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Abstract 

 

An essential step in the development of any modelling tool is the validation of its 

predictions. This paper describes a study conducted within the Chernobyl exclusion 

zone to acquire data to conduct an independent test of the predictions of the ERICA-

Tool which is designed for use in assessments of radiological risk to the environment. 

Small mammals were repeatedly trapped at three woodland sites between early July 

and mid-August 2005. Thermoluminescent dosimeters mounted on collars were fitted 

to Apodemus flavicollis, Clethrionomys glareolus and Microtus spp. to provide 

measurements of external dose rate. A total of 85 TLDs were recovered. All animals 

from which TLDs were recovered were live-monitored to determine 
90

Sr and 
137

Cs 

whole-body activity concentrations. A limited number of animals were also analysed 

to determine 
239,240

Pu activity concentrations. Measurements of whole-body activity 

concentrations and dose rates recorded by the TLDs were compared to predictions of 

the ERICA-Tool. The predicted 
90

Sr and 
137

Cs mean activity concentrations were 

within an order of magnitude of the observed data means. Whilst there was some 

variation between sites in the agreement between measurements and predictions this 

was consistent with what would be expected from the differences in soil types at the 

sites. Given the uncertainties of conducting a study such as this the agreement 

observed between the TLD results and the predicted external dose rates gives 

confidence to the predictions of the ERICA-Tool. 

 

 

 

Keywords: Thermoluminescent dosimeter, external dose rate, ERICA, plutonium, 

caesium, strontium, small mammals, Chernobyl
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1 Introduction  

 

There are now a number of models and approaches available for the assessment 

of radiological risk to the environment (Beresford et al. in press). An essential step in 

the development of such approaches is the validation of their predictions. The ERICA 

Integrated Approach (Beresford et al. 2007a; Larson et al. 2008) was applied to a 

number of case studies to test various of its elements (from user friendliness of 

documentation to comparison of predictions to measurements in a range of 

ecosystems) during the course of its development (Beresford et al. 2007b; Wood et al. 

in 2008). This paper describes the results of one of these case study assessments. 

1.1 The ERICA-Tool 

The ERICA-Tool (Brown et al. in 2008) is the software implementing the 

ERICA Integrated Approach (Beresford et al. 2007a; Larsson et al. 2008). The 

assessment element of the ERICA Integrated Approach is organised in three separate 

tiers. The first of these (Tier 1) is a simple, conservative screening tier which 

compares input media (water, sediment, soil or air) activity concentrations to 

predefined environmental media concentration limits (the concentration which would 

result in a dose-rate to the most exposed organism equal to the screening dose-rate). 

Tier 2 allows the user to be more interactive, for instance, user defined organisms can 

be created and default transfer parameters changed. Outputs of a Tier 2 analysis 

include biota whole-body activity concentrations and dose rates (internal, external and 

total).  Tier 3 allows the user to additionally run the assessment probabilistically. In 

both Tiers 2 and 3 the user can select a default concentration ratio (CR) database to 

estimate biota whole-body activity concentrations from input media activity 

concentrations (the CR databases are described within Beresford et al. (2008) and 

Hosseini et al. (2008)); Tier 3 also contains default probability distribution functions 

for each CR. For the purposes of this paper the CR for terrestrial ecosystems is 

defined as:  

 

)dry weight kg (Bq soilin ion concentratActivity 

ht)fresh weig kg (Bqbody - wholebiotain ion concentratActivity 
  CR

1-

-1

 

 

Both Tiers 2 and 3 also allow the user to input biota whole-body activity 

concentrations if they are available.  

The relationship between the activity concentration of an organism or media and 

internal or external absorbed dose rates is described by the dose conversion 

coefficient (DCC; μGy h
-1

 per Bq kg
-1

 fresh weight). The methodology used to derive 

DCC values within the ERICA-Tool is described by Ulanovsky et al. (2008).  

Tier 2 predicts both ‘best estimate’ and ‘conservative’ dose rates. The best 

estimate is derived from user input data and mean transfer parameter values (if the 

default database is used). The conservative dose rate is defined as being equivalent to 

a specified percentile of the dose rate. This is calculated by applying a default 

uncertainty factor of three (for 95
th

 percentile) or five (for 99
th

 percentile) to the 

calculated best estimate value (see Brown et al. (2008) for a more complete 

description).  
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1.2 Objectives of the Chernobyl small mammal case study 

The work described here tested elements of Tiers 2 and 3 of the ERICA-Tool. In 

particular the objectives were to: 

 test the predictions of the activity concentrations from the ERICA-Tool 

against field based measurements; and 

 compare absorbed dose rate predictions with measured dose rates. 

