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ABSTRACT 36 
In the deep sea, biological data are often sparse; hence models capturing relationships 37 

between observed fauna and environmental variables (acquired via acoustic mapping 38 

techniques) are often used to produce full coverage species assemblage maps.  Many 39 

statistical modelling techniques are being developed, but there remains a need to determine 40 

the most appropriate mapping techniques.  Predictive habitat modelling approaches 41 

(redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous 42 

section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the 43 

spatial arrangement of habitat patches were calculated. The predictive maps were based on 44 

remotely operated vehicle (ROV) imagery transects, high-resolution autonomous underwater 45 

vehicle (AUV) sidescan backscatter maps and ship-based multibeam bathymetry.  Area under 46 

the curve (AUC) and accuracy indicated similar performances for the three models tested, but 47 

performance varied by species assemblage, with the transitional species assemblage showing 48 

the weakest predictive performances.  Spatial predictions of habitat suitability differed 49 

between statistical approaches, but niche similarity metrics showed redundancy analysis and 50 

random forest predictions to be most similar. As one statistical technique could not be found 51 

to outperform the others when all assemblages were considered, ensemble mapping 52 

techniques, where the outputs of many models are combined, were applied.  They showed 53 

higher accuracy than any single model.  Different statistical approaches for predictive habitat 54 

modelling possess varied strengths and weaknesses and by examining the outputs of a range 55 

of modelling techniques and their differences, more robust predictions, with better described 56 

variation and areas of uncertainties, can be achieved. As improvements to prediction outputs 57 

can be achieved without additional costly data collection, ensemble mapping approaches have 58 

clear value for spatial management.   59 

KEYWORDS: Cold-water corals, Deep sea, Ensemble approaches, Habitat mapping, 60 

Megabenthos  61 
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1. INTRODUCTION 62 
As the anthropogenic footprint extends deeper into our oceans, reliable descriptions of 63 

the seafloor and the species present are required to devise appropriate management and 64 

conservation measures.  With very limited areas of seafloor mapped at comparable resolution 65 

to terrestrial environments (Sandwell et al., 2006), quantitative spatial information regarding 66 

distributions of marine biotic and abiotic components is needed to build benthic habitat maps 67 

(Kostylev et al., 2001).  Recent advances in acoustic techniques for seafloor mapping (Brown 68 

et al., 2011) have made it possible to create detailed geomorphological maps more rapidly.  69 

However, the biological information needed to supplement complete coverage topographic 70 

and geological maps has remained limited owing to the time-consuming process of specimen 71 

collection and taxonomic identification (Przeslawski et al., 2011).   72 

Full coverage biological sampling is often not an option, and hierarchical approaches 73 

involving nested survey designs are often employed.  They involve a combination of broader-74 

scale geological map creation based on acoustic data, and detailed ground-truthing biological 75 

studies covering smaller spatial extents, often taking the form of imagery transects (Elvenes 76 

et al., 2014; Robert et al., 2015).  These broader-scale geological maps can be used to define 77 

habitat patches allowing the relationships between the spatial arrangement of these patches 78 

within the surrounding landscape and their effect on species spatial patterns (Turner and 79 

Gardner, 1991) to be examined, modelled and used to make biological predictions across the 80 

larger extent covered by the acoustic surveys. The spatial arrangement of habitat patches can 81 

be described using a variety of class and landscape metrics, the former used to describe 82 

properties of patches from a single habitat type while the latter are used to characterise all 83 

patches present within a landscape (McGarigal et al., 2012).  Although such metrics have 84 

been shown to help explain species spatial patterns (Teixidó et al., 2002), they have so far 85 

rarely been employed for predictive mapping. 86 
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In recent years, there have been an increasing number of studies employing a variety 87 

of techniques to produce predictive full coverage megabenthic invertebrate habitat maps: 88 

maximum entropy (Rengstorf et al., 2012; Ross and Howell, 2012), many types of decision or 89 

classification trees (Compton et al., 2013; Gonzalez-Mirelis and Lindegarth, 2012), a variety 90 

of multivariate analyses or ordination methods (Buhl-Mortensen et al., 2012; Shumchenia 91 

and King, 2010), general additive models, neural networks (Palialexis et al., 2011) and many 92 

more.  Some of these techniques, such as maximum entropy, are based on records of presence 93 

only (with background points), as obtaining reliable absence data can be particularly difficult 94 

(Pearce and Boyce, 2006).  However, when absence data is available, presence-absence 95 

models (such as general linear/additive models or classification trees) can provide more 96 

information regarding unsuitable habitats (Brotons et al., 2004; Pearson et al., 2006) and 97 

avoid the difficulties associated with selecting appropriate background points (Phillips et al., 98 

2009). 99 

In this study, we used benthic imagery data (photographs and extracted video frames), 100 

in addition to acoustic maps to produce predictive maps for megabenthic invertebrate species 101 

assemblages, specifically demonstrating the usefulness of class and landscape indices to 102 

improve prediction results.  The prediction accuracy of three different modelling approaches 103 

was investigated for highly heterogeneous sections of seabed mapped at very high resolutions 104 

