foreland basin (Bouabdelli 1 

and Piqué, 1996; Ben Abbou et al., 2001; Roddaz et al., 2002). 2 

Two syntectonic calc-alkaline granite plutons intruded by leucogranite sheets are spatially 3 

associated with the Marrakech shear zone (Lagarde and Choukroune, 1982). Westphalian-4 

Permian continental conglomerates (Huvelin 1977) rest unconformably upon the Variscan 5 

folded sequence in western and eastern Jebilet (Fig. 1C). 6 

3.3. Central Jebilet 7 

The intersection of the SSE-oriented Marrakech Shear Zone with the major NNE-trending 8 

WMSZ delimits a trapezoidal block (central Jebilet) where the metasedimentary rocks have 9 

been deformed during a very low- to low-grade greenschist facies regional metamorphism 10 

contemporaneous with post-Visean shortening (Piqué and Michard, 1989; Hoepffner et al., 11 

2005; Michard et al., 2010). Regional ductile deformation is marked by the development of a 12 

widespread subvertical axial plane schistosity (S1) associated with NE–SW-trending, large-13 

scale upright and subhorizontal folds. The schistosity trajectories progressively curve into an 14 

array of anastomosing shear zones (Fig. 2A), accompanied by increasing strain and 15 

metamorphic grade. These shear zones show a close spatial association with the bimodal 16 

intrusions and rotate anticlockwise by about 90° into the SSE trending Marrakech Shear Zone. 17 

These ductile shear zones evolve laterally into brittle faults that cut the schistosity. The most 18 

important of these is the Mesret dextral fault (Fig. 1C). Greenschist facies regional 19 

metamorphism during foliation development is indicated by white mica, chlorite, albite and 20 

quartz. 21 

Carboniferous magmatism in the central Jebilet is dominated by intrusive rocks and includes a 22 

tholeiitic-alkaline bimodal association and two calc-alkaline cordierite-bearing granodioritic 23 

plutons intruded by leucogranite sheets (Le Corre and Saquaque, 1987; Mrini et al., 1992; 24 
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Essaifi et al., 2014). The bimodal intrusions are limited to the central Jebilet block, and the 1 

granodioritic plutons are spatially associated with the Marrakech Shear Zone (Fig. 1C).  2 

The bimodal association (two-thirds mafic compositions, the remainder felsic) is syn-tectonic 3 

and was emplaced at 330.5 ± 0.7 Ma (Essaifi et al., 2003) at high crustal levels. The 4 

granodioritic plutons were also emplaced at c. 330 Ma, but the cross-cutting leucogranite 5 

sheets were intruded at c. 300 Ma (Mrini et al., 1992). The bimodal magmatic association is 6 

dominated by intrusive rocks forming dykes, small stocks and elongated intrusions of a few 7 

hundred meters width and a few kilometers length. The bimodal magmatic rocks are arranged 8 

into N–S- to NE–SW-trending lineaments that are broadly parallel to local schistosity and 9 

shear zones (Fig. 2A). Intrusion of these magmatic pods resulted in low-pressure contact 10 

metamorphism of the surrounding pelites, reaching the hornblende hornfels facies, and their 11 

emplacement was accompanied by significant hydrothermal activity (Essaifi, 1995).  12 

The massive sulfide deposits of the Moroccan Meseta are restricted to the central Jebilet block 13 

and its southern extension, the Guemassa massif. They are Cu and Pb-Zn massive sulfide 14 

deposits dominated by pyrrhotite (Huvelin, 1970; Bernard et al., 1988; Essaifi and Hibti, 15 

2008). In the central Jebilet, the deposits are steeply dipping elongate lenses aligned broadly 16 

parallel to the general trend of the regional structures (folds, schistosity) (Fig. 2A). Locally 17 

the deposits cut at a low angle across the regional schistosity and the mafic dykes of the 18 

bimodal magmatic association (Huvelin, 1972). At regional-scale the ore bodies and their 19 

gossans form north-south to NE-SW near-vertical lineaments, parallel with the bimodal 20 

magmatic lineaments, and they are generally located at a constant distance (~ 1 to 1.5 km) 21 

from the bimodal intrusions (Bernard et al., 1988; Essaifi and Hibti, 2008). The Kettara 22 

intrusion lies within one such magmatic lineament (Fig. 2). Two massive sulfide deposits in 23 

the area are currently mined: the Draa Sfar deposit on the southern margin of the central 24 

Jebilet block (Belkabir et al., 2008; Marcoux et al., 2008; Moreno et al., 2008), and the Hajjar 25 
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deposit (Leblanc, 1993; Hibti and Marignac, 2001) in the Guemassa massif, some 30 km to 1 

the south. The Koudiat Aïcha deposit close to Kettara has also been the subject of recent study 2 

(Lotfi et al., 2008; 2010).  3 

The sulfide bodies have not been directly dated. Hydrothermal alteration in the Hajjar sulfide 4 

deposit has been dated at c. 300 Ma, and attributed to proximity to a buried leucogranitic 5 

intrusion (Watanabe, 2002). In contrast, hydrothermal alteration associated with the Draa Sfar 6 

deposit is dated at c. 331 Ma (Marcoux et al., 2008), within error of the age of the bimodal 7 

intrusions.  8 

2.4. The Kettara area 9 

The Kettara mafic-ultramafic intrusion, located 1 km to the south of the Kettara massive 10 

sulfide deposit (Fig. 2), is a stratified intrusion composed of medium- to coarse-grained mafic 11 

and ultramafic cumulates, surrounded by a narrow zone of fringing microgabbros at the 12 

contact with the host rocks (Aarab, 1984; Jadid, 1989; Essaifi, 1995).  The magmatic minerals 13 

consist of olivine, clinopyroxene, plagioclase, spinel, ilmenite and apatite. The ultramafic 14 

cumulates (plagioclase-bearing wehrlites, troctolites and olivine-bearing gabbros) are cross-15 

cut by mafic cumulates (massive and layered leucogabbros), and enclaves of troctolites are 16 

found within leucogabbros.  Numerous near-vertical felsic and mafic dykes cut across the 17 

intrusion and the host rocks (Fig. 2B, C and Fig. 3). Studies of the finite strain field and 18 

petrostructural analysis have demonstrated a syn-tectonic emplacement of the Kettara 19 

intrusion, which is transected by a series of anastomosing cm- to m-scale shear zones (Ait-20 

Tahar, 1987; Essaifi et al., 2004). The intrusion lies within the Oled Har-Kettara_Safsafat 21 

magmatic lineament (Fig. 2B).  22 

The Kettara sulfide deposit forms an elongated sub-vertical, pyrrhotite-dominated 23 

massive sulfide lens, approximately 1.5 km long and 500 m deep, parallel to the NE-SW 24 

regional structural trend (Essaifi and Hibti, 2008), and indicated at the surface by a well-25 
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developed gossanous zone up to 50 m in width (Fig. 2). It crops out approximately one 1 

kilometer north of the mafic-ultramafic Kettara intrusion (Fig. 2). 2 

The host rocks of the Kettara intrusion and deposit are weakly metamorphosed pelites 3 

with thin-bedded sandstone and local sandstone and limestone layers (Sarhlef schists; 4 

Huvelin, 1977), which are crosscut by numerous mafic and felsic dykes belonging to the 5 

bimodal magmatic association. Geochemical data for the Sarhlef schists indicate that they are 6 

likely to be derived from an active continental margin (Moreno et al., 2008; Essaifi et al., 7 

2014). Around the Kettara massive sulfide deposit, these host rocks are cut by numerous 8 

quartz and quartz-calcite veins, some of which are sulfide-bearing. Due to the limited 9 

availability of underground samples at Kettara, this research focuses on these veins to 10 

understand the fluids that circulated around the massive sulfide deposit. 60 rock samples 11 

including host rocks, mineralized veins and ore samples were collected from outcrops, ore 12 

stockpiles present in the mine site and drill core from the Kettara deposit. 13 

 14 

3. Deformation and hydrothermal alteration 15 

3.1. Structure 16 

The Kettara region exemplifies the style of deformation in the central Jebilet. The Kettara 17 

deposit and intrusion are located within the network of anastomosing ductile shear zones that 18 

characterize the central Jebilet block (Essaifi et al., 2001) (Fig. 2A). They are located to the 19 

south of the Mesret Fault termination, marked by a number of SE-trending synthetic dextral 20 

faults showing a horsetail pattern (Fig. 1C and Fig. 2A). To the south-west of Kettara lies the 21 