To achieve this, a field study was specifically undertaken to provide measurements of 

external dose rates received by animals within contaminated environments as such 

dose rate validation data are sparse in the scientific literature. 

 

2 Materials and Methods 

 

2.1 Study sites and determination of soil activity concentrations 

Three forest sites, anticipated to have differing soil radionuclide activity 

concentrations, were selected in the Chernobyl exclusion zone. The sites will be 

referred to throughout as Low, Medium and High on the basis of their anticipated soil 

activity concentrations. At each site a 100 m x 100 m study area was marked out using 

posts at 10 m intervals. These were subsequently used as the location of small animal 

traps.   

The Low site was located approximately 8.5 km south-east of the Chernobyl 

reactor number 4 (Figure 1). The dominant tree species at this site was Pinus 

sylvestris (Scots pine) with few deciduous trees. Most of the 10 000 m
2 

study area had 

sparse understorey vegetation although the eastern part had complete ground cover 

dominated by graminaceous species. The soils at this site was primarily soddy 

pseudopodzolic with some podzolic-sandy and loamy sand gleys on fluvio-glacial 

deposits. The High and Medium sites were approximately 5 km and 8 km respectively 

to the west of the Chernobyl power plant complex (Figure 1). The Medium site 

consisted of mainly P. sylvestris and Quercus robur (Oak) with some Sorbus 

aucuparia (Rowan) and Tilia platyphyllos (Large leaved lime), the sparse understorey 

vegetation included Pteridium aquilinum (Bracken). The site had soddy 

pseudopodzolic sandy and boggy soils on modern alluvial deposits. The High site was 

dominated by Betula spp., with few coniferous trees present (this area was a young 

coniferous plantation at the time of the Chernobyl accident and the majority of 

coniferous trees were killed). The site had a ground cover consisting predominantly of 

graminaceous species throughout, although ericaceous species, such as Calluna 

vulgaris (Heather), were also present.  Bog peat and soddy pseudopodzolic sandy soil 

predominated at the High site. 

Gamma-kerma rates were determined at 5 cm above ground surface at each 

trapping point using a MKS–01R–01 dose rate meter with a BDKB-01R detector. A 

stand was used to achieve the same height at each point and the mean of three 10s 

measurements was recorded. The location of each trapping point was determined 

using a handheld GPS. 

Using a random sampling scheme, 23 soil samples were collected from each 

site. Samples were taken to a depth of 10 cm and sampling locations recorded using a 

handheld GPS. The soil sampling area was extended to 50 m beyond the trapping area 
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to encompass the likely home ranges of the species being trapped (The Mammal 

Society, 2007). Samples were subsequently, dried and homogenised. Sub-samples 

were analysed on hyper-pure (Canberra-Packard) germanium detectors to determine 

the activity concentration of gamma-emitting radionuclides, spectra were analysed 

using the Canberra-Packard Genie-2000 software package. Count times were such 

that an error of <20 % on the 
40

K estimate was achieved. For samples from the 

Medium and Low sites the mass analysed was approximately 750 g dry weight (DW) 

per sample whilst that for the High site was approximately 130 g DW per sample.  

The 
238,239,240

Pu activity concentrations soils were determined in 10 g DW sub-

samples using the method described by Bondarkov et al. (2002a). This method is 

based on measurement of the Lx - radiation (13-23 keV) emitted from excited uranium 

daughter isotopes following the α-decay of 
238-240

Pu. The method includes an 

absorption correction based on the self-absorption of Kx -radiation of Barium (32-37 

keV) which is a daughter isotope of 
137

Cs. Previous studies have shown good 

correlation between the Lx method and measurements using standard radiochemistry, 

and a detection limit of 3-5 Bq Bondarkov et al. (2002a).  The accuracy of the method 

is 10-15%. 

Strontium-90 activity concentrations in soils were determined in 10 g DW sub-

samples via the measurement of 
90

Y activity concentrations using a thin-film (1 mm) 

NaI scintillation detector as described by Bondarkov et al. (2002b; 2002c); calibration 

of the method for soil samples is presented by Bondarkov et al. (2002c).  

2.2 Small mammal trapping, whole-body counting and TLDs 

Trapping was conducted on 14 occasions from early July to mid-August 2005. 