(~0.5 m pixel size): redundancy analysis (RDA) (ter Braak, 1994), maximum entropy 105 

(MaxEnt) (Phillips and Dudík, 2008) and random forest (RF) (Breiman, 2001).  As these 106 

techniques represent three very different modelling approaches (‘assemble and predict 107 

together’, RDA; ‘assemble first, predict later’ using a presence only model, MaxEnt; as well 108 

as a presence-absence model, RF) (Ferrier and Guisan, 2006), the aim was to determine 109 

whether, and which, a single approach may be most appropriate when considered across 110 

multiple species assemblages.  Based on the results obtained, we also examined whether 111 
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ensemble maps, which take into account predictions and uncertainties from more than one 112 

model (Araújo and New, 2007; Marmion et al., 2009b), could further improve predictions.   113 

2. MATERIALS AND METHODS 114 

2.1 Survey Design 115 
As part of the ‘UK Marine Environmental Mapping Programme’ (MAREMAP; 116 

http://www.maremap.ac.uk/index.html) and the ‘COmplex Deep-sea Environments: Mapping 117 

habitat heterogeneity As Proxy for biodiversity’ project (CODEMAP; 118 

http://www.codemap.eu/), a section of the western flank of Rockall Bank (200-400 m), 119 

Northeast Atlantic, was mapped during the RRS James Cook 060 cruise carried out in May - 120 

June 2011 (Figure 1).  Over 380 km2 of ship-based multibeam bathymetry (pixel size of 121 

10x10 m), three 12-13 km2 Autosub6000 autonomous underwater vehicle (AUV, missions 122 

M43, M44 and M45) sidescan sonar surveys (pixel size of 0.5x0.5 m) and five Lynx remotely 123 

operated vehicle (ROV) photographic imagery (2592x1944 pixels) transects (1,222 images 124 

along ~8 km using a Kongsberg OE14-208 digital stills camera) were collected.  During the 125 

JC-073 cruise carried out in June 2012 as part of the UK Ocean Acidification programme’s 126 

‘Changing Oceans Expedition’, two additional Holland I ROV high-resolution (1920x1080 127 

pixels) video transects (Insite Mini Zeus camera with direct HDSDI fibre output) were 128 

carried out within the more heterogeneous area (M43) surveyed by the AUV.  Frames were 129 

extracted at a rate representing the distance separating the previously collected digital stills (~ 130 

1 frame per 5 m, 514 images).    131 

The high resolution AUV surveys were positioned in areas of proposed boundary 132 

changes to a conservations zone (Figure 1).  In 2007, a Fisheries Closure was established by 133 

the North East Atlantic Fisheries Commission (NEAFC Recommendation IX-2008, EC 134 

Regulation No 40/2008) based on reports of cold-water coral occurrence.  In 2011, a nearly 135 

http://www.maremap.ac.uk/index.html�
http://www.codemap.eu/�


Ensemble Mapping of Rockall Bank 

6 
 

overlapping, but slightly extended area was put forth as candidate Special Area of 136 

Conservation (cSAC) with the main aim of protecting stony and biogenic reefs (JNCC, 137 

2010), a habitat listed under Annex I of the Habitat Directive (92/43/EEC).  As such, AUV 138 

mapping was conducted in areas outside of the Fisheries Closure, but still inside the cSAC 139 

(M44 and M45) as well as inside both protected areas (M43), to identify the status of the 140 

seabed habitats.  ROV imagery transects were positioned to sample a variety of sediment 141 

types within each of the three areas, including areas of high backscatter likely to harbour 142 

cold-water corals.  To reduce the influence of spatial autocorrelation, images were 143 

systematically subsampled into 8 groups in which neighbouring pictures were located at a 144 

distance of 40m (Figure 2).   145 

All individual organisms larger than 1 cm were counted and identified, using 146 

morphospecies when species-level identification could not be achieved.  Identification was 147 

achieved by consulting image catalogues (Guillaumont et al., 2014; Howell and Davies, 148 

2010; Jones and Gates, 2010; KeyToNature programme, 2015; SERPENT project, 2009; 149 

WoRDSS, 2016), species lists compiled from conservation work in the area (Howell et al., 150 

2009; JNCC, 2010) and taxonomic resources (Hayward and Ryland, 1995 ; Mortensen, 151 

1927).  Sponges were only described to morphological categories as outlined in Bell and 152 

Barnes (2001).  Parallel lasers (with 10 cm separation) were mounted on the ROVs to provide 153 

a scale on all recorded images.  Positioning was achieved using the ROVs’ ultra-short 154 

baseline (USBL) navigation systems.  Only common species, which occurred in at least 10 155 

images, were retained for the analysis, which was carried out with the images as sampling 156 

units. 157 
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 158 

Fig. 1. Map of the surveys carried out on Rockall Bank, Northeast Atlantic.  Ship-based 159 
bathymetry (black outline) displayed with superimposed outlines of the sidescan sonar data 160 
(grey boxes) collected during three autonomous underwater vehicle missions.  The remotely 161 
operated vehicle imagery transects carried out during the JC-060 cruise are shown in red and 162 
the two from JC-073 in blue, superimposed on the autonomous underwater vehicle sidescan 163 
sonar maps (high backscatter shown in white).  The boundaries of a 2007 fisheries closure 164 
area (yellow) and a candidate for ‘Special Area of Conservation’ (pink) are also displayed.  165 
Depth contours for Northeast Atlantic background from GEBCO bathymetry (General 166 
Bathymetric Chart of the Oceans (IOC IHO and BODC, 2003).  167 