Oled Har intrusion and to the northeast the Safsafat intrusions, together these form a N-S 22 

magmatic lineament which is curved in the Kettara area (Fig. 2A). The Oled Har and Safsafat 23 

intrusions are emplaced along N-S sinistral shear zones (Fig. 2B). The Kettara intrusion and 24 
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deposit are located in a step-over zone between the end of the N-S strike-slip Oled Har shear 1 

zone and the beginning of the N-S strike-slip Safsafat shear zone (Fig. 2B).  2 

Within the Kettara sector, the structures observed include both ductile structures related to the 3 

main Variscan shortening and brittle structures related to later stages of the Variscan 4 

deformation (Fig. 2B). The post-Visean main Variscan shortening has caused regional folding 5 

as well as a progressive transposition of the original bedding (S0) into a single and penetrative 6 

sub-vertical chlorite-muscovite bearing schistosity (S1), contemporaneous with a low-grade 7 

greenschist facies regional metamorphism. This regional schistosity is axial planar to upright, 8 

moderately to gently (60–20°) NE-plunging folds (Fig. 3), and bears a gently plunging 9 

stretching lineation, which becomes down-dip near the intrusion (Fig. 3; Essaifi et al., 2001). 10 

In plan view, schistosity trajectories in the Kettara area display progressive curvatures from 11 

the NNE–SSW regional direction towards ENE–WSW directions indicating dextral shearing 12 

(Fig. 2B, C). Strain gradients accompany the curvatures of the S1 cleavage trajectories. The 13 

zones of most intense shearing are marked by very intense S1 schistosity, thinning of original 14 

beds, and isoclinal folding (Fig. 3). In the host schists located between the deposit and the 15 

intrusion (Fig. 4A), bedding is transposed into the penetrative S1 schistosity, which is 16 

characterized by a strong S-fabric of quartz grains and by well-developed pressure shadows 17 

around oxide minerals (ilmenite, anatase and hematite; Fig. 5A, B). Kink bands and micro-18 

scale S/C shear bands (Berthé et al., 1979) are well developed in the zones of most intense 19 

shearing where phyllites are intensively stretched along S and C planes. The host sandstone 20 

layers are progressively boudinaged and transposed into the S1 cleavage. Numerous sigmoidal 21 

quartz veins cross-cutting the schistosity at low angles are observed in the wall rocks adjacent 22 

to the deposit (Fig. 3 and Fig. 4B). On the northern side of the deposit (the hanging wall), 23 

deformation decreases progressively northwards. Thin calcareous beds intercalated within the 24 

metapelites are increasingly thinned as the gossan is approached, varying from centimeter- to 25 
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meter-scale lenses of fine-grained bioclastic limestone and calcareous sandstone proximal to 1 

the deposit, to a coarse-grained layered calcareous sandstone bed that forms a stratigraphic 2 

horizon located 1.5 km from the deposit (Fig. 2C). 3 

In the Kettara intrusion, deformation is very heterogeneous. Meter to centimeter-scale 4 

anastomosing shear zones bound lenticular meter to 100 m-scale domains of weakly deformed 5 

to undeformed gabbros (Fig. 2C and Fig. 3). Numerous subvertical felsic and mafic dykes cut 6 

across the intrusion and the host rocks. Mafic dykes up to 10 m wide cross-cut the schistosity 7 

in the vicinity of the Kettara deposit, but are locally deformed at their margins and 8 

boudinaged into lenses. One dyke appears to be cross-cut by the gossan of the Kettara deposit; 9 

and Huvelin (1977) describes meter-scale lenses of dolerite within the massive orebody, 10 

suggesting that the dyke pre-dated the sulfide deposit. 11 

To summarize, we interpret that the Kettara area is located between two adjoining en échelon 12 

shear zones and has been deformed in order to accommodate continued strike-slip 13 

displacement. In this model, a short ENE-WSW trending dextral shear zone connects the 14 

terminations of 2 N-S striking en échelon shear zones. In agreement with sinistral shear sense 15 

criteria inferred from schisotosity trajectories, and attested by multiscale S/C shear bands and 16 

various microscale shear criteria as rotation of contact metamorphism porphyroblasts or 17 

asymmetric pressure shadows along the Oled Har and Safsafat en echelon shear zone 18 

segments (Essaifi, 1995), the Kettara step-over zone is inferred to have acted as a 19 

compressional ‘jog’ or a ‘push-up’ area. 20 

3.2. Hydrothermal alteration in the Kettara intrusion 21 

The structural relationships between the intrusion and the host rocks show that the Kettara 22 

intrusion was emplaced in a zone of regional dextral shearing (Ait Tahar, 1987; Essaifi 1995). 23 

Two periods of deformation and subsequent hydrothermal alteration have been distinguished 24 

within the intrusion (Essaifi et al., 2004). The first of these occurred during cooling of the 25 
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intrusion, with formation of cm-scale shear zones. Introduction of fluids rich in Si, Ca and 1 

Mg, pervasive throughout the intrusion, led to the formation of amphibole-rich ultramylonites 2 

from original gabbros (Essaifi et al., 2004). The second episode followed the thermal re-3 

equilibration of the intrusion. Fluid flow was focused along the shear zones with retrogression 4 

to chlorite and leaching of Na, Si, Ca and Mg (Essaifi et al., 2004). 5 

Two types of mesocopic veins are associated with shear zones in the Kettara intrusion (Essaifi 6 

et al., 2004): (a) quartz-chlorite veins up to 10 cm wide at the center of the chlorite-rich shear 7 

zones, and (b) up to 30 cm wide quartz-calcite ‘en echelon’ or sigmoidal veins (Fig. 4D), with 8 

quartz at the vein boundaries and calcite along the center of the veins.  These veins strike at 9 

45° relative to the direction of the shear zones in low strain areas, but they are progressively 10 

reoriented and deformed in the vicinity of those shear zones (Essaifi et al., 1995). Such 11 

geometric relationships indicate that formation of quartz-calcite veins was contemporaneous 12 

with shear zone development. 13 

The quartz veins are stretched parallel to shear zones and show evidence of recrystallization 14 

of quartz grains. According to the geometric relationships between the veins and the shear 15 

zones, the quartz veins in the inner parts of the shear zones are considered to be the earliest 16 

ones and served as nucleation sites for the shear zones (Segall and Simpson 1986), whereas 17 

those oblique to the foliation (the quartz-calcite veins) were emplaced slightly later during 18 

widening of the shear zones (Gates and Speer, 1991). Thus the quartz-chlorite veins would be 19 

relatively earlier than those filled by quartz-calcite (Fig. 3), indicating the fluid evolution 20 

within the Kettara intrusion. 21 

3.3. Hydrothermal alteration in the host rocks 22 

In the Kettara area, the schists are devoid of any volcanic units and are dominantly composed 23 

of light grey pelites (black shales) intercalated with thin beds of fine-grained sandstone and 24 

limestone, with a well-developed schistosity. The pelites are dominated by a muscovite-25 
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quartz-chlorite-albite mineral assemblage (Fig. 5A), with muscovite grains showing pressure 1 

shadows and an oblique orientation to S1. In the sandstone layers, mineralogy is dominated by 2 

quartz and feldspar with quartz having an average grain size of 50 µm and forming up to 95 3 

vol. % of the rock. 4 

Approaching the intrusion boundaries, a low pressure/high temperature syntectonic contact 5 

metamorphism assemblage is developed: chlorite crystals increase in size while crystals of 6 

biotite appear along the cleavage plane. About 15m from the contact with the leucogabbros, 7 

contact metamorphic minerals (andalusite or cordierite) are developed. They form elliptical 8 

spots flattened and stretched along the cleavage plane. Hydrothermal alteration in the contact 9 

metamorphic aureole is very intense. It is marked by retrogression of the contact metamorphic 10 

minerals into secondary minerals. Biotite grains in the matrix are chloritized; cordierite and 11 

andalusite porphyroblasts are completely altered to chlorite, muscovite and quartz. 12 

Approaching the Kettara gossan, the pelites become greenish then purple in the gossan. At the 13 

margin of the deposit muscovite is aligned along the schistosity plane (S1); Fe-rich chlorite 14 

appears at a distance of 10 m from the gossan and its abundance increases towards the gossan 15 

in both footwall and the hanging wall. Sericite is locally oblique to the foliation plane, and its 16 

content increases towards the gossan, especially in the hanging wall of the deposit. The 17 

adjacent areas of the gossan are also characterized by the occurrence of numerous centimeter-18 

scale quartz ± calcite mineralized veins. These mineralized veins have gradational to sharp 19 

boundaries and cut the schistosity in the host rocks (Fig. 3 and Fig. 4B), but are affected by 20 

kink bands and also carry a recrystallized quartz fabric, indicating their syn-tectonic nature. 21 