One hundred Sherman humane traps were placed over each sampling area (at the 

marker posts described above) and baited with rolled oats in the late evening. Traps 

were revisited early the following day and any animals caught were transported to a 

laboratory in the town of Chernobyl. The trapping location of each animal was 

recorded. Only Apodemus flavicollis (Yellow-necked mouse), Clethrionomys 

glareolus (Bank vole) and Microtus spp. (Vole species) were processed for this study.  

The first time an animal was caught it was fitted with a numbered collar to 

which a LiF-100 thermoluminescent dosimeter (TLD) (Global Dosimetry Solutions Inc., 

California) had been attached. The collar comprised a 4 mm wide cable-tie; the TLD 

was attached to this using electrician’s tape having first been covered in a single layer 

of 200 gauge polythene. The live-weight of the animal was recorded and its whole-

body 
137

Cs and 
90

Sr content determined using the method described by Bondarkov et 

al. (2002b; 2002d). The animals were placed in a small, disposable, cardboard box 

(70x40x40 mm) the upper side of which was made from <0.1 mm thick polyethylene 

prior to whole-body counting. The box was then placed inside a lead shielded 

counting container. The detectors comprised a hyper-pure germanium detector and 

thin-film (1 mm) NaI scintillation detector to measure 
137

Cs and 
90

Sr respectively. The 
137

Cs spectra were analysed using the Genie-2000 software package. The activity 

concentration of 
90

Sr was determined from that of its daughter nuclide, 
90

Y. The 

method has previously been calibrated against phantoms containing 
137

Cs and 
90

Sr, 

and 
90

Sr results also validated against traditional radiochemical extraction and 

analyses methodology (Bondarkov et al., 2002b). The duration of count times varied 

from 150 to 1200 seconds depending upon the radioactivity in the animal.   
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Following live-monitoring, the animals were each returned to the individual 

trapping point from which they were caught and released. If an animal was recaptured 

more than 14 d after being fitted with a TLD-collar the TLD was removed, the animal 

reweighed and its whole-body 
90

Sr and 
137

Cs activity concentrations determined again. 

If it was recaptured less than 14 d after having the collar fitted, the trapping location 

was recorded and it was released (on some instances additional whole-body Cs 

measurements were made). In the last two weeks of the study TLDs were removed if 

an animal was recaptured within 6 days of the TLD having been fitted. A total of 230 

TLD-collars were fitted to animals of which 85 were recovered; the time recovered 

TLDs had been on the animals ranged from 6 to 36 days. Seven TLDs mounted on 

collars were transported from the UK to the Chernobyl laboratory and left there for 

the duration of the study as controls.  

At four randomly selected trapping points within each sampling site, TLDs were 

placed 5 cm above ground level, at ground level and 10 cm deep within the soil. In 

each position, one TLD was prepared in the same manner as those attached to the 

collars and a second was additionally encapsulated within a 2x2x2 cm cube of 

Perspex. These were left at the study sites for the duration of the experiment when 25 

of the possible 36 paired TLDs were recovered (the remainder having been lost).  

The TLDs recovered from small mammals and the study sites were returned to 

the supplier for analysis together with the control TLDs. 

2.3 Determination of Pu-isotope activity concentrations in small mammal samples 

Pu-isotope activity concentrations have been determined in samples from six animals 

sacrificed at the end of the study and stored frozen prior to analysis. The animals 

were: two A. flavicollis from the Medium site; two C. glareolus from the Medium site; 

and two Microtus spp. from the High site. The carcass was washed prior to freezing, 

after defrosting the gastrointestinal tract was removed and disposed of. The liver and a 

bone sample, consisting of a hind-leg and tail, were removed for separate analyses.  

Samples (bone, liver and remaining carcass) were weighed and transferred to Teflon 

digestion vessels (120 ml capacity) for a microwave autoclave (UltraClave). Up to 30 

ml nitric acid was added to each the vessel depending on the size of the samples. The 

system was closed, loaded with nitrogen to 1.2x10
7
 Pa, and the mixture was heated to 

240º C for 30 minutes. The digested samples were then transferred to glass beakers, 

evaporated at 120º C and taken up in 7M HNO3 prior to radiochemical separation and 

analyses using accelerator mass spectrometry (AMS).  

