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Abstract 

In this study, a C9+ fraction of saturate-rich Tertiary source rock-derived oil from 

the South China Sea basin was pyrolysed in normal and supercritical fluid water using 

a 25 mL vessel at a range of temperature from 350 to 425°C for 24 h, to probe 

pressure effects up to 900 bar on gas yields and their stable carbon isotopic 

compositions during thermal cracking. Pressure generally retards oil cracking, as 
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evidenced by reduced gas yields, but the trends depend upon the level of thermal 

evolution. In the early stages of cracking (350°C and 373°C, equivalent vitrinite 

reflectance of < ~1.1% Ro), suppression increases from 200 to 900 bar. However, at 

the elevated stage in the wet gas window (390°C, 405°C and 425°C, equivalent 

vitrinite reflectance of > 1.3% Ro), pressure has a strong suppression effect from 200 

to 470 bar, while then levels off as the pressure is increased to 750 and 900 bar. 

Interestingly, the stable carbon isotopic compositions of the generated methane 

become enriched in 13C as pressure increases from 200 to 900 bar. A maximum 

fractionation effect of ~3‰ is observed over this pressure range. Due to pressure 

retardation, the heaviest methane carbon isotope signature does not coincide with the 

maximum gas yield, contrary to what might be expected. In contrast, pressure has 

little effect on ethane, propane and butane carbon isotope ratios, which show 

maximum variation of ~1%. The results suggest that the rates of methane-forming 

reactions affected by pressure control methane carbon isotope fractionation. Based on 

distinctive carbon isotope patterns of methane and wet gases from pressurized oil 

cracking, a conceptual model using “natural gas plot” is constructed to identify 

pressure effect on in-situ oil cracking providing other factors excluded. Supercritical 

water in this study does not make significant effect on oil-cracking reactions as 

evidenced by parallel hydrous and anhydrous pyrolysis results. 

Keywords: Oil cracking; high water pressure; hydrous pyrolysis; supercritical 

conditions; pressure retardation; carbon stable isotopes. 

1. Introduction 

Due to increasing interest in exploration for deeply buried oil/gas reservoirs in 

petroliferous basins around the world, much attention has focused on evaluating the 

thermal stability of crude oil under high temperature-pressure conditions. Classical 



 3

petroleum generation theory contends that temperature is the principal variable in 

hydrocarbon generation and destruction and that pressure can be ignored or is 

comparatively less important.1, 2 Using this hypothesis, kinetic models of petroleum 

generation and destruction were developed to predict the maximum temperature or 

depth at which oil can be discovered. However, the discovery of liquid hydrocarbons 

in deeply buried source or reservoir rocks beyond the degradation window of crude 

oil suggests that factors other than temperature influence the thermal stability of crude 

oil under high temperature/high pressure (HT/HP) conditions.3, 4 Pressure has been 

considered to be an important candidate to account for these observations.5-7 

Many laboratory studies have been performed to better understand pressure 

effects on organic matter maturation, hydrocarbon generation and destruction. 

However, much of this work has resulted in conflicting conclusions (e.g., Carr8 and 

Mi et al.9, and references therein). The main points can be summarized here based on 

previous studies of kerogen or coal: (i) negligible effects;10-12 (ii) significant 

suppression;7, 13-16 (iii) promotion effects.17-19 Goodarzi20 claimed that the effect of 

pressure varies depending on the range of temperatures and pressures, as also 

observed by Behar and Vandenbroucke.21 Price and Wenger13 noted that the pressure 

effect is not continuous progressive, but certain threshold pressures (variable for 

variable temperatures) must be reached before the pressure effect becomes significant. 

Carr8 concluded that the differences in interpretation could be due to lack of 

fundamental understanding of the pressure effect on maturation and hydrocarbon 

generation. Using physical chemical theory, Carr et al.22 suggested that chemical 

reactions associated with hydrocarbon generation and maturation could be 

endothermic volume expansion reactions, which are controlled by both the system 

pressure and temperature. Recent work by Mi et al.9 indicated that the previously 
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conflicting results may be caused by the different pressure ranges under which the 

experiments were conducted. 

Also large body of publications on cracking of crude oils12, 23-25 and model 

compounds21, 26-28 measured gas yields, stable carbon isotopic fractionation and 

kinetics during the cracking process, and some of these investigated pressure effects 

on oil cracking. Dominé27 showed that the rates and products of pure hydrocarbon 

pyrolysis were hindered by increasing pressure in the range of 210–15600 bar and 

290–365°C. Jackson et al.29 suggested that pressure retards n-hexadecane cracking at 

150–600 bar and 300–370°C. However, sealed gold-tube experiments of model 

compounds at 325–430°C showed that pressure accelerates cracking rates when the 

pressure is lower than ~400 bar, while retardation was observed above 400 bar.21, 30 

Transition state theory, in which reaction rates of oil/model compounds are controlled 

by the activation volume, was introduced to explain the promotion-suppression 

phenomenon.21, 26, 30 Hill et al.31 investigated the effect of pressure on crude oil 

cracking at 350–400°C. Cracking rates were enhanced slightly at pressures up to 

~600–700 bar compared to 90 bar, followed by retardation when experimental 

pressures were >600–700 bar. 

In summary, the effect of pressure on the thermal stability of crude oil remains 

speculative. The published contradictory results may be due to the variety of 

laboratory conditions and different samples, e.g., pyrolysis temperature, pressure 

range, hydrous or anhydrous pyrolysis, sample types. Taking pressure vessels for 

example, the majority of pyrolysis experiments described in the literature used 

flexible gold bags or gold tubes (confined conditions). In high pressure confined 

pyrolysis, the pressure is applied externally on the wall of the gold bags/tubes. The 

gaseous products cause a volume increase during the pyrolysis, leading to swell of the 
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gold bags/tubes. The true pressure applied to the sample is ambiguous because the 

product pressure inside the gold bags/tubes works against the external pressure. This 

could be an important factor that influences the uncertainty of results. 