The veins have the same mineralogy as the massive pyrrhotite ore body, being composed of a 22 

quartz-chlorite gangue enclosing grains of pyrrhotite, chalcopyrite, sphalerite, arsenopyrite, 23 

galena, and native bismuth. Phosphate minerals and zircon are also found in the mineralized 24 

veins. In some veins the sulfide minerals develop in layers that are in continuity with the 25 
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pelite layers of the host schists. They occur between the quartz grains or in association with 1 

chlorite in the vein margins. Thus the pelite banding persists through the veins by alternation 2 

of sandstone layers composed of fine-grained quartz (0.1 mm) and layers composed of coarse-3 

grained quartz associated with chlorite and sulfides which have replaced former pelite layers. 4 

The structural relationships indicate that these veins were emplaced towards the end of the 5 

ductile deformation phase. These quartz-chlorite-pyrrhotite-bearing veins are crosscut by 6 

carbonate and pyrite-bearing veins (Fig. 4F). The massive pyrrhotite is cross cut by carbonate 7 

veins (Fig. 4E). However quartz-chlorite veins cutting across massive pyrrhotite have never 8 

been observed. The field relationships now observed indicate that the chlorite-schists 9 

developed around the Kettara deposit result from syntectonic hydrothermal alteration of the 10 

host rocks. According to Bernard et al. (1988), this metasomatic alteration was accompanied 11 

by leaching of Si and Ca that subsequently crystallized as quartz-calcite veins within the wall 12 

rocks of the orebody. 13 

3.4. The Kettara massive sulfide deposit 14 

The core of the Kettara deposit is a massive sulfide lens dominated by pyrrhotite, but with 15 

gradational margins. These margins are clear in core from inclined borehole K101, which 16 

extends to a depth of 193 m through the Kettara deposit, intersects the central part of the ore 17 

body at depths of 159–179 m, and shows the contact between the sulfide lens and the pelitic 18 

host rocks.  The margins of the mineralized horizon contain numerous fragments of foliated 19 

wall rocks surrounded by irregular veins of pyrrhotite, and aligned parallel to the foliation 20 

(Fig. 4E). Pyrrhotite has crystallized parallel to the main schistosity and also fills fractures 21 

that cut across the foliation in the host rocks at the boundaries of the ore body (Fig. 4E). 22 

Moving inwards from the margin, the wall-rock fragments become smaller and less abundant. 23 

Away from the margins, the core of the deposit is dominated by massive pyrrhotite including 24 

only patches of the host rocks (Fig. 5C). 25 
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Study of mineralized samples, from core and from the stockpile, has allowed characterization 1 

of the primary mineralization of the Kettara deposit. The main mineralization is represented 2 

by fine-grained massive to semi-massive pyrrhotite. It is composed of pyrrhotite (70-90%), 3 

chalcopyrite (5-25%), magnetite (3-5%), sphalerite (2%), arsenopyrite (<1%) and traces of 4 

galena and native bismuth (Fig. 5D). The gangue minerals are quartz and chlorite, which can 5 

be associated with talc and mica, or enclose phosphate minerals and Ti-oxides. The semi-6 

massive ore is characterized by a chlorite-rich gangue and pyrrhotite oriented parallel to the 7 

main schistosity (Fig. 5C).  8 

Pyritic ore occurs as cm-scale veins or pods cutting the semi-massive to massive pyrrhotite, 9 

the pyrrhotite mineralized veins and the host schists (Fig. 5E, F). It is composed of 10 

centimeter-scale brecciated pyrite cubes together with rare marcasite and chalcopyrite 11 

associated with a gangue of carbonates. The pyritic ore has been affected by deformation 12 

within brittle to semi-brittle shear zones (Brown and McClay, 1993) but is clearly unaffected 13 

by ductile deformation. Pyrite crystals are locally fractured and brecciated (Fig. 5F), but lack 14 

features associated with ductile deformation such as pressure shadows. These microstructural 15 

relationships indicate that the pyritic ore post-dates the main period of ductile deformation 16 

(Marshall and Gilligan, 1993). Euhedral crystals of pyrite are also disseminated in the hanging 17 

wall of the ore lens. 18 

Field and textural relationships show that two successive mineralizing fluids contributed to 19 

the formation of the Kettara deposit (Fig. 6): (i) the first fluid led to formation of a pyrrhotite-20 

chalcopyrite-sphalerite-magnetite-arsenopyrite paragenesis and a quartz-chlorite gangue. This 21 

mineralogical association is affected by ductile shearing, marked by orientation of pyrrhotite 22 

and chalcopyrite along the schistosity and shearing planes; and (ii) the second fluid led to 23 

deposition of pyrite and carbonates, which are affected by brittle cataclasis. 24 
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Chlorite, the main alteration product in the shear zones of the Kettara intrusion, is also the 1 

main gangue mineral in the Kettara massive sulfide deposit. Chlorites associated with the 2 

mineralization are Fe-rich (0.5≤ XFe ≤ 0.85, Souaré 1988), in common with the shear zones 3 

inside the intrusion (0.46 ≤ XFe ≤ 0.48, Essaifi et al., 1995).  This similarity in chlorite 4 

composition was the first suggestion that the same fluid led to the formation of the massive 5 

sulfide and the chlorite schists of the Kettara intrusion (Essaifi et al., 1995; Essaifi and Hibti, 6 

2008). 7 

It is clear from the field relationships that there was significant hydrothermal fluid flow in the 8 

Kettara area associated with the Variscan deformation, and with the syn-tectonic intrusions in 9 

the area. This has led to hydrothermal alteration and veining around both the Kettara intrusion 10 

and the deposit. However, it is not evident from field relationships alone whether the Kettara 11 

sulfide deposit was formed prior to this deformation period, with its own hydrothermal 12 

aureole, and was then subsequently deformed; or whether it formed at the time of intense late-13 

tectonic hydrothermal activity. In order to investigate this question, we have studied fluid 14 

inclusions and isotopic compositions in the hydrothermally altered rocks of Kettara. 15 

 16 

4. Sampling and analytical techniques 17 

Fluid inclusions were analyzed in order to characterize the composition of the hydrothermal 18 

fluids and to estimate their entrapment conditions. Five samples were studied, two from the 19 

mineralized veins adjacent to the Kettara deposit and three from the mafic-ultramafic 20 

intrusion. Microthermometric fluid inclusions study was performed at Cadi Ayyad university 21 

using a Chaixmeca microthermometry apparatus (Poty et al. 1976), calibrated by standard 22 

synthetic fluid inclusions: i/ H2O-CO2 inclusions with the melting of solid CO2 at  56.7 °C, ii/ 23 

pure H2O inclusions (ice melting at 0.0 °C), and iii/H2O-NaCl with eutectic temperature at 24 

−21.2 °C. These data have been verified at Lille 1 University where additional 25 
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microthermometric data were obtained using a FLUID INC (USGS-type) heating and freezing 1 

stage, calibrated by standard synthetic fluid inclusions: i/ H2O-CO2 inclusions with the 2 

melting of solid CO2 at -56.6 °C, ii/ pure H2O inclusions (ice melting at 0.0 °C) and iii/ 3 

homogenization temperature of pure H2O inclusions at 374.1 °C. The precision of 4 

measurement is ±0.1 and ±0.5 at low- and high-temperature respectively. Semi-quantitative 5 

compositional data of inclusion gases were calculated from Laser Raman spectra at Lille 1 6 

University. The Raman spectra were measured using a LabRam HR800 Jobin-Yvon_ 7 

microspectrometer equipped with 1800 g/mm gratings and using 532.28 nm (green) laser 8 

excitation. Acquisition time span varied from 20 to 60 s during three accumulating cycles. 9 

The spectra regions scanned were in the range 1000-1500 cm-1 for CO2, 2250–2750 cm
-1

 for 10 

N2 and H2S and 2750–2950 cm-1 for CH4. 11 

O/H isotope analyses were conducted on quartz and chlorite separated from the intrusion, the 12 

deposit, and the mineralized vein adjacent to the deposit. Measurements of oxygen isotope 13 

compositions were performed at the stable isotope laboratory of the University of Lausanne 14 

following the procedures described by Lacroix and Vennemann (2015). Oxygen isotope 15 

compositions are given in the standard -notation, expressed relative to VSMOW in permil 16 

(‰), and the average precision is ±0.1‰.Measurements of hydrogen isotope compositions of 17 

chlorite were performed at the University of Lausanne following the procedures described by 18 

Leclère et al. (2014). The results are given in the standard δ-notation, expressed relatively to 19 

VSMOW in permil (‰), and the precision is better than ± 2‰. 20 

 21 

5. Stable isotopes 22 

Chlorite and quartz from both the Kettara deposit and the intrusion have been studied for their 23 

oxygen and hydrogen isotope compositions. Hand-picked chlorite crystals from samples of 24 

the massive pyrrhotite ore yield δ
18

O and δD values of 6.24‰ (VSMOW) and -48‰ 25 
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(VSMOW), respectively (Table 1). Chlorite separated from the pyrrhotite bearing 1 

mineralized-veins yield respectively δ
18

O and δD values of 7.8‰ (VSMOW) and -52‰. 2 

Chlorite separated from the quartz-chlorite veins associated with the shear zones in the 3 

intrusion has 
18

O=4.4‰ and δD=-52‰. Chlorite separated from the chlorite schists in shear 4 

zones within the Kettara intrusion has 
18

O=6.01‰ (Essaifi et al., 2004). The oxygen isotopic 5 

composition of chlorite from the Kettara deposit is thus very similar to that from the 6 

mineralized veins in its wall rocks and to the chlorite-rich shear zones cross-cutting the 7 