High purity 
242

Pu (National Physical Laboratory, USA, E3347) was used as a 

yield monitor, with certified 
239

Pu and 
240

Pu concentrations of less than 10
-5

 Bq per Bq 
242

Pu (these were confirmed by AMS measurement of the tracer). Samples were then 

subjected to simple radiochemical separation using ion exchange chromatography to 

extract Pu from the sample matrix. Iron(III)nitrate solution was added to the final 

eluates, samples taken to dryness, then ashed at 500°C to give the final material for 

AMS measurements as Fe2O3 (2 mg Fe), with 
242

Pu:Fe atom ratio of 1.2x10
-8

.  

Accelerator mass spectrometry measurements were carried out using the 

compact AMS facility at PSI Villigen / ETH Zurich (Switzerland) full details of the 

analytical technique can be found in Wacker et al. (2005). The three plutonium 

isotopes (mass 242, 240 and 239) were counted sequentially using repeat cycles for 

each sample. Analytical blanks, in house standards and certified reference material for 

Pu and Pu isotope ratios (UKAEA No. UK Pu 5/92138) were determined for each run. 

Plutonium-239+240
 
activities in the samples were calculated from the measured 
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239/242 and 240/242 atom ratios. The detection limit for 
239

Pu was 10 Bq, with 

errors of 5-20 % for the individual samples, largely attributable to counting errors.   

 

3 Results 

 

3.1 Experimental data 

Soil activity concentrations of 
90

Sr, 
238,239,240

Pu and detectable gamma-emitting 

radionuclides are summarised in Table 1 (arithmetic means are presented on this and 

subsequent tables). When minimum activity concentrations were below the detection 

limit a value of half the detection limit was used to derive the mean estimate. The 

mean percentage dry matter contents of the soils were 97 %, 88 % and 87 % at the 

Low, Medium and High sites respectively. 

The trapping success varied across the three sites, Table 2 presents the numbers 

and species of animals from which TLDs were recovered at each of the sites. The 

predominant species differed at each site reflecting the different habitats. Trapping 

success at the Low site was reduced because of repeated interference with the traps by 

wild boar (Sus scrofa). 

Whole-body 
137

Cs and 
90

Sr activity concentrations determined in animals from 

which TLDs were recovered are summarised by species in Table 2; the mean of 

measurements made for individual animals (each animal being live-monitored at least 

twice) were used to estimate the summary values.  

Concentrations of 
239+240

Pu in the bone, liver and remaining carcass of the six 

animals analysed are presented in Table 3; whole-body (without the gastrointestinal 

tract) activity concentrations estimated from these results are also shown. 

 Dose rates determined from the TLDs recovered from trapped animals are 

presented in Table 4 together with the gamma-kerma rates determined for each site. 

No measurable dose rates were recorded on any of the control TLDs. The mean ratio 

of dose rates between the TLDs without and with a 2x2x2 cm Perspex covering 

placed at various heights above, and depths below, the soil surface at 12 sampling 

locations was 1.95±0.75 (n=25). There was no trend in this ratio either between study 

areas or with position above/ below the soil surface. 

3.2 Predictions using the ERICA-Tool 

An organism geometry to represent each of the three study species was 

generated within the ERICA-Tool. The live-weights of the three species, as 

determined during the study, were similar. Therefore, the overall average live-weight 

of  30 g was used for all species together with dimensions of 8 cm long, 3.5 cm high 

and 3.5 cm wide (based on measurements made from animals trapped in the area 

previously by the Ukrainian co-authors of this paper) to create a geometry for which 

the Tool could estimate DCC values. It was assumed that both C. glareolus and 

Microtus spp. spend 30 % of their time on the soil surface and 70 % underground 

(The Mammal Society, 2006); A. flavicollis were assumed to spend equal amounts of 

time above and below ground (The Mammal Society, 2006). The default ERICA CR 

values (and associated probability distribution functions) for terrestrial mammals
1
 

                                                 
1
 The ERICA terrestrial mammal CRs are based on available data for all terrestrial mammal with the 

exception of reindeer (see Beresford et al. this issue). 
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were assumed to be applicable to each of the species for all radionuclides measured in 

soil (with the exception of 
40

K which is not included within the ERICA-Tool).  