   168 
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169 
 170 
Fig. 2. Schematic of the steps taken. The data were separated into eight partitions where 171 
images were located every 40m.  Three statistical approaches were applied separately to each 172 
partition and the results were evaluated using the partition whose images were halfway 173 
(20m).  For each partition, the three statistical approaches were combined to form ensemble 174 
models.  These steps were carried out for four species assemblages. 175 
 176 

  177 
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Environmental descriptors were derived from the sidescan backscatter maps 178 

(EdgeTech FS2200, 410 kHz).  These maps had been classified into sediment interpretation 179 

maps (0.5x0.5 m pixel size) representing six seabed facies (soft and mixed sediments, hard 180 

substratum, exposed bedrock as well as coral stand and rubble) using an unsupervised 181 

classification (Robert et al., 2014).  From the sediment interpretation maps, class and 182 

landscape indices were derived to describe the shape, size, diversity and spatial arrangement 183 

(connectivity) of habitat patches (selected for their explanatory power using redundancy 184 

analysis and forward selection based on Robert et al. (2014), listed in Table 1).  Bathymetry 185 

and CTD derived environmental variables were examined, but as they did not significantly 186 

improve the models, they were not included and are not discussed further.   187 

Landscape and class metrics were calculated for each pixel of the sediment 188 

interpretation maps using moving windows (sizes of 60x60 m and 150x150 m, see Robert et 189 

al. (2014) for description of size choice).  Owing to the large number of computations 190 

involved, the high performance computer cluster IRIDIS 3 (University of Southampton) was 191 

used to run an R script (R Development Core Team, 2011) written for parallel computation.  192 

The R package ‘SDMTools’ was used to compute the metrics and the package ‘Snowfall’ 193 

was used to run the computations in parallel.  On smaller datasets, these computations could 194 

easily be accomplished on a regular desktop computer (see Appendix A for R code).    195 
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Table 1. List of class and landscape variables used to construct predictive maps.  Values in 196 
italics indicate the size of the moving window used to calculate the metrics.  For formulas 197 
and descriptions see McGarigal (2012). 198 
 199 

Class Metrics 200 
   60m        150m 201 
   Sand 202 
Proportion of Like Adjacencies  Max.  Shape Index 203 
Landscape Shape Index   Min.  Shape Index 204 
     Proportion of Like Adjacencies 205 
     Mean Patch Area 206 
 207 
   Mixed Sediments 208 
Landscape Shape Index   Mean Shape Index 209 
Mean Patch Core Area 210 
 211 
   Hard Substrate 212 
Mean Shape Index   Mean Patch Core Area 213 
 214 
   Bedrock 215 
Effective Mesh Size   Min.  Patch Area 216 
Patch Density 217 
Mean Shape Index 218 

   Live Coral 219 
Total Area    Mean Shape Index 220 
Min.  Patch Core Area   Largest Patch Index 221 
 222 
   Coral Rubble 223 
Patch Density    Min.  Patch Core Area 224 
 225 
Landscape Metrics 226 
   60m        150m 227 
β Max.  Shape Index   Number of Patches 228 
β Largest Patch Index   Mean Core Area Index 229 
     Mean Shape Index 230 
        231 
  232 
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2.2 Predictive Modelling 233 
Four species assemblages (A1- Parastichopus tremulus, A2- Munida sarsi and 234 

associated species, A3- Reteporella sp. and various sponge spp., and A4- Lophelia pertusa 235 

and associated species) were identified using K-mean classification, ANOSIM and ‘species 236 

indicator values’ (described in Robert et al. (2014)).  Although low numbers of individuals 237 

were generally found, the holothurian Parastichopus tremulus was most commonly observed 238 

in soft sediments.  Bryozoan species (mostly Reteporella sp.) and various sponge 239 

morphotypes were characteristic of hard substratum, while the abundant squat lobster Munida 240 

sarsi dominated mixed sediment areas.  Species associated with the cold-water coral Lophelia 241 

pertusa included sabellid worms, an unsampled actinarian sp. and many asteroid spp.  242 

Analyses were carried out using the R libraries ‘vegan’, ‘randomForest’, ‘dismo’, ‘raster’ and 243 

‘caret’. 244 

2.2.1 Redundancy Analysis 245 
A multivariate approach was first considered, and redundancy analysis (RDA) was 246 

used to create the first set of full coverage fine scale biological maps.  Similarly to Oldeland 247 

et al. (2010), we used the estimated coefficients of the linear combination of environmental 248 

predictors to position each pixel along the canonical axes.  To assign each pixel to a species 249 

assemblage, a nearest neighbour classification (k=10) was carried out.  The probability of 250 

belonging to each of the species assemblages was estimated using the proportion of nearest 251 

neighbours. 252 

2.2.2 MAXENT 253 
Maximum entropy (MaxEnt) predicts an index of relative habitat suitability using 254 

presence data compared to randomly selected background points (Phillips and Dudík, 2008) 255 

by minimizing the distance between the probability density of species occurrence and the 256 

probability density of the covariates as they occur in space (relative entropy) (Elith et al., 257 