Kettara intrusion, supporting the hypothesis that alteration in the deposit, its wall rocks and 8 

the intrusion could be related to the same hydrothermal activity. 9 

Hand-picked quartz crystals from the mineralized veins at the margins of the Kettara deposit 10 

yield δ
18

O values of 9.1‰, and quartz from the veins associated with the shear zones in the 11 

Kettara intrusion yields δ
18

O values of 9.8‰ (Table 1). The similarity between the δ
18

O 12 

isotopic compositions of quartz from the mineralized veins in the wall rocks of the Kettara 13 

deposit and from quartz-chlorite veins associated with the shear zones within the intrusion 14 

indicates that formation of both the mineralized and un-mineralized veins could be related to 15 

the same fluids. 16 

Composition of the hydrothermal fluid in the intrusion and the deposit has been calculated 17 

using the oxygen fractionation between chlorite and water determined by Cole and Ripley 18 

(1998) and Zheng (1993), at temperatures corresponding to the upper greenschist facies (300–19 

400°C). The results give similar values of the hydrothermal fluid, for both calibration curves, 20 

between 6.0 and 7.2 ‰ (VSMOW). Such fluid compositions could either correspond to 21 

magmatic water or metamorphic water (Sheppard, 1986) (Fig. 7). For hydrogen, the chlorite-22 

water calibration of Taylor (1974)was chosen. The δD values of the fluid are calculated to be 23 

between −14.5‰ and −10.5 (VSMOW), which corresponds more clearly to metamorphic 24 

water (Fig. 7). 25 
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 1 

6. Fluid inclusions 2 

Fluid inclusion studies have been studied in both the quartz-bearing unmineralized veins of 3 

the Kettara intrusion and the mineralized veins adjacent to the sulfide deposit. The 4 

descriptions below are based on criteria proposed by several authors to classify and determine 5 

the origin and content of fluid inclusions (e.g., Bodnar, 2003; Van Kerkhof and Hein, 2001). 6 

The vapor-filling ratio (Rflv) has been estimated at the ambient temperature based on 7 

Shepherd’s chart (Shepherd et al., 1985).  8 

In the Kettara intrusion fluid inclusion studies were conducted on quartz and calcite 9 

from two quartz−chlorite veins (Vq-cl) and one quartz-calcite vein (Vq-cc). According to the 10 

phase number at room temperature, many fluid inclusion types have been identified. 11 

Microthermometric analysis and Raman spectrometry allowed classification of these 12 

inclusions into five types (Table 2): type 1 = H2O-CO2-Salt, type 2 = CO2-N2-CH4, type 3 = 13 

H2O-(Salt), type 4 = H2O-N2-CH4 and type 5 = H2O. Type 2 inclusions exist in both the 14 

quartz-chlorite and the quartz-calcite veins. The quartz-chlorite veins (Vq-cl) contain also type 15 

1 and type 3 inclusions whereas the quartz-calcite vein (Vq-cc) contains type 4 and type 5 16 

inclusions (Fig. 8 and Fig. 9). 17 

Type 1 inclusions are dominantly three-phase inclusions (2 liquids and a vapor, L1+L2+V). 18 

They coexist with two-phase inclusions with a thick vapor meniscus and numerous 19 

multiphase inclusions containing a solid phase (L1+L2+V+S). Their size varies from 10 to 40 20 

µm and Rflv from 5 to 10%. The melting temperatures of carbon dioxide (TmCO2) are 21 

distributed between −61.1 and −56.7°C with a mean value at −58.5 °C, which are close to the 22 

TmCO2 of pure CO2 (−56,6 °C) (Fig. 10A). Clathrate melting temperatures Tm(cl) are overall 23 

between −9.6 and 10.5 °C. The lower values of Tm(cl) were recorded by three-phase 24 

(L1+L2+V) inclusions (−8 °C) whereas the higher Tm(cl) were collected in multiphase 25 
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(L1+L2+V+S) inclusions ( 9.2 °C). Homogenization of CO2 occurs either in the liquid 1 

phase, with Th(CO2)(L) ranging from 24.6 to 29.9 °C, or the vapor phase, with Th(CO2)(V) ranging 2 

from 26.3 to 28.7 °C (Fig. 10B). Ice melting temperature Tm(ice) values are between −25.3 and 3 

−22.7 °C (mean = −24.1 °C) (Fig. 10C). Bulk homogenization temperature (Th) occurs either 4 

into liquid (Th(L)) or critical phase Th(c). Th(L) is between 300 and 366 °C, Th(c) ranges from 321 5 

to 409 °C. Decrepitation occurs sometimes before bulk homogenization and decrepitation 6 

temperatures (Td) are between 326 and 416 °C (Fig. 10D). 7 

Type 2 inclusions are one-phase inclusions encountered in the quartz-chlorite veins (Vq-cl) 8 

and the quartz-calcite vein (Vq-cc) as well. These inclusions are less abundant and are often 9 

associated with type 1 inclusions. In Vq-cl, TmCO2 occur between −58.3 and −57.1 °C and 10 

homogenization occurs in the liquid phase with ThCO2 ranging from 11.2 to 26.2 °C (Fig. 10E, 11 

F). The inclusions are composed of CO2, N2 and CH4. According to the semi-quantitative 12 

composition (X in mole percent) of gases calculated from Raman spectrum areas, XCO2 13 

varies from 84.6 to 97.9 mol %, XN2 from 0.4 to 9.6 mol % and XCH4 from 0 to 5.9 mol %. 14 

In Vq-cc, type 2 inclusions exist either as primary inclusions with a dark appearance or as 15 

secondary inclusions in transgranular plans. The secondary inclusions have a bright 16 

appearance and coexist with FIA of type 3. Tm(CO2) and Th(CO2) of primary inclusions are −58.7 17 

and −14.0 °C respectively and the values collected on one secondary inclusion are −57.4 and 18 

5.7 °C respectively (Fig. 10E, F). The average proportion of gases in primary inclusions is 19 

XCO2 = 59 mol %, XN2 = 35 mol % and XCH4 is about 6 mol %, and for secondary inclusion 20 

XCO2 = 78 mol %, XN2 = 19 mol %, XCH4= 3 mol %. 21 

Type 3 inclusions are two-phase at room temperature and are present in the quartz-chlorite 22 

veins (Vq-cl). They are composed of two-phase inclusions sometimes presenting a solid phase. 23 

These fluid inclusions occur as primary and as secondary inclusions. The primary inclusions 24 

have a size of 5 to 15 µm. They have an irregular shape with often a very thin tip elongated in 25 
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the crystal. The largest inclusions are commonly shredded. Their average vapor-filling ratio 1 

(Rflv) is around 10%, but can reach 20% when the solid phase is missing. Tm(ice) are between 2 

−24.3 and −17.0 °C with a mean value of −22.2 °C (Fig. 11A). Considering the small size of 3 

this fluid inclusion population, we could observe only one solid melting at a temperature (Ts) 4 

of 278.2 °C. Th(L) range from 149 to 261 °C with a mean value at 216 °C (Fig. 11B). 5 

Secondary inclusions have a small size (about 5 µm). Their average Tm(ice) is around −21.8 °C 6 

and their Th(L) range from 135 to 169 °C with a mean value of 156 °C (Fig. 11A, B). Using 7 

either Tm (ice) or Ts, calculated salinities of primary fluid inclusions are 23.8 and 36.7 wt. % 8 

NaCl respectively (Bodnar and Vityk, 1994).  9 

Type 4 inclusions consist of two-phase (L, V) fluid inclusions located in growth zones of 10 

quartz crystals of the quartz-calcite veins (Vq-cc). The inclusions are generally shredded or 11 

have irregular shapes. They are essentially two-phase inclusions with a dark appearance, Rflv 12 

from 5 to 30 % and a mean size of 10 µm. Tm(ice) values are between −4.0 and −0.5 °C with a 13 

mean value of −1.9 °C in Vq-cc(Fig. 11C). Th(L) range from 205 to 255 °C with a mean value of 14 