In this study, a pressurized vessel used by Carr et al.22 and Uguna et al.15, 16, 32 

was adopted. The pressure is derived by volume expansion of the water inside the 

fixed volume vessel. Additional water is added to the vessel to achieve the required 

pressure at the initial stage of each pyrolysis experiment. Carr et al.22 pyrolysed 

Kimmeridge Clay at temperatures between 310 and 350°C and water pressure up to 

500 bar. They found that bitumen and gas generation were retarded at 500 bar. Uguna 

et al.32 studied two high-volatile coals at pyrolysis temperatures of 350°C. The results 

showed that gas yields are proportionally reduced more than bitumen yields with 

increasing water pressure up to 900 bar. In our pyrolysis vessel, the water acts as 

pressurizing phase that is in direct contact with the sample. The vessel is entirely 

filled with water and sample at the reaction temperature, thereby leaving little or no 

space for gaseous products, which results in retarded reactions as described in 

previous work.15, 16, 22, 32 Therefore, water pressure pyrolysis experiments may provide 

a more comprehensive understanding of the effect of pressure on petroleum 

generation. Similar high pressure hydrous pyrolysis studies also observed the 

retardation effect of pressure on hydrocarbon generation and maturation, and 

indicated that water is an important factor.13, 33 

Using a C9+ fraction of saturate-rich oil derived from Tertiary source rock in the 

South China Sea, hydrous, fixed-volume pressure vessel pyrolysis experiments were 

conducted under low and high water-pressure conditions. This study aims to 

investigate the magnitude of enhancement or suppression of oil cracking rates based 

on generated gas with increasing pressure at different thermal stages, and probe the 
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possibility to identify pressure effects on oil cracking by gas isotope geochemistry. 

This study is the first to investigate oil cracking at high thermal maturities under high 

pressure liquid water and also to report the effects of pressure on both gas yields and 

stable carbon isotope ratios. Oil compositions and compound-specific carbon isotopes 

will be addressed in a subsequent publication.   

2. Sample and experimental 

2.1 Sample 

The crude oil used in this study was collected from the Pearl River Mouth Basin 

(Zhujiangkou Basin), South China Sea. The oil composition in terms of saturates, 

aromatics, resins and asphaltenes (SARA) and carbon isotopic values are presented in 

Figure 1. It is saturate-rich oil with 22 API gravity and 0.14% sulfur content. The 

stable carbon isotope values of original oil, saturates, aromatics, resins and 

asphaltenes are -27.0‰, -27.5‰, -26.8‰, -26.0‰ and -26.4‰, respectively. As 

shown in the whole oil gas chromatogram, light hydrocarbons (<C8) in the oil are low, 

which might result from slight biodegradation (as indicated by a prominent 

unresolved complex mixture as UCM on the chromatogram) and natural volatilization 

of crude oil during sample collection, transportation and storage.  

2.2 High water-pressure pyrolysis experiments 

The hydrothermal pyrolysis equipment comprised a 25 mL Hastelloy cylindrical 

pressure vessel rated to 1400 bar at 420C connected to a pressure gauge and rupture 

disc rated to 950 bar (Figure 2). The experiments were conducted using 1.20 g of 

crude oil at five different temperatures, each for 24 h duration under low pressure 

hydrous (200 bar) and high pressure (470, 750and 900 bar) pyrolysis conditions, as 
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described in detail in Uguna et al.16 In order to get an idea what the experimental 

pressure corresponds to that in real geological situation. Here is a brief description on 

crustal geostatic gradients to explain how to define the experimental pressure in terms 

of petroleum generation and cracking. Although depths to the oil and gas windows 

vary due to geothermal gradient (assume ~25C /km) and kinetics of the kerogen in 

the source rock, we can assume top of the oil and gas window occurs at 3 and 4 km, 

respectively. Based on usually applied rock mass of 2.5 × 103 kg/m3 and gravitational 

acceleration of 9.8 m/s2, we might expect pressures near 735 and 980 bars at 3 and 4 

km. Therefore, the set high pressures in our experiments might be similar to those in 

natural conditions. Of course, this calculation does not consider overpressure caused 

by compaction disequilibrium or petroleum generation, nor does it consider the upper 

limit of overpressure, i.e., the fracture gradient.  

Temperatures points were set at 350, 373, 390, 405, and 425C (accuracy ±1C). 

According to the Lewan’s definition,34 the hydrothermal experiments carried out with 

temperatures 350 and 373 C under the set pressure are defined as hydrous pyrolysis. 

While the experiments taken with 390, 405 and 425C are hydrothermal pyrolysis 

with the supercritical state water. In order to clarify whether there are any effects 

associated with the transition of liquid to supercritical water, parallel hydrous and 

anhydrous gold tube pyrolysis with fixed pressure of 450 bar for 24 h at the 

temperature of 370, 390 and 405C are designed. The equivalent vitrinite reflectance 

at different temperatures was calculated using the Easy%Ro kinetic model.35 As listed 

in Table 1, the calculated vitrinite reflectance of the set temperatures are 0.92, 1.15, 

1.35, 1.56, 1.85 %Ro, respectively. Therefore, the thermal maturity reached during the 

experiments covers the peak oil generation stage to an elevated stage in the wet gas 

window. 
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The oil was weighed, transferred to the vessel, and then the deoxygenized and 

distilled water (~10 mL) was added to make the pressure (200 bar). Reactor vessel 

was flushed with nitrogen gas to replace air in the vessel head space, after which 2 bar 

pressure of nitrogen was pumped into the vessel to produce an inert atmosphere 

during the pyrolysis runs. A sand bath connected to a constant flow of compressed air 

source was pre-heated to the setting temperature and left to equilibrate. The sand bath 

was lifted using a jack to enclose the vessel and left to run for 24 h. The temperature 

of the vessel was also monitored independently by means of a K-Type thermocouple 

attached to the outside of the vessel and recorded by computer every 10 seconds. 

The high liquid water pressure (470, 750 and 900 bar) experiments were 

performed using procedures similar to the lower pressure hydrous runs (200 bar), with 

the vessel initially filled with 20 mL deoxygenated water. After lowering the pressure 

vessel into the sand bath, the vessel was connected to the high liquid-water pressure 

line and allowed to attain its maximum pressure of 175 bar (in about 30 min) before 

the addition of more water to increase the pressure. This procedure is employed to 

prevent too much water being added to the vessel, which might lead to generation of 

overpressure in excess of the pressure limit of the system. To apply high liquid-water 

pressure to the system with the aid of a compressed air driven liquid pump, the 

emergency pressure release valve B was first closed (Figure 2), and valve A was 

opened until a pressure slightly higher than the pressure of the experiment was 

displayed on the external pressure gauge. This avoided losing any content of the 

vessel when reactor valve C was opened. High liquid-water pressure was then applied 

to the system by first opening valve C and immediately gradually opening valve A to 

add more distilled water into the reaction vessel. Although likely to have an effect, pH 

was kept neutral to avoid corrosion of the vessel. When the required pressure was 
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attained, valve C was closed to isolate the reactor from the high water-pressure line, 

and valve A was also closed to prevent more water from entering the pressure line. 

