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Summary 
 

This report describes the current scientific knowledge of extreme weather and climate events in 

Europe for the following variables: temperature, precipitation, hail, and drought (with the following 

types of drought: meteorological, hydrological and soil moisture).  The content summarises key 

literature drawn from peer reviewed journals and other sources (business and government reports), 

and builds upon the synthesised results presented in international assessments such as IPCC reports. It 

describes the recorded observations and modelled projections for extreme events including definitions, 

frequency, trends, spatial and temporal distribution. The report also presents an overview of the 

indices used to characterise extreme events as well as their main uses, before going on to describe the 

datasets where they are recorded, and provides information on the strengths and weaknesses of the 

indices and the datasets. Extra consideration is given to indices that are relevant to socio-economic 

impacts resulting from climate change and relevant statistical techniques for analysing extreme events. 

Observed changes in global climate and extreme events provide the context to the changes in extreme 

events observed in Europe, which are described for much of the 20
th
 century. Modelled projections of 

extreme events are also given, under different emissions scenarios and time horizons, including results 

from regional models covering the European domain, such as EURO-CORDEX. The report is written 

for climate scientists, climate researchers and experts who use climate information in a professional 

role. There are four case studies (Appendix 2) which provide an anatomy of different recent European 

extreme weather/climate events including meteorological impacts and synoptic context. 

Observed global temperature trends show the number of warm extremes has increased and number of 

cool extremes has decreased over the last 100 years, and the length and frequency of summer heat 

waves has increased during the last century. In Europe these trends are most pronounced in the last 40 

years although regional variations exist. For Europe, 2014 was the warmest year on record, although it 

had fewer hot days than recent years. Under future climate change with continued warming, the 

number of heat waves is projected to increase, along with their duration and intensity. Under all 

emissions scenarios, summers like the hot summer experienced in 2003 will become commonplace by 

the 2040s. 

The global trend in precipitation is generally for wetter conditions over the 20
th
 century although 

changes are less temporally and spatially coherent than those observed for temperature. The general 

trend in precipitation for Europe in the 20
th
 century is of increases over northern Europe and decreases 

over southern Europe. Extreme precipitation is becoming more intense and more frequent in Europe, 

especially in central and eastern Europe in winter, often resulting in greater and more frequent 

flooding. Since 1950 winter wet spells increased in duration in northern Europe and reduced in 

southern Europe, while summer wet spells became shorter in northern and eastern Europe. An 

increasing proportion of total rainfall is observed to fall on heavy rainfall days. Extreme precipitation 

(including short intense convective or longer duration frontal types) demonstrates complex variability 

and lacks a robust spatial pattern. Climate models project that events currently considered extreme are 

expected to occur more frequently in the future. For example a 1-in-20 year annual maximum daily 

precipitation amount is likely to become a 1-in-5 to 1-in-15 year event by the end of the 21st century 

in many parts of Europe.  
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There are few ground based hail observation networks, so satellite measurements and weather models 

are used to identify hail forming conditions. In Europe most extreme hail events occur in the summer 

over Central Europe and the Alps where convective energy is greatest. Intense hail events are linked 

to increases in convective energy in the atmosphere observed over the last 30 years. Hailstorm 

projection studies, although limited to France, northern Italy and Germany, show  increases in the 

convective conditions that lead to hail and some areas show a rise in damage days although this is not 

statistically significant. 

Recent severe droughts include Italy (1997-2002), the Baltic countries 2005-2009, the European 

heatwave of summer 2003, and the widespread European drought of 2011. The 1950s were prone to 

long, intense, Europe-wide meteorological and hydrological droughts. In northern and eastern Europe 

the highest drought frequency and severity was from the early 1950s to the mid-1970s. Southern and 

Western Europe (especially the Mediterranean) show the highest drought frequency and severity since 

1990. There has been a small but continuous increase of the European areas prone to drought from the 

1980s to the early 2010s. Regional climate models project a decrease in summer precipitation until 

2100 of 17%. Dry periods are expected to occur 3 times more often at the end of this century and to 

last longer by 1 to 3 days compared to the period of 1971-2000. There is significant uncertainty 

associated with future projections of drought, with climate variability being the dominant source of 

uncertainty in observed and projected soil moisture drought. 
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1  Introduction 

 

1.1  Setting the Scene 
 

The IPCC AR5 (2013) states that ‘warming of the climate system is unequivocal’ and it is ‘virtually 

certain’ that human activity is the main cause. In Europe the effects of climate change on climate 

indicators are well documented, although the magnitude of future climate change depends on past and 

current as well as future human activity. Extreme weather events will change as the climate changes 

and the changes are not necessarily direct or easily predicted. The rarity of extreme weather (heat 

waves, extreme rainfall, droughts, etc) makes them more difficult to understand scientifically, or to 

analyse and project compared with ‘average’ weather. However they often have the highest impact on 

and cause the greatest damage to human wellbeing and both natural and managed systems.  

Extremes of climate are of increasing interest to European policy makers because of their severe 

impacts on individuals, communities and the wider European economy. An understanding of extreme 

weather and climate change is an essential input to European policy making in key areas of Climate 

Change Adaptation (CDA) and Disaster Risk Reduction (DRR). EU adaptation strategy acknowledges 

that Europe is warming faster than many other parts of the world. The European land temperature over 

the past decade has been on average 1.3°C higher than in the pre-industrial era, compared with a 

global average rise of 0.8°C (European Environment Agency, 2012). Impacts vary across the EU, but 

the Mediterranean basin, mountain areas, densely populated floodplains, coastal zones, outermost 

regions and the Arctic are particularly vulnerable to climate change impacts. Extreme weather events 

have increased, with southern and central Europe seeing more frequent heat waves, forest fires and 

droughts. Heavier precipitation and flooding is projected in northern and north-eastern Europe, with a 

heightened risk of coastal flooding and erosion. An increase in such events is likely to enlarge the 

magnitude of disasters, leading to significant economic losses, public health problems and deaths (EU 

Strategy on adaptation to climate change
1
 and the European Environment Agency’s key observed and 

projected climate change and impacts for the main regions in Europe
2
). The European Commission's 

office for Humanitarian Aid and Civil Protection
3
 (ECHO) develops DRR (Disaster Risk Reduction) 

policy guidelines which make disaster preparedness a central principle in, for example, the European 

Civil Protection Forum
4
. Improved knowledge of extremes will support its key aim of reducing the 

vulnerability of the European and global communities to extreme climate events and climate change 

(European Commission, 2013). The Copernicus Climate Change Service
5
 (C3S) provides an 

operational service and knowledge base to support these initiatives. It provides reliable information 

about the current and past state of the climate, seasonal forecasts, and future projections in the coming 

decades for various scenarios of greenhouse gas emissions and other Climate Change contributors.  

 

1.2  Climate context of extreme weather events 
 

Accurate measurements of the global surface temperature go back to the mid 19
th
 century (e.g. 

HadCRUT4 (Morice et al., 2012), MLOST (Vose et al., 2012, Smith et al., 2008), GISS (Hansen et 

                                                           
1
 http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm 

2
 http://www.eea.europa.eu/data-and-maps/figures/key-past-and-projected-impacts-and-effects-on-sectors-for-the-main-

biogeographic-regions-of-europe-3 
3
 http://ec.europa.eu/echo/where/europe-and-the-caucasus_en 

4
 http://ec.europa.eu/echo/partnerships/civil-protection-partners/civil-protection-forum_en 

5
 http://climate.copernicus.eu/ 
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al., 2010), Berkeley (Rohde et al., 2013) and show an increase in the global surface temperature over 

this time period. The datasets capture the changes in the mean surface temperature, but are less good 

at capturing extreme events which usually occur on timescales shorter than monthly averages, and 

over relatively small regions. A natural extrapolation of the observed increase in global average 

surface temperatures is that the extreme values would also increase by a similar amount (Figure 1). 

Therefore, compared to an earlier baseline, there would be more extreme events, and also events that 

are outside what would normally be expected in the un-warmed climate (also called “the world that 

might have been”).  

As Figure 1 makes clear, this view underlies the assumption that the distribution of temperatures does 

not change significantly as the average climate warms. Using daily maximum and minimum 

temperatures, Donat et al. (2012) showed that there have been changes in the shape of distributions as 

well as a mean shift, and these changes manifest as skews towards the hotter parts. Also, the changes 

in the minimum temperatures have been stronger than the maximum temperatures (e.g. Karl et al., 

1993, Easterling et al., 1997, Donat et al., 2013a), indicating that the distribution of temperatures 

measured at sub-daily resolutions have also changed in the last decades. Changes in extreme 

temperatures are discussed in Section 3.1.  

Figure 1: How a change in the distribution of the mean (a), the variance (b), the mean and 

variance (c) in temperature affect the frequency of both hot and cold extreme events. Panel (d) 

illustrates how an increase in the variance in precipitation leads to an increase in heavy 

precipitation events (Source: Figure 1 from Zwiers et al., 2013). 
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Global and regional trend analysis suggest that European winters are getting warmer and wetter, 

summers are getting warmer and drier, and that northern Europe is getting wetter, southern Europe is 

getting drier. This has been generalised by some to suggest intensification, i.e. dry areas are getting 

drier, wet areas are getting wetter (Durack (2012) quoted in Greve and Seneviratne, 2015). There has 

also been an increase in the number of very wet days, the proportion of total from heavy precipitation 

events, and increases in the frequency of rare events. However, precipitation data are more variable 

than temperature data, trends are less clear to distinguish and extreme values are subject to significant 

uncertainty. Trends in extreme precipitation are explored in section 3.2. 

Hail records are limited compared with temperature and rainfall, being collected from limited hail-pad 

networks and physical observations. Records are currently insufficient to identify trends in time with 

confidence, although research is active in the areas of dynamic (hail-producing) meteorology and 

remote sensing using, for example, radar reflectivity and satellite temperature data. This will 

contribute to improved forecasting and warning models and a better understanding of hail producing 

mechanisms. Longer term it will contribute to the European spatial and temporal database of hail 

frequency and magnitude, a baseline for future trend analysis. Extreme hail events are reviewed in 

Section 3.3. 

Severe recent droughts in eastern Europe have generated increased interest in their social, economic 

and environmental impacts (e.g. a 1 in 200 year drought event in 2015 reduced shipping by 75% on 

the Danube
6
). Over the period 1950-2009, the duration of dry spells increased in summer and reduced 

winter in northern and eastern Europe. Dry spells and wet spells both reduced in duration all year 

round in southern Europe. This implies a lengthening of wets spells at the expense of dry spells, and 

grouping of dry and wet days rather than a changing number of wet days (Zolina, 2012). The area 

affected by droughts has increased in many regions since 1970, as has the intensity (Klein Tank et al., 

2009). Drought extremes are explored further in Section 3.4.  

 
1.3 Features of recent extreme events in Europe 
 

A summary of recent extreme events in Europe is shown on Table 1. The characterising features of 

extreme temperature, precipitation and drought are discussed below. A comprehensive study of heat 

waves, their characteristics, drivers and projected future changes on a global scale can be found in 

Perkins (2015). In this report we focus on recent studies and analyses, concentrating on the European 

region. Before 2000, the extreme summer temperatures experienced during heat wave events were on 

the whole within 2-3 standard deviations of the climatologically expected values (Figure 1). Some 

events had occurred within the relatively recent past, but these were restricted to relatively small 

regions. Within the following ten years, large swathes of the continent had experienced heat waves 

that were outside of what had previously occurred. Heat waves in Turkey (2001), south-western 

central Europe (2003, 2006), the Balkans (2007) and eastern Europe (2010) had caused up to 500-year 

long records to be broken over about 65% of Europe (Figure 2, Barriopedro et al., 2011). Also the 

areas which experienced maximum temperatures over 3 standard deviations above the climatology 

had doubled within this decade.  

  

                                                           
6
 http://www.telegraph.co.uk/news/worldnews/europe/hungary/8936080/Worst-drought-in-200-years-

paralyses-Danube-river-shipping.html 

http://www.telegraph.co.uk/news/worldnews/europe/hungary/8936080/Worst-drought-in-200-years-paralyses-Danube-river-shipping.html
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Table 1: Extreme Events in Europe since 1999 (Adapted from NAS & NMI, 2013) 
 

December 1999 
Winter storms in western and central Europe. Heavy precipitation and extremely high 
windspeed. 

August 2002 
Heavy precipitation and floods along central European rivers. Economic losses exceeded 
€15 billion.  

Summer 2003 
 Heat wave in central and western Europe. Extremely high temperatures for weeks led to 
more than 30 000 deaths and extreme drought across Europe. More than 25 000 fires burnt 
650 000 hectares. 

Summer 2005 
 Heat and drought in southern Europe. Extremely high temperature. Significantly less 
precipitation than average. 

Winter 2006  
Extreme cold in eastern and central Europe. Minimum temperature was 4–12° C colder than 
the 1961–1990 mean.  

Mild winter 2007 
 Winter of 2007 ranked among the warmest ever recorded in a large part of Europe. 
Average temperature anomalies were more than 4° C.  

May 2008  Flash floods in central Europe. 

Summer 2008 
Floods across eastern European river. Nearly 50 000 homes were submerged; more than 
30 000 hectares of farmland was destroyed. 

Winter 2009 The winter of 2009 was colder than usual in central and western Europe. 

Spring 2010 
Flooding in Poland and eastern Europe. In May 2009 the precipitation amount was 100 mm 
above the long-term mean across vast regions of eastern Europe. Total flood damage 
exceeded € 2.5 billion. 

Winter 2010 

 Unusually cold, snowy winter in Europe. Most areas of Europe saw between 10 and 20 
additional ice days than normal from December through February. Due to the prolonged 
cold temperatures and the frequency of snow storms, the number of days with more than 1 
cm of snow on the ground was significantly greater than normal across Europe. 

February 2010 
Severe winter storms in Europe. Tropical storm Xynthia passed through Portugal, Spain, 
France, Belgium, the Netherlands and Germany, causing heavy rainfall and high wind 
speed. 

Summer 2010 

Heat and drought in eastern Europe. This region was hit by record temperatures; very low 
rainfall amounts resulted in crop losses, peat and forest fires. Mean temperature was 
between 4 and 8° C higher than the long-term average during July and August. For many 
regions there were at least 10 and up to 30 more summer days than normal during July 
2010. 

Summer 2011 Widespread drought in Europe 

Winter 2013 Extreme rainfall and flooding in Europe 

Summer 2014 Extreme rainfall and flooding in Europe affecting Bosnia-Herzegovina 

Summer 2015 
Drought in Europe ‘extreme weather belt’ linked to worst drought since 2003. Severe 
droughts that stretched across a central European band this summer are consistent with 
climate models for a warming continent 

Summer 2015 

Flooding in southern France (French Riviera) caused by heavy rain killed at least 15 people 
and left 12 missing near France's Mediterranean coast. More than 350 mm (14 inches) of 
rain fell on the Var department in southern France in a few hours, triggering flooding that 
surged in some places to two metres over normal water levels 

Autumn 2015 Heavy rain and flooding Italy (Pisa, Florence), Croatia, Serbia, Bosnia (5-deaths)  
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Figure 2: Spatial distribution of the hottest European summers. The height and the colour of 

the bars indicate the best-guess maximum anomaly (degrees Celsius, relative to the 1970–1999 

period) and the decade of the corresponding summer, respectively, for the periods (A) 1500–

2000 and (B) 1500–2010. For better readability, each bar is subdivided with 1°C intervals. The 

embedded plot shows the corresponding percentage of European areas with summer maxima 

above the given temperature (in SDs) for the 1500–2000 (dashed line) and 1500–2010 (dotted 

line) periods. (Source: Figure 3 from Barriopedro et al., 2011) 

 

 

 

Although now over a decade ago, the heat wave in France and surrounding countries in 2003 was 

classified as the warmest summer in Europe in the last 500 years (Luterbacher et al., 2004, Beniston 

2004). The average temperatures exceeded all historical measurements on both monthly and seasonal 

timescales (Figure 3, Schaer et al., 2004, Fouillet et al., 2006). The most severe impacts on human 

health were experienced in France, with over 14,000 excess deaths recorded from 1
st
 to 20

th
 August 

2003 (e.g. Vandentorren et al., 2004, Foulliet et al., 2006). The vast majority of these excess deaths 

occurred in the elderly population. Other countries affected by the event also recorded excess deaths: 

e.g. around 6,500 in Spain (e.g. Martinez et al., 2004), 2,100 in England and Wales (Johnson et al., 

2004) and 1,400-2,200 in the Netherlands (e.g. Garssen et al., 2005); further information is available 

in Garcia-Herrara et al., (2010). The event also contributed to severe forest fires in Portugal (Trigo et 

al., 2006), low vegetation productivity (because of low soil moisture Ciais et al., 2005) with knock on 
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effects for agriculture. The magnitude of this heat wave was the result of persistent anticyclonic 

conditions from late spring through into the late summer with particularly clear skies (Black et al., 

2004). This resulted in a strong deficit in the soil moisture, which reduced the buffering effect of 

evaporation on the high temperatures (Fischer et al., 2007). 

Figure 3: Extent of 2003 heat wave event. TERRA MODIS derived land surface temperature data 

of 1km spatial resolution. The difference in land surface temperature is calculated by 

subtracting the average of all cloud free data during 2000, 2001, 2002 and 2004 from the ones 

in measured in 2003, covering the date range of July 20 to August 20. (Source: NASA MODIS
7
). 