240 °C (Fig. 11D). The vapor phase is mostly composed of nitrogen and methane with 15 

average mol fractions at 86.1 and 13.9 mol% respectively. 16 

Type 5 inclusions occur in Vq-cc where they have a pseudo secondary or secondary origin in 17 

quartz and a primary origin in calcite. In quartz they are located in microcracks showing 18 

intragranular grain boundaries-grain internal or transgranular trails according to descriptions 19 

of Van den Kerkhof and Hein (2001). Their average size is about 5 µm with a constant Rflv in 20 

all inclusions (≈5%). In calcite, they are generally elongated concurrently with the calcite 21 

growth direction. Their Rfl are about 5% and their size range from 4 to 15 µm. The mean 22 

value of Tm(ice) is −0.1 °C in the quartz and around −1.5 °C in calcite (Fig. 11C). The average 23 

Th(L) is 180 °C in quartz, while in calcite Th(L) are a bit lower and range from 131 to 187 °C 24 
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with a mean value of 156 °C (Fig. 11D). The corresponding salinities are relatively low, 0.2 1 

wt. % NaCl in quartz and around 2.6 wt. % NaCl in calcite (Bodnar and Vityk, 1994). 2 

In the mineralized veins adjacent adjacent to the Kettara deposit fluid inclusions were 3 

studied in quartz associated with pyrrhotite mineralization from a quartz mineralized vein 4 

crosscut by carbonates (Vm-qc) and a quartz-chlorite mineralized vein (Vm-qcl). Carbonates 5 

associated with pyrite mineralization were not suitable for fluid inclusion studies because they 6 

are less transparent and poor in fluid inclusions. Based on petrographic observations, 7 

microthermometric analysis and Raman microspectrometry, different fluid inclusion types 8 

have been distinguished and are summarized in table 2. 9 

According to petrographic observation, fluid inclusions in the two mineralized veins consist 10 

mainly of two phase and one-phase fluid inclusions at room temperature and scarce inclusions 11 

containing a solid phase. After microthermometric and Raman spectrometry analyses, six 12 

fluid inclusion types have been identified, not all present in the same sample.  Type 1 consists 13 

of H2O-CO2-N2-CH4 fluid inclusions; type 2 inclusions are composed of CH4-N2-CO2; type 3 14 

of H2O-salt, type 4 of H2O-CH4; type 5 of N2-CH4 and type 6 of CH4 (Fig. 12). The type 3 15 

inclusions exist in both the quartz-chlorite and the quartz mineralized vein crosscut by 16 

carbonates. The quartz mineralized vein crosscut by carbonates (Vm-qc) contains also types 1 17 

and 2 whereas the quartz-chlorite mineralized vein (Vm-qcl) contains types 4, 5 and 6. 18 

Type 1 inclusions are two-phase at room temperature with Rflv between 5 and 10%. Their size 19 

varies from 5 to 50 µm (mean of 20 µm). The inclusions have a rounded or rectangular 20 

elongated shape. In these inclusions Tm(ice) ranges from −9.1 to 0.0 °C with a mean value of 21 

−3.6 °C (Fig. 13A), Th is between 178 and 230 °C with an average of 210 °C (Fig. 13B), and 22 

Tm(cl) ranges from 2.9 to 10.1 °C with a mean value of 6.2 °C. The vapor phase of these 23 

inclusions is composed of variable proportions of carbon dioxide, nitrogen and methane. CO2 24 

and CH4 are present in all inclusions whereas nitrogen is often missing or its content is lower 25 
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than the detection limit. XCO2 varies from 8.7 to 84.1 mol %, XCH4 varies from 8.4 to 51.5 mol 1 

%, and when nitrogen, is detected XN2 ranges from 17.9 to 79.0 mol %. Their average 2 

composition is 44.0mol % CO2, 21.7mol % CH4 and 34.4 mol %N2.  3 

Type 2 inclusions are one phase at room temperature and are commonly observed in the same 4 

fluid inclusion assemblages (FIA, Goldstein and Reynolds 1994) than type 1. They are less 5 

abundant and have a dark appearance with often an exceptional large size of 60 µm. No 6 

visible aqueous phase was detected during microthermometric experiments. Only Th has been 7 

measured in these inclusions. It occurs either into liquid or vapor phase, with values of Th(L) 8 

ranging from −99.4 to −70.4 °C (mean = −91.4 °C) and Th(V) from −95.9 to −78.3 °C (mean = 9 

−88.9 °C). Raman analysis shows that they are composed of CO2 (from 11.5 to 27.0 mol %), 10 

N2 (from 21.0 to 38.1 mol %) and CH4 (from 36.1 to 67.5 mol %).  The mean values of these 11 

gas show the predominance of methane (XCH4 = 48.0 mol %) followed by nitrogen (XN2= 31.9 12 

mol %) and then by carbon dioxide (XCO2 = 20.0 mol %). 13 

Type 3 inclusions exist in both the quartz mineralized vein crosscut by carbonates (Vm-qc) and 14 

in the quartz-chlorite mineralized vein (Vm-qcl).They have a bright aspect and contain two 15 

phases at room temperature. In Vm-qc their size is generally about 5 to 30 µm with relatively 16 

large Rflv (5 to 20%). In Vm-qcl they have an irregular shape with sometimes a thin tip oriented 17 

in the crystal growth direction which could indicate a primary origin of these inclusions. Their 18 

Rflv range from 5 to 10% and the Tm(ice) are between −7.9 and −2.0 °C in Vm-qc and between 19 

−17.4 and −0.6 °C in Vm-qcl, with mean values of −4.7 and −6.3 °C respectively (Fig. 13D). 20 

Their Th range from 176 to 258 °C (mean = 224 °C) for Vm-qc and from 174 to 260 °C (mean = 21 

218 °C) for Vm-qcl (Fig. 13F). So, in Vm-qc salinities are between 3.4 and 11.6 wt.% NaCl and in 22 

Vm-qcl they range from 1.1 to 20.5 wt.% NaCl. According to the frequency plot of Tm(ice) (Fig. 23 

13E), the maximal frequency of Tm(ice) corresponds to the mean value in Vm-qc (−4.7 °C), 24 
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whereas in Vm-qcl the value of maximal frequency is a bit lower than the mean value and is 1 

around −5.0 °C. The salinities from these values are 6.9 and 7.9 wt. % NaCl respectively. 2 

Type 4 inclusions are two phase fluid inclusions showing a regular shape. They appear dark 3 

and are particularly abundant in quartz wrapped by sulfides. Their average size is about 10 4 

µm with an Rflv around 5 and 20 %. One inclusion of this group contains exceptionally a solid 5 

phase, which is considered as accidental solid due to the lack of other solid phases in the 6 

surrounding inclusions. Tm(ice) range from −19.2 to −0.3 °C with a mean value of −6.0 °C (Fig. 7 

13A). Th range from 212 up to 376 °C with a mean value around 290°C (Fig. 13B), and the 8 

mean value of Tm(cl) is around 8.6 °C. The Raman analysis indicates that the vapor phase is 9 

composed exclusively of methane and the accidental solid is graphite. 10 

Type 5 inclusions are represented by dark monophase fluid inclusions and form sometimes 11 

FIA with type 4 inclusion. They are more abundant in some quartz crystals and have a sub-12 

regular shape. During cooling runs these inclusions showed only a Th(V) ranging from −124.1 13 

to −105.2 °C with a mean value of −120 °C, and one Th(L) observed at −121.1 °C (Fig. 13C). 14 

The Raman analysis indicates the presence of nitrogen and methane with XN2 varying between 15 

49.8 and 60.4 mol % and XCH4 between 39.6 and 50.2 mol %. 16 

Type 6 inclusions consist of monophase secondary fluid inclusions located along 17 

transgranular trails with inclusion sizes reaching 40 µm. As in type 4 inclusions, one inclusion 18 

of this group contains an accidental solid. Their microthermometric data are: Th(CH4)(L) 19 

between −97.4 and −93.4 °C and Th(CH4)(V) between −85.5 and −82.0 °C (Fig. 13D). The 20 

higher limit (−82.0 °C) is almost equal to the critical temperature of methane (Tcritical = −82.1 21 

°C, Ruano 2008). The Raman analysis indicates that these inclusions are filled only by CH4 22 

and that the accidental solid is graphite. 23 

 24 

7. Discussion 25 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 
 

7. 1. Sources of fluid inclusions 1 

The microthermometric study and Raman analysis showed a wide variety of fluid inclusion 2 

types in the mineralized veins adjacent to the massive sulfide ore and the unmineralized veins 3 

in the mafic-ultramafic intrusion, but also at the sample scale. The main systems encountered 4 

in the veins can be grouped into H2O-(CO2,-N2-CH4) ±Salt, CO2-N2-CH4, H2O-(Salt), H2O-5 

CH4±Salt, H2O-CO2-Salt, N2-CH4 and CH4 systems. They belong to three main fluid types: 1/ 6 

a H2O-salt fluid with extremely variable salinities, from pure water to quasi-saturated brines; 7 