Valve B was opened to vent the excess pressure on the line. The experiment was then 

allowed to run (leaving valve C tightly closed to avoid losing generated products) for 

the required time, after which the sand bath was switched off and left to cool to 

ambient temperature before product recovery. 

2.3 Chemical and isotopic analyses of gas components 

After the pyrolysis experiment, the high water-pressure line was disconnected and 

a connector was attached to valve C. The generated gas was collected and transferred 

to a gas bag with the aid of a gas tight syringe via the connector by opening valve C. 

Gas analysis was performed using a Clarus 580 gas chromatograph (GC) fitted 

with FID and TCD detectors operating at 200 C. The GC was equipped with an 

alumina plot fused silica capillary column (30 m × 0.32 mm × 10 μm) and helium was 

the carrier gas. Gas samples (100 μl) were injected with the split ratio 10:1 at 100C. 

The temperature was kept constant at 60C (13 min hold), then increased to 180C 

(10 min hold) at 10C/min. Individual hydrocarbon gas yields, H2 and CO2 gas yields 

were determined quantitatively in relation to methane, H2 and CO2 (injected 

separately) as external gas standards, respectively. The total yield of generated 

hydrocarbon gases was calculated using the total volume of generated gas collected in 

relation to the aliquot volume of gas introduced to the GC, using relative response 

factors of individual C2–C5 gases to methane predetermined from a standard mixture 

of C1–C5 gases. 
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The stable carbon isotope ratios of hydrocarbon gases were measured using a Mat 

253 mass spectrometer interfaced to Trace GC Ultra. The GC was fitted with a HP-

PLOT/Q capillary column (30 m × 0.32 mm × 20 μm) and helium was used as carrier 

gas. The temperature was kept constant at 50C (3 min hold), then increased to 190C 

(20 min hold) at 15C/min. At least two measurements were performed for each gas 

sample to confirm that errors were less than ±0.5‰. The isotope values were 

calibrated against the reference gas and are reported in the usual delta notation 

relative to VPDB. 

3. Results 

3.1. Gas yields 

The gas yields from the pyrolysis experiments are presented in Table 1 and 

Figure 3. At each pressure, the total hydrocarbon gas (C1–C5), methane, and wet gas 

yields (C2–C5) show a continuous increase with increasing temperature. However, the 

gas yields increased much more with increasing temperatures at 200 bar compared to 

higher liquid-water pressures (470, 750 and 900 bar). For example, as the temperature 

increased from 350 to 425C, the total hydrocarbon gas yield increased from 4.0 to 

180 mg/g.oil at 200 bar, compared to 0.6 to 88 mg/g.oil at 470 bar. 

As shown in Figure 3, at the same temperature, the C1–C5 total gas yields are 

higher at low pressure (200 bar) than at the higher pressures (470–900 bar), although 

different trends are evident at the different temperatures. At 350 and 373C, C1–C5 

yields are 4.0 and 15.5 mg/g.oil at 200 bar, respectively. The yields are reduced by 

91% to 0.35 mg/g.oil and 82% to 2.7 mg/g.oil at 900 bar when compared to the 

amount generated at 200 bar. At 390C, the C1–C5 yield is reduced by 74% as the 
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pressure increased from 200 (35.0 mg/g.oil) to 750 bar (9.1 mg/g.oil). However, the 

C1–C5 yield is slightly higher at 900 bar (15.0 mg/g.oil) compared to that at 750 bar. 

At the higher temperatures of 405 and 425C, as the pressure increases from 200 to 

470 bar, C1–C5 yields are reduced by 61% from 77.9 to 30.7 mg/g.oil and by 51% 

from 180.4 to 88.4 mg/g.oil, respectively. Then the gas yields rise by 29% at 405C 

and 49% at 425C with the increase in pressure to 750 bar compared to 470 bar. But 

at 900 bar, the C1–C5 yields are consistent with or slightly reduced compared to 750 

bar. The unsaturated alkenes yields are highest at 200 bar, but decrease significantly 

at high water pressure (Table 1, Figure 4a) as found in all previous studies with high 

pressure.16, 31, 32 Overall, there are no obvious yield trends associated with the phase 

change of water from 350 to 405C through the supercritical temperature of 373C.  

The yields of non-hydrocarbon gas (CO2 and H2) are usually low in oil cracking 

experiments (Table 1, Figure 4a, b). The highest yield is 0.07 mg/g.oil at 200 bar and 

405C for H2 and 9.2 mg/g.oil at 750 bar and 425C for CO2. As shown in Figure 4b, 

at 350 to 405C, the CO2 yields decrease as pressure increases from 200 to 900 bar. 

However, at 425C, the CO2 yields remain nearly constant with increasing pressure in 

the range of 7.5 to 9.2 mg/g.oil. A significant fraction of the CO2 dissolves in the 

water, which might account for some of these variations. The H2 yields decrease with 

increasing pressure from 200 to 900 bar at 350 to 390C, except for the abnormal low 

yield at 200 bar and 373C (Figure 4a). At the higher temperatures of 405 and 425C, 

the H2 yields are scattered with the yields at 750 bar being higher than  at 470 bar. 
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3.2. Stable carbon isotopic compositions of individual gas component 

Measured carbon isotope ratios for individual gas components from the oil 

cracking experiments are presented in Table 2 and Figure 5. The δ13C values of 

methane, ethane, propane and butane show a “normal” isotope distribution with δ13C1 

< δ13C2 < δ13C3 < δ13C4 at the same level of thermal maturity. For example, the carbon 

isotope ratio of methane is about -47.1– -45.0‰ at 373 C in the pressure range of 

200 to 900 bar, while the carbon isotope ratio of -37.1– -36.4‰ for ethane and -34.1– 

-33.8‰ for propane show an enrichment of 13C in comparison with methane. This 

“normal” distribution is in agreement with conventional thermogenic natural gas36, 37 

and pyrolysis results of kerogen, coal and oil.38, 39 

Stable carbon isotopic curves of the different gas components change to differing 

extents with increasing pressure. For methane, the isotope ratio at 350C shows little 

variation (-46.3 to -45.4‰) over the pressure range of 200 to 900 bar. At the higher 

temperatures of 373–425C, the isotope ratios show a continuous increase in 13C as 

pressure increases, with the maximum carbon isotope fractionation being about 2‰ at 

373C and 3‰ at 390–425C. For ethane and propane, the isotopic compositions are 

more enriched in 13C with increasing pressure at 350–405 C, but the isotope 

fractionations are less than ~1‰ (within the analytical precision of ±0.5‰). At 

425C, ethane and propane are depleted in 13C as pressure increases. For butane, the 

isotope ratio at 350 C shows abnormal enrichment in 13C with an isotope 

fractionation of 3.3‰ from 200 to 900 bar. At temperatures of 373–405C, the carbon 

isotope fractionation is less than 1‰ with increasing pressure. At 425C, butane is 

depleted in 13C as pressure increases, which is similar to that of ethane and propane. 