  

 

A few years later, in 2006, another warm summer occurred in a very similar region. The health 

impacts of this event in France were lower than those of 2003, in some cases because of lessons learnt 

during the previous event (Fouillet et al., 2006). In 2007, a heat wave occurred in the eastern 

Mediterranean, the Balkan peninsula and parts of Asia Minor (Founda & Giannakopoulos 2009, 

Busuioc et al., 2007). Many stations in this region broke records that had been set in the 1940s (Tolika 

et al., 2009), and major forest fires occurred in the Peloponnese as a result of the dry vegetation. 

There have been three notable events in recent years; the large heat wave in eastern Europe in 2010 

and smaller events in the Balkan peninsula in 2012 and central Europe during 2013. The extended and 

severe event in western Russia and eastern Europe in 2010 was by far the worst such event of the past 

33 years (Nature News 2014), based on the Heat Wave Magnitude Index (Russo et al., 2014). An 

estimated 55,000 people died as a result of the high temperatures. This event is discussed in more 

detail in (Appendix A.2 Case Studies). There have been no published studies of the 2012 event thus 

far. The heat wave in 2013 resulted in unprecedented temperatures in parts of Austria, contributing to 

the fifth warmest summer over Europe since 1951. Three individual warm periods occurred, one each 

                                                           
7
 http://earthobservatory.nasa.gov/IOTD/view.php?id=3714 

http://earthobservatory.nasa.gov/IOTD/view.php?id=3714


 

12   Extreme weather and climate in Europe 
 

in June, July and August, driven by blocking pressure patterns and a preceding precipitation deficit 

(Lhotka & Kyselý, 2015). 

During July and August 2015, western Europe experienced a significant heat wave (NOAA 2015). 

Austria experienced its “most extreme summer on record”
8
, and the second warmest (after 2003) since 

1767, 2.5°C above average. In Germany, a new national record of 40.3°C was set on the 7
th
, and 

August as a whole was 2.8°C warmer than normal
9
. The Netherlands came with 0.4°C of a new 

temperature record with a maximum of 38.2°C on 2
nd

 July
10

. In France, three stations set all time 

records (Boulogne-sur-mer, Dieppe, and Melun with temperatures of 35.4°C, 38.3°C, and 39.4°C 

respectively), and Paris measured 39.7°C, the second highest maximum on record
11

. Madrid managed 

40°C for the first time since 1943
12

.  

Despite the focus that heat waves have in the picture of a warming climate, the opposite events, cold 

snaps, can still occur – albeit they are expected to become rarer as time passes. During 2010, northern-

Atlantic Europe experienced a cold December (Cattiaux et al., 2010). Although this had impacts on 

the health of vulnerable people, and also on transport and infrastructure, it was not as cold as extreme 

winters of the previous six decades nor as cold as the atmospheric patterns would have lead to in the 

absence of warming (Cattiaux et al., 2010). 

From a climatological perspective, heat wave-like events can also occur in the shoulder seasons 

(spring and autumn) as well as in winter. Although temperatures elevated above the average in these 

seasons will not reach the levels where they have impacts on human health, they can still have 

widespread impacts on agriculture and forestry.  

Extreme precipitation includes short term high intensity rainfall, resulting from strong convergence of 

atmospheric vapour with convection or other dynamics triggering precipitation in localised areas, and 

flooding in urbanised catchments. Lower intensity rainfall over longer duration, sufficient to cause 

significant river flooding, may also be classified as extreme. For example in England and Wales, 2000 

was the wettest autumn on record since 1766 with €1.8 billion in damages, and 2007 saw the wettest 

July on record with damages of €4.2 billion. In 2011-12 and 2013-14, relatively low intensity but 

exceptionally prolonged winter rainfall caused extensive pluvial and fluvial flooding.  

There have been several high profile examples of intense flooding caused by intense and prolonged 

rainfall and disruption to infrastructure in Europe over the last few years. The European Commission 

is set to grant an aid package worth €16.2 million  to Greece and Bulgaria following predominantly 

flood disasters that occurred in the winter of 2015. Extreme flooding in Central Europe occurred after 

heavy rain in late May and early June 2013 when flooding affected south and East Germany, western 

regions of the Czech Republic, and Austria. Switzerland, Slovakia, Belarus, Poland, Hungary and 

Serbia were affected to a lesser extent. Parts of central Europe received more than 100 lm
-2

 in 72 hours 

in June 2013 and severe flooding occurred in the Elbe and Danube catchments (Figure 4). 
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 https://www.zamg.ac.at/cms/de/klima/news/sommer-2015-neue-rekorde-bei-temperatur-trockenheit-und-
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Figure 4: (a) Rainfall (lm
-2

) over 72 hours in June 2013 and (b) Flooding in Passau, Bavaria, 

2013
13

. 

  
 

In 2014, the heaviest rain in 120 years was recorded in Serbia and in Bosnia and Herzegovina, with 

flooding affecting 1.6 million people, including the loss of 62 lives, and over 2000 landsides across 

the Balkan region
14

. Record daily totals were recorded in Belgrade (107.9 mm), Valjevo (108.2 mm) 

and Loznica (110 mm) on 15 May, and the highest monthly total of 205mm in Belgrade the highest 

since 1897. Damages were estimated to be €1.55 billion, and it is estimated that it will take 5 years for 

agriculture in the affected regions to recover and up to a year for coal mines at Tamnava and Veliki 

Crljeni to be recommissioned.  

Droughts remain a persistent and damaging phenomenon affecting vital life support systems of water 

availability, food production and both land and water based habitats. They are complex to measure, 

comprising interacting meteorological, hydrological and soil moisture components. They are therefore 

assessed using indices, for example the standardized precipitation index (SPI), the standardized 

precipitation evapotranspiration index (SPEI), and the Palmer Drought Severity Index (PDSI). Other 

indices include for example the crop moisture index, drought magnitude and surface water supply 

index (Bradford, 2000). See Section 3.4 for further details. There is limited evidence that they are 

intensifying in terms of their magnitude or duration, (see later sections), but there are several recent 

examples which highlight their importance to European social and economic communities. Recent 

European droughts occurred in Russia (2010), in France, England and Central Europe (2011), and 

Europe wide in 2012 affecting southern and eastern Europe (Romania, Slovenia and the Carpathians). 

Figure 5 shows soil moisture in Iberia at the end of 2013 from the European Drought Observatory 

(EDO) by the Joint Research Centre (EC-JRC). 
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Figure 5: Monthly soil moisture anomaly in Iberia, 2013-2014, Source EDO Drought Report 

August 2014. 

 
 

Hail extremes are less well understood due to the technical challenges of measuring hail magnitude 

directly, hence fewer data records are available. The incidence of extreme hail is more often 

characterised in terms of the size of hail physically measured at ground level, and economic 

(insurance loss) data for significant events e.g. Germany 2013, (refer case study 3.4). Indirect 

measurement by remote sensed (radar reflectivity and satellite temperature) data is increasingly used 

to identify hail in combination with temperature and modelled CAPE (convective available potential 

energy). Other extreme hail events have been recorded in southern Germany in July 1984, June 2006, 

July 2013, several events occurring in States of Baden-Württemberg and Bavaria; south-west France 

in 2013 (Berthet et al., 2013); Spain in 2013 (Merino et al., 2013), and Sofia Bulgaria in 2013 

(Papagianuki 2013) and 2014. These events were caused by summer supercell thunderstorms and 

caused significant economic damage. Two supercells moving over central and southern Germany on 

27 and 28 July 2013 caused economic losses of €2.8 billion, which represent the highest insured loss 

by natural hazard in Germany to date. 

 
1.4 Intended readership and scope of report 
 

Thus report is aimed at readers who are familiar with climate and/or weather science and who use this 

knowledge in their professional activities. It will be of value to policy makers in the areas of European 

Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR) for prioritising responses to 

climate related risk and reducing the vulnerability of European communities to climate extremes.   

This report assesses recent scientific literature on extreme events in Europe, the level of understanding 

of the meteorological and climate components, and provides information on the metrics used to 

quantify extreme events. It presents the current scientific understanding of past, current and future 

extreme events for Europe and updates the European results of the IPCC AR5 (2013) and IPCC SREX 

(2012). It also updates information on extremes in the European Environment Agency’s report on 

Climate Change Impacts and vulnerability report (EEA, 2012) and, like that report, emphasises the 

use of indices to characterise extreme events. 

http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1051
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This report considers extremes of temperature (heat and cold), hail, precipitation (excess in terms of 

intensity or duration), and drought, (meteorological, soil moisture, and hydrological (river flow)). 

These were identified as climate variables of particular interest due to the impacts of recent European 

extreme events and perceptions of their changing magnitude and frequency. It examines trends in time 

based on available observational data (i.e. physically measured with ground based sensors or remote 

sensed from radar or satellite instruments) and model reanalysis (the analysis of model data run 

historically in time). It also examines future projections of these extremes from climate models. 

Case studies of a heat wave, drought, extreme precipitation and hail event are provided in Appendix 

A.2 which describe the ‘anatomy’ of specific European events in the context of climate, weather 

patterns, indices and, where relevant, interactions with other systems (e.g. health, agriculture). This 

report excludes extremes in the following variables and events: wild fires; sea surface temperatures; 

storms, windstorms and storm surges; coastal and river flooding; severe convection and lightning; and 

snow and ice.  

The impacts of extreme weather and climate events are not dealt with in this report, although 

emphasis is given to where aspects of the research can be carried through for use in impact studies. No 

analysis of attributing climate change (to anthropogenic causes or natural climate variability) is 

attempted, although the role of emissions (and their uncertainty) in affecting future climate change, 

and therefore extreme events, is described. Indices and other analytical techniques are used in this 

report to describe and understand extreme events, except for those based purely in the realm of 

statistics. 
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2  Data  

2.1 Observations 

2.1.1 Data types 

Climate data are gathered and managed by national meteorological and hydrological services 

(NMHS). Data are produced from extensive ground based networks of temperature and rain gauges 

and weather radars. These are supplemented with satellite data from provided by international satellite 

data programmes. There are also some limited hail-pad networks in some countries. Hydrological data 

includes river and stream flow gauge data at strategic locations, as well as soil water and groundwater 

measurements. The availability of these data varies by country and by region, due their physical 

density and because data licensing policies also vary (Figure 8a lower panel).  

Land surface temperature data are gathered from a dense network of ground base temperature gauges, 

some with very long records, supplemented with data from aircraft.  

Precipitation data are collected from rain gauges, weather radar, and satellites. Rain gauge networks, 

provide a direct measurement of rainfall at a point location, at daily, hourly, and sub-hourly temporal 

resolutions. Long records of quality-controlled daily rain gauge data, sometimes as far back as the 

start of the 20
th
 century, are available in many European locations, as well as good sub-daily (hourly) 

records in specific locations. However, the spatial density of rain gauges varies by country with less 

good coverage in eastern and southern Europe. Spatial density is generally insufficient to capture all 

storms, or full storm extent. The length of record also varies between stations and there may be data 

gaps and outages affecting data quality. Some of these discrepancies can be addressed by blending 

data from different sources, for example rain gauge data are combined with radar rainfall data by the 

UK Met Office into a single product (Nanding et al., 2015; Jewell, 2013).  

A key source for ground based synoptic data is WMO’s Global Climate Observing System (GCOS), a 

global synoptic network of automatic weather stations sending data to national meteorological 

services, WMO’s World Weather Watch, and weather and climate organizations such as the European 

Centre for Medium-Range Weather Forecasts (ECMWF) and EUMETSAT. Record lengths vary but 

in some cases extend back to the beginning of 20
th
 century or earlier. Rain gauge data are 

supplemented with, and sometimes merged with radar and satellite data.   

 

Monthly and daily precipitation datasets are essential for characterising annual and seasonal 

climatologies. Higher resolution data (spatial and temporal) are necessary to identify localised and 

sub-daily extremes, in particular those associated with convective rainfall. In support of very high 

(1.5km) resolution modelling studies, the CONVEX project has produced a high resolution hourly 

precipitation dataset for the UK based on 1,300 rain gauges (Blenkinsop et al., 2015). Kendon et al., 

(2014) used 5km gridded hourly UK radar data which is available from 2003 to present day, as well as 

5km gridded daily rain gauge data for UK (Perry et al., 2009) for model validation. A global hourly 

precipitation dataset is being produced under the FP7 INTENSE (INTElligent use of climate models 

for adaptatioN to non-Stationary climate Extremes) project (Fowler, 2015).  

 

Radar and satellite remote sensing data  

Radar is an indirect measurement technique by which rainfall rates are derived from raindrop 

reflectivity above ground, and converted to provide an estimate of ground level rainfall. They 

http://research.ncl.ac.uk/convex/
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supplement rain gauge data with spatial and relative intensity information. Radars measure rainfall 

intensity indirectly at high spatial (up to 0.5 km) and temporal (typically 5 or 15 minute) resolution. 

Radar rainfall complements rain gauge data providing improved spatial coverage in near real-time so 

are especially useful for operational applications (e.g. flood forecasting) but can underestimate very 

heavy rainfall. Radar rainfall data are calibrated using rain gauge data, and the two data types can be 

combined to make a composite dataset (Sideris et al., 2014).  

Satellites are an important source of precipitation data where rain gauges scarce. Satellite radiometers 

are used to estimate rainfall from cloud top temperatures and overshooting tops, a zone of elevated 

temperature indicating convective activity beneath. They have the shortest records (up to 

approximately 30 years) and, like radar, records are updated at intervals for new instruments and 

algorithms. Satellite data are subject to greater uncertainty, and processed at lower temporal 

resolutions (2-day accumulations or lower).  

Two key satellite rainfall products are GPCP and TRMM/GPM, providing data at daily, 10-day and 

monthly intervals. GPCP (Global Precipitation Climatology Project) merges data from over 6,000 rain 

gauge stations with geostationary and low-orbit satellite data to estimate monthly rainfall on a 2.5-

degree global grid since 1979. TRMM (The Tropical Rainfall Measuring Mission) monitored tropical 

rainfall from 1998 until its retirement last year. It provided 3-hourly and 7-day rainfall totals. TRMM 

products have been shown to overestimate rainfall over continental Europe compared with NOAA’s 

very high resolution CPC Morphing Method, CMORPH (Stampoulis et al., 2012). Both techniques 

underestimate rainfall over higher elevations, especially during the cold season.  

PERSIANN is another satellite derived global precipitation product at 3-hourly and 0.04 degree 

resolution but was found to capture convective rainfall less well than CMORPH in a study over 

northern Italy and southern France (Stampoulis et al., 2013). Merged satellite and gauge-data products 

(e.g. GPCP-Int, CMAP, CAMS-OPI) combine the satellite’s advantages of superior sampling in space 

and time, and the accuracy of direct rain gauge measurement. 

 

Integrated and combined data (including reanalyses) 

The representation of rainfall on the local scale, and in particular at spatial and temporal scales 

sufficient to represent convective extremes, requires high resolution datasets. The following 

climatological datasets are compiled from the observations networks above as well as additional data 

from regional observations networks.  

The European Climate Assessment & Dataset
15

 is gridded dataset for daily precipitation, temperature 

and sea level pressure in Europe based on ECA&D information published by KNMI. The full dataset 

covers the period 1950-2014. EURO4M (European Reanalysis and Observations for Monitoring) 

provides high resolution precipitation data for Austria, Croatia, France, Germany, Slovenia, 

Switzerland, and Italy. STAMMEX is a high-resolution (0.05-0.2 degree) gridded long-term 

precipitation dataset based on DWD’s daily-observing precipitation network for the period 1880-2007 

(Zolina et al., 2014a). CLIMDEX provides a suite of in-situ and gridded land-based global datasets of 

indices representing in particular climate extremes. ACRE (Atmospheric Circulation Reconstructions 

over the Earth) is a large regional to global historical weather and climate observational databases. 

The HadISD dataset (Dunn et al., 2012) includes precipitation data as well as other ground-based 

climate variables for the period 1973-2014, although to date, the precipitation data have not been 

quality controlled. 
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 ECA&D/E-OBS http://www.ecad.eu/download/ensembles/ensembles.php 

http://precip.gsfc.nasa.gov/
http://trmm.gsfc.nasa.gov/
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http://www.met-acre.org/
http://www.metoffice.gov.uk/hadobsd/hdisd
http://eca.knmi.nl/download/ensembles/ensembles.php
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Other global climate datasets include NCAR’s Global Land Precipitation and Temperature dataset
16

, a 

gridded monthly time series for the period 1900-2010, which incorporates long-term monthly and 

annual station averages (Legates and Willmott, 1990). Monthly data provide information on unusually 

prolonged wet or dry spells but will not capture shorter duration extremes. The Water and Global 

Change (WATCH) project combined ERA-14 reanalysis with a soil moisture indicator to produce a 

gridded dataset to assess crop evapotranspiration overland (Weedon et al., 2011). A new high-

resolution (0.05-0.2 degree) precipitation dataset STAMMEX (Spatial and Temporal Scales and 

Mechanisms of Extreme Precipitation Events over Central Europe) enables regional analysis of 

precipitation extremes, and includes a number of supplementary datasets. These datasets include 

monthly and seasonal precipitation totals, intensities, number of wet days, characteristics of heavy 

(95th percentile) and very heavy (99th percentile) precipitation, as well as the distribution of fractional 

contribution (DFC), and statistics of wet- and dry-spell durations. Model reanalysis datasets such as 

ERA-Int
17

 and ERA-CLIM
18

 provide climate data for multi-decadal periods. 