2/ a volatile-rich (CH4-N2-CO2) fluid with variable proportions of each component ranging 8 

from pure component (pure CH4), binary mixtures (CH4-N2) to ternary mixtures (CO2-CH4-9 

N2); 3/ a mixed H2O-salt-volatiles fluid; note that H2S was never found. These fluids can be 10 

linked to three distinct sources (Sheppard, 1986): (i) metamorphic fluids (H2O-CO2-CH4-N2); 11 

(ii) magmatic fluids (H2O - salt (Na, K, Li)); and (iii) basinal fluids (H2O-hydrocarbon-salt). 12 

According to Thiéry et al. (1994), the ternary CO2-CH4-N2 system is common in fluid 13 

inclusions representative of diagenetic, hydrothermal and metamorphic fluids. 14 

CH4 or a mixture of CH4 and N2 always dominates the volatiles in the mineralized veins, 15 

whereas CO2 occurs in minor proportions or is absent. In contrastCO2 is always the dominant 16 

species relative to CH4 and N2 in the unmineralized veins associated with the shear zones 17 

within the intrusion (Fig. 14). CH4 and CH4-N2 indicate reducing conditions, which seem to 18 

characterize the mineralized veins adjacent to the deposit. 19 

The variability of compositions, homogenization temperatures and salinities may be attributed 20 

to three main phenomena: cooling, boiling or fluid mixing in addition to post-trapping 21 

processes. The graphical representation of Th versus Tm(ice) of fluid inclusions containing an 22 

aqueous phase allows us to identify the major trends of these mechanisms (Fig. 15). 23 

In the mineralized veins adjacent to the Kettara deposit, the co-existence in the quartz 24 

mineralized vein crosscut by carbonates (Vm-qc), of water+volatile (H2O-CO2-N2-CH4, type 1) 25 
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and volatile-rich (CH4-N2-CO2, type 2) inclusions in the same FIA is probably an indication 1 

of boiling or mixing. This hypothesis is corroborated by the slight evolution of Tm(ice) relative 2 

to Th, (Fig. 15A). In addition, the composition of the vapor phase (CH4-N2-CO2) of type 1 3 

inclusions is similar to type 2. Final homogenization temperatures of type 1 and type 3 4 

inclusions are almost identical (210–220 °C respectively), which also supports a boiling 5 

process by which the separation of volatile phases from the liquid phase occurred, causing the 6 

salt concentration in the residual liquid. Fluid inclusions resulting by this process give a 7 

similar Th range. Accordingly the Th of both types (210–220°C) can be considered as the 8 

minimal trapping temperature of the inclusions. 9 

In the quartz-chlorite mineralized vein (Vm-qcl), there is a linear distribution of type 3 and type 10 

4 fluid inclusions along the Th axis indicating a more significant variation of Th than salinities. 11 

This distribution mode is characteristic of cooling for both fluid inclusion types (Fig. 15B). 12 

On the other side, we also observe that relatively high Th are recorded by type 4 fluid 13 

inclusions (up to 370 ° C) compared to type 3 (< 270 °C). This highest Th suggests the 14 

trapping of two immiscible phases in type 4 inclusions (H2O-CH4) and indicates a mixing 15 

process probably between those of type 3 (H2O) and type 5 (N2-CH4). After Holloway (1984), 16 

the immiscibility between CH4 and H2O could result in the common occurrence of methane as 17 

natural gas in low-grade metamorphic terranes. Otherwise, the absence of N2 in type 4 18 

inclusions remains unexplained. 19 

In the Kettara intrusion, the distribution of fluid inclusion data in quartz-chlorite veins 20 

(Vqcl) shows a decrease of Th at nearly constant salinity, in favor of a cooling in the system. 21 

This is valid for primary type 3 (Tm(ice) = −22.2 °C, Th = 220 °C), but also for secondary type 22 

3 fluid inclusions (Tm(ice)= −21.8 °C, Th = 160 °C) (Fig. 15C). Type 1 inclusions belong to the 23 

general system H2O-CO2-salt. Their relatively high Th(L)= 350 °C, their homogenization in the 24 

critical phases and their high salinity evident from their low Tm(ice)(−24.1 °C) can be explained 25 
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by the trapping of a fluid in an immiscible state, probably resulting from mixture between a 1 

magmatic fluid represented by type 3 (H2O-salt) inclusions and a metamorphic fluid 2 

represented by type 2 (CO2-N2-CH4) inclusions. A mixing processes can therefore explain the 3 

presence of the type 1 and types 2 inclusions in the same FIA. Whilst boiling is not ruled out, 4 

the absence of water in the type 2 inclusions is incompatible with phase separations during 5 

this process (e.g., Lawrence et al., 2013), unless the water meniscus is not visible.  6 

In the quartz-calcite vein, the relationship between inclusions containing an aqueous phase is 7 

difficult to establish because they do not belong to the same generation and do not have the 8 

same compositions (Type 3, 4 and 5). The presence of type 4 (H2O-N2-CH4) and type 2 (CO2-9 

N2-CH4) inclusions in quartz lead us to consider a boiling process. This would explain the 10 

absence of CO2 in type 4 inclusions. However, it does not explain the apparent absence of 11 

water in type 2 inclusions although the most recently formed are generally close to aqueous 12 

bearing inclusions (Fig. 8). However, a small amount of invisible water can be present along 13 

the rims of these fluid inclusions (Roedder, 1984).  14 

The types of volatile phases and the salinities of the fluid inclusions are compatible with a 15 

model involving mixing of metamorphic H2O - (CO2, N2, CH4) and magmatic (H2O-Salt) 16 

fluids in the Kettara shear zones. This is consistent with the stable isotope data, which also 17 

indicate a metamorphic origin for the hydrothermal fluids. The Kettara shear zones represent 18 

pathways for upwardly directed and focused fluid flow, and their interconnection allowed 19 

fluid flow to be channeled at the regional-scale (Essaifi et al., 2004). However, a key question 20 

is how this fluid flow relates to the formation of the Kettara massive sulfide deposit. 21 

7.2. Microstructural timing of mineralization 22 

It is clear that the Kettara pyrrhotite massive ore has been affected by the ductile Variscan 23 

deformation. However, the overall relationships are potentially compatible with either: i) 24 

remobilization of a pre-tectonic, syngenetic ore body; or ii) syn-deformational, epigenetic 25 
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emplacement of the ore body (Marshall and Gilligan, 1993). A significant contrast in rheology 1 

exists between sulfide minerals and silicate and carbonate host rocks at low metamorphic 2 

grades, with the common sulfides (galena, pyrrhotite, sphalerite, chalcopyrite) being less 3 

competent than silicate and carbonate host rocks, while pyrite and magnetite are more 4 

competent (Marshall and Gilligan, 1993; Rosière et al., 2001). The Kettara pyrrhotite-rich 5 

massive sulfide lens is less competent than the surrounding wall rocks and this difference in 6 

mechanical behavior should lead to concentration of deformation in the weaker material 7 

(pyrrhotite ore body), with possible fracturing and boudinage of the more competent material 8 

and shear-strain concentrated along ore-host rock contacts. Such deformation partitioning is 9 

not observed at Kettara. On the contrary, pyrrhotite truncates the S1 cleavage (Fig. 4E), and 10 

the ore contacts are controlled by fracture and cleavage directions, suggesting replacement of 11 

the host rock, while cleavage was overprinted by pyrrhotite and associated sulfides.  Such 12 

syntectonic replacement could potentially be attributed to redistribution in and around a 13 

precursor ore body by local dissolution and precipitation processes (remobilization). However 14 

if the main part of the sulfides were pre-tectonic, the more competent sulfide minerals should 15 

be boudinaged in a softer matrix of different composition (Gilligan and Marshall, 1987; 16 

Aerden, 1994), and pressure shadows should develop around rigid objects like pyrite and 17 

magnetite crystals (Passchier and Trouw, 1996; Ramsay and Lisle, 2000). No such evidence is 18 

seen at Kettara. In addition, the microstructural control and the progressive gradation from 19 

wall rocks-rich ore (semi massive pyrrhotite) to texturally identical wall rocks-poor ore 20 

(massive pyrrhotite) suggests that massive ore differs from semi massive ore by the extent of 21 

replacement only (Perkins, 1997; De Roo, 1989; Aerden, 1994). Following the guidelines of 22 