3.2.1 Predicted whole-body activity concentrations 

Whole-body 
137

Cs and 
90

Sr activity concentrations were estimated 

probabilistically using Tier 3 of the ERICA-Tool and assuming that the soil activity 

concentrations (as presented in Table 1) were log-normally distributed. The relative 

activity concentrations of 
239:240

Pu in soil were assumed to be the same as those 

determined in the rodent samples by AMS (mean activity ratio 
239:240

Pu = 0.64); the 
238:239

Pu ratio was assumed to be unity based upon relative releases of the two isotopes 

from the Chernobyl reactor (from Smith and Beresford 2005) with correction for 

decay. 

Predicted whole-body activity 
137

Cs and 
90

Sr concentrations are compared to 

live-monitoring measurements in Table 2; predictions are similar for all three species 

because the same CR values were used. For most comparisons the measured values 

are within the range of the predicted 5
th

 and 95
th

 percentiles. Exceptions are: (i) all 
137

Cs activity concentrations measured in C. glareolus (n=2) from the High site are in 

excess of the predicted 95
th

 percentile value; (ii) the maximum measured 
137

Cs 

activity concentration for Microtus spp. at the High site is in excess of the predicted 

95
th

 percentile; (iii) the maximum measured 
90

Sr for A. flavicollis at the Low site is in 

excess of the 95
th 

percentile prediction. However, all measured (maximum) values are 

below the maximum predicted values (not presented here). Mean predicted 
90

Sr 

whole-body activity concentrations are all within 50 % of the observed mean. In the 

case of 
137

Cs mean predicted whole-body concentrations range from an under-

prediction by nearly an order of magnitude (C. glareolus - High site) to an over-

prediction of approximately sevenfold (A. flavicollis - Low site). 

Predicted whole-body 
239+240

Pu activity concentrations are compared to the 

measured values in Table 3. Although measurements tend to be within (or close to) 

the predicted ranges they are all at the low end of predictions. The predicted means 

(circa 20 Bq kg
-1

 (FW) at the Medium site and 33 Bq kg
-1

 (FW) at the High site) are 

all more than an order of magnitude greater than the highest measured values.   

3.2.2 Predicted external dose rates and a comparison with the TLD results 

For comparison with the dose rate estimates reported for the TLDs attached to 

animals at the study sites, external dose rates have been estimated using: (i) 

predictions made for each individual animal for which a TLD result was available 

using Tier 2 of the ERICA-Tool; (ii) probabilistic estimations using Tier 3 of the 

ERICA-Tool. 

To derive individual animal specific soil activity concentration inputs for the 

comparison using Tier 2, spatial interpolations of the data were attempted using block 

kriging (Karssenberg and Burrough, 1996). However, whilst variable, the data 

demonstrated no significant spatial trend at any of the three sites. Therefore, the 

average activity concentration was determined for all soil samples falling within a 30 

m radius of each trapping location (a 30 m radius was considered as representative of 

likely home ranges of the three species (The Mammal Society, 2007)). If an animal 

had been caught in more than one trap, a weighted soil activity concentration was 

derived.  

Whilst 
40

K is not considered within the ERICA-Tool, DCC values have been 

derived using the same methodology (Ulanovsky pers com; some of these are 
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presented in Beresford et al. 2007c)
2
. Those for the default rat geometry were used to 

estimate external dose rates due to 
40

K. From the Tier 2 analyses caesium-137 was 

estimated to contribute ≥99 % of the total external dose rate at all three sites; 
40

K was 

estimated to contribute from 0.02 % at the High site to 0.8 % at the Low site. The 

contribution to the total dose due to time spent underground was approximately 86 % 

for both vole species and 72 % for A. flavicollis. Comparison of individual TLD 

measurements and Tier 2 predictions is presented after the discussion of the Tier 3 

predictions.  

Unfortunately, Tier 3 of the ERICA-Tool does not report a result for total 

external dose rate; instead results are presented for each radionuclide. However, as 
137

Cs dominated the estimated external dose using Tier 2, it can be assumed that the 

predicted external dose rate due to 
137

Cs at Tier 3 can be used as a comparison to the 

TLD results (Table 4). The predicted external dose rates are consistently lower than 

the results of the TLD derived dose rates with the predicted 95
th

 percentile being less 

than the minimum dose rate recorded on the TLDs for four of the seven comparisons. 

The predicted dose rates tend to be in better agreement with the gamma-kerma rates 

measured at 5cm above the soil surface (Table 4).   

However, as reported above, the dose rates recorded by TLDs prepared in the 

same manner as those attached to the study animals and placed at various heights 

above and below the soil surface were on average 1.95 times higher than the dose 

rates recorded by TLDs situated in the same location but shielded by 2 cm of Perspex. 