Hail data  

Hail data are not collected routinely by any NMS (National Meteorological Service). There are some 

limited hail pad networks, mainly in hail prone areas of Germany, comprising styrofoam pads from 

which hail size is derived from dent size (after Schleusener et al., 1960). Hermida et al., (2013) used 

hail data from 2335 hail pads at 386 stations to quantify spatial, altitudinal and temporal hail 

variability for two regions (Atlantic and Midi-Pyrénées) in France. More specialist meteorological 

equipment is operated by European universities and researchers, for example, one recent device 

derives the kinetic energy and momentum of hailstones from sound waves measured with piezo-

microphones from which hail size and the size spectrum can be inferred (Figure 6). However, because 

hail pads networks are generally scarce, with large areas without coverage, researchers generally 

depend on voluntary observations and model data. Standards for hail measurement and classification 

are described in section 3.3. 

Figure 6: Prof. Martin Löffler-Mang and Dr. Michael Kunz with hail sensor at the Baden-
Württemberg Office for the Environment, Measurements and Nature Conservation (LUBW) in 
Wiesloch, Germany (image: IMK-TRO). 
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 The Climate Data Guide: Global (land) precipitation and temperature: Willmott & Matsuura, University of Delaware. 
https://climatedataguide.ucar.edu/climate-data/global-land-precipitation-and-temperature-willmott-matsuura-university-
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Hydrological data  

Hydrological data are compiled from a European network of river flow gauging stations. Figure 7 

shows the availability of river flow data from the WMO Global Runoff Data Base (GRDB) since the 

early 1980s. The database includes monthly discharge data from more than 9,000 gauging stations 

(open and historic) compiled from UNESCO, FRIEND-Water and the European Water Archive 

(EWA). Relatively dense coverage of flow gauges can be seen in France, Germany, UK and Italy, 

while much sparser coverage can be seen in eastern Europe, Sweden, and southern Spain.  

Figure 7: Location of more than 4000 open river flow gauging stations from which data are 

collated by the WMO Global Runoff Data Centre, Koblenz (source: personal correspondence 

with Ulrich Looser). 

 
 

River flow data are derived from measured river levels and rely on gauge calibration against in-stream 

flow gauging, itself subject to high uncertainty for large river flows (Hannah et al., 2011). High and 

extreme flows are generally out-of-bank, and may bypass the river gauge altogether, and are therefore 

subject to far greater uncertainty.  

Groundwater levels are continuously monitored as an indicator of available water resources and 

baseflows in rivers, an important indicator of streamflow drought as well as available groundwater 

resources. Soil moisture is sometimes monitored, but it is more commonly modelled from 

evapotranspiration as an indicator of surface water runoff, and soil moisture drought.   

2.1.2 European datasets  

Rainfall data, especially daily data, are available as a gridded rainfall dataset, e.g. ECA&D/E-OBS
19

 

in Europe , and UK daily rainfall data at 5km resolution since 2003 (Perry et al., 2009). The quality of 
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the gridded data is influenced by that of individual gauges and the choice of interpolation scheme. 

Furthermore, National Hydro-meteorological Services may prioritise quality control for some long 

term gauges, and gauges used operationally. 

At the level of individual countries, climate data is managed by the National Meteorological Service. 

There are relatively few large international data holdings that are easily interrogated. One of these is 

E-OBS/ECAD, hosted by the KNMI (Haylock et al., 2008). The raw station data (ECAD) has been 

created from over 10,000 station records from 62 countries, for surface temperature and precipitation 

as shown in Figure 8a, with the period of record shown in Figure 8b. This raw data has been gridded 

to create the E-OBS daily dataset. 

Figure 8a: Locations of stations where data is freely available (green) and where it is only 

available for use in the EOBS gridded product (red) for temperature (top) and precipitation 

(bottom)
20

.  
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Figure 8b: Length of station record available in the EOBS dataset for temperature (top) and 

precipitation (bottom)
21

.  

 

 

 

2.1.3 Data gaps, homogeneity and time series 
 
The WMO provides international guidelines stipulating the time when minimum and maximum 

thermometers should be read, and rainfall accumulation times. Standardisation of these factors is 

important for consistency and comparability for long term climatological studies. However there are 

differences in the way the data are gathered. Haylock et al., (2008) showed that NMHSs in Europe use 
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a variety of measuring intervals and methods to construct daily mean temperatures, creating 

uncertainty in the inputs to the E-OBS dataset (van der Schrier et al., 2013).  

Station data themselves are subject to different levels of quality control. Raw data are usually archived 

(e.g. the Integrated Surface Dataset, Lott et al., 2008) usually with none or limited quality control 

applied. NMHSs then perform various quality assurance techniques, but the final data products are not 

always shared. Some more recent products (e.g. HadISD, Dunn et al., 2012) have received intensive 

quality control, but there are few standard tests that have been applied consistently and automatically 

across all station data. 

As can be seen in Figure 8, there are significant areas which have no or very sparse measurements. 

Some regions also have much shorter data records than others, which limit what can be inferred from 

any long-term trends. Also, although some station data are shared freely, not all countries provide or 

share similar numbers of stations. In Germany, where many stations with long records are provided 

and made available to all users, more detailed analyses would be possible than in other countries 

within Europe. This problem increases when attempting to study climatological extreme events across 

the globe, with large data gaps even in interpolated products (Donat et al., 2013b, Zwiers et al., 2013). 

Increased data sharing by NMHSs would improve the accuracy of conclusions drawn about the 

region. 

Not all the individual daily station data has been authorised for release by the data owners. This is a 

common problem for meteorological data at the current time, and becomes a greater issue as the time 

resolution of the data increases. By gridding the data, derived information has been permitted for 

release, to be used by the scientific community. These data have been quality controlled but not 

homogenised
22

. 

Homogenisation is the process by which the effects of (undocumented) station moves, instrument 

changes and changes in observing practices are removed from the data. For monthly data this is a 

common practice as the methods used have been assessed and benchmarked (Venema et al., 2012, 

Williams et al., 2012), but for daily and higher time resolution data (which are required for the study 

of extreme events) there have been few large scale applications thus far. However, even for monthly 

data, there remain uncertainties in the times of changes and the level of adjustment required to undo 

the non-climatic change.   

The E-OBS dataset starts on 1
st
 January 1950, but not all stations will report for the entire span of the 

data. Many will start later or finish earlier. This creates data gaps, and also has implications for the 

homogeneity of the gridded product; as stations become active or inactive the average value within a 

grid box can change (van den Besselaar et al., 2012). The length of record available is regionally 

dependent, and breaks can occur aligned with political changes within a country or region.  
 

2.1.4 Gridded data 
 

Point data from land surface weather station observations are converted to gridded format to enable 

direct comparison with model or reanalysis output. Various other interpolation methods exist (e.g. 

Voronoi Tessellation), but these will not be discussed in this paper. 

The HadEX2 dataset (Donat et al., 2013a) uses a version of the Angular Distance Weighting scheme 

from (Shepard, 1968) to calculate the values for each grid box. This uses a search radius around the 
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grid box centre to find stations that could contribute. The search radius is determined by analysing the 

correlations between every station pair, and fitting the resulting decay curve. In some instances, 

especially in areas with poor data coverage, this can result in grid boxes having values but which 

themselves contain no stations. Dunn et al., (2014) assessed the effect of four different gridding 

schemes on the behaviour of the HadEX2 dataset, and found that this, along with changes to the 

station network, had the largest influence on the global and regional characteristics. Similar results 

have also been found by (Gervais et al., 2014, Avila et al., 2015). For globally averaged, and even 

regionally averaged trends, the actual method used has a relatively small effect on the behaviour of the 

trends; areas showing increases in the numbers of warm extremes are consistent between versions. But 

at local scales, then the choice of method used can affect the magnitude of the trend (Dunn et al., 

2014, Avila et al., 2015). HadEX2 is a static dataset, covering 1901-2010, however, the same 

processing is run on the Global Historical Climate Network – Daily data (GHCND, Menne et al., 

2012) creating the GHCNDEX dataset (Donat et al., 2013b), which is updated in near-real-time. 

For the ECA&D/EOBS dataset, a technique similar to universal kriging was used in a three-step 

process to interpolate the daily data (van der Schrier et al., 2013). Gridding was carried out first, then 

aggregated to monthly scales, which requires a denser station network than if the aggregation 

preceded gridding. Haylock et al., (2008) described the method for producing the high resolution 

European precipitation grid for the period 1950–2006. The data were gridded at four spatial 

resolutions to match the grids used in current (rotated pole) RCMs. They used the same three-step 

process of interpolation, by first interpolating the monthly precipitation totals, then interpolating the 

daily anomalies using indicator and universal kriging for precipitation, then combining the monthly 

and daily estimates. The contributing gauges are shown in Figure 8a lower panel.  

Gridding introduces some uncertainty depending on station density and homogeneity as well as the 

interpolation scheme (van der Schrier et al., 2013). Some grid boxes will represent a single station, 

elsewhere uncertainty increases with distance from the contributing station, which may be hundreds of 

kilometres distant, and which may represent significantly different climatological conditions.  

 

2.1.5 Climate indices and interrelations 

In many situations it is not easy to compare the observation records from individual stations. This may 

be because the data are not easily available (see Section 2.1.3 on data gaps) or because what 

constitutes an extreme event in one place (e.g. the northern coast of Norway) is very different to 

another (e.g. central Iberia). Even between different National Meteorological Services there are 

differences in how a heat wave for example is defined. For some extreme events, calculating indices 

derived from the meteorological and other observations is a useful way of capturing the impact of 

these events as these can be standardised across national borders. Indices are also more stable and less 

variable than raw data. 

Single climate variables (e.g. maximum daily temperature or rainfall) may be insufficient to 

characterise climatological extremes. Indices can be tailored for specific impacts of interest, e.g. 

temperature thresholds which affect human health and water demand; rainfall thresholds at which  

flooding occurs; thresholds associated with drought impacts on crops and water resources; and indices 

at which hail of a magnitude or intensity likely to cause significant damage. Temperature indices 
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include heat, humidity and heat wave indices. Rainfall indices include the standardised precipitation 

index (SPI), rainfall accumulations (Rx5d), or exceedances above a threshold (e.g. T99%ile, 

T95%ile). The CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices 

(ETCCDI) recommend a core set of 27 indices
23

, including some which are relevant to extremes. The 

full list is included in Appendix A.1.  

The use of indices also allows additional influencing variables to be included in a single combined 

indicator. For example, indicators like the Standardized Precipitation Evapotranspiration index (SPEI) 

and the Palmer Drought Severity Index (PDSI) take potential evapotranspiration into account, so 

provide a better indication of soil moisture drought, other examples being the crop moisture index and 

the surface water supply index (Bradford, 2000). A probabilistic hail index (PHI) combines measured 

hail data with a model mini-ensemble to genetrate a hail prediction indicator. Specific indices are 

discussed under the following sections.  

2.1.6 Extreme Value Analysis 

The definition of extreme is affected by the choice of statistical distribution, the baseline period and 

significance test. The choice and application of EVA method (Mann-Kendall, GEV, Gumbel, 

Tweedie) will affect the frequency (rarity) estimates, as will other factors affecting EVA like the 

length of record (avoiding excessive extrapolation), the assumption of stationarity, and variability. 

EVA is not discussed in detail in this paper.  

2.2 Climate modelling and scenarios  

2.2.1  Climate models and bias correction 

Global general circulation models (GCMs) resolve the climate system at relatively coarse spatial 

resolutions, though with improvements in computing resources the resolutions are increasing. The 

IPCC assessment reports rely heavily on GCM projections delivered as part of the Coupled Model 

Intercomparison Project (CMIP), with results from CMIP3 being used in IPCC AR4, and the more 

recent CMIP5 (Taylor et al., 2012) in IPCC AR5. CMIP5 improves on previous assessments as it 

includes more comprehensive climate models, and uses a broader set of experiments that address a 

wider range of scientific questions. It also uses generally higher spatial resolution models and a more 

comprehensive set of output variables. More than 20 modelling centres from around the world have 

contributed results to CMIP5 with over 50 climate models. The simulations are based on two types of 

model experiments, one being long-term (century time scale) simulations, and the other on near term 

(10-30 year) decadal prediction experiments. The future scenario experiments are based upon the 

Representative Concentration Pathways (RCPs, see next section), an improvement over previously 

used scenarios which account for a wider range of outcomes. One benefit of multi-model ensembles is 

that they have been found to give clearer signals of change than the individual models which make up 

this ensemble for extremes indices (Kiktev et al. 2009, Sillmann et al., 2013a). 

 

The World Climate Research Program Coordinate Regional Downscaling Experiment (CORDEX) is 

producing high resolution (at least 50km) downscaled climate data based upon the CMIP5 
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experiments (Jones et al., 2011) with various domains for different regions of the world including 

Europe. The EURO-CORDEX study (Jacob et al., 2013) uses 12 different GCMs and 10 different 

RCMs over the approximate region 27°N-72°N, 22°W-45°E, at 12.5km (EUR-11: 0.11°) and 50km 

(EUR-44: 0.44°) horizontal resolutions, and representing the time periods from 1951 to 2100 using the 

RCP4.5, 8.5 and 2.6 forcing scenarios. 

 

A significant recent development is the move towards very high resolution climate model simulations, 

which are particularly beneficial for the study of precipitation changes on daily and sub-daily 

timescales. Kendon et al., (2014) have performed the first climate change experiments at 1.5km grid 

spacing, using a model more typically used for weather forecasts with explicit convection. The 

modelling results, with a particular focus on CORDEX and very high resolution model simulations, 

are described later in the report. 

 

Bias correction is often applied to climate model data in order to account for biases in the models, 

usually with respect to an observational baseline, but also to account for differences between climate 

models. The main assumptions underlying bias correction are that the quality of the bias correction is 

limited by the quality of the observations used, that the bias behaviour of the model is stationary in 

time, and that a key limitation is that temporal errors of major circulation systems (e.g. the monsoon 

onset) cannot be corrected for. A variety of methods are in use which should be chosen carefully since 

they can affect the physical consistency of different variables, and also affect different parts of the 

probability distribution in different ways. Ideally a bias correction should correct more than one aspect 

(e.g. mean or variability) in order to capture future change across the whole distribution (Hagemann et 

al., 2011).  

Many previous studies of hydrological changes have used the delta change approach (e.g. Hay et al., 

2000) which involves calculating the projected change relative to present day, and adding this on to 

present day observations. However, this only considers changes in the mean and not variability, and 

therefore future extremes in climate may not be represented well. Several different bias correction 

methods have been compared for daily precipitation over the Alps and found that quantile mapping 

showed the best performance in reducing biases, particularly at high quantiles, and therefore might be 

better suited to representing extremes (Themessl et al., 2011).  

A key issue with statistical bias correction techniques is the assumption of stationarity, which implies 

that the transfer function relating the observations to the model simulations remains the same in a 

future climate (Rojas et al., 2011). However, some techniques may be more suitable than others to 

address this problem. Borloy and Burlando (2013) presented a method to correct RCM output in a 

region of complex topography (the Rhone catchment) and found an improvement in the accuracy of, 

not just mean daily temperature and precipitation, but across the probability distribution. The authors 

suggest that the technique is suitable for correcting RCM biases regardless of the stationarity of the 

climate. It has been found that the projected regional precipitation changes in GCMs are significantly 

correlated with the respective regional biases for about 30% of the seasonal/regional cases 

investigated. For temperature, only a negligible effect of the regional bias on the projected change was 

noticed (Giorgi and Coppola, 2010). This suggests, at least for precipitation, that an impact of the bias 

correction on the climate change signal may be reasonable.  

 

Bias-corrected results show a general reduction in the summer temperature climate change signal 

compared to the uncorrected simulations, especially over parts of central and southern Europe, and 

also has been found to influence the probability of extreme events over Europe, such as extremely hot 
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days or frost days (Dosio et al., 2012). Percentile extremes indices can also be affected by bias 

correction (Sillmann et al., 2014) since they tend to be defined relative to each model’s own 

climatology.  

 

Whilst bias correction is able to improve the mean and variance of model simulated temperature and 

precipitation in many regions of the world, there are issues with other variables particularly where 

observational datasets may not be adequate to provide a robust baseline against which to adjust model 

output. Uncertainties can also arise due to differences in the observational datasets which may be 

chosen to bias correct climate model data.  

 

Bias correction methods which adjust each variable independently run the risk of removing the 

physical consistency between variables, and this can be a particular problem if, for example, an 

impacts model requires multiple climate model variables as input (e.g. temperature, precipitation, 

humidity, and soil moisture). It has been argued that bias correction can hide, rather than reduce, 

uncertainty (Ehret et al., 2012). Research into comparison of bias correction methods is currently 

underway (e.g. Nikulin et al., EGU 2015). Bias corrected results should be applied with caution, and 

users should ensure that they understand how the particular methods used might impact the change 

signal, the variability and distributions of the data, and the inter-relationships between variables. 