For pentane, the isotope fractionations with increasing pressure are in the range of 
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1.3–2.7‰ at different temperatures, which are greater than the other wet gas 

components. 

The carbon isotope ratios for iC4 and iC5 tend to be less negative with increasing 

pressure at a given temperature, and the corresponding isotope fractionations are 

higher than that of the n-alkane gas component with same carbon number. Carbon 

isotope ratios for CO2 at 200 bar at various temperatures are more enriched in 13C 

compared to the high water-pressure experiments. However, the CO2 isotopic 

composition for the 405C experiment shows abnormal enrichment in 12C at 200 bar 

compared to that at high water pressure, which needs further validation. 

4. Discussion 

4.1 Pressure effects on gas yields 

The extent of oil cracking can be directly measured by the yield of generated gas, 

and previous studies suggest that it can be most appropriately characterized by mass 

yield of total gas.12, 40 Therefore, the mass yield was employed here to investigate the 

effect of pressure on gas generation in the confined system used. 

As showed in Figure 3, although the total hydrocarbon gas yields continuously 

increase with increasing temperature, the yields under low pressure (200 bar) are 

notably higher than those under high liquid pressure (470, 750, 900 bar), indicating 

that pressure suppresses oil cracking. However, the extent and mechanism of pressure 

retardation on oil cracking stage strongly depend on the thermal stage of evolution 

(Figure 3). At the peak oil to early wet gas stage (350 and 373 C, equivalent vitrinite 

reflectance of 0.92 and 1.15 %, respectively), there is insufficient molecules/radicals 

to reach the high activation energy barriers for complete decomposition of free 
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radicals,31, 41 leading to the radicals tending to recombine in chain termination 

reactions. Increased pressure allows the free radicals to become longer or polymerize 

due to increased collision rates among reactants, resulting in decreased reaction rates, 

and thereafter suppression of gas generation (Figure 3). However, at the elevated 

stage in the wet gas window (390, 405 and 425 C, 1.35–1.85% Ro), the kinetic 

energy of molecule/species is enough to overcome the reaction barrier.  

At 390C, the pressure at first suppresses oil cracking to gas from 200 to 450 bar, 

followed by increasing in yield from 450 to 900 bar. At 405C and 425C, the 

pressure at first suppresses oil cracking to gas, but then demonstrates a significant 

increase in yield from 470 to 750 bar, followed by a steady state at 900 bar. 

Activation volume effects could account for the changes in oil cracking rates in high 

water-pressure range at the elevated stage in the wet gas window. Theoretically, the 

collision rates among reactants at the elevated stage in the wet gas window become 

more intense than that at the peak oil generation stage. When pressure increases, the 

reaction rates will decrease due to changes in the thermodynamic stability of activated 

complex intermediates as well as cage and diffusional effects.41 The model of 

activation volume is included to account for such effects, which has been elaborated 

in the previous works.31, 42 Thus, the gas yields at 470-900 bars are lower than at 200 

bar. On the other hand, concentrations and collision rates of reactants would be 

enhanced with increasing pressure, resulting in increased overall reaction rates.31 

Although cage/diffusional effects generally retard reaction rates with increasing 

pressure, collision rates among reactants will increase with pressure and reach a 

maximum at a given pressure threshold, resulting in increased reaction rates and gas 

yields.31 This could be the case in this study, which shows higher yields at 750 bar 

than at 470 bar when oil cracks at the elevated stage in the wet gas window. We 
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speculate that overall reaction rates at the elevated stage in the wet gas window 

mainly depend on competition between collision rates and cage/diffusional effects, 

but clearly further work is required. 

The main source of CO2 in pyrolysis experiments is from decomposition of 

macromolecular organic matter (e.g., resins and asphaltenes), which contains oxygen 

functional groups. As shown in Figure 4b, similar to the pattern for hydrocarbon gas 

yields, pressure retards cracking to CO2. A significant decrease of CO2 production 

occurs from 200 to 900 bar when the temperature is less than 425C. Due to low bond 

energies within macromolecules,43, 44 425C provides the thermal energy to enable the 

system to have sufficient energy for decomposition of macromolecules, accompanied 

by breakage and condensation of alkanes and aromatics. In this situation, the pressure 

effect is insignificant and subordinate to the temperature, and it is in agreement with 

the experimental results showing almost no change of CO2 yield with increasing 

pressure at 425C. However, to further substantiate these findings, the dissolved CO2 

in the aqueous phase after reaction needs to be measured. On the other hand, the 

phenomenon and mechanism of water acting as external hydrogen source have been 

widely investigated and confirmed by the higher hydrocarbon gas yields and isotopic 

evidence.45, 46 In addition, other studies suggested that oxygen also transfers from the 

water into the organic matter, as the amounts of CO2 produced from hydrous pyrolysis 

experiments are higher than that under anhydrous conditions.47, 48 However, the 

amount of CO2 were not recorded in many experiments and few isotopic evidence had 

been published. Therefore, water-derived oxygen may transfer to the CO2, but the 

evidence remains inconclusive and it needs more in-depth work to verify the 

possibility of external oxygen source for CO2 during pyrolysis. 
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4.2 Pressure effects on gas molecular parameters 

The gas dryness coefficients (C1/ΣC1–5 volume %) presented in Table 3 and 

Figure 6a decrease with increasing thermal stress at any given pressure. This is in 

agreement with previous studies by Tian et al.49 and Hill et al.24 who found the 

maximum C2–C5 gas yield occurs at an equivalent %Ro value of 1.9–2.0% in sealed 

gold-tube experiments with constant pressure, suggesting that heavy gas component 

(C2–C5) cracking starts at an equivalent %Ro value of ~2.0%. EasyRo calculations for 

the temperature setup here show that the maximum thermal stress reached during 

experiments is at equivalent %Ro value of ~1.85%, which is on the threshold of C2–C5 

cracking. Therefore, secondary cracking of heavy gas components has less influence 

on the dryness coefficient trends in the experimental temperature range investigated 

here, and the heavy components in crude oil are the main contributors to the 

hydrocarbon gases.  