If we assume that this additional dose is the result of exposure to beta radiation 

(excluded by the Perspex) and that it is representative of beta dose rates recorded by 

the TLDs on the animal collars then we can correct the results from the TLDs attached 

to the collars (i.e. dividing by 1.95) to derive the external gamma dose rate. The 

resultant ‘corrected’ TLD results are presented in Table 4. Comparison between the 

‘corrected’ TLD dose rates and predicted external dose rates are improved, especially 

for both species from the Low site and C. glareolus at the Medium sites. Mean 

predicted external dose rates ranged from 70 % to 99 % of the ‘corrected’ TLD 

measurement for these animals. For the remaining animals predictions were 31 to 47 

% of the ‘corrected’ TLD measurement.  

Whilst the mean predictions of dose rate are in reasonable agreement with the 

‘corrected’ TLD measurements, individual dose rates (estimated using Tier 2) are not 

well predicted as demonstrated in Figure 2 for the Medium site. 

3.2.3 Total dose rate predictions – a comparison of Tier 2 and 3  

As discussed above, within Tier 2 of the ERICA-Tool the user can select 

uncertainty factors within their assessment to determine the estimated ‘conservative’ 

absorbed dose rate and risk quotient. An uncertainty factor of three is suggested for 

use to give a conservative estimate of absorbed dose rate equivalent to the 95
th

 

percentile value (see Brown et al. 2008). To test this assumption, total (internal plus 

external) absorbed dose rates have been predicted using Tiers 2 and 3. Table 5 

compares the resultant conservative dose rate estimates from Tier 2 with the predicted 

95
th

 percentile values from Tier 3. For both tiers, calculations were performed using 

soil activity concentrations as the input, and again, using soil and available whole-

body 
137

Cs and 
90

Sr activity concentrations as inputs. Within Tier 3, default CR values 

                                                 
2
 Note the version of the ERICA-Tool to be released early 2008 should include 

40
K as a default 

radionuclide. 
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with associated probability distributions functions were used (when whole-body 

activity concentrations were not used/available) and calculations were performed 

assuming input data were log-normally distributed. In all instances, the 95
th

 percentile 

value predicted using Tier 3 of the Tool was similar to, or lower than, the conservative 

estimate output by Tier 2 (Table 5). Generally, the inclusion of measured whole-body 

activity concentrations as input data reduced the Tier 2 conservative dose rate and the 

Tier 3 95
th

 percentile prediction; exceptions were observed for some species at the 

High site in the results for both tiers. 

 

4 Discussion 

 

The default ERICA CR values for 
90

Sr, 
137

Cs and 
239/240

Pu generally predicted 

ranges (5
th

 and 95
th

 percentiles) in whole-body activity concentrations which 

encompassed the measured data. Predicted 
90

Sr activity concentrations showed the 

best agreement with the measured data; mean predictions being within a factor of two 

of the observed data means. Whilst predictions of 
137

Cs whole-body activity 

concentrations for C. glareolus at the High site appear poor (Table 2) there were only 

two samples for this species at this site and the species was adequately predicted at the 

other two sites. Observed whole-body activity concentrations of 
239+240

Pu for the few 

(n=6) animals analysed were generally close to the predicted 5
th

 percentile value 

(Table 3). This is consistent with the finding of an international comparison exercise 

which found that the default mammal CR value for Pu used by the ERICA-Tool is one 

to two orders of magnitude higher than that used by other approaches (see Beresford 

et al. in press).  

There is considerable variation in environmental transfer of radionuclides to 

biota; the CR databases used to compile the ERICA CR values show three to four 

orders of magnitude variation in transfer to mammals for Cs, Sr and Pu. It is possible 

that the differing agreement between predictions and observations at the three study 

sites was a consequence of site specific factors such as soil characteristics and the 

contribution of ‘hot particles’  to the radionuclide deposit (potentially significant and 

variable within the exclusion zone). In terms of the possible influence of soil type, the 

variation in comparative transfer of 
137

Cs (lowest at the Low site and highest at the 

High site) and 
90

Sr (lowest at the High site and highest at the Low site) at the three 

sites is in agreement with differences in soil to plant transfer observed within the 

exclusion zone (Sobotovich et al. 2003). Since the prediction of all 
90

Sr and 
137

Cs 

mean activity concentrations are within an order of magnitude of the observed data 

means, the predicted whole-body activity concentrations for all three radionuclides 

can be considered acceptable. This study can be considered an independent test of the 

ERICA-Tool CR values, the default CR database for mammals contains few 

measurements of rodents within the Chernobyl exclusion zone (being limited to one 

data entry for each of Pu and Sr). 