Marshall and Gilligan (1993), the microstructures at Kettara show little evidence for solid-23 

state mechanical remobilization of original sulfides. 24 

7.3. Emplacement of the Kettara massive sulfide deposit 25 
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The fluid inclusion compositions presented here for both the mineralized veins adjacent to the 1 

deposit and the shear zones-related veins in the intrusion are compatible with mixing of 2 

magmatic and metamorphic fluids. This is supported by the oxygen and hydrogen isotope data 3 

for chlorite and quartz from these veins, and aligns well with field and microstructural 4 

relationships, which clearly indicate that the veins were formed during deformation and 5 

metamorphism. The oxygen and hydrogen isotopic composition of quartz and chlorite in the 6 

mineralized veins adjacent to the deposit are similar to those of quartz and chlorite from the 7 

shear zones cutting across the Kettara intrusion and support interaction with the same 8 

hydrothermal fluid. Calculated hydrogen and oxygen isotope compositions clearly 9 

demonstrate involvement of metamorphic water in both the mineralized veins adjacent to the 10 

deposit and the shear zones cutting across the intrusion (Fig. 7). The field, microstructural, 11 

isotope and fluid inclusion evidence clearly link the hydrothermal alteration around the 12 

Kettara deposit and intrusion, including the formation of the mineralized veins, to a fluid flow 13 

focused along the Kettara shear zone. The difference recorded in fluid inclusions composition 14 

between the unmineralized and mineralized veins can be related to migration of metamorphic 15 

fluids through the interconnected regional shear zones into host rocks rich in organic matter 16 

where their reduction contributed to precipitation of sulfides. Crystallization of pyrrhotite 17 

instead of pyrite in the mineralized veins probably arises from the organic-matter driven 18 

reducing conditions during metamorphism as has been observed in graphitic sulfide-rich 19 

schists from south-central Maine (Ferry, 1981) and Late Precambrian Lower Dalradian 20 

Ballachulish Slate Formation metasediments (Hall et al., 1987). 21 

The major question that remains is the relationship of this syn-metamorphic hydrothermal 22 

episode to the formation of the Kettara massive sulfide deposit. The deformational history of 23 

many massive sulfide deposits within the Variscan belt has been a subject of much debate 24 
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(e.g. Marignac and Cathelineau, 2006; Sanchez-Espana et al., 2006; Marcoux et al., 2008; 1 

Essaifi and Hibti, 2008) between proponents of syngenetic versus epigenetic models. 2 

At Kettara, the mineralized veins may hold the key to answering this question. The presence 3 

of sulfides within the mineralized veins indicates a genetic relationship with the deposit, but 4 

does not yet prove that they formed at the same time. The mineralized veins could have 5 

derived their sulfide content by syntectonic remobilization (dissolution and reprecipitation) of 6 

a preexisting syngenetic massive sulfide deposit. However, the textural evidence for 7 

syntectonic sulfide replacement of foliated host rock plus the structurally controlled 8 

localization of the deposit in a step-zone between regional shear zones favor a model in which 9 

veins and massif sulfides formed synchronously from the same fluid. It could still be argued 10 

in this case that this deformation episode completely remobilized an earlier syngenetic 11 

massive sulfide deposit, but although no field or textural evidence remains to support this 12 

hypothesis. The 331 and 300 Ma ages obtained for alteration minerals around similar deposits 13 

in Central Jebilet and Guemassa massifs (Marcoux et al., 2008; Watanabe, 2002) support 14 

emplacement of these massive sulfide deposits during regional deformation metamorphism. 15 

Late-stage pyrite and carbonate veins within the Kettara shear zone are only affected by brittle 16 

deformation, clearly indicating that metal-bearing hydrothermal fluids continued to circulate 17 

in the Kettara area as deformation evolved from ductile to brittle conditions. Formation of the 18 

Kettara mineralized veins was thus realized through a protracted period of deformation and 19 

sulfide mineralization. 20 

 21 

8. Conclusion 22 

Central Jebilet represents a major massive sulfide province of significant economic 23 

importance. The clear association of the massive sulfide deposits with bimodal magmatism 24 

and shear zones is exemplified in the Kettara area where a massive sulfide deposit and a 25 
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mafic-ultramafic intrusion are located within a “compressional jog” of a regional wrench 1 

shear zone. Field and textural evidence clearly indicate that mineralized veins adjacent to the 2 

deposit developed during shearing, and that hydrothermal fluid circulation continued into the 3 

brittle deformation regime. Hydrothermal alteration in both the intrusion and the wall rocks 4 

adjacent to the deposit are similar and related to the same hydrothermal fluids, i.e. a mixture 5 

of metamorphic H2O - (CO2, N2, CH4) and magmatic fluids (H2O-Salt). We conclude that if 6 

the mineralized veins are an integral part of the Kettara deposit, then emplacement of the 7 

pyrrhotite-rich massive sulfide deposit occurred during deformation and metamorphism. The 8 

metamorphic fluids scavenged sulfur and metals from the country rocks and were channeled 9 

through active shear zones, depositing massive sulfides in reducing environments offered by 10 

organic-rich host rocks. The alternative interpretation that the mineralized veins represent 11 

remobilization products of a pretectonic orebody is possible but not supported by our data for 12 

Kettara. Further work is undoubtedly needed to assess mineralization models at the scale of 13 

the whole central Jebilet. 14 
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 15 

----------------------------------------- 16 

Figure Captions 17 

Fig. 1A) The Jebilet massif in the framework of the Palaeozoic outcrops of North Africa (in 18 

grey), B) Location of the Jebilet massif in the frame of the Variscan fold belt of Morocco, C) 19 

Geological sketch map of the Jebilet massif (modified after Huvelin 1977). Box encloses area 20 

covered by Figure 2. 21 

Fig. 2 A) Shear zone pattern in Central Jebilet (modified after Essaifi and Hibti, 2008), B) 22 

Schistosity trajectories and deformation kinematics around the Oled Har-Kettara-Safsafat 23 

magmatic lineament. Regional schistosity displays curvatures that indicate N-S sinistral 24 
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wrenching interconnected by an east-northeast dextral shear zone in the Kettara area, C) 1 

Geological and structural map of the Kettara area. Location of the cross-section shown in Fig. 2 

3 is indicated. 3 

Fig. 3 Vertical cross-section through the Kettara intrusion and Cu deposit. See location in Fig. 4 

2C. The diagrammatic sections illustrate meter-scale shear zones in the Kettara mafic-5 

ultramafic intrusion and the relationships between deformation and quartz ±calcite veins in 6 

both the intrusion and the gossan. Stereographic diagrams show equal area, lower hemisphere 7 

projections of planar and linear structures. S0 (bedding) and Le (stretching lineation) in the 8 

Kettara intrusion were measured respectively at the bottom of the intrusion and in the contact 9 

aureole around the intrusion. The S1 stereonet represents the regional schistosity in the whole 10 

Kettara area. 11 

 12 

Fig. 4 Representative field exposures of the Kettara intrusion and deposit and drill core 13 

specimen of the Kettara deposit. A) Panoramic view from the Kettara intrusion, looking 14 

northwest to the Kettara deposit, and showing the relief of the Kettara gossan and the 15 

remnants of old workings, B) Mineralized quartz-chlorite vein cutting the schists at a low 16 

angle in the Kettara gossan, C) Quartz mineralized vein crosscutting wall rocks composed of 17 

alternating pelites (black) and sandstone (grey) layers. Note that mineralization within the 18 

vein lie in continuity with the pelite layers., D) Sigmoidal quartz-calcite vein in a chlorite-rich 19 

shear zone of the Kettara intrusion, E) Specimen from the drill core K101 showing the contact 20 

between the pyrrhotite lens and the host schists. Pyrrhotite (PO) cuts across the contact, 21 

contains enclaves of the host schists (HS) and is crosscut by carbonate (CC) veins, (F) 22 

Specimen from the drill core K101showing a mineralized quartz-chlorite vein crosscut by a 23 

carbonate (CC) vein (scale piece is 24 cm across). 24 
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Fig. 5 Photomicrographs of the Kettara ore and its host rocks. A) Metapelites located 170 m 1 

to the south of the deposit, showing the stratification (S0) and schistosity (S1) planes, 2 

B)Chloritized metapelites located 2m from the southern boundary of the deposit, showing 3 

pressure shadows around ilmenitegrains (Ilm), c) Semi-massive pyrrhotite ore showing 4 

chloritized wall rocks with S1 cleavage truncated by pyrrhotite, D) polymetallic assemblage of 5 

pyrrhotite, chalcopyrite (Ccp), sphalerite (Sph), arsenopyrite (Asp) replaced by carbonates 6 

(Car), E) replacement of a pyrrhotite-chalcopyrite assemblage by carbonates and euhedral 7 

pyrite (Py), F) Cataclastic deformation of pyrite resulting in comminution breccias.A, B 8 

(transmitted light), C, D, E, F (reflected light). 9 

Fig. 6 Paragenetic successions of the main mineralizing fluids in the Kettara massive sulfide 10 

deposit. 1 and 2 are respectively the first (pyrrhotitic ore) and the second (pyritic ore) main 11 

phases of mineralization 12 

Fig. 7 Plot of δD vs. δ
18

O values of chlorite (white star) and the calculated mineralizing fluid 13 

(white square). Fluid composition was calculated using oxygen and hydrogen fractionation 14 

between chlorite and water from Zheng (1993) and Cole and Ripley (1998) for oxygen, and 15 

from Graham et al. (1987) for hydrogen. Compositions of Primary igneous water, 16 

metamorphic water and sedimentary rocks are from Sheppard (1986). 17 

Fig. 8 Photomicrography and sketch of some fluid inclusions in quartz-chlorite veins of the 18 