However, the dryness coefficient continuously increases with pressure from 200 

to 470 bar at any temperature, and almost stays constant as pressure increases from 

470 to 900 bar, suggesting pressure effects on the generation of the different gas 

components. This is clearly indicated by the difference in the generation rates of 

methane and C2–C5 wet gas components. At 405 and 425C, almost no change in 

Ln(C1/C2) is observed over the pressure range investigated, indicating that generation 

rates of methane and the C2–C5 wet gas components are comparable with temperature 

playing the dominant role in oil cracking. Conversely, at lower temperatures (350, 

373 and 390C), pressure has a major influence on the generation rates of individual 

gas components. Compared to the C2–C5 wet gas components, methane has a faster 

generation rate as revealed by the increasing Ln(C1/C2) value with increasing pressure 
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(Figure 6b). We speculate that more intense radical collisions at high water pressure 

result in enhanced generation of methane to account for the increasing dryness 

coefficient. Furthermore, the higher slope of the Ln(C1/C2) values under high water 

pressure (470, 750 and 900 bar) with temperature reveals a much greater difference in 

the generation rate between methane and the C2–C5 wet gas components compared to 

low pressure conditions (Figure 6b). Thus, increasing gas dryness coefficients have 

been obtained with increasing pressure upon thermal evolution (Figure 6a). For 

example, at a pressure of 200 bar, no more than 10% difference in dryness is observed 

across the temperature range, compared to ~25% at 750 bar. The results suggest that 

both thermal maturation and pressure control gas dryness coefficients, but clearly the 

values are strongly dependent on the thermal stage of evolution. 

The ratios of iC4/nC4 and iC5/nC5 increase consistently with pressure, except for 

decreases at 900 bar for some temperatures (Figure 6c). Previous studies showed that 

normal alkanes are formed by free radical reactions during petroleum formation, but 

branched isomeric alkanes, in addition to free radical cracking, are formed by 

carbonium ion reactions of α-olefins with protons, which are promoted under acidic 

conditions.50-52 Although the yields of molecular hydrogen and alkene gases are 

usually low in closed pyrolysis experiments,24, 53, 54 the H2 yields at low pressures here 

are generally higher than at high pressures. Similarly, the butene yields are highest at 

200 bar and then decrease as pressure increases to 900 bar, as shown in Figure 4a. 

Interestingly, the ratios of butene/butane show a steady decrease as pressure increases 

from 200 to 900 bar (Figure 6d). This suggests that reactions occur between hydrogen 

and unsaturated alkene gases, or in other words, increased pressure promotes 

hydrogenation of alkene gases to saturated alkane gases.31 Therefore, free radical 

cracking of branched components could account for branched isomeric alkane 
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formation in our experiments. However, the free radical cracking seems to be retarded 

with increasing pressure, as the alkanes yields at low pressure are higher than at high 

pressure Recently, Xia et al.55 suggested that iso-alkanes are not necessarily from iso-

alkyl precursors, they may also be the product of normal alkyl radicals after 

rearrangement (e.g., by methyl shift). Pressure may be beneficial for the 

rearrangement reaction, leading to increased isomeric/normal alkane ratios as revealed 

by iC4/nC4 and iC5/nC5 values in Figure 6c. As shown in Figure 4a, decreasing trend 

of alkenes yield as pressure increases might be related to the generation reactions. 

This is partly because increased pressure enhances completion of alkenes reactions, 

including the hydrogenation to saturated alkane gases. However, lack of alkenes in 

natural gases is probably not an indicator of high pressure conditions. The lack of 

alkenes might indicate that alkenes never form during petroleum generation and oil-

cracking or that alkenes react very quickly if they are forming. Definitely, alkenes are 

an artifact of pyrolysis experiment as revealed by many previous studies. The 

presence of alkenes in experiments may be due to the differences between small time-

scale in laboratory experiments and long time-scale for many geological processes.56 

4.3 Pressure effects on carbon isotopic composition of gas components 

Stable carbon isotope geochemistry of hydrocarbon gases has proved to be a 

powerful tool to determine the gas genetic types, source and accumulation history. 

Although many studies show that pressure retards organic maturation and thermal 

cracking, few studies show pressure effects on stable carbon isotope fractionation of 

individual gas components. Previously, Hill et al.31 found ~2‰ fractionation of 

methane carbon isotopes with pressure ranging from 90 to 2000 bar at 380 C in 

sealed gold-tube oil cracking experiments, suggesting that pressure may have 
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important influence on isotope fractionation. However, the methane carbon isotope 

value in their study show fractionation within ~1‰ with increasing pressure, except 

one measured data point at 1380 bar become enriched in 13C. In Figure 7a, b and c, 

the δ13C values of C1–C5 gases at the four different pressures in our experiment are 

plotted on “natural gas plots” (after Chung et al.37) who proposed that δ13C values of 

different gas compounds are linearly related to the inverse of their respective carbon 

numbers (1/Cn). The carbon isotope values of ethane, propane, butane and pentane 

mostly show a maximum variation of ~1‰ as pressure increases, indicating that 

pressure has little effect on carbon isotope ratios of the normal C2–C5 alkane gas 

components. However, a maximum isotopic fractionation of ~3.5‰ for methane is 

observed over the pressure range (200 to 900 bar) investigated in our experiments. 

The difference in methane carbon isotope fractionation for the two oils used in our 

study and Hill et al.31 is more likely due to potential differences in oil composition. 

The oil used in Hill et al.’s experiments was saturate rich (63.8% saturates, 22.9% 

aromatics, 6.6% resins, 6.7% asphaltenes) 31 and was not biodegraded. While the oil 

used here is slight biodegraded with enriched in resins and asphaltene. If we consider 

the number of different sources for methane from oil cracking in the laboratory, 

differences in methane carbon isotopes should be possible. 