2.2.2 Emissions scenarios 

The potential future impacts of increasing greenhouse gas emissions are represented by scenarios 

which represent plausible future trajectories of emissions and associated atmospheric concentrations 

of greenhouse gases (GHGs). GHG emissions represent one of the components of uncertainty in 

climate change projections. Prior to the IPCC AR5, many assessments used the scenarios described in 

the IPCC Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES 

scenarios were based upon socio-economic storylines as a starting point to develop the emissions 

pathways used to model the impacts upon the climate systems.  

Table 2: Overview of representative concentration pathways (RCPs) (Van Vuuren et al., 2011). 

Radiative forcing values include the net effect of all anthropogenic greenhouse gases and 

other forcing agents. (CO2 equivalent in parts per million) From Wanders et al., 2015. 

RCP Scenario CO2 equivalent 

2.6 
Peak in radiative forcing at ∼ 3.1 W m

2
 before 2100 

and then decline (the selected pathway declines to 2.6 
W/m

2
 by 2100) 

~490 ppm  

4.5 
Stabilization without overshoot pathway to 4.5 W/m

2
 at 

stabilization after 2100. 
~650 ppm 

6.0 
Stabilization without overshoot pathway to 6 W/m

2
 at 

stabilization after 2100 
~850 ppm 

8.5 
Rising radiative forcing pathway leading to 8.5 W/m

2
 by 

2100. 
~1370 ppm 

 

The IPCC AR5 uses a new set of scenarios called Representative Concentration Pathways (RCPs) 

(Moss et al., 2010), Table 2. Unlike the SRES scenarios, RCPs are based upon the level of radiative 

forcing (at a global level) by the year 2100 from which atmospheric concentrations and emissions 

pathways can be determined. The RCPs represent a wider range of warming for the twenty-first 

century compared to SRES, a low emissions RCPs scenario being used to represent explicit climate 

change mitigation and a radiative forcing of 2.6 Wm
-2

 by 2100. The other RCPs are RCP 4.5, RCP 

6.0, and RCP 8.5. However, this should not be taken to imply a wider range of uncertainty, it is simply 
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a choice of emissions scenarios (Knutti and Sedlacek, 2013). Rogelj et al., (2012) provide a useful 

indication of the analogues between the SRES scenarios and the RCPs. Knutti and Sedlacek (2013) 

also provide a comparison of SRES and RCP warming in climate models and found that projected 

global temperature change in the new AR5 GCMs is very similar to that found in the AR4 report when 

scenario differences are accounted for, and spatial patterns of both temperature and precipitation are 

very consistent (Figure 9). Beyond the year 2100, RCP extension scenarios are also available which a 

more limited number of modelling centres have used to produce climate projections towards 2300.  

 

Figure 9: Global temperature change and uncertainty (Knutti and Sedlacek, 2013). Global 

temperature change (mean and uncertainty) relative to 1986-2005 for the SRES scenarios run 

by CMIP3 and the RCP scenarios run by CMIP5. The number of models is given in brackets. 

The box plots (mean, one standard deviation, and minimum to maximum range) are given for 

2080-2099 for CMIP5 (colours) and for the MAGICC model calibrated to 19 CMIP3 models 

(black), both running the RCP scenarios. 

 

 

2.2.3 Socio-economic & policy scenarios  

 

In the IPCC AR5, the climate and socio-economic scenarios have effectively been decoupled. Unlike 

the SRES scenarios, where a GHG emissions scenario was developed from an associated socio-

economic storyline, the climate change component of the scenarios are now represented by RCPs, and 

the socio-economic component by the Shared Socioeconomic Pathways (SSPs) (Figure 10, O’Neill et 

al., 2014). SSPs represent ‘alternative pathways describing plausible alternative trends in the evolution 

of society and ecosystems over a century timescale, in the absence of climate change or climate 

policies’. The SSPs are designed to work in a framework with the RCPs to provide alternative 

pathways of socioeconomic development which can be used in conjunction with the different climate 

pathways represented by the RCPs. Kriegler et al. (2012) set out a range of scenarios that should be 

spanned by the SSPs, which is divided into five with one SSP in each domain.  
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Figure 10: O’Neill et al., 2015, SSP ‘challenges space’. Five shared socioeconomic pathways 

(SSPs) representing different combinations of challenges to mitigation and to adaptation. 

 

 

An example of key drivers of changes captured by the SSPs include population and gross domestic 

product (GDP). The development of the SSPs is in two stages with the first being a ‘basic’ set that 

includes broad-scale narratives and global quantifications. This provides a platform for developing an 

‘extended’ set of SSPs which expand on the detail for specific sectors and regions (van Ruijven et al., 

2014). The ability to combine SSPs with RCPs allows researchers to ask questions such as “what 

could be the impacts of a given amount of climate change in worlds characterized by different 

development pathways?” (i.e. combining a single RCP with multiple SSPs), or “what could be the 

impacts of different levels of climate change under one possible future world?” (i.e. combining a 

single SSP with multiple RCPs). This separation of climate from socioeconomics provides more 

options for investigating policy relevant issues than was possible with the previous scenarios. 

Additionally, when SSPs are combined with the RCP pathways or climate change outcomes in 

integrated scenarios, there will be associated policy assumptions in order to produce emissions 

pathways that would result in the desired climate outcomes (O’Neill et al., 2014). Shared climate 

Policy Assumptions (SPAs) therefore define climate related policies , particularly aspects relating to 

mitigation and adaptation measures, and form an important additional dimension to the scenario 

matrix (Kriegler et al., 2014). 
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3 Extremes 

Introduction 
 

This section examines extremes of temperature, precipitation and hail in terms of their rarity in time 

and /or the severity of their impact. Extremes are considered in relation to climate change, to identify 

increasing frequency and severity of extreme events in a warming climate. The number of warm 

extremes is expected to increase in a warming climate (Figure 1). Even with a decrease in the number 

of cold extremes, the total number of extremes will increase, as what is considered an extreme is 

based on past experience (Coumou & Rahmstorf 2012). Increases in the average atmospheric 

temperature will lead to greater evaporation over the oceans and on land (Rahmstorf & Coumou, 

2011) which will increase the intensity and duration of drought (Trenberth et al., 2011). Warmer air 

can carry a greater quantity of water (7% increase for each 1°C from the Clausius Clapeyron equation) 

so increases in the magnitude and frequency of rainfall can also be expected (Kendon et al., 2014), a 

warmer climate generating more convective events which are associated with very intense rainfall and 

thunderstorm activity. This may also generate a greater incidence, and magnitude of severe hail 

events, as recently observed in several European regions. 

 

3.1 Temperature (Heat waves) 
 
Key Messages 

 
 

 Heat waves can be characterised in a number of ways including intensity, duration, and 

frequency of occurrence. A number of indices have been developed to allow the 

comparison of individual events and changes over time.  

 Prolonged high, or extreme summer temperatures lead to increased mortality and 

morbidityRecent past heat wave events have resulted in reduced crop (grain) yields 

 On a global scale, the number of warm extremes has increased and number of cool 

extremes has decreased over the last 100 years. Cold extremes or those based on 

minimum temperatures are changing faster than warm extremes or those based on 

maximum temperatures. 

 For Europe, 2014 was the warmest year on record, and resulted from nearly every month 

being warmer than normal, rather than extreme events or days. In fact there were fewer 

hot days than recent years. 

 The length and frequency of summer heat waves has increased during the last century. 

 Under future climate change with continued warming, the number of heat waves is 

expected to increase, along with their duration and intensity. 

 Under all emissions scenarios, summers like that experienced in 2003 will become 

commonplace by the 2040s, and with unabated greenhouse gas emissions, would be 

regarded as cool by the end of the century. 

 There are contradicting studies as to where the greatest human impacts will be, 

dependent on topography, land-use and population dynamics.  
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3.1.1 Observations and data - temperature 

To capture the severity of a heat wave there are a number of factors that can be accounted for, 

including the duration, the intensity (how much hotter than normal) and when the event occurred 

during the year. Perkins & Alexander (2013) assessed a variety of heat wave metrics that could be 

determined from temperature measurements alone. They found that CTX90p, CTN90p and Excess 

Heat Factor (EHF, see Appendix A.1 for a definition) were more suited than others for following the 

changes in heat wave number, duration intensity and frequency. The first two use the threshold of the 

90
th
 percentile of the maximum and minimum temperature respectively to find the onset of the heat 

wave, which must last at least three days. The EHF (Nairn et al., 2009) is based on two other indices 

and measures the high temperatures encountered during a heat wave against both a climatological 

value and also an acclimatisation factor of the last month.  

Using these three indices Perkins & Alexander (2013) measured the yearly number of heat waves, the 

length of the longest heat wave event, the yearly sum of heat wave days, the hottest day of the hottest 

event and the average magnitude of all the heat waves within a year. These quantities were suggested 

by Fischer & Schaer (2010) to study the multiple elements of a heat wave. Other extremes which were 

considered by Perkins & Alexander (2013) included those from the WMO/CLIVAR ETCCDI. There 

are eight possible indices that could be used for heat wave studies (summer nights (SU), tropical 

nights (TR), numbers days with maximum and minimum temperatures over the 90
th
 percentile 

(TX90p, TN90p), highest maximum and minimum temperatures (TXx, TNx) and warm spell duration 

index (WSDI). These indices fall into a number of categories – those which are absolute quantities, 

frequencies of exceedance above/below fixed thresholds, and frequencies of exceedance above/below 

relative thresholds, each with their own limitations. For example, these indices are calculated for 

years, seasons and months individually, so spanning events are split into two and appear to have a 

reduced impact (Russo et al., 2014). Further issues with the use of the ETCCDI and other indices are 

discussed in Zwiers et al. (2013), including the lack of availability of the source data and geographical 

coverage. However, these ETCCDI indices have become widely used both in observational analyses 

and also in combination with climate projections. Table 3 shows a list of heat wave indices discussed 

in this section.  

Other indices have also been suggested over the past decade, each with their merits and problems (see 

Perkins 2015). Some also include humidity information, for example the apparent temperature, Ta 

(Steadman, 1979), Heat Index (Rothfusz 1990, Steadman 1984) and humidex (also called humiture, 

Masterton & Richardson, 1979). As the level of moisture in the atmosphere determines the rate at 

which sweat can evaporate from the skin, these indices are important for studies of the impact of hot 

weather on human health. The Wet Bulb Globe Temperature (WBGT, Yaglou & Minard, 1957) was 

developed by the US military with the impact of elevated temperature and humidity on the human 

body in mind.. This allows the mapping of meteorological variables onto a model of the response of 

the human body. However, as not all information required for these indices has been routinely 

recorded at meteorological stations, it is difficult to assess past heat wave events using these indices. 

The Universal Thermal Climate Index (UTCI, Jendritzky et al., 2012) takes the impact on human 

comfort further by including the effect of clothing on a person. 
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Table 3: List of heat wave indices discussed in Section 3.2.1. 

Index Name Reference Notes 

CTX90p/CTN90p 
Perkins & Alexander, 

2013 

Number of days when Tmax/Tmin is above the 90
th

 percentile 

as calculated for each calendar day. Adapted from ETCCDI 

TX90p/TN90p.  

Excess Heat Factor 

(EHF) 

Perkins & Alexander, 

2013, Nairn et al., 2009 

Includes acclimatisation period. See Section 5.a for full 

definition. 

TX90p, TN90p 
Frich et al., Alexander 

et al., 2006 

Number of days when Tmax/Tmin is above the 90
th

 percentile 

as calculated for each month or year. From ETCCDI list 

(see Appendix A.1) 

SU, TR 
Frich et al., Alexander 

et al., 2006 

Summer days/Tropical nights – when maximum/minimum 

temperature is above 25C/20C. From ETCCDI list (see 

Appendix A.1) 

TXx, TNx 
Frich et al., Alexander 

et al., 2006 

Maximum Tmax, maximum Tmin. From ETCCDI list (see 

Appendix A.1) 

WSDI 
Frich et al., Alexander 

et al., 2006 

Warm Spell Duration Index – count of days where Tmax > 

90
th

 percentile. From ETCCDI list (see AppendixA.1) 

Apparent Temperature 

(Ta) 
Steadman 1979 

Ta = T + 0.33e – 0.7w -4, where e is vapour pressure and w 

is wind speed. 

Heat Index (HI) 
Rothfusz, 1990, 

Steadman, 1984 
See Rothfusz, 1990 for full calculation. 

Humidex 
Masterton & 

Richardson, 1979 
h = T + 0.5555(e-10), where e is vapour pressure 

Wet Bulb Globe 

Temperature (WBGT) 
Yaglou & Minard, 1957 

pseudo-WBGT = 0.567T +0.393e + 3.94, where e is vapour 

pressure. Includes effect of solar radiation on black globe 

thermometer. 

Universal Thermal 

Climate Index 
Jendritzky et al., 2012 

Includes effect of clothing, movement, and activity. See 

www.utci.org 

Heat Wave Magnitude 

Index 
Russo et al., 2014 See Appendix A.1 for full definition. 

 

Recently another index has been suggested by Russo et al. (2014), the Heat Wave Magnitude Index 

(HWMI – see Section 5.1 for definition). This index has the advantage of combining both the duration 

and the intensity of an event into a single quantity which not many other indices are able capture. 

Assessments of recent events with this index have been carried out using reanalyses (see Section 

2.4.1). However, as this is a relatively new index, few studies have used this to compare recent heat 

wave events. And also, Schoetter et al. (2014) define an index from the 98
th
 percentile of the 

maximum temperature to determine individual and cumulative heat wave severity. Using indices to 

study heat waves is not without its problems. Some indices have fixed thresholds, and so are of little 

relevance in large parts of the world. Some of the ETCCDI indices do not require that all warm days 

belong to the same event, an effect that is even more problematic when converting between station 

records and the space-filling gridded representation. Some also cannot account for the intensity of any 

event, and only give its duration. And as all these are calculated for each observation station, none 

presented here can easily capture the extent of a heat wave. When comparing two heat wave events, 

then the time range over which the index is calculated is also important when assessing which event 

was the more severe; in Barriopedro et al. (2011) the 2003 and 2010 events were compared, and when 

using very long averages, the 2010 event appeared less severe than the 2003 event. Thus, when 

selecting indices to assess individual heat waves it is important to bear in mind what the index used is 

able to capture – no single index (so far) can account for the heat wave duration, intensity, absolute 
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level and also allow easy combination and comparison between regions. Depending which impacts are 

of interest, different indices at different scales may be the most appropriate to use. 

3.1.2 Observed trends - temperature 

For Europe (35N-75N, 10W-30E), 2014 was the warmest year on record (Blunden & Arndt, 2015, 

with nearly every month being 2-3 standard deviations warmer than normal. However it was not 

exceptional in terms of extreme temperatures; it even had a lower number of summer days (where the 

maximum temperature > 25C) then usual (EURO4M Climate Indicator Bulletin (CIB)
24

 - accessed 21 

May 2015), Figure 11. 

Figure 11: TOP: the European yearly average temperature with respect to the 1981-2010 

climatology. Years with temperatures below this climatology are in blue, above in red, and 

2014 is highlighted in green. BOTTOM: the anomaly in the number of summer days (Tmax > 

25C) for 2014. (Source: CIB
5
)  

 

 
 

Over the recent decades, changes in extreme temperatures over Europe show a significant upward 

trend (see Donat et al., 2013a), and for specific indices (e.g. TXx) Europe is one of the few regions in 

the world which show significant upward trends, Figure 12. This gridded dataset also shows that the 

minimum temperatures are exhibiting as stronger warming signal than the maximum temperatures, 

both in the percentile (TX90p vs TN90p) and in the absolute indices (TXx vs TNx) (also pointed out 
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 http://cib.knmi.nl/mediawiki/index.php/2014_warmest_year_on_record_in_Europe (CIB accessed 19 May 
2015) 
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by Karl et al., 1993, Easterling et al., 1997). Hanlon et al., (2013) using the E-OBS data found 

increases in the magnitude in both moderate and 1-5 day extremes. In contrast, Fischer & Knutti 

(2014) found the wide spread significant increases in moderate extremes (e.g. TX90p) are not 

mirrored by similarly wide spread significant increases in hot extremes (e.g. TXx), resulting from the 

high internal variability on small scales of these intensity measures. Just the same, if spatially 

aggregated, a shift in their distribution is observed. 

 

 

Figure 12a: (TOP) The trend maps and global average time series for the annual percentile 

temperature indices from HadEX2 (Donat et al,. 2013a). (BOTTOM) Trend maps and regional 

time series for two representative areas in Europe for annual percentile temperature indices 

calculated from GHCNDEX (Donat et al, 2013b). Boxes with outlines contain more than three 

observing stations, and those with a dot in the centre have a trend which is significantly 

different to zero. 

 

Figure continues on next page. 
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Figure 12b: (TOP) The trend maps and global average time series for the annual block 
maxima/minima temperature indices from HadEX2 (Donat et al., 2013)   (BOTTOM) Trend maps 
and regional time series for two representative areas in Europe for annual percentile 
temperature indices calculated from GHCNDEX (Donat et al., 2013b). Boxes with outlines 
contain more than three observing stations, and those with a dot in the centre have a trend 
which is significantly different to zero. 
 

