

New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

Andrew Kingdon, Mark W. Fellgett, and Colin N. Waters Environmental Modelling, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK

The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map.

Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1° . These form a new and quality assured evidence base for both industry and its regulators.

Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs).

Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales.

Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these relationships requires detailed knowledge of the rock properties and how these affect deformation. Strength and brittleness of the facies are indicative of their likely failure-modes which are in turn controlled by their lithology, diagenesis and clay mineralisation, often highlighting dm-scale stress rotations around lithological boundaries. Breakouts are seen to concentrate within "seatearths" (palaeosol intervals directly under the coals), whereas intervals immediately above coals are marked disproportionately by DIFs. In-situ stress magnitude data information is not yet available for these wells, further work is required to quantify the geomechanical properties.

New UK in-Situ Stress orientation for Northern England and controls on borehole wall deformation identified using borehole imaging British Geological Survey Andrew Kingdon, Mark Fellgett, Colin Waters, BGS and James Shreeve, GEOTEK

NATURAL ENVIRONMENT RESEARCH COUNCIL

UK in-situ stress field

Shale gas exploration highlighted inadequacies in understanding of the UK stre

Borehole image logs show high-resolution colour images based on physical pro-contrasts (eg resistivity).Image logs are now widely available across Northern E (Figure 1A) and can be used to identify stress field indicators such as Borehole Breakouts and Drilling Induced tensile Fractures (DIF's), as shown in Figure 1B available imaging has been used to identify breakouts to re-interpret the UK stre orientation (Kingdon et al., 2016), replacing previous work based on dual-calipe date (Evans and Protector, 1990) data (Evans and Brereton, 1990).

Mapped breakouts interpreted from borehole imaging show a highly uniform mastress orientation (eg Figure 2A for Yorkshire area). Uncertainty in the maximur orientation has been radically reduced (Figure 2B).

The review of borehole imaging showed that breakouts are highly discontinuou breakout formation and length highly constrained by lithology (Figure 2A).

Figure 1A, Left: Map showing availability of dual-caliper and borehole imaging data across the UK area shows Bowland Shale subcrop, shading highlights prospective zones. Categories show the re available borehole imaging tools (Kingdon et al, 2016).

Figure 1B, Right: Resistivity borehole wall image from borehole Swinefleet 1 (unwrapped clockwis north). Highlighting clear breakouts (green box) show as two parallel zones of borehole wall failure