It is well known that the isotope ratios of gas components are controlled not only 

by the isotopic compositions of precursors, but also the temperature and mechanism 

of gas generation, and the conversion is the key factor to determine the evolution of 

methane isotope composition.28, 57 Surprisingly, the heaviest methane carbon isotope 

ratio does not coincide with the maximum gas yield due to pressure retardation on oil 

cracking (Figure 3). One possibility is that pressure affects methane carbon isotope 

fractionation by influencing the rates of various methane generation reactions 
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differently. Based on kinetic modelling of δ13C1 and activation energy, Shuai et al.57 

also suggest that the pressure affects isotope ratios of methane mainly through 

methane generation. Both iC4 and iC5 generally show enrichment in 13C with 

increasing pressure (Table 2). As shown in Figure 6c, increased pressure seems to 

favor the generation of iso-alkanes due to enhanced rearrangement of normal alkyl 

radicals.  It is possible that isoalkanes start to crack at higher temperature of 425C, 

which may affect the isotopic fractionation. However, the carbon isotopes of 

isoalkanes show good correlations with isoalkane/normal alkane ratios, suggesting 

that isomerization may be the principal factor controlling isotopic fractionation of 

isoalkane, and cracking is comparatively less important. The pressure effect on carbon 

isotope ratios for iC5 is less distinct when temperature increases (Table 2), suggesting 

that temperature plays a major role in oil cracking at the elevated stage in the wet gas 

window. 

Overpressure is evident in many petroliferous basins. In these basins, retardation 

of vitrinite reflectance values might be recognized in source rocks, thus influencing 

the estimated depth of the oil window. The suppression effect of pressure on oil 

cracking from this study implies that pressure could be a significant control on 

thermal stability of crude oil in deep strata. Our experiments clearly show that 

pressure has a major influence on gas yield, the rate of formation of individual gases, 

and carbon isotope compositions of methane. It should be caution when interpreting 

the methane isotope data from deep-buried strata. Due to the significant differences of 

methane carbon isotope between pressurized oil cracking and normal oil cracking, the 

carbon isotope curve based on C1–C5 isotope ratios could provide a potential guide to 

identify pressure effects on in-situ oil cracking in deep strata. We constructed a 

conceptual model using “natural gas plot” for this application (Figure 7d). Of course, 
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the kinetics of isotope fractionation must be defined when extrapolating this 

conceptual model to geological model. 

4.4 Water phase effect on pressurized oil-cracking 

Because most of the simulation experiments in previous works were conducted 

in the presence of liquid water or two-phases of liquid and vapor, the role of 

supercritical fluid water phase during high temperature experiments remains 

inconclusive, leading to the uncertainty of the conclusion in this study. It is well 

known that supercritical water has the characteristics of favorable transport properties 

and high diffusivities, which are different from the liquid water phase.58, 59 To 

investigate the effect of water with different phase on gas generation in pressurized oil 

cracking, a series of pyrolysis experiments were conducted in a confined system (gold 

tubes) using the same crude oil under anhydrous and hydrous conditions, at a fixed 

pressure of 450 bar and for 24 hours. Temperatures points were set at 370, 390, 405C 

(accuracy ±1C). The oil/water is 1:5 (w/w) in pyrolysis experiments. The water 

occurs in normal phase at 370 C and in supercritical fluid phase at 390 C and 405 

C. Yields and measured carbon isotope values of gas components in three 

comparative experiments are presented in Table 4, Figure 8 and 9. The methane yields 

are almost same between the anhydrous and hydrous pyrolysis at all three 

temperature-settings. However, the yields of C2+ components show significantly 

higher amounts in hydrous pyrolysis compared to anhydrous conditions, further 

indicated by the higher wetness of (ΣC2–5/ΣC1–5). The results demonstrate that the 

water promotes wet gases generation and no significant change on methane 

generation, whatever water phase is. Interestingly, the CO2 yields show similar trends 

to that of the wet gases, probably an indicative of same promotion effect of CO2 
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generation as the C2+ components. No significant change on δ13C values of each gas 

components and CO2 between anhydrous and hydrous pyrolysis is observed in all 

three temperature-settings, except carbon isotope of i-C5 and C5 at 425 C, suggesting 

that supercritical water over 374C could not make significant effect on hydrocarbon-

cracking reaction pathway. This is in agreement with previous study by Liu et al.60 

who concluded that upgrading of residual oil in sub- and supercritical water is still 

dominated by the free radical mechanism. Although supercritical condition is rarely 

presented in natural oil reservoirs, the oil-cracking experiments under high water 

pressure and high temperature here still can be used to evaluate the pressure effect on 

gas generation in oil-carking processes.  

5. Conclusions 

Oil-to-gas cracking was observed to be generally retarded by pressure, and the 

extent of retardation strongly depends on the stage of thermal evolution. In the early 

stage of maturition using laboratory temperatures of 350 and 373C (EasyRo = 0.92–

1.15%), increasing pressure retards the gas yields. At 390C (EasyRo = 1.35%), gas 

yields were retarded by pressure from 200 to 750 bar, followed by  slight promotion 

of yields from 750 to 900 bar. For the highest maturity stage at 405 and 425C 

(EasyRo = 1.56–1.85%), gas yields were retarded at pressures from 200 to 470 bar, 

weakly promoted from 470 to 750 bar, and stabilized from 750 to 900 bar. The 

competition between cage/diffusional effects with collision rates of reactants could 

account for the reaction rates changes in oil-cracking to gas.  

The gas dryness coefficient continuously increased with pressure from 200 to 470 

bar at all temperatures investigated and then stayed nearly constant as pressure was 

further increased to 900 bar. Thus, the generation rates of methane and the C2–C5 wet 
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gas components differ at lower thermal stress before becoming comparable at higher 

levels. 

As to generated gases in oil-cracking, methane was enriched in 13C by up to 3‰ 

from 200 to 900 bar. However, the carbon isotope ratios for ethane, propane and 

butane showed little variation (less than 1‰) with increasing pressure. A conceptual 

model using “natural gas plot” was constructed to identify pressure effect on in-situ 

oil cracking. Supercritical water over 374C could not make significant effect on 

hydrocarbon-cracking reaction pathway of oil-to-gas cracking in closed system, as 

revealed by yields and isotopes under hydrous and anhydrous pyrolysis. 
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Table captions 

Table 1. Gas yields from the oil cracking experiments at different temperatures and 

pressures . 

Table 2. Stable carbon isotopic compositions of individual gas components from the 

oil cracking experiments. 

Table 3. Molecular parameters for hydrocarbon gases obtained from oil cracking at 

different temperatures and pressures. 

Table 4. Gas yields (ml/g) and stable carbon isotopic compositions of individual gas 
components from the oil cracking experiments in gold capsules. 
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Figure captions  

Figure 1. Whole oil gas chromatogram of crude oil from the Pearl River Mouth Basin, 

South China Sea, and its composition by compound class. Pr: pristane; Ph: phytane. 

Figure 2. Schematic diagram of the pyrolysis apparatus (after Uguna et al.16). 