The mean predicted external (
137

Cs) dose rates were within a factor of three of 

measured (‘corrected’ TLD) values for all site-species combinations. As for 

predictions of whole-body 
137

Cs activity concentrations, agreement was poorest for 

Microtus spp. and C. glareolus at the High site. Whilst most external dose rate 

predictions were within 50 percent of the measured values all predicted means were 

below the mean observed values. However, this may be due, at least in part, to the 
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interpretation of what the corrected TLD measurements represent. At the Medium and 

High sites the mean whole-body 
137

Cs activity concentration of the animals was 

greater than the mean fresh weight soil activity concentration (up to 20 times at the 

High site). It is, therefore, highly likely that the TLDs recorded ‘external dose’ 

included a contribution from the animal itself.   

There was poor agreement between individual TLD measurements and 

predicted external dose rates (see Figure 2).  This may be because the numbers of soil 

samples taken in the study were insufficient to adequately describe the spatial 

variation in contamination of soil making individual predictions unreliable (no spatial 

trends were evident in soil activity concentrations).  

Given the uncertainties of conducting a study such as this we consider that the 

agreement observed between the TLD results and the predicted external dose rates 

gives confidence to the predictions of the ERICA-Tool. 
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Table 1. Activity concentrations determined in soil samples collected over 

each sampling area (n=23 from each sampling site). 

 Soil activity concentrations (kBq kg
-1

 DW)
 

Site 
134

Cs
 137

Cs 
90

Sr 
40

K 
60

Co
 241

Am 
154

Eu 
155

Eu
 238,239, 240

Pu 

Low          

  Mean 0.007 7.37 2.20 0.19 <0.004 0.21 0.04 0.02 0.13 

  SD 0.005 4.21 1.10 0.05  0.15 0.02 0.005 0.14 

  Min. <0.004 1.70 0.85 0.14  0.04 <0.05 <0.03 <0.02 

  Max. 0.02 23.7 5.99 0.33  0.65 0.12 0.03 0.68 

Medium          

  Mean 0.09 43.3 18.6 0.09 0.02 1.47 0.19 0.06 0.83 

  SD 0.21 25.7 14.9 0.05 0.02 2.48 0.16 0.07 1.49 

  Min. 0.0005 12.6 1.84 0.00 <0.004 0.01 <0.05 <0.03 <0.02 

  Max. 1.05 115 61.1 0.20 0.09 11.7 0.56 0.26 7.4 

High          

  Mean 0.10 97.7 56.5 0.08 0.07 3.20 0.52 0.20 1.47 

  SD 0.05 41.8 39.0 0.02 0.08 4.59 0.63 0.24 2.02 

  Min. 0.001 27.5 7.43 0.04 <0.004 0.03 <0.05 <0.03 0.08 

  Max. 0.22 208 165 0.15 0.39 19.21 3.20 1.17 9.79 
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Table 2. A comparison of measured 
90

Sr and 
137

Cs whole-body activity 

concentrations with those predicted using Tier 3 of the ERICA-Tool. The number of 

each species trapped at the three sites is also indicated. 

Radionuclide/ 

site/species 

 n 

Measured whole-body activity 

concentration  

(kBq kg
-1

 FW) 

Predicted whole-body  

activity concentration  

(kBq kg
-1

 FW)
 

Mean SD Range Mean 

5
th 

percentile 

95
th 

percentile 
137

Cs
 

 
     

Low       

C. glareolus 3 3.8 0.8 3.1-4.7 21.1 1.4 73.4 

A. flavicollis 18 3.1 2.0 1.3-9.8 21.2 1.4 76.6 

Medium       

C. glareolus 39 70.5 46.3 17.0-252 123 8.0 437 

A. flavicollis 10 59.7 37.1 24.1-143 124 8.1 421 

High       

C. glareolus 2 2260 1290 1350-3180 273 22.6 931 

Microtus spp. 11 611 282 252-1140 279 21.0 976 

A. flavicollis 2 145 53.3 108-183 274 22.3 959 
       
90

Sr       

Low       

C. glareolus 3 7.7 4.1 3.1-10.3 3.9 0.3 13.5 

A. flavicollis 18 7.4 5.2 1.4-21.1 3.8 0.3 12.7 

Medium       

C. glareolus 39 19.5 7.4 4.3-36.0 32.8 1.9 117 

A. flavicollis 10 24.7 6.1 16.0-34.0 32.7 1.9 121 

High       

C. glareolus 2 81.3 22.1 65.6-96.9 99.4 6.7 362 

Microtus spp. 11 107 35.0 38.1-167 100 6.7 352 

A. flavicollis 2 66.6 28.3 46.6-86.7 99.3 6.6 353 
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Table 3. 
239+240