2011).  The software MaxEnt (version 3.3.3, freely available online 258 
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http://www.cs.princeton.edu/~schapire/maxent/) was employed with sampling bias grids to 259 

select the background points and help account for the transect design.  Weighted surfaces 260 

based on sampling density were built (with more weight given to areas closer to sampled 261 

locations) using a Gaussian kernel estimation (with SD of 500 m) (Clements et al., 2012).  262 

Habitat suitability predictions were made separately for each of the four species assemblages.  263 

Presence/absence predictions were obtained by setting the threshold level to optimize 264 

sensitivity and specificity. 265 

2.2.3 Random Forest 266 
 Random Forest (RF) is a technique that allows for the building of multiple trees for a 267 

dataset, hence the term forest (Breiman, 2001).  Each tree is built based on a sub-sample of 268 

the data and at each node the data are split based on the best predictor variable, selected out 269 

of a smaller number of randomly selected variables.  A probability estimate can be obtained 270 

based on the number of votes given to each class for a given pixel.  Forests were built using a 271 

varying number of trees and environmental variables, but a forest containing 1,000 trees and 272 

considering 15 environmental predictors per node was selected. 273 

2.3 Model Evaluation 274 

 To minimize spatial autocorrelation between the training and testing datasets, 275 

systematic data splitting was carried out. For each of the 8 data partitions, the dataset whose 276 

images were located at a distance of 20m (for example models based on partition 3 were 277 

assessed using images in partition 7, Figure 2) were used to calculate the area under the curve 278 

(AUC) of the receiver operating characteristics (ROC) (Fielding and Bell, 1997; Manel et al., 279 

2001).  This distance was chosen based on spatial analysis of the data which indicated that 280 

spatial autocorrelation became negligible at distances of ~20 m as a result of the high 281 

heterogeneity introduced by iceberg ploughmarks in the area (Robert et al., 2014).  AUC was 282 

calculated for each partition, species assemblage and statistical approach.  The test AUC 283 

http://www.cs.princeton.edu/~schapire/maxent/�
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values reported for MaxEnt were based on absences identified within the acquired imagery as 284 

opposed to background data.  Prediction accuracy (the proportion of correctly assigned 285 

presences and absences over total sample size) was also calculated.  Full coverage maps were 286 

produced for each of the eight partitions.  To assess similarities between the predictive maps 287 

obtained from each of the statistical approaches, the Hellinger-based niche similarity metric 288 

described in Warren, Glor & Turelli (2008) was computed on maps averaged across 289 

partitions.  This measure can vary from 0 (no overlap) to 1 (identical niches). 290 

2.4 Ensemble Predictions 291 
 Considering that different models are likely to produce different predictive outputs, 292 

but with each containing separate information and areas of uncertainties, the idea of ensemble 293 

predictions is to summarise a range of potential outcomes to produce more robust predictions 294 

(Araújo and New, 2007).  Using the same partitioning of training and test datasets as 295 

previously described, for each partition, AUC values for the ensembles were calculated by 296 

averaging probability maps from all three models for each species assemblage.  Accuracy of 297 

the ensemble predictions was calculated by first assigning, for each statistical approach and 298 

partition, the species assemblage with the highest predicted probability of occurrence.  299 

Subsequently, for each partition, majority voting was carried out based on the species 300 

assemblage predicted by each statistical technique.  To obtain a visual depiction of prediction 301 

confidence, the number of models in agreement at each pixel was also calculated. 302 

3. RESULTS 303 
For the combined JC-060 and JC-073 datasets, a total of 11,268 individual organisms 304 

were observed from 38 morphospecies (present in at least 10 images).  For each of the 305 

species assemblages considered, AUC values showed all models to perform better than could 306 

be expected by chance (Table2).  Based on the eight partitions MaxEnt showed average AUC 307 

values ranging from 0.73 (SD=0.05Assemblage A4; SD=0.02 Assemblage A3) to 0.63 308 
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(SD=0.05 Assemblage A2), values of 0.81 (SD=0.02 Assemblage A1) to 0.63 (SD=0.04 309 

Assemblage A2) for RDA and 0.83 (SD=0.02 Assemblage A1) to 0.68 (SD= 0.05 310 

Assemblage A2) for the RF classifier.  All models had the most difficulties predicting 311 

Assemblage A2.  Assemblage A1 could be captured by RDA and RF, but predictions using 312 