 

Figure continues on next page. 
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In a study on the variability of the daily maximum temperatures over summer in western Europe prior 

to 2005, Della-Marta et al. (2007) showed that the climate in Europe over the last century has become 

more extreme with an increase in variance of the summer temperatures. They also found that the 

length of summer heat waves has doubled, and the frequency of hot days almost tripled. In the eastern 
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Mediterranean the intensity, length and number of heat waves have increased by factors around 6 to 8 

since the 1960s (Kuglitsch et al., 2010). In the Carpathian mountains, heat waves have been most 

common in the 2000s, whereas cold wave occurrences peaked in the 1960s and 80s (Spinoni et al., 

2015), with the largest changes observed in maximum temperature values (Micu et al., 2015). 

During the last decade or so, there have been a number of studies into the apparent stalling of global 

average temperatures (also known as the “pause” or “hiatus”). This has been most apparent in the 

global average (land and sea-surface) datasets, but less so for purely land based data.  The most recent 

studies using the latest datasets do not support this stalling in the increase of global surface 

temperature (e.g. Cowtan & Way 2014, Simmons & Poli, 2014, Karl et al., 2015).  Moreover, there 

has been no pause in the increase in hot temperature extremes (Seneviratne et al., 2014).  

The climate system has a level of internal variability – one year can be warmer/cooler wetter/drier 

than the previous. It can take many years to sample the full distribution of a constant climate. As the 

global average surface temperature has already risen by almost 1°C, it is likely that few regions have 

experienced all possible conditions of our current climate can produce.  

Heat waves are usually associated with high pressure (blocking) patterns (e.g. Pfahl & Wernli, 2012), 

but can be exacerbated by rainfall deficits in previous months (e.g. Mueller & Seneviratne, 2012, 

Clarke et al., 2006, Hirschi et al., 2010, Quesada et al., 2012 – see Section 3.4 on Drought). These 

high pressure systems are can be particularly stationary, and also have higher than usual central 

pressures. Although not always directly over the region affected by a heat wave, they work in the 

same way, by advecting warm dry air to the affected region. These patterns occurred in many recent 

European heat waves (2003 – Black et al., 2004, Fischer et al., 2007; 2006 – Rebetez et al., 2009; 

2007 - Founda & Giannakopoulos 2009; 2010, Barriopedro et al., 2011). There are indications that a 

weakening in large scale circulation patterns may have contributed to more persistent heat waves in 

recent summers (Coumou et al., 2015). Also, as well as their persistence, changes in the frequency and 

duration of regional circulation patterns have changed the risk of extreme temperatures over some 

regions in recent decades (Horton et al., 2015). 

Links between heat waves and large-scale modes of variability exist for heat waves across the globe.  

The influence of the El Niño/Southern Oscillation (ENSO) is strong, especially in those regions 

surrounding the Pacific, but also further afield (Kenyon & Hegerl, 2008, Arblaster & Alexander, 

2012).  For Europe, the North Atlantic Oscillation (NAO) is the most important mode, driving the 

occurrence of the blocking highs outlined above, but the Atlantic Multidecadal Oscillation (AMO) 

may also have an effect from the sea-surface temperatures and connections to high pressure over 

Scandinavia (Della-Marta et al., 2007). 

Urban heat islands are a result of the physical properties of buildings and other structures, and the 

emission of heat by human activities. Hence urban areas experience higher temperatures than 

corresponding rural areas (see e.g. Parker 2009 for more details). For Europe, Chrysanthou et al., 

(2014) have calculated the effect of urbanisation on the daily mean temperature for the region, and 

show that contributes 0.0026°C/decade of the 0.179°C/decade trend. Stone (2007) showed that for 50 

large US metropolitan areas, the urban heat island intensity increased by 0.05°C/decade between 1951 

and 2000, which is likely due to the urban development during that time. Some old city centres no 

longer show warming trends relative to rural sites as the urbanisation has stabilised (Parker 2009). 

However, over the last four decades, there is little evidence for a strong disparity in the rate of 

increase in the number of hot days between urban and non-urban sites, although non-urban sites did 

show slightly lower increases (Mishra et al., 2015). 
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3.1.3 Attribution - temperature 

Attribution is a process by which changes in the climate are shown to be the result of specific 

influences on the climate. Usually the influences are split into natural (e.g. volcanic eruptions and 

variations in the solar output) and anthropogenic (e.g. greenhouse gas emissions, land-use change, 

aerosol changes), although alternative framings have been suggested (Trenberth et al., 2015). This 

procedure has been used to support the IPCC statement that “It is extremely likely that human 

influence has been the dominant cause of the observed warming since the mid-20th century” (IPCC, 

2013). The results of comparing climate model simulations of past conditions using only natural or 

also including anthropogenic influences to observations are shown in Figure 13. Observed global 

average temperatures do not match climate model simulations when only natural conditions are 

included. However, when including anthropogenic effects the match is much better. The improvement 

in the match between models and observations allows the change in probability of an event occurring 

or its intensity as a result of climate change to be calculated. 

Figure 13: Observed time series (red line) and the range of temperature anomalies from 

simulations with the seven CMIP5 models used in the analysis that include all forcings (red 

area, a), and from simulations that include natural forcings alone (blue area, b). The black line 

represents the time series of the mean of the model simulations. The observed mean 

anomalies in decades 1990–1999 (0.77 K) and 2003–2012 (1.58 K) are marked by the green 

horizontal lines. (Source: Figure 17 from Christidis et al., 2015.) 
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The number of extreme events can be assessed using attribution methods, to determine if changes are 

(partially) the result of human influences. These studies require comparable types of extremes, 

selected by a priori criteria from a sufficiently long and high-quality data set (Coumou & Rahmstorf 

2012). Wergen & Krug (2010) found that around 30% of the observed daily high temperature records 

over Europe can be attributed to a warming climate. Zwiers et al. (2011) use the attribution framework 

to show that anthropogenic emissions have reduced the return period of hot extremes from 20 years in 

the 1960s to 10-15 years today, and similarly increased for cold extremes to around 30-35 years. 

However individual extreme events can also be studied using the attribution framework, either to 

show how the chances of an event occurring have changed, or that the magnitude has. Christidis et al. 

(2005, 2011) found a significant human influence in the increasing severity of warm nights and 

decreasing severity of cold days and nights. This influence is combined with studies (e.g. Morak et al., 

2011) which show that there are changes in the frequency of moderate extremes, e.g. warm nights 

(TN90p). More recently Fischer & Knutti [(2015]) showed that about 75% of the present day 

moderate daily hot extremes over land are attributable to human influence and that this fraction 

increases non-linearly with further warming. The rarest and most extreme events have the largest 

anthropogenic fraction. Furthermore, those locations where the current climate has low internal 

variability (the tropics and many island states) also have high vulnerability (Mahlstein et al., 2011, 

Stott 2015). 

3.1.4 Projections - temperature 

When using climate model projections (regional or global) then differences can arise because of the 

internal variability versus any long term trend. At times, although any individual model run will be 

dominated by internal variability in the short term, the results over century scales will be very similar. 

Also the multi-model mean can sometimes give clearer results than any individual ensemble run. 

Using updated global GCMs from CMIP5 for the IPCC AR5, projected temperature changes were 

found to be very similar to those used in the IPCC AR4, once differences in the underlying scenarios 

were accounted for (Knutti and Sedlacek, 2013), and also the spatial patterns remained consistent. 

Despite the development of climate models, the local model spread has not changed much, 

A number of assessments of the recent suite of CMIP5 models show that they can accurately 

reproduce heat waves which match the historical record, in terms of their evolution over time, and the 

areas affected (Coumou & Robinson, 2013; Kharin et al., 2013, Hanlon et al., 2013.) and also for 

extremes indices (Sillmann et al., 2013a). This is especially true when considering the atmospheric 

and circulatory mechanisms associated with extreme temperatures (Krueger et al., 2015). Often, the 

multi-model-mean values match the observations better than individual model runs (Kiktev et al., 

2009; Sillmann et al., 2013a). A recent assessment by Fischer & Knutti (2014) shows that the land 

fraction showing positive trends in hot extremes (e.g. TXx) in models from the CMIP5 archive is 

larger than expected from internal variability, and similarly for cold extremes, despite trends in 

extremes not being significant in many individual grid points. However, the level of intensification of 

hot extremes is over estimated, and under estimated for cold extremes. 

Generally, future projections also show that there will be more frequent and intense summer 

temperature extremes (Collins et al., 2013). In common with observational studies, they also show that 

cold extremes are changing faster than warm extremes or that indices based on minimum temperatures 

warm faster than those from maximum temperatures (e.g. Kharin et al., 2013, Sillmann et al., 2013b), 

linked to snow and ice retreat, but in dry and tropical areas, the converse is sometimes true. Overall, 

the number of record breaking events is expected to increase (Rahmstorf & Coumou, 2011), in 

proportion to the ratio of the warming trend and the short-term variability. Hence the total number of 
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extremes increases with any climate change (warming or cooling). The increase in temperature 

variability is also projected to increase in some areas, up to 20-40% over a zone between the 

Mediterranean and Baltic Seas, arising from increases in interannual, seasonal and intraseasonal 

variability (Fischer & Schär, 2009). This leads to an enhanced warming during the summer, leading to 

a higher intensity of extremes and a lengthening of the summer period. 

In one assessment of the CMIP5 model ensemble, focussing specifically on heat waves that could 

impact the stability of the electricity supply in Europe, Schoetter et al., (2014) found that no model 

when forced by historical emissions simulates a heat wave as severe as 2003. Future conditions from 

the RCPs do result in more heat waves, with greater duration, extent and intensity. Although the 

distribution of temperatures does broaden in their analysis, it is the shift of the mean that has the 

greatest effect on the extremes. Furthermore, the diurnal and interdiurnal variations of European 

summer temperatures are also projected to increase (Cattiaux et al., 2015). 

As outlined in previous sections, changes in the shape of the distribution of temperatures are implied 

by the more rapid increase in the minimum versus the maximum temperatures. However, changes in 

distributions in future projections are also borne out. Using the 25 models from the CMIP5 archive, 

Fischer (2014) showed changes in the hottest days per year under a 2°C global mean temperature rise. 

Over large parts of continental Europe, this resulted in the hottest days in a year being over 4°C 

warmer with southern Europe having the strongest signal for large increases worldwide. This implies 

a change in the distribution of the temperatures under such a warmed climate (Figure 14). 

Figure 14: The change in mean summer temperatures (top) and hottest daily maximum temperature 

(bottom) for 25 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) averaged 

across the 20-year period in which their respective global mean temperatures are 2°C warmer than in 

1986–2005. Redder colours indicate temperature increases exceeding the global mean warming. (Fig 14 

from Fischer 2014.) 
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As some heat waves are associated with large scale weather patterns, changes in the occurrence and 

persistence of these patterns in a changing climate is likely to affect the number of heat waves. For 

example, Meehl & Tebaldi (2004) show that the intensification of blocking highs affected increases in 

the frequency of heat waves. However Cattiaux et al., (2012) show using the CMIP3 ensemble that no 

major future changes in pressure patterns are found over Europe. Hence future extremes are likely to 

be associated with weather patterns similar to the ones experienced in the present. 

Russo et al., (2014) calculated the Heat Wave Magnitude Index (HWMI) for 16 GCM simulations 

from the CMIP5 archive over the period from 2006 to 2100, under RCP2.6, RCP4.5 and RCP8.5 

(Figure 15). The HWMI takes account of both the event duration and the intensity. All models project 

increases in the global median HWMI for all scenarios for 2020-2052. From 2068-2100, the trend 

remained positive under RCP4.5 and RCP8.5 but decreases slightly under RCP2.6. The probability of 

extreme events increases, and heat waves that are rare in the present day (e.g. Europe 2003) could 

become the norm around 2070 under RCP8.5. The 2010 Russian heat wave was detected as the 

strongest event in the present climate, and this is projected to become the norm by the end of the 

century under RCP8.5, but remain rare under the other two scenarios. 

 

Figure 15: The top maps show the median of the number of heat waves in a multi-model 

ensemble of the near future (2020–2052) and the latter half of the century (2068–2100) under 

the RCP4.5 scenario, and the lower maps are for the same time periods but under RCP8.5.
25
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 Source: http://www.eea.europa.eu/data-and-maps/figures/number-of-extreme-heat-waves 
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Note that models are not able to fully represent the number and spatial pattern of heat waves as found 

in the reanalysis datasets, especially over Europe and the US (Russo et al., 2014). They found that 

under RCP8.5, southern Europe could experience very severe heat waves (HWMI > 8, comparable to 

the maximum value of the 2010 Russian heat wave) will occur at the same frequency as current 

extreme heat waves (HWMI>4) i.e. once every 2 years. Mitigation, as represented by RCP2.6, results 

in the probability of extreme heat waves being almost unchanged at the end of the century compared 

with 2020-2052. 

 

A separate study by Coumou & Robinson (2013) showed that the current rate of warming will result 

in a several fold increase in the frequency of heat waves by mid-century (~2040), regardless of the 

emissions scenario. After this point, then the paths diverge ranging between strong mitigation leading 

to a reduction in the number of heat extremes for the last half of the century; and totally unmitigated 

leading to even the coldest summer months by the end of the century being substantially hotter than 

the hottest experienced today. Similarly Nikulin et al., (2011) found that what were 1-in-20 year heat 

wave events in 1961-90 reduce to 1-in-2 to 1-in-5 year events by the end of the century, and cold 

extremes almost disappear by the same time. 

Despite the issues with using individual models, ensembles and multi-model ensembles, in some cases 

it has been shown that the patterns of change are very similar, even if the magnitudes of the changes 

differ between models (Fischer & Schär, 2010). High resolution (25km) RCM projections from the 

ENSEMBLES project using the SRES A1B scenario showed that European summer heat waves could 

become more frequent and severe during this century (Fischer and Schar, 2010), with the most severe 

impacts from multi-day events coupled with high night temperatures and relative humidity (Figure 16 

top). Southernmost Europe experienced the strongest increases in the frequency and duration of heat 

waves, but low-altitude southern Europe was strongest for health-related measures. These river basins 

and coastal areas also are projected to experience the largest increases in the number of warm days 

and nights by the end of the century and correspond to areas of high population densities. For the 

Iberian peninsula and the Mediterranean region, the frequency of heat wave days increases from an 

average of 2 days per summer (1961-1990), to around 13 days (2021-2050) and up to 40 days by the 

end of the century (2071-2100). Changes in heat wave frequency and duration were stronger in 

southern Europe, but further north changes in amplitude were more pronounced. In contrast with 

previous studies, Lung et al., (2013) found that the risks of increases in heat could be greatest in 

central Europe, as a result of the ageing population of the region.  
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Figure 16: TOP From Fischer & Schär, 2010 - projected ensemble mean of average number of 

summer days exceeding the apparent temperature (heat index) threshold of 40.6 °C (105 °F).  

BOTTOM European population density from IIASA
26

. 

 
 

The development of higher resolution regional climate models allows an assessment of potential 

improvements in the simulation of mean and extreme temperatures. Initial simulations in EURO-

CORDEX (Jacob et al., 2014) used RCMs at a 12.5km horizontal resolution using the RCP4.5 and 

RCP8.5 emissions scenarios, (Figure 17). These results were compared with the SRES A1B scenarios 

used in the EU FP6 ENSEMBLES project (van der Linden and Mitchell, 2009) and found that the 

three scenarios show similar large-scale patterns of change in mean temperature. Projections using 

RCP8.5 show larger changes in temperature compared with RCP4.5. Also validating the EURO-

CORDEX models, from the point of view of heat waves, Vautard et al., (2013) found no clear 

improvements in the representation of heat wave magnitude in higher spatial resolution models. 

However, the simulated heat waves were found to be too persistent, even after bias removal, but a 

higher resolution simulation reduced this deficiency. The differences seen between individual models 

are larger than the differences between model simulations at different spatial resolution. 
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 IIASA, 2010, http://webarchive.iiasa.ac.at/Research/ERD/DB/mapdb/map_9.htm 
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Figure 17: Projected changes in the mean number of heat waves (defined as periods of more 

than 3 consecutive days exceeding the 99th percentile of the daily maximum temperature) 

occurring in the months May–September for 2021–2050 (a,b) and 2071-2100 (c,d) compared to 

1971–2000. Left column (a,c) is a ‘medium’ emissions scenario, right column (b,d) is a ‘high’ 

emissions scenario. (Source: Figure 8 in Jacob et al., 2014.) 

 
 

Christidis et al. (2015) updated the analysis of the 2003 heat wave by Stott et al. (2004) to account for 

the observed 0.81°C rise in summer temperatures since then. The return period for hot summers, as 

defined using an anomaly of 1.6K, has reduced from 50 years for 1990-99 to 5 years in 2003-12. For a 

summer as anomalously hot as 2003 (an anomaly of 2.3K) the return time reduced from over 1000 

years to around 100 years (though both of these changes have a large spread).  Therefore events that 

would occur twice per century during the climate around the turn of the century now are expected to 

occur twice per decade – a tenfold increase. Figure 18 shows the projected change in the probability 

distribution functions of summer temperatures with time during the 21
st
 century under four emissions 

scenarios. With large and rapid reductions in emissions there is little change in the distribution over 

the century (RCP2.6) but with no change or even increasing emissions, warmer temperatures become 

more likely (RCP8.5). Under all emissions scenarios, summers like that of 2003 will become 

commonplace by the 2040s, and with unabated greenhouse gas emissions, would be regarded as cool 

by the end of the century.  