	Stratigraphy of Melbourne 1												
ress field.													
roperty England le B. Newly tress per log	EUROPEAN	FORMATION	3A LITHOSTRATIGRAPHY METRES	LITHOLOGICAL LOG		rine	Lithology Sands Siltsto Mudst Coal Sharp Grada	otone tone boundary ational bound	dary	Pebbles Ironstone ban Ironstone nod Ferruginous r Coal clasts Micaceous	KEY Inds Jules	 Laminated Cross-lamin Cross-bedd Listric surfa 	ed → Fish s
naximum um stress	VIAN		SHAFTON COAL - - - - 900 -			tributory 🖌 Lacust		Metre gy – 984	es			Plant de Siltston cm-sca Lenticul	ebris e laminae le bedding lar sandy lam
ous with	BOLSC		MEXBOROUGH ROCK	-		Minor dist chan		985			- 3D	Ironstor Coal cla	ne pebbles asts
) 			Edmondia Marine Band (inferred position) GLASS HOUGHTON ROCK SHARLSTON YARD COAL HOUGHTON THIN COAL		3B	Lacustrine		986 987			SE	Plant de Incipier Listrics fracture Plant de Sub-vei	ebris it ironstone & conchoida ebris rtical fracture
			Aegiranum Marine Band			Palaeosol		988	silt silt	∽ 3F ∽ 3G] ~ vf f r	3 n c vc	Seatear ?Rhizoo	rth cretion
		WIDDLE COAL MEASURES FORMATION	OAKS ROCK Haughton Marine Band (inferred position) SWINTON POTTERY COAL NEWHILL COAL NEWHILL COAL WOOLLEY EDGE ROCK MELTONFIELD COAL Maltby Marine Band (inferred position) TWO FOOT COAL ABDY (WINTER) COAL				Scal	e 1:40 3C 985.00r Cross-la sandy s muddy f 3D 985.16n Rounde pebbles sandsto	n aminated iltstone w partings	vith			3E 987.53m Ironstone no within muddy siltstone sho deformed lar 3F 988.36m Polished list surface and root traces in seatearth
e from 180°	DUCKMANTIAN	PENNINE	KENT'S THIN COAL			KI Marine COAL SANDS Upward Downw	EY Band ~ STONE K I-fining C ard-fining	 Cross-lam Cross-bec Rooted pa Non Marir 	ninated sandsto dded sandstone alaeosol ne Bivalves	one e			989.10m Polished list surfaces and ferruginous nodules in seatearth
ustress			DULL COAL		'COAL The Penr fluvio-lace metres th immediate Marine Be	MEA ustrine ick. T ely ab	SURE oal Mea e succes his inter ove a m	asures asion c val inc najor fle	Group compris ludes p ooding	of northe ing cycli earts of the event (re	ogy ern and c seque wo such ecognis	central ences, e n cycles ed as th	England is ach tens of , present e Aegiranu
			SWALLOW WOOD COAL HAIGH MOOR ROCK HAIGH MOOR COAL 1300 -		The main based up Parkgate shows a s ironstone	distri ward- Rock sharp pebb	butary c fining sa). A mine base wi les, rew	channe ands (e or distr ith initia orked	Is of the e.g. Me ributary al infill I from ac	e Coal M xboroug channe by mediu ljacent la	/leasure h Rock, l preser um sand acustrin	s, were Woolle Int in the ds with c e muds	filled by sh y Edge Roo studied inte common (Photo 3D
orth naximum) from SH _{MAX}	>		- Vanderbeckei Marine Band JOAN COAL FLOCKTON THICK COAL		channels were dep of claybar siltstones filled the colonised	were ositec nd iro to sa akes. by pl	freshwa I, rich in nstone r ndstone As thes ants and	, cross ater lak driftec nodule es, dep se infille d beca	s devel osited a ed with	re lamin naterial, oped (P as small sedimer amps or	nated ca , with se hoto 3E deltas a nt, emer raised p	rbonace condary). Upwa and crev rgent su	eous mudst developm ard-coarser asse splay rfaces were gs. These
ose gdon et	LANGSETTIAN	EASURES FORMATION	BROWN METAL COAL		formed co Rooted he Bo the mires water tab addition to seatearth of and 3G). Sepansion confined.	formed coals following burial. Rooted horizons (Photo 3F) developed in argillaceous the mires, forming unleached grey palaeosols (seatea water tables were at, or above, ground level for prolor addition to the loss of primary sedimentary fabric, a co seatearths is polished 'listric' surfaces or pedogenic sl and 3G). These convex-concave surfaces form during expansion/contraction of clay-rich vertisols where vert confined, typically during an initial better-drained phas							
Geological		ΨΣ	YARDS COAL BLOCKING COAL Base of core 1477.21 m	-	Resultant	stron	g alignr ctonic de	nent of eforma	f clay m tion.	ninerals	causes	reactiva	tion during

e Coal Measures, were filled by sharpexborough Rock, Woolley Edge Rock, channel present in the studied interval by medium sands with common djacent lacustrine muds (Photo 3D). ated sands (**Photo 3C**). Between the ere laminated carbonaceous mudstones material, with secondary development eloped (**Photo 3E**). Upward-coarsening as small deltas and crevasse splays, sediment, emergent surfaces were amps or raised peat bogs. These

pped in argillaceous sediments beneath palaeosols (seatearths), formed where und level for prolonged periods. In nentary fabric, a common feature of such es or pedogenic slickensides (Photo 3F urfaces form during

Rock Failure On Decimetre scale

Melbourne 1 well in North Yorkshire was selected to study this. The well has high quality borehole imaging data in addition to several hundred metres of continuous core and conventional logs. The 10m section shown (Figure 4) is from the Carboniferous Pennine Middle Coal Measures.

'To examine how lithology affects deformation a selection of whole round core samples were non-destructively scanned using a Multi-Sensor Core Logger (MSCL) by GEOTEK Ltd. Sensors include gamma, density and P-wave, X-Ray, CT, XRF & magnetic susceptibility. Testing to determine rock strength is ongoing.