Pu activity concentrations in selected small mammals from the 

Medium and High sampling sites (two animals were analysed for each species type; 

results presented as range of these two measurements); measured whole-body activity 

concentrations are compared with predictions using the ERICA-Tool. 

Species/site 

239+240
Pu (Bq kg

-1
 FW) 

Bone Liver Remaining carcass Whole-body 

Predicted 

whole-body
+ 

Medium      

C. glareolus 0.30-0.94 0.10-0.68 0.22-1.85 0.21-1.71 0.10-72 

A. flavicollis 0.34-0.51 0.49-0.56 0.34-1.09 0.35-1.04 0.10-74 

High      

Microtus spp. 0.24-1.10 <0.07-0.52 0.17-0.52 0.17-0.52 0.24-134 

+
Predicted 5

th
 and 95

th
 percentiles are presented for comparison with measured range.
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Table 4. A comparison of dose rates recorded by TLDs compared with external dose rates predicted using Tier 3 of the ERICA-Tool; gamma-kerma rates 

determined 5 cm above the soil surface are also presented. 

 

Species/site 

 

n
* 

TLD dose rate 

µGy h
-1

 

TLD dose rate 

‘corrected’ µGy h
-1

 

External dose rate 

Predicted
+
 µGy h

-1
 

Gamma-kerma (μGy h
-1

) 

Mean SD Min. Max. Mean SD Min. Max. Mean 

5
th 

percentile 

95
th

 

percentile Mean SD Min. Max. 

                 

Low             1.96 0.42 0.66 3.38 

C. glareolus 3 4.11 1.21 2.78 5.14 2.11 0.62 1.43 2.64 1.75 0.63 3.71     

A. flavicollis 18 2.90 1.16 0.90 5.00 1.49 0.60 0.46 2.57 1.48 0.54 3.15     

Medium             11.5 3.2 5.8 20.1 

C. glareolus 39 25.5 12.1 9.04 74.1 13.1 6.21 4.65 38.1 9.21 3.22 19.1     

A. flavicollis 10 33.4 24.4 17.3 100 17.2 12.6 8.87 51.4 7.80 2.73 16.2     

High             31.4 7.9 5.7 52.3 

C. glareolus 2 129 82.3 71.1 188 66.5 42.3 36.5 96.4 20.7 9.61 37.2     

Microtus spp. 11 84.9 28.7 46.5 151 43.7 14.7 23.9 77.6 20.7 9.61 37.2     

A. flavicollis 2 84.1 0.58 83.7 84.5 43.2 0.30 43.0 43.4 17.6 8.15 31.5     
*Number of TLD measurements. 
+
Estimated from 

137
Cs soil activity concentrations. 
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Table 5. Comparison of total absorbed dose rates predicted using Tier 2 (conservative 

prediction assuming an uncertainty factor of 3) with the output from Tier 3 (predicted 

95
th

 percentile value). 

 

Site/Species 

Total absorbed dose rate (μGy h
-1

) 

Tier 2 Input data Tier 3 Input data 

Soil 

Soil & 

whole-body Soil 

Soil & 

whole-body 

Low     

C. glareolus 23.2 22.0 19.2 12.2 

A. flavicollis 22.3 20.3 19.2 12.9 

Medium     

C. glareolus 149 101 134 54.6 

A. flavicollis 145 101 130 52.1 

High     

C. glareolus 383 1270 336 808 

Microtus spp. 383 551 336 277 

A. flavicollis 373 254 329 125 
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Figure 1. Location of the study sites relative to the Chernobyl nuclear power plant 

(NPP). Photograph from the original with the kind permission of Valery Kashparov of 

the Ukrainian Institute of Agricultural Radiology (UIAR, 2001).  
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Figure 2. A comparison of predicted external dose rates with ‘corrected’ TLD 

measurements for animals at the Medium site. 
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