Figure 3. Yields of total hydrocarbon gases (C1–C5) produced by oil cracking at 

different temperatures and pressures. 

Figure 4. Yields of (a) hydrogen and propene and (b) CO2 obtained from oil cracking 

at different temperatures and pressures. 

Figure 5. Carbon isotope ratios of individual hydrocarbon gas components with 

increasing pressure at different temperatures.   

Figure 6. Changes in molecular parameters for hydrocarbon gases with increasing 

temperature and pressure. (a) dryness (C1/ΣC1–5 volume); (b) Ln(C1/C2 volume); (c) 

iso-/normal alkane; (d) butene/butane. 

Figure 7. “Natural gas plot” of δ13C(Cn) versus 1/Cn (after Chung et al.36). (a) 373C; 

(b) 390C; (c) 425C; (d) the overall conceptual model showing the effect of pressure. 

Figure 8.  Gas yields (ml/g) of individual gas components from the oil cracking 

experiments in gold capsules, in the presence and absence of water. (a) 373C; (b) 

390C; (c) 425C. 

Figure 9. Stable carbon isotopic compositions of individual gas components from the 

oil cracking experiments in gold capsules, in the presence and absence of water. (a) 

373C; (b) 390C; (c) 425C.
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Table 1. Gas yields from the oil cracking experiments at different temperatures and pressures. 1 

Tempera-

ture 

Pressure a 

(bar) 

Yields of gas produced from oil cracking (mg/g. oil)  

CH4 C2H4 C2H6 C3H6 C3H8 
C4 

alkenes

C4 

alkanes

C5 

alkenes

C5 

alkanes
H2 CO2 ΣC1–5 ΣC2–5

350 C 

0.92%Ro 

200/175 1.2 0.07 0.67 0.22 0.78 0.18 0.43 0.09 0.29 0.032 2.09 4.0 2.73

470/431 0.25 <0.01 0.10 0.01 0.08 <0.01 0.06 <0.01 0.08 0.011 0.51 0.58 0.33

750/745 0.25 <0.01 0.09 0.01 0.06 <0.01 0.05 <0.01 0.06 0.012 0.48 0.51 0.26

900/879 0.15 <0.01 0.05 0.02 0.04 <0.01 0.03 <0.01 0.07 0.012 0.30 0.35 0.21

373 C 

1.15%Ro 

200/190 4.5 0.18 2.9 0.73 3.31 0.58 1.9 0.37 1.00 0.001 2.91 15.5 11.0

470/485 1.3 0.02 0.73 0.06 0.58 0.04 0.32 0.01 0.14 0.011 0.79 3.2 1.9

750/759 1.3 0.02 0.62 0.04 0.47 0.03 0.31 0.01 0.15 0.014 0.58 2.9 1.6

900/821 1.2 0.01 0.58 0.03 0.44 0.02 0.24 <0.01 0.12 0.013 0.65 2.7 1.4

390 C 

1.35%Ro 

200/223 9.6 0.29 7.6 1.5 8.1 1.18 4.28 0.72 1.86 0.043 3.74 35.0 25.4

470/469 3.1 0.05 1.97 0.12 1.5 0.08 0.96 0.03 0.27 0.017 3.33 8.1 5.0

750/738 3.6 0.04 2.24 0.10 1.7 0.07 1.04 0.02 0.29 0.018 1.13 9.1 5.5

900/890 5.4 0.04 3.16 0.10 2.85 0.08 2.59 0.03 0.69 0.017 1.40 15.0 9.6



 

31

405 C 

1.56%Ro 

200/215 19.7 0.31 18.7 2.2 19.6 2.0 10.2 1.14 4.10 0.065 5.82 77.9 58.2

470/462 9.0 0.09 8.1 0.39 7.29 0.30 4.46 0.09 0.98 0.026 2.77 30.7 21.7

750/769 11.8 0.06 9.8 0.25 9.14 0.21 6.67 0.07 1.70 0.052 3.27 39.7 27.9

900/890 10.6 0.06 9.3 0.32 9.07 0.31 6.37 0.13 1.74 0.027 2.73 37.9 27.3

425 C 

1.85%Ro 

200/210 45.5 0.33 47.2 2.7 48.5 2.7 24.8 1.3 7.55 0.057 8.3 180.4 134.9

470/510 25.9 0.14 23.1 0.55 22.1 0.47 12.8 0.16 3.12 0.038 7.5 88.4 62.5

750/745 34.7 0.09 29.7 0.38 33.6 0.44 26.1 0.25 6.84 0.054 9.2 132.0 97.3

900/897 33.0 0.10 30.0 0.47 33.4 0.53 22.7 0.29 5.62 0.051 8.4 126.1 93.1

a The pressure is listed as the set pressure / measured pressure. 1 
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Table 2. Stable carbon isotopic compositions of individual gas components from the oil cracking 1 

experiments. 2 

Temperature 
Pressurea

(bar) 

δ13C (‰) 

C1 C2 C3 iC4 C4 iC5 C5 CO2 

350 C 

0.92%Ro 

200/175 -45.6 -36.5 -34.1 -33.5 -31.7 -29.6 -29.7 -29.2 

470/431 -45.4 -36.0 -33.7 -31.9 -29.2 -25.4 -27.0 -23.7 

750/745 -46.3 -35.6 -33.3 -31.7 -29.2 -24.4 -27.0 -24.6 

900/879 -45.6 -35.7 -33.8 -31.7 -28.4 -24.9 -27.6 -22.9 

373 C 

1.15%Ro 

200/190 -47.1 -36.6 -34.0 -34.0 -30.9 -30.4 -28.3 -29.0 

470/485 -45.6 -37.1 -34.1 -33.0 -30.9 -28.5 -27.8 -26.4 

750/759 -45.5 -36.5 -33.8 -32.1 -30.3 -26.7 -27.4 -25.9 

900/821 -45.0 -36.4 -33.9 -32.3 -30.6 -25.3 -27.0 -25.5 

390 C 

1.35%Ro 

200/223 -47.0 -36.7 -33.5 -34.0 -30.0 -29.6 -29.0 -28.6 

470/469 -44.8 -36.5 -33.0 -31.3 -29.6 -25.8 -27.0 -25.0 

750/738 -45.1 -36.5 -33.0 -31.2 -29.7 -26.6 -27.2 -25.1 

900/890 -44.2 -35.8 -32.7 -30.4 -29.9 -27.2 -27.5 -26.2 

405 C 

1.56%Ro 

200/215 -46.6 -35.6 -32.3 -33.0 -28.7 -28.3 -27.1 -24.9 

470/462 -46.7 -36.1 -31.8 -30.6 -27.9 -27.1 -25.7 -27.1 

750/769 -44.3 -35.0 -31.5 -29.4 -27.9 -26.4 -25.6 -27.1 

900/890 -44.4 -35.0 -31.5 -29.7 -28.0 -26.4 -26.0 -27.2 

425 C 

1.85%Ro 

200/210 -45.2 -33.2 -29.4 -31.0 -24.6 -24.1 -21.2 -28.8 

470/510 -42.8 -33.4 -29.5 -28.1 -24.9 -22.2 -20.9 -25.7 

750/745 -41.6 -33.6 -29.9 -27.8 -26.1 -22.9 -22.8 -26.6 
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900/897 -42.5 -33.8 -29.9 -28.0 -25.9 -23.4 -23.3 -26.1 