MaxEnt were lower (Mean=0.67, SD=0.02).  Overall, RF had the highest AUC values across 313 

species assemblages. 314 

 The three models showed differences in the maps of habitat suitability for the various 315 

species assemblages, but measures of environmental niche indicated similarities between 316 

model predictions (Table 3).  Generally, RDA and RF showed the most similarities across all 317 

species assemblages, and all models tended to select a similar set of environmental 318 

descriptors as most important.  For RF, the number of patches (150 m), the mean patch size 319 

for soft sediments (150 m) and the total area occupied by coral (60 m) were the most 320 

important variables.  For individual species assemblages, all three environmental descriptors 321 

were also the most important for Assemblage A1, while for Assemblage A3, it was the 322 

former and for Assemblage A4, the latter.  Proportion of like adjacencies for soft sediment 323 

(150 m) was also important for Assemblage A2.  For MaxEnt, total area covered by coral 324 

(60m) and effective mesh size of bedrock (60 m) were also important for Assemblage A4, 325 

while number of patches (150 m) was selected for both Assemblages A2 and A3.   For 326 

Assemblage A1, it was maximum shape index and proportion of like adjacencies for soft 327 

sediment (150m).  Similarly for RDA, the number of patches (150 m) and the proportion of 328 

like adjacencies for soft sediment (150 m) were most important, but the mean shape index for 329 

corals (150 m) and the effective mesh size for bedrock (60 m) were also valuable.     330 
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Table 2. Area under the curve (AUC) values observed based on eight partitions for four different species assemblages using three statistical 331 
approaches (Maximum Entropy (MaxEnt), Redundancy Analysis (RDA) and Random Forest (RF)) and one ensemble mapping approach.  332 
Numbers in bold show highest values obtained for each assemblage and partition.  Assemblage A1 - Parastichopus tremulus and associated 333 
species, Assemblage A2 - Munida sarsi and associated species, Assemblage A3 - Reteporella sp. and various sponge spp. and Assemblage A4 - 334 
Lophelia pertusa and associated species. 335 
 336 
 Assemblage A1  Assemblage A2    Assemblage A3   Assemblage A4    337 
 RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble 338 
1 0.84 0.83 0.63 0.83 0.69 0.69 0.68 0.74 0.70 0.81 0.71 0.75 0.76 0.82 0.81 0.83 339 
2 0.80 0.83 0.66 0.82 0.63 0.76 0.65 0.72 0.74 0.81 0.74 0.78 0.59 0.67 0.71 0.69 340 
3 0.82 0.86 0.66 0.85 0.55 0.67 0.63 0.64 0.75 0.81 0.71 0.76 0.78 0.81 0.76 0.80 341 
4 0.79 0.84 0.66 0.82 0.64 0.66 0.61 0.67 0.69 0.73 0.72 0.72 0.56 0.67 0.65 0.67 342 
5 0.83 0.79 0.72 0.84 0.67 0.69 0.67 0.72 0.77 0.80 0.75 0.80 0.76 0.78 0.73 0.78 343 
6 0.81 0.84 0.69 0.84 0.60 0.73 0.65 0.69 0.84 0.85 0.74 0.83 0.81 0.76 0.70 0.77 344 
7 0.83 0.83 0.65 0.84 0.63 0.63 0.63 0.66 0.79 0.80 0.75 0.79 0.72 0.78 0.74 0.77 345 
8 0.80 0.83 0.67 0.83 0.64 0.62 0.55 0.59 0.68 0.75 0.74 0.74 0.68 0.74 0.74 0.79 346 
Mean 0.81 0.83 0.67 0.83 0.63 0.68 0.63 0.68 0.74 0.79 0.73 0.77 0.71 0.75 0.73 0.76 347 
SD 0.02 0.02 0.03 0.01 0.04 0.05 0.04 0.05 0.05 0.04 0.02 0.04 0.09 0.06 0.05 0.06 348 
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Table 3. Hellinger-based niche similarities measures (Warren et al. 2008) between habitat 349 
suitability predictions for four species assemblages based on three statistical approaches.  350 
Number in bold show highest values obtained for each assemblage and survey area.  351 
Assemblage A1 - Parastichopus tremulus and associated species, Assemblage A2 - Munida 352 
sarsi and associated species, Assemblage A3 - Reteporella sp. and various sponge spp. and 353 
Assemblage A4 - Lophelia pertusa and associated species. 354 

 Assemblage A1 Assemblage A2 Assemblage A3 Assemblage A4 355 
M43 MaxEnt RDA RF MaxEnt RDA RF MaxEnt RDA RF MaxEnt RDA RF 356 
MaxEnt  0.83 0.83  0.81 0.84  0.81 0.81  0.75 0.78 357 
RDA   0.91   0.90   0.87   0.88 358 
RF             359 
M44             360 
MaxEnt  0.82 0.84  0.74 0.75  0.73 0.77  0.73 0.77 361 
RDA   0.91   0.90   0.83   0.83 362 
RF             363 
M45             364 
MaxEnt  0.81 0.84  0.82 0.83  0.79 0.82  0.81 0.83 365 
RDA   0.90   0.89   0.84   0.87 366 
RF  367 
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 368 