Figure 18: Distributions constructed with data from CMIP5 models with different RCPs. The 

RCP scenario is shown at the top of each vertical column of panels. Each distribution 

corresponds to the decade marked on its panel. Temperature anomalies are relative to period 

1961–1990. The vertical line marks the temperature anomaly in summer 2003. (Source: Figure 3 

from Christidis et al. 2015.) 
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3.1.5 Links to drought 

Heat waves are linked to meteorological drought events, and hence also to soil moisture droughts. In 

the months after reduced precipitation amounts, the lack of water in the upper layers of the soil 

reduces the buffer to high temperatures. The probability for an above-average number of hot days 

within a month is higher after months with precipitation deficits than after wet conditions (Mueller & 

Seneviratne, 2012, Clarke et al., 2006, Hirschi et al., 2010, Quesada et al., 2012). Therefore, if the 

winter and spring has been dry, then extreme summer temperatures are more likely given the right 

weather pattern (anti-cyclonic/blocking). However, if the summer weather patterns are not conducive 

to high temperatures (cyclonic) or the winter and spring have been wet, then extreme temperatures are 

less likely (Quesada et al., 2012). Heat waves are also more persistent when there are soil moisture 

deficits (Lorenz et al., 2010). The 2003 heat wave in Europe was amplified by the lack of soil 

moisture during that summer (Fischer et al., 2007). By combining the conditions that occurred in a 

particularly dry year (2011) with the weather patterns of a European heat wave (2003) (Whan et al., 

submitted Weather and Climate Extremes) showed that the resulting heat wave would have been 1°C 

warmer. Similar links have been found for the 1930s US “Dust Bowl”, with indications that a hot 

drought more severe than 2011-12 would be possible with ocean temperature anomalies at the level 

they were during the 1930s (Donat et al., 2015). The soil moisture variability on intraseasonal and 

interannual scales can account for 5-30% and 10-40% of the heat wave anomaly respectively (Jaeger 

& Seneviratne, 2011). The effects of low soil moisture along with a multi-day memory of the land 

surface and atmospheric boundary layer resulted in the extreme temperatures during the heat waves of 

2003 and 2010 (Miralles et al., 2014). 
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3.2 Precipitation  

Key Messages 

 

 

3.2.1 Observations and data - precipitation 

The representation of rainfall on the local scale, and in particular at spatial and temporal scales 

sufficient to represent convective extremes, requires high resolution datasets including ground based 

and remote sensed observations. From these are derived precipitation indices (e.g. the Standardized 

Precipitation Index, Standardised Precipitation Evapotranspiration Index) which are used in 

preference to absolute rainfall measures because they are spatially and temporally invariant, necessary 

for identifying anomalies, underlying trends, and continuous monitoring. They are also comparable 

across various regions and terrain. Indices used for monitoring European rainfall are listed in 

Appendix A.1. 

The CLIMDEX website (www.climdex.org) provides access to indices calculated from datasets such 

as the Global Historical Climatology Network (GHCN-Daily, Menne et al., 2009; called GHCNDEX, 

Donat et al., 2013b) and the European Climate Assessment & Dataset (ECA&D). It also provides 

access to global gridded datasets such as HadEX (Alexander et al., 2006), HadEX2 (Donat et al., 

 Extreme precipitation includes high intensity short durations events and extended duration 

low intensity events (wet spells), both capable of generating flooding and other impacts.  

 Global trends show generally wetter conditions between 1901-1953 and 1979-2003 but the 

changes are less spatially coherent than those for temperature. There are now more areas 

getting more extreme precipitation than those getting less, consistent with a warming 

atmosphere and an increasing trend in daily rainfall intensity. 

 In Europe increases in precipitation have been observed over northern Europe and decreases 

over southern Europe in the 20
th
 century. Since 1950 winter wet spells increased in duration 

in northern Europe but reduced in southern Europe. Summer wet spells have become shorter 

in northern and eastern Europe. There is evidence of lengthening wet spells at the expense of 

dry spells in some areas (such as the Swiss Alps). 

 Extreme precipitation is becoming more intense and more frequent in Europe, especially in 

central and Eastern Europe in winter, often resulting in greater magnitude and frequency of 

flooding.  

 An increasing proportion of total rainfall falls on heavy rainfall days. 

 Correlation analysis shows that the most extreme events could be changing at a faster 

absolute rate in relation to the mean than more moderate events. 

 Modelled projections of extreme precipitation events show an increase in frequency, 

intensity and/or amount under climate change in Europe.  

 Events currently considered extreme are expected to occur more frequently  in the future. 

For example, globally, a 1-in-20 year annual maximum daily precipitation amount is likely 

to become a 1-in-5 to 1-in-15 year event by the end of the 21st century.  

 Extreme precipitation (including short intense convective or longer duration frontal types) 

demonstrates complex variability and lacks a robust spatial pattern.  

http://www.climdex.org/indices.html
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
http://eca.knmi.nl/
http://www.metoffice.gov.uk/hadobs/hadex
http://www.climdex.org/references.html
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2013a and HadGHCND (Caesar et al., 2006). ETCCDI CLIMDEX precipitation indices are described 

in Appendix A.1.  

A number of other indices have been developed for precipitation extremes, including the circulation 

extremity index (CEI), the modified circulation extremity index (mCEI) and the European 

Precipitation Index (EPIC). EPIC is a proposed index based on climatology to monitor the European 

domain for upcoming severe storms potentially leading to flash floods (Alfieri et al. 2012). The index 

is run once a day from COSMO-LEPS forecasts for each grid point of a river network at 1 km 

resolution. The south-western European Precipitation index (SWEP) is a measure of average 

precipitation for the region covering Iberia, France, and Italy, and could be useful for studies of 

precipitation baseline or drought. 

3.2.2 Observed trends – precipitation 

Global trends 

Alexander et al. (2006) produced an overview of global observed changes in daily climate extremes of 

temperature and precipitation. Precipitation indices such as the monthly maximum 1-day precipitation 

(RX1d), the monthly maximum consecutive 5-day precipitation  (Rx5d), the maximum number of 

consecutive days (CWD), or the simple day (precipitation) intensity index (SDII) were derived for the 

period 1951–2003 based on HadEX data for the Northern Hemisphere’s mid-latitudes for the periods 

1901–1950, 1951–1978 and 1979–2003. In addition to significant warming throughout the 20th 

century, the study showed evidence of a tendency toward wetter conditions, the 1979-2003 period 

significantly different from the 1901-1950 period, but the changes were less spatially coherent 

compared with temperature change. The SDII showed the most significant changes in precipitation 

indices over land compared with other indices such as Heavy Rainfall Days. A seasonal analysis 

detected increases in Europe for the Sep-Nov period.  

Donat et al. (2013a) updated the analysis for the extended period 1901–2010 in HadEX2 (Figure 19). 

Results from 12 precipitation indices (R10mm, R95pTOT) indicated more areas, including eastern 

Europe, with increasing trends in extreme precipitation amounts, intensity, and frequency than areas 

with decreasing trends, e.g. the Mediterranean. However, changes in precipitation were spatially 

heterogeneous.  A seasonal analysis of Rx1d, Rx5d indicated significant tendency towards stronger 

extremes over Europe across all seasons, but most significant in winter (DJF) and autumn (SON).  

Westra et al. (2014) investigated global trends in annual maximum daily precipitation from 1900 to 

2009 and found a statistically significant increasing global trend, and an association between globally 

averaged near-surface temperature and the median intensity of extreme precipitation changing in 

proportion with changes in global mean temperature at a rate of between 5.9% and 7.7%/°C.  

Min et al. (2011), showed that anthropogenic increases in greenhouse gases have contributed to the 

observed intensification of heavy precipitation events found over approximately two-thirds of land 

areas parts of Northern Hemisphere. In 2012 the IPCC report Managing the Risks of Extreme Events 

and Disasters to Advance Climate Change Adaptation (SREX) summarized global studies on extreme 

indices. The report confirmed with medium confidence that anthropogenic influences have contributed 

to the intensification of extreme precipitation at the global scale (Seneviratne et al., 2012). Increases in 

the number of heavy precipitation events (e.g. 95th percentile) over the second half of the 20th century 

over land were observed, even where there had been a reduction in total precipitation amount. A late 

20th-century 1-in-20 year annual maximum daily precipitation amount is likely to become a 1-in-5 to 

1-in-15 year event by the end of the 21st century in many regions. However, the rainfall statistics are 

dominated by inter-annual to inter-decadal variability.  

http://www.metoffice.gov.uk/hadobs/hadghcnd
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/met.1328
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Figure 19: Decadal trends and global average time series for annual indices. (a) Number of 
heavy precipitation days (R10) in days, (b) contribution from very wet days (R95pTOT) in %, (c) 
consecutive dry days (CDD) in days, and (d) simple daily intensity index (SDII) in mm per day. 
Source: Donat et al., 2013b 

 

 

European trends  

Most precipitation studies show a tendency toward wetter conditions, in the Northern Hemisphere 

throughout the 20th century, but the changes are less spatially coherent compared with temperature 

change. According to a recent European report (NAS & NMI, 2013), intense precipitation has become 

more severe and more frequent in Europe, especially in central and eastern Europe in winter, but with 

complex variability and a non-uniform spatial pattern. There is a lack of a clear large-scale pattern 

associated with extremes because the number of events is small and they take place at irregular 

intervals and with irregular intensity. Winter precipitation has decreased over southern Europe, and 

has increased in land north of 30
o
N (1901-2005) and decreased over land between 10

o
S and 30

o
N after 

the 1970s. The latter increase was caused by a poleward shift of the North Atlantic storm track and a 

weakening of the Mediterranean storm track. Short and isolated rain events have been regrouped into 

prolonged wet spells (NAS & NMI, 2013). 

 

Trend analyses show increases in precipitation over northern Europe and decreases over southern 

Europe (Trenberth, 2011). However, trends in wet and dry spells differ regionally and by season 

(Zolina et al., 2012). Over the period 1950-2009, winter wet spells increased in duration by 15-20% in 

northern Europe and reduced in southern Europe, while summer wet spells were shorter in northern 

and eastern Europe. Dry spells reduced in duration in summer and winter in Scandinavia and southern 

Europe although opposite tendencies were observed in France and central southern Europe in summer. 



 

Extreme weather and climate in Europe  49 
 

The study indicates a rearrangement or grouping of dry and wet days rather than a changing number 

of wet days. Regional studies confirm lengthening of wet spells in winter and summer in the 

Netherlands, over the Swiss Alps (Schmidli & Frei, 2005), and in Poland (Wibig, 2009).  

 

Data from Germany showed that the mean length of winter (October–March) wet periods increased by 

about 2-3% while that of extreme wet periods increased by up to 6% for extremely long wet periods. 

In eastern Germany, an increase in the intensity of precipitation of up to 10% per decade during long 

wet periods (more than 5 days), and a weakening of precipitation events associated with short and 

moderately long wet periods were observed (Zolina 2014a). 

 

Extreme regional precipitation events are frequently associated with specific circulation conditions in 

central Europe. Kaspar and Mueller (2014) used the Circulation Extremity Index (CEI) correlated with 

ERA40 extreme precipitation to describe, for the Czech Republic, the large scale circulation 

conditions associated with extreme precipitation. Gallant et al. (2014) used the modified CEI on a 

daily timescale to show that extremes in many areas of Europe are changing mainly because of a shift 

of temperature and daily rainfall distributions. Applying the CEI in Europe revealed significant 

increases in the spatial prevalence of extremes from 1950 to 2012. All regions showed increasing 

areas where the proportion of annual total precipitation falls on heavy-rain days. Wet and dry periods 

became more frequent after 1970 according to the IPCC AR5 and Kaspar and Meuller (2014).  

The trend in R95pTOT has been widely used to indicate a positive trend in precipitation extremes in 

northern latitudes (Klein Tank and Können 2003). R95pTOT is also considered to be an indicator of 

the amplified response of extreme precipitation events to climate change (Turco and Llasat, 2011; 

Ducic et al., 2012; Sillmann et al., 2013; Donat et al., 2013a, all quoted in Leander et al., 2014). In 

their seasonal assessment of very wet days (daily rainfall exceeding 95%ile) to total precipitation over 

Europe (1961-2010), Leander et al., 2014 introduced a new index S95pTOT better suited to 

characterising extremes which contradicted the increasing trend in extreme precipitation in northern 

Europe based on R95pTOT.  

 

European Trends for the Rx5d, R99pTOT and SDII indices have been compiled by the Met Office 

from 1960 to 2015 using CLIMDEX data. CLIMDEX
27

 is a project to produce gridded land-based 

global datasets of indices representing climate extremes (Donat et al. 2013a). Three indices were 

assessed. Rx5d is the monthly maximum consecutive 5-day rainfall total; R99pTOT is the annual sum 

of precipitation in days when daily precipitation exceeds the 99th percentile of daily precipitation in 

the base period; the simple day intensity index (SDII) is the ratio of annual or seasonal total rainfall to 

the number of days during the year or season when rainfall occurred. 

Figure 20 shows a decreasing trend of -2.1 mm per decade in Rx5d across southern and central Europe 

over Iberia, and an increase over the Scandinavian region, with a positive trend of 1.74mm per decade. 

There is a decrease in R99pTOT over Iberia and an increase of 0.4mm per decade over the rest of 

Europe although not statistically significant. SDII shows a decrease over central Europe and Iberia, 

with a falling trend in the latter of -0.11mm per decade, while the rest of Europe shows an increase 

with a trend of 0.08mm per decade defined over Scandinavia.  

 

There is medium confidence in European trends in heavy precipitation, especially in winter. Winter 

extremes have increased in central-western Europe and European Russia, but the trend in summer 

precipitation has been weak or spatially varying. Increasing trends in 90th, 95th, and 98th percentiles 

of daily winter precipitation over 1901-2000 were found in Europe, and in a country-based study for 
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 http://www.climdex.org/ 
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the United Kingdom, Germany, and central and eastern Europe, while decreasing trends have been 

found in some regions such as northern Italy, Poland, and some Mediterranean coastal sites. 

Uncertainties are overall larger in southern Europe and the Mediterranean region, where there is low 

confidence in the trends (Seneviratne et al., 2012 (SREX Chapter 3)). A recent study has indicated 

that there has been an increase of about 15 to 20% in the persistence of wet spells over most of Europe 

over the last 60 years, which was not associated with an increase of the total number of wet days 

(Zolina et al., 2010, quoted in Seneviratne et al., 2012). 

 

Zolina et al. (2014a) used the STAMMEX data (section 2.1.2) over the period 1950-2009 to show wet 

spells lengthening by about 2-3% during the winter season (October-March), and up to 6% for 

extremely long wet periods. This tendency is associated with an increase of up to 10% per decade in 

precipitation intensity in eastern Germany during long wet periods (more than 5 days) and the 

weakening of precipitation events associated with short and moderately long wet periods. There was 

no similar trend in the warm season (April-September). These changes in winter precipitation increase 

winter ground water recharge as well as the risk of winter flash and river flooding (Zolina et al., 

2014b). 
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 Figure 20: Spatial distribution (upper panel) and trend in time (lower panel) for precipitation indices including (a) Rx5d (b) R99pTOT & (c) SDII. 

Units are mm/decade. Source: GHCNDEX data from CLIMDEX (www.climdex.com). Wetting trends are shown in green, drying trends in pink. 

 

(a)       (b)      (c) 

http://www.climdex.com/
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Van den Besselaar et al. (2013) analyzed up to 20-year extremes of maximum 1-d and 5-d precipitation 

amounts over the period 1951–2010 in all four seasons for northern and southern Europe. In northern 

Europe, the picture for the changes in extreme precipitation is approximately the same as that for the 

trend in total precipitation amount. In southern Europe the 20-year Rx1day and Rx5day events stay 

about the same in winter, but become slightly wetter in other seasons, although the regional trend in 

total precipitation amount in winter and summer indicates drying. Results for northern Europe showed 

that 20-year events in 1951–1970 have a probability of occurring more often in later periods. This is in 

line with work in annual 5-d and 10-d precipitation amounts in the UK (Fowler and Kilsby, 2003) 

which found that the 50- year event during 1961–1990 has become an 8, 11 and 25 year event in East, 

South and North Scotland, respectively, during the 1990s. In northern England the average recurrence 

interval has also halved.  

An examination of historic ECA&D data for 1951-2012 did not indicate any significant trend in 

extreme precipitation (Hirabayashi et al., 2013). Figure 21 suggests a trend towards more heavy 

precipitation (>20mm) days in May, and the opposite in June, but the differences are generally not 

significant (green circles). A seasonal analysis indicates a significant shift towards wetter winters.  

 

Figure 21: Trend in very heavy (>20mm) precipitation days 1951-2012 for May (left) and June 

(right) (source: E-OBS). 

  
 

The study concluded that there is no convincing evidence of a tendency towards more extreme 

precipitation events in this region in summer. However, the frequency of weather patterns associated 

with heavy rainfall event has increased, and heavy precipitation events are projected to increase in 

frequency, intensity and/or amount under global warming (Hirabayashi et al., 2013).  