a The pressure is listed as the set pressure / measured pressure. 1 

2 
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Table 3. Molecular parameters for hydrocarbon gases obtained from oil cracking at different 1 

temperatures and pressures. 2 

Temperature 
Pressurea

(bar) 

Molecular parameters 

Ln(C1/C2  

Volume)   

C1/ΣC1–5  

Volume%
butene/butane iC4/nC4

b iC5/nC5 
b 

350 C 

0.92%Ro 

200/175 1.11 54.3 0.41 0.44 1.11 

470/431 1.50 67.1 0.07 0.88 1.65 

750/745 1.64 71.3 0.07 0.80 1.53 

900/879 1.65 68.0 0.00 1.07 3.40 

373 C 

1.15%Ro 

200/190 1.00 52.1 0.31 0.44 0.96 

470/485 1.16 62.3 0.12 1.26 1.86 

750/759 1.33 66.2 0.09 1.71 1.95 

900/821 1.35 67.5 0.08 1.40 1.83 

390 C 

1.35%Ro 

200/223 0.82 49.4 0.28 0.41 0.88 

470/469 1.05 60.3 0.08 1.75 2.59 

750/738 1.08 61.4 0.07 1.60 2.48 

900/890 1.15 59.5 0.03 2.78 3.62 

405 C 

1.56%Ro 

200/215 0.66 46.4 0.20 0.39 0.78 

470/462 0.72 50.7 0.07 1.42 2.48 

750/769 0.81 51.8 0.03 1.72 2.93 

900/890 0.76 50.0 0.05 1.45 2.49 

425 C 
200/210 0.58 45.9 0.11 0.43 0.78 

470/510 0.74 50.8 0.04 1.02 2.04 
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1.85%Ro 750/745 0.78 48.3 0.02 1.60 2.82 

900/897 0.72 47.7 0.02 1.30 2.41 

a The pressure is listed as the set pressure / measured pressure. 1 

b iC4/nC4 is the ratio of iso-butane to normal butane, and iC5/nC5 is the ratio of iso-pentane to 2 

normal pentane. 3 

 4 

 5 

 6 
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Table 4. Gas yields (ml/g) and stable carbon isotopic compositions of individual gas components 1 
from the oil cracking experiments in gold capsules. 2 

Gas yields under different conditions (mg/g. oil) 

 
373 C 390 C 405 C 

Oil plus water Oil alone Oil plus water Oil alone Oil plus water Oil alone

C1 11.9 11.7 31.2 32.6 63.7 64.0 

C2 4.9 3.6 15.8 13.5 39.4 31.5 

C3 5.2 2.5 15.9 11.8 40.3 28.7 

C4-5 4.7 1.3 15.7 9.7 38.5 24.7 

CO2 2.9 1.9 4.2 2.6 7.3 3.0 

ΣC2-5 14.8 7.4 47.4 35.0 118.2 84.9 

ΣC1-5 26.7 19.1 78.6 67.5 181.8 148.8 

wetness 55.5 38.7 60.3 51.8 65.0 57.0 

δ13C (‰) 

 373 C 390 C 405 C 

 Oil plus water Oil alone Oil plus water Oil alone Oil plus water Oil alone

C1 -46.5 -45.6 -45.5 -45.3 -45.0 -44.9 

C2 -36.2 -35.0 -35.1 -35.3 -34.1 -34.9 

C3 -33.1 -32.1 -31.4 -31.9 -29.9 -30.9 

iC4 -31.0 -30.2 -31.3 -31.0 -30.0 -29.8 

C4 -31.3 -30.4 -28.9 -29.9 -27.0 -28.2 

iC5 -28.5 -27.7 -26.5 -27.9 -23.9 -25.6 

C5 -28.8 -27.2 -26.8 -27.7 -23.4 -25.6 

CO2 -24.3 -24.7 -21.8 -22.2 -23.0 -21.8 
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 2 

Figure 1. Whole oil gas chromatogram of crude oil from the Pearl River Mouth Basin, South 3 

China Sea, and its composition by compound class. Pr: pristane; Ph: phytane. 4 

 5 

 6 

Figure 2. Schematic diagram of the pyrolysis apparatus (after Uguna et al.16). 7 
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 1 

 2 

Figure 3. Yields of total hydrocarbon gases (C1–C5) produced by oil cracking at different 3 

temperatures and pressures. 4 

 5 

 6 

Figure 4. Yields of (a) hydrogen and propene and (b) CO2 obtained from oil cracking at different 7 

temperatures and pressures. 8 
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Figure 5. Carbon isotope ratios of individual hydrocarbon gas components with increasing 2 

pressure at different temperatures.   3 

 4 
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Figure 6. Changes in molecular parameters for hydrocarbon gases with increasing temperature 2 

and pressure. (a) dryness (C1/ΣC1–5 volume); (b) Ln(C1/C2 volume); (c) iso-/normal alkane; (d) 3 

butene/butane. 4 
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 1 

Figure 7.  “Natural gas plot” of δ13C(Cn) versus 1/Cn (after Chung et al.36). (a) 373C; (b) 390C; 2 

(c) 425C; (d) the overall conceptual model showing the effect of pressure. 3 

 4 

 5 

Figure 8.  Gas yields (ml/g) of individual gas components from the oil cracking experiments in 6 

gold capsules, in the presence and absence of water. (a) 373C; (b) 390C; (c) 425C. 7 

 8 



 

43

 1 

Figure 9. Stable carbon isotopic compositions of individual gas components from the oil 2 

cracking experiments in gold capsules, in the presence and absence of water. (a) 373C; (b) 3 

390C; (c) 425C. 4 
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