Fig. 3. Maps showing the prediction agreement based on the three models considered for 369 
Assemblage A4 (Lophelia pertusa and associated species) for three survey areas around two 370 
conservation zone boundaries.  The maps were based on the habitat suitability averaged 371 
across all eight partitions.  The inset on the left shows the relative position of the three survey 372 
areas M43, M44 and M45 with respect to the boundaries of the conservation zones and the 373 
outline of the shipboard-multibeam survey. The white rectangles represent areas for which 374 
the acoustic data was corrupted and were not included in the prediction models. 375 

 376 
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 377 

Fig. 4. Maps showing the relative habitat suitability resulting from an ensemble modelling 378 
approach for Assemblage A4 (Lophelia pertusa and associated species) for three survey areas 379 
around two conservation zone boundaries (higher suitability in black).  The maps show the 380 
habitat suitability averaged across all eight partitions.  The inset on the left shows the relative 381 
position of the three survey areas M43, M44 and M45 with respect to the boundaries of the 382 
conservation zones and the outline of the shipboard-multibeam survey.  Maps for the other 383 
three groups are presented in Appendix B.  The white rectangles represent areas for which the 384 
acoustic data was corrupted and were not included in the prediction models. 385 
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The areas of variability also differed between models (Figure 3) and ensemble 386 

predictions (Figure 4 and Appendix B) made by combining all three models exhibited a 387 

slightly higher accuracy across species assemblages than could be obtained based on any 388 

single model (Table 4).  Ensemble predictions showed the highest (or equal) accuracies in 389 

every partition for Assemblage A3, and all but one partition for Assemblage A1.  For the 390 

other two species assemblages, ensemble predictions still showed the highest (or equal) 391 

accuracy in half of the partitions.  Overall, models completely disagree in less than 10% of 392 

the area surveyed while all three agreed in 25.8% of M43, 79.0% of M44 and 42.1% of M45 393 

(Figure 3). 394 

4. DISCUSSION 395 
 By taking advantage of species-environment relationships, abiotic proxies can provide 396 

direct applications for the management of natural resources by establishing representations of 397 

biotic components via high resolution acoustic survey techniques.  The spatial arrangement of 398 

habitat patches was successfully included to predict the spatial patterns of four species 399 

assemblages across a highly heterogeneous area of seabed.  No single approach consistently 400 

surpassed the others across species assemblages and although differences occurred between 401 

spatial predictions of habitat suitability from the different statistical approaches, ensemble 402 

models appeared as a meaningful improvement.   403 

4.1 Model Predictions 404 

Of the three models (RDA, RF and MaxEnt) compared in this study, similar AUC values 405 

were obtained, but performance varied by species assemblage.  As species turnover generally 406 

occurs over a gradient, the predictions showed a similar pattern, and overlap between habitat 407 

suitability predictions occurred, particularly between Assemblage A3 and A4.  This is to be 408 

expected as cold-water corals need hard substratum for attachment .    409 
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Table 4. Accuracy values obtained based on eight partitions for four different species assemblages using three statistical approaches (Maximum 410 
Entropy (MaxEnt), Redundancy Analysis (RDA) and Random Forest (RF)) and an ensemble mapping approach.  Accuracy defined as the 411 
proportion of correctly assigned presences and absences over sample size.  Number in bold show highest values obtained for each assemblage 412 
and partition.  Assemblage A1 - Parastichopus tremulusand associated species, Assemblage A2 - Munida sarsi and associated species, 413 
Assemblage A3 - Reteporella sp. and various sponge spp. and Assemblage A4 - Lophelia pertusa and associated species. 414 

 Assemblage A1   Assemblage A2   Assemblage A3   Assemblage A4    415 
Partition RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble RDA RF MaxEnt Ensemble 416 
1 0.76 0.70 0.76 0.81 0.74 0.73 0.71 0.73 0.76 0.88 0.84 0.88 0.82 0.87 0.83 0.83 417 
2 0.72 0.73 0.76 0.78 0.68 0.77 0.68 0.75 0.80 0.83 0.82 0.86 0.82 0.85 0.82 0.87 418 
3 0.70 0.76 0.76 0.78 0.78 0.78 0.70 0.76 0.79 0.85 0.79 0.88 0.82 0.84 0.82 0.83 419 
4 0.69 0.74 0.72 0.76 0.78 0.75 0.61 0.83 0.79 0.80 0.81 0.92 0.81 0.77 0.82 0.84 420 
5 0.72 0.70 0.76 0.71 0.71 0.71 0.76 0.71 0.83 0.87 0.79 0.88 0.82 0.85 0.85 0.81 421 
6 0.70 0.73 0.76 0.76 0.76 0.73 0.70 0.73 0.81 0.83 0.82 0.90 0.85 0.82 0.84 0.78 422 
7 0.75 0.71 0.76 0.77 0.76 0.76 0.71 0.76 0.83 0.87 0.80 0.87 0.79 0.81 0.81 0.82 423 
8 0.71 0.73 0.73 0.76 0.69 0.72 0.72 0.74 0.85 0.85 0.82 0.86 0.76 0.82 0.80 0.82 424 
Mean 0.72 0.72 0.75 0.77 0.74 0.74 0.70 0.75 0.81 0.85 0.81 0.88 0.81 0.83 0.82 0.83 425 
SD 0.02 0.02 0.02 0.03 0.04 0.02 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02426 
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(Wilson, 1979) and in turn provide hard substratum to a number of species.  Assemblage A2 427 