 

Standardised precipitation indices (SPI & SPEI) show a tendency toward wetter conditions throughout 

the 20th century, while seasonal analyses show an increase in mean precipitation in winter, and 

decreases over much of Europe in summer (IPCC, 2014). European studies indicate an increase in 

heavy precipitation, especially in summer and winter extremes in central-western Europe and European 

Russia. Increasing trends in 90th, 95th, and 98th percentiles of daily winter precipitation over 1901-

2000 have been shown in northern, central and eastern Europe, while decreasing trends have been found 

in southern regions especially some Mediterranean coastal sites, although at lower confidence. There 

has been an increase (of about 15 to 20%) in the persistence of wet spells over most of Europe over the 

last 60 years, which was not associated with an increase of the total number of wet days, and a 

lengthening of wet spells by 2-3%, and 6% for long wet periods (more than 5 days), in German winters 

over the period 1950-2008.   

 

http://www.ecad.eu/
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1911.html
http://www.ecad.eu/download/ensembles/ensembles.php
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1911.html
http://cib.knmi.nl/mediawiki/index.php/File:R20mm_19512012_june_trend.png
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Other indices e.g. the Circulation Extremity Index (CEI) and the modified CEI showed that (daily) 

extremes are increasing because of a shift of temperature and daily rainfall distributions toward warm 

extremes and heavy-rainfall extremes. European data for 1950 to 2012 shows increasing areas where 

the proportion of annual total precipitation falls on heavy-rain days (Gallant et al., 2014). Correlating 

the Circulation Extremity Index (CEI) with ERA40 reveals large scale circulation conditions associated 

with extreme precipitation for central Europe.  

 

Teleconnections between precipitation and large scale climatic features 

 

There are known teleconnections between severe precipitation events and large scale climate patterns 

including North Atlantic Oscillation (NAO), the Atlantic Multi-decadal Oscillation and the El 

Niño/Southern Oscillation. Several papers suggest a warmer Atlantic Ocean has a positive (increasing) 

effect on European precipitation extremes. Associations have been  identified between extreme rainfall 

indices (e.g. 90 and 95percentiles) and the Atlantic Multi-decadal Oscillation, an inverse association 

with the North Atlantic Oscillation in winter and summer, and with El Niño/Southern Oscillation events 

in spring and autumn in western Europe. One index (the South West European Precipitation) Index 

demonstrated  ENSO variability affects on rainfall over Iberia, southern France and Italy by altering 

low-level westerly winds and onshore moisture advection from the Atlantic. However, it is less clear 

how the teleconnections affect trends in precipitation extremes. 

 2004 study by Haylock & Goodess identified a strong winter correlation between R90N (the number of 

wet days above the 90th percentile) and consecutive dry days (CDD) in Europe with NAO for the 

period 1958–2000. They also showed an increase in R90N for northern Europe, and a reduction in the 

South for the period 1958–2000. Casanueva et al. (2014) also found a significant positive relationship 

between the Atlantic Multi-decadal Oscillation and R95pTOT although it was more closely associated 

with localised convective activity. Trends in extremes were found to be more significant than those for 

mean precipitation, especially for R95pTOT which showed a close agreement with the positive 

Clausius–Clapeyron relation relating warmer air temperature and water vapour. Interannual variability 

of autumn and early winter precipitation over south western Europe is linked to ENSO variability in the 

eastern Pacific via an eastward-propagating Rossby wave. 

 

De Lima et al.’s 2015 study of precipitation extremes in Portugal for the period 1941-2007 used a 

combination of 13 indices including wet and dry spell indices, thresholds, percentiles and standardised 

indices (e.g. R95pTOT) to show an inverse relationship between daily precipitation intensity index and 

NAO. A decreasing trend in the simple daily precipitation intensity index is related to the predominance 

of the positive phase of the NAO.  For the period 1976-2007, the proportion of the total precipitation 

attributed to heavy and very heavy precipitation events increased and, daily precipitation events show a 

tendency to become more intense. Correlation analysis showed that the most extreme events could be 

changing at a faster absolute rate in relation to the mean than more moderate events.  

 

KNMI used ECA&D data to analyse for two noteworthy Central European heavy precipitation events in 

2002 and 2013 (case study  Appendix A.2). In late May/early June 2013 between 100 and 200mm 

occurred  over Switzerland, Austria, southern and eastern Germany and Czech Republic. The 2002 

event was a high intensity short duration event concentrated over the Elbe basin.. Elevated sea surface 

temperatures in the eastern Mediterranean and especially the Black Sea, and the persistence of the low 

pressure system due to meanders in the Northern Hemisphere jet stream
28

 were deemed to be significant 

                                                           
28

 The jet stream is a narrow band of fast flowing air at high altitude generally flowing from the west to east over 
the mid-latitudes, caused by a combination of the Earth's rotation and atmospheric heating (solar radiation). 
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influencing factors. Another assessment attributed the extreme winter rainfall of 2013 to the prevailing 

cyclonic conditions (NAO and Atlantic Ridge) and the warm north east Atlantic Ocean which 

intensifies precipitation extremes (Yiou et al. 2014).   

Extreme precipitation may be enhanced by the presence of ‘atmospheric rivers’, narrow filaments that 

convey the majority of poleward water vapour within extra-tropical cyclones. Lavers and Villarini 

(2013) showed that ARs are responsible for up to eight out of ten annual maximum daily rainfalls in 

some parts of Europe. Their effect is especially strong along the western European seaboard, but is 

observed as far inland as Germany and Poland. They are associated with negative North Atlantic 

Oscillation (NAO) conditions in southern Europe, and positive NAO in the north. ARs are a critical 

factor in explaining the distribution of extreme precipitation western Europe. 

3.2.3 Projections – precipitation  
 
Increases in the spatial and temporal resolution of climate models are potentially of particular benefit to 

the simulation of precipitation, which tends to be associated with smaller spatial scales than 

temperature. New regional climate model simulations have been made available over recent years as 

part of co-ordinated projects, but there have also been significant developments in the use of very high 

resolution models which explicitly represent convection, as opposed to using the traditional approach of 

parameterizing convection. A number of observation-based analyses have indicated that sub-daily 

extreme rainfall is intensifying more rapidly than daily rainfall (Westra et al., 2014) and the use of 

higher spatial resolution models has resulted in improvements in aspects of the simulation of sub-daily 

precipitation on hourly timescales. 

On a global scale, CMIP5 GCMs have shown quite a wide range of uncertainty in extreme precipitation 

projections (Rx5day) during the 21
st
 century despite a general tendency towards heavier precipitation 

intensity and longer dry spells. This raises the question of how robust they are for projecting future 

changes. Fischer et al. (2013) assessed the impact of internal model variability and found that whilst 

models may disagree on the exact location of precipitation changes,  at a more aggregated scale they 

actually provide robust evidence for heavier precipitation events even over the timescales of just two or 

three decades. 

Using higher resolution versions of global scale GCMs has been found to improve the representation of 

extreme precipitation, since models often underestimate the magnitude of extreme precipitation. For 

example, a 0.25° version of the Community Earth System Model 1.0 showed significant increases in 

simulated present day extreme daily precipitation over Europe (plus the United States and Australia) 

compared to lower resolution versions of the same model, though it was noted that biases still remain 

(Kopparla et al., 2013). 

GCMs do not resolve small-scale heavy precipitation and also have deficiencies in representing relevant 

dynamical features such as blocking 
29

. Moving on to consider downscaled GCM simulations, Europe is 

well represented by RCM simulations and an assessment of the ENSEMBLES project (van der Linden 

and Mitchell, 2009) RCMs looked at projections of a set of basic precipitation indices (including wet-

day frequency, intensity and percentile exceedance) as well as generalized extreme value (GEV) theory 

return periods of up to 100 years (Rajczak et al., 2013). Projections showed increases in mean 

                                                           
29

 Blocks are large-scale high pressure patterns in the atmosphere that are nearly stationary, which ‘block’ the 
movement of cyclonic weather systems, resulting in the same kind of weather for extended periods. They can 
remain in place for days, or even weeks. 
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precipitation and wet-day frequency in northern Europe, with the opposite pattern in southern Europe. A 

similar pattern is seen in extreme events, but increases in heavy events reach further south. 

The Spanish project ESCENA used a set of five high resolution (25km) RCMs to examine precipitation 

and extremes over the Iberian Peninsula (Dominguez et al., 2013). It was found that several models 

underestimated the amount of rain on heavy precipitation days. This aspect of model performance had 

not improved in comparison with the ENSEMBLES project results though ESCENA covered more 

emissions scenarios and driving GCMs than ENSEMBLES. 

 The new high resolution EURO-CORDEX reanalysis driven RCM ensemble (Jacob et al., 2014) has 

been evaluated against the high resolution European E-OBS observational dataset (Kotlarksi et al., 

2014) over the period 1989-2008. The RCMs are able to capture the basic features of European climate, 

including spatial and temporal variability, but there are some deficiencies with respect to certain 

metrics, regions and seasons.  Precipitation biases are in the ±40% range. Common model biases, such 

as a cold/wet bias over most parts of Europe, and a warm/dry summer bias in southern Europe are seen. 

The increase in model spatial resolution from 50km to 12.5km indicates no clear benefit in the 

representation of seasonal means over large subdomain regions. Comparison with simulations from the 

ENSEMBLES project based on the older SRES emissions scenarios shows similar large-scale patterns 

of change between the SRES A1B and RCP scenarios. Projections of precipitation from EURO-

CORDEX show a less clear difference between RCP4.5 and RCP8.5 than are apparent for temperature 

changes (Jacob et al., 2014). It was found that the high resolution RCM simulations show higher daily 

precipitation intensities compared to the coarser GCM simulations. Also, the projected change in daily 

precipitation intensity differs from GCMs, which results in a smoother shift from weaker to moderate 

and higher intensities i.e. GCMs simulate more frequent weaker rainfall events and less frequent high 

intensity events, whereas RCMs simulate a lower frequency of weaker events but a higher frequency of 

stronger events relative to GCMs. One current deficiency in the EURO-CORDEX ensemble is that the 

very wet GCMs from CMIP5 are currently not yet downscaled, although the temperature spread is well 

covered  (Figures 22 and 23). 

A comprehensive review of RCM projection studies focusing on hydrology for Europe by Madsen et al. 

(2014) was prepared as part of COST Action ESO901 (European Procedures for Flood Frequency 

Estimation) and gives a comprehensive overview of a large number of national and European studies. 

Most of the studies considered use SRES emissions scenarios. A majority of the studies reviewed find 

projected increases in extreme precipitation, consistent with the observed trends. 30% increases by 2100 

were found in Brussels (Willems and Vrac, 2011; Willems et al., 2012), 30-50% increases in the 50 and 

100-year daily precipitation in the Czech Republic (Kysely and Beranová, 2009; Kysely et al., 2011; 

Hanel et al., 2011), and small increases in maximum daily precipitation in Cyprus by 2050 

(Hadjinicolaou et al., 2011). Studies for Denmark found projected increases in daily extremes (Sunyer 

et al., 2012), and a national study found increases in 1-24 hour intensities of 10-50% over the next 100 

years (Anrbjerg-Nielsen, 2012). Short duration precipitation extremes are also found to increase at 

locations in Sweden (Olsson et al., 2009; Olsson et al., 2012). 

Kendon et al. (2014) have performed the first climate change experiments at 1.5km grid spacing, using 

a model more typically used for weather forecasts with explicit convection. The simulations were 

focused on the UK and show that the model is able to simulate realistic hourly rainfall, with better 

representation of the duration and spatial extent compared with a coarser resolution 12km version of the 

same RCM using parameterized convection (Kendon et al., 2012). Increases in hourly rainfall intensity 

in winter were found, and also intensification of short duration rainfall during summer.  
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Figure 22: Jacob et al., 2014, projected seasonal changes of heavy precipitation (%) based on 
the RCP4.5 scenario for 2071–2100 compared to 1971–2000. Hatched areas indicate regions with 
robust and/or statistical significant change. Heavy precipitation is defined as the 95th percentile 
of daily precipitation (only days with precipitation 1 mm/day are considered). 
 

 

 

Related work by Chan et al. (2013) found that an increase in resolution improved the representation of 

orographic precipitation and this was evident over the mountains of Wales, where a 50km resolution 

simulation underestimated mean precipitation and event intensity was too weak. In contrast, over 

southeast England where extremes are largely convective during summer, increasing the resolution did 

not necessarily lead to an improvement at the daily timescale. Chan et al. (2014a) also showed that UK 

summer 1-hourly precipitation increases by around 10% across a range of return periods at 1.5km 

resolution  whereas a 12km RCM showed decreases at shorter return periods of less than 5 years but 

strong increases above 20 year return period events.   Using extreme value theory to investigate sub-

daily extremes, Chan et al. (2014b) found that the 1.5km model was more successful at representing 

multi-hourly summer ‘very extreme’ events than the 12km model. Moving towards daily scales brings 

the 12km results more into agreement with the 1.5km results and the observations. Again, both the 

1.5km and 12km simulations have comparable winter extremes, though generally weaker than summer 

at daily or shorter timescales. ‘Gridpoint storms’ were found to be one cause of unrealistic very extreme 

events at the 12km resolution. 
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Figure 23: Jacob et al., 2014, projected seasonal changes of heavy precipitation (%) based on 

the RCP8.5 scenario for 2071–2100 compared to 1971–2000. Hatched areas indicate regions with 

robust and/or statistical significant change. Heavy precipitation is defined as the 95th percentile 

of daily precipitation (only days with precipitation 1 mm/day are considered). 

 

There is increasing evidence that atmospheric temperatures can lead to more extreme rainfall over short 

time scales (up to a few hours) (Westra et al., 2014). UK extreme summer hourly precipitation 

intensities have been found to be linked to temperature (Blenkinsop et al., 2015), hence a warming 

atmosphere is a potential mechanism for increased summer rainfall intensities. Chan et al. (in prep) 

show, for the southern UK, a shift towards a more anticyclonic regime, which produces more days with 

strong daytime heating, but within an environment unfavourable to convective storms. This suggests 

that future precipitation intensities cannot simply be extrapolated from present-day temperature scaling 

and demonstrate the pitfalls of using regional temperature alone as a scaling variable.  

Other regional climate models have also been run at very high resolutions. Kücken et al. (2013) ran a 

2.8km version of the COSMO model for central Europe for the year 2003 and found that the simulated 

drought and heat waves of summer 2003 showed good agreement with observations.  Feldmann et al. 

(2013) used the COSMO-CLM RCM to assess near future (2011-2040) changes in mean and extreme 

precipitation in Central Europe, but forced with different GCMs (ECHAM5 and HadCM3). The 

horizontal resolution of the versions of the RCM used varies from about 18km to 7km. The projections 

showed an increase in extreme precipitation in both winter and summer, but in winter this was 

proportional to the increase in total precipitation, whereas in summer it was a result of a broadening of 
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the precipitation distribution. More recently Ban et al. (2015) have run a 2.2km resolution convection-

resolving model across a region including the Alps from northern Italy to northern Germany under 

RCP8.5. They found a decrease in summer mean precipitation, but that extreme daily and hourly events 

increased consistently at 6-7% per degree of warming (i.e. the Clausius-Clapeyron scaling). In contrast 

with other studies, they did not find a more rapid increase in the intensity of extreme events which 

might suggest that a simple scaling relationship could be used as a tool for climate change adaptation 

for heavy precipitation, despite, in this case, the presence of complex topography. 

These studies indicate that the benefit of higher spatial resolution in climate models is more apparent 

when precipitation is being considered, and particularly for more extreme metrics and more localised 

events. As discussed for the very high resolution simulations of Kendon et al. (2015) and Chan et al. 

(2014), there may be benefits associated with a move to a convection-resolving model, though even in 

this case the benefits are not clear for all metrics. Vautard et al. (2013) note that ‘although local-scale 

feedbacks should be better represented at high resolution, combinations of parameterizations have to be 

improved or adapted accordingly’. One view is that high resolution simulations may be most valuable 

over regions where orographic rainfall is particularly influential (e.g. the Alpine ridge), and may add 

less value to projections over flatter regions (e.g. northern Germany) (Prein et al., 2015, submitted). 

However, convection-permitting simulations have been found to be valuable in convective regimes and 

seasons where orography is less influential (Kendon et al., 2014). The number of very high resolution 

climate model simulations available featuring explicit convection is currently limited, and therefore it 

remains difficult to draw broad conclusions about how sub daily rainfall might change in the future. 

However, this is expected to improve as more of these studies become available (Westra et al., 2014). 

The contrast in precipitation between wet and dry regions and between wet and dry seasons is forecast 

to increase, with regional exceptions. These changes in precipitation will have different effects in 

southern and northern Europe, generally increasing in the North, particularly in winter, and decreasing 

in the South with a higher risk of longer dry spells, and an increase in arid and semi-arid areas. Greater 

inter-annual and seasonal variability is expected, winter & spring getting wetter, while summer and 

autumn will be drier.  

A majority of recent studies using RCMs produce consistent trends towards more extreme rainfall 

events over many parts of Europe, consistent with trends in observations. A key research gap that is 

beginning to be more widely addressed is the introduction and evaluation of high spatial resolution 

convection resolving models which should have a significant impact on the simulated representation of 

high frequency extreme rainfall events. 
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3.3 Hail  

Key Messages 

 

This section explores the intensity and frequency of hail storms, methods of classification, mechanisms 

of hail formation, and the compilation of a catalogue of European hail events. It reviews research on the 

occurrence of extreme hail in different geographic and meteorological contexts (e.g. mountain areas and 

low moisture levels) and work associating extreme hail with atmospheric convection. It also examines 

observational studies based on hail sensors, satellite data and ground based reports of hailstone size 

which are collected by the European Severe Weather Database initiative. The section also reviews 

research on modelling hail. 