Kettara intrusion. A) Assemblage of aquo-carbonic (H2O-CO2-Salt) fluid inclusions 19 

composed by two phases and three phases (L, V1, V2) fluid inclusions (type 1). B) sketch 20 

showing an aqueous-saline (H2O+Salt) fluid inclusions, composed by two phases and three 21 

phases (S, L, V) primary (I) and secondary (II) fluid inclusion plans of type 3. C) two phases 22 

aqueous-saline fluid inclusions of type 3 (I) showing irregular shapes and oriented along the 23 

elongation of quartz crystal (photomicrography of the central part in B). 24 
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Fig. 9 Photomicrography of main fluid inclusions in quartz (A-D) and calcite (E) of quartz-1 

calcite vein of the Kettara intrusion.  A) two phases H2O-N2-CH4 fluid inclusions (type 4). B) 2 

One phase CO2-N2-CH4primary fluid inclusions (type 2 (I)). C) Intragranular plans of two 3 

phases aqueous fluid inclusions (type 5). D) Assemblageof secondary fluid inclusion plans 4 

including one phase CO2-N2-CH4 fluid inclusions (type 2 (II)) and two phases fluid inclusions 5 

(type 5). E) Aqueous fluid inclusions (type 5) in calcite, which is considered as secondary 6 

with respect to the vein formation. 7 

Fig. 10 Histogram frequency of microthermometric data of fluid inclusions in veins from the 8 

shear zones of the Kettara mafic ultra-mafic intrusion. (a-b) Tm(CO2) (a) and Th(CO2) (b) of 9 

aqueous gas-bearing fluid inclusions (type 1). (c-d) Tm(ice)) (c) and Th (d) of aqueous gas-10 

bearing fluid inclusions (type 1 and type4). (e-f) Tm(CO2) (e) and Th(CO2) (f) of aqueous gas-rich 11 

fluid inclusions (type 2). Homogenization occurs either into liquid phase (l) or vapor phase 12 

(v), as critical (c) or decrepitation(d). Vqcl : quartz-chlorite veins, Vqcc: quartz-calcite vein.  13 

Fig. 11 Histogram frequency of microthermometric data of fluid inclusions in veins from the 14 

shear zones of the Kettara mafic ultra-mafic intrusion. (a-b) Tm(ice) (a) and Th (b) of primary 15 

(I) and secondary (II) aqueous saline fluid inclusions (type 3). (c-d) Tm(ice)) (c) and Th (d) of 16 

aqueous fluid inclusions (type 5). Vqcl : quartz-chlorite veins, Vqcc: quartz-calcite vein. * 17 

indicates the measures collected in calcite. 18 

Fig. 12 Photomicrographs of fluid inclusions in mineralized veins of massive sulfide in 19 

transmitted light. A) quartz±carbonates mineralized vein: assemblage of two phase H2O-N2-20 

CO2-CH4 inclusions (type 1) and one phase CH4-N2-CO2 inclusions (type 2). (B-E) quartz-21 

chlorite mineralized vein, B) Two phase aqueous fluid inclusions showing a thin tip in crystal 22 

growth direction of quartz (type 3), C) two phases H2O-CH4-(Salt) fluid inclusions in quartz 23 
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wrapped by sulfides (type 4, figure 3f), D) one phase N2-CH4 fluid inclusions (type 5). E) 1 

Secondary plan of one phase CH4 fluid inclusions (type 6). 2 

Fig. 13 Histogram frequency of microthermometric data of fluid inclusions in mineralized 3 

veins of the Kettaramassive sulfide. (a-b)Tm(ice) (A) and Th (B) of aqueous gas-bearing fluid 4 

inclusions (type 1 and 4). (C-D)Th of gas-rich fluid inclusions (type 2, 5 and 6). (E-F) 5 

Tm(ice) (E) and Th (F) of aqueous fluid inclusions (type 3). Homogenization occurs into 6 

liquid phase (l) or vapor phase (v). Vm-qc: quartz±carbonates mineralized vein, Vm-qcl : 7 

quartz-chlorite mineralized vein. 8 

Fig. 14 Ternary diagram showing the repartition of gas phases in fluid inclusions of the 9 

mineralized veins of the Kettara massive sulfidedeposit and the veins of the shear zones inthe 10 

Kettara intrusion. A) Aqueous gas-bearing inclusions ((H2O-gas-(Salt)), type 1 and type 4 of 11 

all veins) showing a sparse repartition of gases. B) Gas-rich fluid inclusions (type 2 of all 12 

veins and type 5 and type 6 in mineralized veins) showing the prevalence of CH4 and N2 in 13 

the mineralized veins and CO2 in the veins associated tothe shear zones of the intrusion. 14 

Fig. 15 Plot in ThvsTm(ice) binary diagram of representative microthermometric data of type 15 

1,type 3, type 4 and type 5 fluid inclusions of the veins associated tothe shear zones of the 16 

Kettara intrusion (see description in the text). 17 

 18 
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Location Lithology Sample  δ18
O (‰)  δD (‰)  δ18

O (‰)

Kettara deposit Massive pyrhotite KET5 6.24 -48

Kettara deposit Mineralized vein KIM7-2 7.8 -52 9.1

Kettara intrusion Quartz-chlorite vein KTG2 4.4 -52 9.8

Kettara intrusion Chlorite schist
1

MK3 6.01

 
1
from Essaifi et al. (2004)

chlorite

TABLE 1.  oxygen (δ18O) and hydrogen (δD) isotope composition of chlorite and quartz of the 

Kettara deposit, the mineralized veins and the shear zones of the Kettara intrusion

http://ees.elsevier.com/aes/download.aspx?id=236542&guid=a0a11da1-c403-4bf7-bec3-26de9eb4b500&scheme=1
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A-Kettara deposit
Fluid inclusion type Range T h(gas)(l) T h(gas)(v) T m(CO2) T m(ice) T m(cl) T h(CO2)(l) T h(CO2)(v) T h(l) T h(c) Td Salinity R flv

Size CO2 N2 CH4 Others

°C °C °C °C °C °C °C °C °C °C wt% NaCl % µm % % %

Quartz-carbonates mineralized vein (Vm-qc)
Type 1

1
Minimum -9.1 2.9 178 5 5 8.7 0.0 8.4

H2O-CO2-N2-CH4 Maximum 0.0 10.1 230 10 50 84.1 79.0 51.7

Average -3.6 6.2 210 5 17 44.0 34.4 21.7

N
3 18 6 15 18 18 8 8 8

Type 2
1

Minimum -99.4 -95.9 5 11.5 21.0 36.1
CH4-N2-CO2 Maximum -70.4 -78.3 20 27.0 38.1 67.5

Average -91.4 -88.9 11 20.0 31.9 48.0

N 4 5 9 7 7 7

Type 3
1

Minimum -7.9 176 3.4 5 5
H2O Maximum -2.0 258 11.6 20 30

Average -4.7 223 7.4 7 11

Numer of data 37 32 24 50 50

Quartz-chlorite mineralized vein (Vm-qcl)
Type 31

Minimum -17.4 174 1.1 5 5
H2O Maximum -0.6 260 20.5 10 20

Average -6.3 218 9.1 7 9

N 43 11 43 42 41

Type 41
Minimum -19.2 5.8 212 5 5 100 graphite

H2O-CH4 Maximum -0.3 11 376 20 20 100

Average -6.0 8.6 291 10 10 100

N 14 4 15 17 17 5 1

Type 51
Minimum -121.7 -124.1 5 49.8 39.6

 N2-CH4 Maximum -121.7 -105.2 18 60.4 50.2

Average -121.7 -118.5 12 55.5 44.5

Numer of data 1 10 9 6 6

Type 61
Minimum -97.4 -85.5 5 100 graphite

CH4 Maximum -93.4 -82 20 100

Average -96 -85 11 100

N 4 9 13 14 1

TABLE 2. Summary of microthermometric and Raman spectrometric data of fluid inclusions in mineralized veins of the Kettara massive sulfide deposit and in veins associated with 

shear zones of the Kettara mafic-ultra mafic intrusion

http://ees.elsevier.com/aes/download.aspx?id=236543&guid=a9dab31d-15b3-4411-b649-f3de5766e92c&scheme=1
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Highlights: 

 

Kettara shear zone hosts a mafic-ultramafic intrusion and a Cu-deposit 

A regional metamorphic fluid flow occurred through the shear zone 

Reduction of fluids induced sulfides precipitation in wall rocks of the deposit 