appeared as a transition between the more defined hard substratum and soft sediment 428 

associated fauna, and as such prediction performance for this assemblage generally tended to 429 

be lower. Across models, areas of highest disagreement tended to occur at the edge of patches 430 

and highlighted the difficulty associated in delineating hard boundaries for otherwise 431 

continuous gradients of species assemblages.  Albeit at a larger scale, higher levels of 432 

discrepancies between modelling techniques have been shown to occur at the edge of a 433 

species distribution (Grenouillet et al., 2011).  Assemblage A2 tended to be found in 434 

particularly complex areas where a high number of patches, of both hard and soft sediments, 435 

appeared.  On the other hand, Assemblage A1 was found in areas characterised by few large 436 

patches in proximity to other large soft sediment patches.  Assemblage A3 or even A4 were 437 

generally found in regions of harder substratum, particularly if bedrock was present. 438 

As these three statistical approaches are based on very different modelling strategies, 439 

differences in their predictions are to be expected.  Presence-absence models generally 440 

provide more information about less suitable habitats (if adequate absences are available).  As 441 

this information is not available to presence only models, overestimation of suitable habitats 442 

can occur (Brotons et al. 2004; Pearson et al. 2006).  Results can also depend on species 443 

characteristics, with generalist species being more difficult to predict accurately, and absence 444 

data being more valuable for such species (Brotons et al., 2004; Marmion et al., 2009a).  This 445 

might be another reason why lower prediction performances were obtained for Assemblage 446 

A2.  Overall MaxEnt tended to show a lower niche similarity than RDA and RF, which may 447 

be due to its different data requirement.  In the case of RDA, classification into assemblages 448 

was only conducted after predictions of individual species, and as such could be more 449 

affected by difficulties associated with predicting rarer species.  However, since species are 450 

predicted instead of assemblages, it might also be possible to define potentially new 451 
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assemblages as occurring in areas outside of the originally sampled locations (Ferrier and 452 

Guisan, 2006).  RF predictions for Assemblage A4 equalled those of the ensemble model.  453 

Other studies have found RF to often equal ensemble approaches (Grenouillet et al., 2011; 454 

Marmion et al., 2009b), potentially because it already includes a consensus step and might be 455 

less affected by species geographical attributes, such as prevalence, range and spatial 456 

autocorrelation (Marmion et al., 2009a).  On the other hand, Meynard and Quinn (2007) 457 

found that although GAM tended to outperform classification trees under many simulated 458 

scenarios, the latter were particularly effective at predicting species displaying threshold 459 

(on/off) response curves to environmental variables.  In the case of Assemblages A3 and A4, 460 

a threshold response to the presence of hard substratum could be expected while 461 

Assemblages A1 and A2 may be more likely to exhibit more continuous response curves.  462 

Additional factors also complicate predictive habitat modelling, particularly in deeper waters.  463 

Precise spatial positioning can be problematic for underwater vehicles, particularly AUVs, 464 

owing to difficulties associated with determining the initial position following the descent 465 

and correcting for drift (McPhail, 2009).  However, as our study site was located at 200-400 466 

m water depth, limited drift would be expected.  Accuracy of the ROV’s Sonardyne USBL 467 

navigation is also expected to be better than 1% of the depth.  With the landscape and class 468 

metrics calculated at scales of 60 m and 150 m, a small shift in position would have had 469 

limited effects on the values of the explanatory variables.  The spatial extent for which 470 

predictions can be valid is also of importance, as predictions made for areas outside the range 471 

of environmental conditions captured by the survey design are problematic (Elith and 472 

Leathwick, 2009).  The use of transects limited the area surveyed to single narrow lines 473 

leaving most of the regions covered acoustically without any biological sampling.  Transects 474 

are designed to maximise seafloor survey areal coverage for a given bottom time, but also 475 

have the disadvantage of causing issues of spatial autocorrelation which need to be taken into 476 
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account in order to adequately capture predictive ability (Hirzel and Guisan, 2002; Legendre 477 

et al., 2002).  In our study, this effect was mitigated through a subsampling scheme which 478 

increased distances between sample images used for model building. 479 

4.2 Ensemble Mapping for Conservation 480 
Comparison of the statistical approaches showed differences in predictions, but a single 481 

approach did not consistently outperform the others when multiple species assemblages were 482 

considered.  Instead, our results suggest that taking into account the output of many different 483 

models may provide a valuable alternative.  Ensembles can be created  using an array of 484 

approaches (Marmion et al., 2009b), but even the relatively simple approach taken in this 485 

study was effective at optimizing different model strengths and increasing accuracy.  All 486 

three statistical approaches were included in the ensemble mapping of all four species 487 

assemblages, but in other cases, the consideration of thresholds for the exclusion of lower 488 

performing models may also be valuable.  In any case, diversity in the type of approaches 489 

selected is needed to increase the likelihood of obtaining better performing ensemble models 490 

(Du et al., 2012).  Identifying regions of prediction disagreement across models also provides 491 

an easy to understand depiction of spatial uncertainties. 492 

 On the other hand, under certain circumstances, ensemble mapping may be of less 493 

value.  One example may be when the main aim is to derive habitat indicators such as extent 494 

to monitor the achievement of "Good Environmental Status" as suggested by the Marine 495 

Strategy Framework Directive (MSFD) (2008/56/EC) (CEFAS 2012; OSPAR 2012).  In this 496 

case, having the most thorough description of an habitat, including across model 497 

uncertainties, may not be as important as having a consistent approach with minimum 498 

deviation over time from which to monitor change (Strong, 2015).  Employing multiple 499 

models can increase the variability as some models may perform less adequately for certain 500 

assemblages and make it more difficult to assess the degree of change across surveys.  501 
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However, this should still not preclude the examination of the data using multiple statistical 502 

approaches, as one approach may be more sensitive to a given environmental variable and be 503 

able to detect change earlier.  Once prediction similarly has been ascertained, the final 504 

measure of extent could still rely on one specific technique for consistency. 505 

Cold-water corals can have a strong impact on local diversity and much effort is being 506 

made to improve their conservation (Roberts and Hirshfield, 2004), but owing to limited data 507 

spatial planning often must rely only on spatial predictions of habitat suitability.  Even so, 508 

these maps provide greater insights into their spatial distribution patterns, which helps in 509 

understanding their ecology and supports adequate management better than single point 510 

observation obtained from limited imagery transects or physical samples.  As illustrated by 511 

the case of Rockall Bank, different statistical approaches may provide different predictive 512 

maps of coral suitability.  Predictions of assemblage A4 (mostly composed of the cold-water 513 

coral L. pertusa and associated filter-feeding species), the least common assemblage, were 514 

particularly sensitive to changes in modelling approach.  For example, if only random forest 515 

had been considered, it would have been tempting to conclude that area M44 was as suitable 516 

a conservation area as M45.  However, M44 was only found to contain coral rubble in ROV 517 

video surveys, likely resulting from past trawling activities. Ensemble models better 518 

represented the spatial patterns observed in the video survey as they highlight areas where 519 

predictions were consistent across at least two models.   520 

Even though it is the broader-scale patterns in species distributions that may be of 521 

interest for management purposes, it is the fine-scale habitat characterisation of the 522 

environment, through high-resolution sidescan sonar mapping, that allowed the heterogeneity 523 

of the region to be accurately captured and the driving processes identified.  The ship-board 524 

bathymetry survey carried out during JC-60 covered less than 10% of the 4,365 km2 525 

conservation zone and took approximately 2.3 days.  Although of much higher resolution 526 
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than other datasets available for the remainder of this area, compared to the even higher 527 

resolutions obtained with the AUV, the ship-board dataset was of limited use in explaining 528 

species distribution patterns for the extent covered in this survey (Robert et al. 2014).  It is 529 

clear that AUV mapping shows great promise for marine management; however there 530 

remains a distinct trade-off between the resolution achieved and the extent that can be 531 

covered.  With current AUV technologies, Autosub6000 can be sent out from a ship to 532 

autonomously map an area for ~30 hrs, covering a distance of ~150 km (the size of the 533 

resulting area mapped will vary based on the acquired resolution) (Wynn et al., 2012).  In 534 

order to map the entirety of the conservation zone to the resolution acquired in this study, 535 

>200 days would be required.  This is well outside the scope of most scientific cruises or 536 

conservation projects, but AUVs have been successfully employed to target certain features 537 

in other conservations zones such as Haig Fras and the Darwin Mounds (Wynn et al., 2012).  538 

The Marine Autonomous and Robotic Systems (MARS) facility is also currently working on 539 

developing long-distance AUVs which could be deployed from shore to reach the closer 540 

offshore conservation areas with the aims of eventually covering greater extents at high 541 

resolutions and instituting repeat long-term monitoring of specific areas without the need for 542 

expensive ship-based surveys.  543 

4.3 Conclusion 544 
Predictive habitat maps are of great use for marine management as they represent the 545 

best available information to support decision making, but, as they are typically based on a 546 

very limited amount of data, they should only serve as general guides until more data become 547 

available.  The presentation of uncertainty maps should help emphasize this point and can be 548 

employed to help select target areas for which further biological sampling will be particularly 549 

valuable.  Uncritical reliance on a particular statistical method, without comparison with 550 

others, may lead to decisions being biased by the chosen method since predictions made from 551 
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different modelling strategies have been shown to give differing outputs, but whose 552 

combination into ensemble models can lead to increased accuracy.  Comparison between 553 

statistical methods showing one method to outperform the others may not always be 554 

extendable to other habitats, species or assemblages, and similarly our results cannot be 555 

perfunctorily generalized to all habitats.  However, in cases where one statistical approach 556 

cannot be identified as performing significantly better, ensemble approaches may provide an 557 

elegant alternative.  Although this approach can be more involved than other techniques, the 558 

additional work requires no further costly sampling or access to specialized equipment and 559 

potential increases in prediction performances are clearly of value for spatial planning.   560 
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