Hail can be responsible for significant damage to buildings, crops, automobiles and infrastructure. 

Hailstorms are most common in mid-latitudes where surface temperatures and moisture contents of the 

air are high enough to promote the instability associated with strong thunderstorms, but the upper 

atmosphere is cool enough to support ice formation processes. Hail with diameter 10 cm or larger 

occurs most frequently during the summer months, in several European regions, with increased 

hailstorm frequency often found downstream of hills and mountains.  

Significant hail events in Europe have been recorded in southern Germany in July 1984, June 2006, July 

2013; south-west France in 2013 (Berthet et al. 2013); Spain in 2013 (Merino et al. 2013), and Sofia 

(Bulgaria) in 2013 (Papagianuki 2013) and 2014. These events were caused by summer supercell 

thunderstorms and caused significant economic damage. Two supercells moving over central and 

southern Germany on 27 and 28 July 2013 caused economic losses of €2.8 billion, which represent the 

highest insured loss by natural hazard in Germany so far, with extensive damage to cars, solar panels, 

greenhouses and other infrastructure, (Greiser et al., 2015)
30

 and (Punge presentation, Expert Workshop, 

2015).  
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 http://www.oeschger.unibe.ch/events/conferences/ekas/index.php?id=view&absid=79 

 There are few ground based hail observation networks, with satellite cloud temperature data 

and numerical models used to identify hail producing convective or frontal instability.  

 Most extreme hail events occur in the summer over Central Europe where convective 

energy is greatest.  

 Hail occurs most frequently in mountainous areas, especially the Alps, due to moisture 

convergence and upward forcing, but is less frequent over the central Alps due to reduced 

uplift. Satellite data show a higher incidence of hail in elevated regions, for example 

Northern Italy and Southern Germany. 

 Intense hail events are associated with increases in Convective Available Potential Energy 

(CAPE) observed over the 30 year period 1978-2009 in Europe, attributed to increased 

temperatures, evaporation and low level moisture. A north-to-south gradient (and weaker 

east-to-west gradient) of increasing CAPE has been identified in central Europe. The 

atmosphere has become more unstable over the last two to three decades over Central 

Europe, consistent with the observed increase in CAPE.  

 Hailstorm projection studies, although limited to France, Northern Italy and Germany, show  

increases in the convective conditions that lead to hail and in some areas an increase in 

damage days. The studies are not always consistent and demonstrate changes which are not 

very large and lack statistical significance. 
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3.3.1 Observations and data – hail  

Datasets 

Hail forms within deep convective clouds with observations recorded only by ground-based hail pad 

networks. Proxies for hail events can be also derived from satellite temperature imagery and radar 

reflectivity. These are supplemented with eye witness and media reports which are collected by 

organisations such as the Tornado and Storm Research organisation (TORRO), the European Severe 

Storm Laboratory (ESSL) which maintains the European Severe Weather Database (ESWD), and 

Schweizer Hagel (an agricultural cooperative). These databases provide information about the spatial 

distribution and the frequency of severe convection. However, observational databases are limited in 

spatial or temporal extent and biased towards population centres where there are more observers.  

Hail is commonly classified according to diameter of the hailstones; the ESWD, for example, only 

reports hail >=2cm diameter. Another hail classification scheme is the TORRO Hailstorm intensity 

scale (Webb 1986) which classifies hail on a scale from H0, being hard hail with diameter 5 mm 

causing nil damage to H10, being super hailstorms with diameter >100 mm and causing extensive 

structural damage with risk of severe or fatal injuries to people (Table 4).  

 

Table 4: TORRO hail classification scale
31 

Intensity 
Class 

Intensity 
Category 

Typical 
Hail 
Diameter 
(mm)* 

Probable 
Kinetic 
Energy, 
J-m2 

Typical Damage Impacts 

H0 Hard Hail 5 0-20 No damage 

H1 Potentially 
Damaging 

5-15 >20 Slight general damage to plants, crops 

H2 Significant 10-20 >100 Significant damage to fruit, crops, vegetation 

H3 Severe 20-30 >300 Severe damage to fruit and crops, damage to glass 
and plastic structures, paint and wood scored 

H4 Severe 25-40 >500 Widespread glass damage, vehicle bodywork damage 

H5 Destructive 30-50 >800 Wholesale destruction of glass, damage to tiled roofs, 
significant risk of injuries 

H6 Destructive 40-60   Bodywork of grounded aircraft dented, brick walls 
pitted 

H7 Destructive 50-75   Severe roof damage, risk of serious injuries 

H8 Destructive 60-90   (Severest recorded in the British Isles) Severe damage 
to aircraft bodywork 

H9 Super 
Hailstorms 

75-100   Extensive structural damage. Risk of severe or even 
fatal injuries to persons caught in the open 

H10 Super 
Hailstorms 

>100   Extensive structural damage. Risk of severe or even 
fatal injuries to persons caught in the open 

 

Other classifications use statistical techniques to identify hail producing synoptic conditions. In one 

such classification Aran et al. (2011) demonstrated the dominance of synoptic features in generating 
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 http://www.torro.org.uk/hscale.php 

http://www.torro.org.uk/site/index.php
http://www.essl.org/
http://www.eswd.eu/
http://hagel.ch/
http://www.torro.org.uk/site/hscale.php
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extreme hail events on the Iberian Lleida plain, while Kapsch et al. (2012) related large-scale weather 

patterns to damaging hail events for Germany. 

 

European hail frequency research has been carried out in various countries using data from weather 

stations, hail pads or radar. Regional to National level climatological studies exist for Germany (Kunz 

and Kugel, 2015), Finland (Tuovinen et al., 2009), UK (Sanderson et al., 2015,), the Netherlands 

(Groenemeijer and Delden, 2007), south-eastern Romania (Paraschivescu et al., 2011), Bulgaria 

(Simeonov, 1996), Greece (Sioutas et al., 2009, Papagiannaki at al., 2013), Cyprus (Nicolaides at al., 

2009), and the Crimea & North Caucasus (Zharashuev, 2012).  

For the assessment of hail probability across Europe, satellite data is a key data source because of the 

continuous availability over a large region. Infrared sensors are used to detect overshooting tops (OT) of 

deep convective clouds which penetrate through the warmer tropopause into the stratosphere. A 

difference in cloud top temperature of 6 K identifies overshooting tops (OT) which are an important 

indicator of severe weather, thus hail.  

 

Figure 24 shows a close correlation between the overshooting tops based climatology and model 

derived hail day density (Punge, 2015), showing the increased likelihood of hail in elevated regions of 

northern Italy and southern Germany. It also demonstrates the usefulness of this satellite based remote 

sensing technology for idenitfying hail risk.  

Research predicts an increase in the frequency and magnitude of severe hail events in future. The case 

study (section 5.3) demonstates the benefits of PHI and OT to improve the identification and 

quantification of extreme hail events, enabling measures to be taken to mitigate their impact and reduce 

costs associated with hail damage.   

Punge at al. (2014) developed a catalogue of hail events in Europe based on nearly 40,000 OT 

signatures derived from European MSG (SEVIRI) satellite data and hail reports from the European 

Severe Weather Database (ESWD). The results show high variability in the density of events with the 

highest density occurring over northern Italy, the Pyrenees, the Appenines, northern Switzerland, 

southern Germany, the Dinaric Alps, Transylvania and the Massif Central. Regional maxima were 

observed in northern Turkey, northern England, eastern Scotland and north-west Norway, while lower 

densities occurred over northern and north western parts of Europe. The distribution, which is mapped 

in Figure 25, shows good agreement with the seasonal distribution of ESWD hail reports.  
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Figure 24: Comparison between (a) OT-based climatology (occurences per year and 100 km² and 

(b) Hail day density (Hand and Cappelutti, 2011). 

 

 

 
Figure 25: Spatial distribution of OT observations detected in MSG-SEVIRI IRW-channel 
temperatures for the period 2004–2011 (>0.69 cm on a 0.1

o
 grid) Punge at al., 2014.  
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Hail occurrences are also closely related to specific lightning signals (Changon 1992) with lightning 

detection data available from different sources (EUCLID or LINET). Radar data is another important 

proxy for hail events with a very high temporal and spatial resolution. Radar reflectivity is available 

since the mid 2000s or even earlier in many European countries. Several studies demonstrated the 

capability of radar reflectivity to identify hail signals using two and three dimensional reflectivity or 

combined with other information from radio soundings or satellite (see, for example, Holleman et al., 

2000 or Kunz and Kugel, 2015 for a review). It has the advantage of producing a 3D profile through a 

hail storm and 2D representation of hail intensity. For example KNMI (Royal Netherlands 

Meteorological Institute) and RMI (Royal Meteorological Institute of Belgium) derive the probability of 

hail from the height of the freezing level and the 45-dBZ radar echo top height (method of Waldvogel et 

al., 1979; DeLobbe and Holleman, 2006). Puskeiler (2013) used the same technique for Germany 

(Figure 26), but in combination with lightning and insurance loss data for mapping potential hail days. 

Recent developments in polarimetric methods provide better quality hail detection, measurement and 

location above ground (Ryzhkov 2010, Heinselman and Ryzhkov 2006); however, records are currently 

limited for these radars in Europe, radar coverage is limited to major population centres in some 

regions, and they are subject to technical limitations in mountainous terrain.  

 

Figure 26: Number of days (2005-2011), on which the hail-criterion (vertical extension between 

0°C and a specific radar reflectivity >3.5 km) was reached over Germany (Puskeiler, 2013). 

 

 

 

Reanalysis was used to develop a global hail climatology using the UK Met Office’s convective 

diagnosis procedure (CDP) (Hand and Capellutti, 2011). This quantified general thunderstorm and hail 

day frequency using NWP data to demonstrate the high frequency of hail days in areas of high 

orography. The CDP models the mean potential temperature and humidity mixing ratio to simulate the 

http://www.euclid.org/
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adiabatic lifting and the convective condensation level. The map (Figure 27) shows the increased 

density of hail days over mountain regions, albeit at relatively low global model resolution. The method 

was found to overestimate hail occurrence to some degree by underestimating the dampening effect of 

maritime climate on the formation of strong convection (Punge et al., 2014).  

 

Figure 27: Annual density of hail days (hail >=15mm) over Europe from the CDP. The expected 

annual number of hail days in each 1° × 1° square can be obtained by multiplying the density by 

22. (Hand & Capelutti, 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Another method was applied by Mohr (2013), who combined different meteorological parameters 

relevant for hailstorm formation using a logistic (multivariate regression) model. Applied to different 

reanalysis data sets, the logistic model estimates the number of days with an increased potential of hail 

occurrence, denoted to as potential hail index (PHI; Figures 27 and 28). The results confirm a positive 

trend for the period 1971–2000 (Mohr et al., 2015a).  

 

Data sets of hail damages produced by models, e.g. HailCalc
32

, are widely used to assess impacts from 

past hail events in Europe. The HailCalc hail hazard model is based on Europe-wide hail hazard event 

data set of radar derived hail kinetic energy which can be directly related to the intensity and extent of 

hail damage. The dataset includes nearly 2,000 historical hailstorms which are combined with 

additional climatological and meteorological data to generate an event set of approximately 15,000 

events on a 3 km grid. The database also includes vulnerability functions developed in partnership with 

re-insurance companies. The recent Willis European Hail Model is based on OT data provided by Punge 

et al. (2014), but used in the current version additional filtering of meteorological data sets using ERA 

Interim reanalysis. 

                                                           
32

 Originally developed by ETH Zurich & Swiss Re, Hailcalc Europe and acquired by RMS (www.rms.com) 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCEQFjAAahUKEwjysPvVpIfGAhUDtBQKHY1oAIY&url=http%3A%2F%2Friskinc.com%2Fpublications%2FHailCalc.pdf&ei=VE95VfK2LYPoUo3RgbAI&usg=AFQjCNHjZTHUJBV5pk6CYj_01G16j57mjw
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The occurrence of hail is related to atmospheric instability so its likelihood is related indices such as the 

convective instability index (CI) and the Showalter index which is used to predict storms in Europe 

(Showalter, 1953, quoted in Merino at al. 2014). These indices are usually considered in combination 

with mesoscale factors such as wind flow, specific humidity and water vapour flux.  

3.3.2 Observed trends and variability - hail 

The occurrence of hail over Europe is not uniform as most hail events occur in the summer over Central 

Europe where convective energy is greatest. Trends in hail observations are sometimes made by using 

damage as a proxy (e.g., Kunz et al., 2009), although damage is also a function of hail type (size, 

density, accompanying horizontal wind speed and kinetic energy) and vulnerability of the impacted area 

to damage.  

A study of convective parameters for the 30 year period 1978-2009 in Germany and Europe identified 

increasing Convective Available Potential Energy (CAPE) attributed to increased moisture at low 

levels, in turn due to rising temperatures and increased evaporation (Mohr and Kunz, 2013). A north-to-

south gradient (and weaker east-to-west gradient) of increasing CAPE in Germany and Europe was 

identified. The results agreed well with OT detections and lightning detection data. It was demonstrated 

that the atmosphere has become more unstable over the last two to three decades over Central Europe, 

consistent with the observed increase in higher convective potential.  

Results of the Logistic Hail Model from Mohr (2013) to produce the hail climatology for the period 

1951-2000, however, do not reveal significant trends over the past, mainly due to the high annual 

variability of the potential hail days (Mohr et al., 2015). Figure 28 (a) shows concentrations in the mean 

potential hail index mainly north and south of the Alpine regions and in the Iberian Peninsula over the 

period. Figure 28 (b) shows increasing hail trends in southern France and Spain based on the logistic 

hail model, and decreases mainly over eastern Europe. Figure 29 shows the potential hail index from 

1951 to 2010 at five European locations. Of the five cities considered, Milan in Italy is most hail prone, 

being affected on average 40 days per year, and Lleida in Spain is least prone, affected on average 12 

days per year.  

Berthet et al. (2011) found no changes in the number of hail events, but identified an increase in hail 

size related to increasing temperatures for hail-prone Pyrenean and Mediterranean regions of France 

based on hail pad measurements over a 22-year period (1989-2009).  

 

Figure 28: (a) Mean Hail Index 1951-2000 from downscaled reanalysis NCEP=NCAR (JJA) and (b) 

Modified Logistic Hail Model (Mohr et al., 2015a) 

   

(a) 
 

(a) 

(b) 
 

(b) 
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Figure 29: Potential Hail Index 1955-2010 in days per year (Mohr et al., 2015b) 

 

 

 

Baldi et al. (2014) studied hailstorm intensity in Italy by using observational data sets and a statistic 

model. They identified areas of greatest intensity in the NW Alpine region, generally leeward of the 

Alps, and in an area in the South West. The results of the statistical approach estimated maximum hail 

occurrences in north-west Italy and south Tuscany with values ranging between 1.5 and 2 annual 

events, but less probability for the hot spots in the northern parts. According to this approach, the 

southern region is more prone to intense events (H2 intensity, table 4). However, the analysis was 

limited in scope by the lack of a national hail monitoring network (Figure 30). 

Figure 30: Distribution of hail events: a) decadal distribution at municipality scale; b) yearly 

distribution at provincial scale (Baldi et al., 2014). 
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Caution is recommended in using the observational record as evidence of climate change in terms of 

severe thunderstorms due to the large interannual variability in thunderstorm favouring conditions and 

occurrences of severe events.  

3.3.3 Projections 

Much of the published work relevant to future hail projections is based upon developing the 

relationships between large-scale atmospheric environments and small scale severe weather events, 

such as severe thunderstorms, though some work has explicitly considered hail storms. While there 

have been several publications on expected changes in severe convective storms for the United States 

(US), only a few studies are available European countries. 

Brooks (2013) considered the possible impacts of climate change on severe thunderstorms, which are 

more likely to form in environments with large values of CAPE along with high wind shear. Climate 

model simulations for the US point towards increases in CAPE and decreases in wind shear in the 

future.   

A majority of previous work on convective modelling has been focused on the United States, but 

studies have found differences in the qualitative relationship between CAPE and wind shear over the 

US and Europe (Brooks, 2009; Grunwald and Brooks, 2011). For Europe it has been shown that GCMs 

can produce reasonable spatial patterns of severe thunderstorms, though with less certainty over the 

reproduction of the magnitude of events (Marsh et al., 2007; 2009). 

 

Data from an ensemble of different RCMs were used to estimate changes in large-scale weather patterns 

that were identify to be related to severe hailstorms in Germany (Kapsch et al. 2012). Using a Bayesian 

model, the study project an increase in hailstorm frequency in Germany, for example between 7 and 

15% for the period 2031-2045 compared to 1971-2000. Mohr et al. (2015a), by applying the logistic 

hail model to an ensemble of seven high-resolution (7 km) RCM realizations, found an increase in the 

potential for hail events in the future (2021–2050) compared to the past (1971–2000). Changes, 

however, were statistically significant in the northwest and south of Germany only (Figure 31).  

 

RCM data at 25 km for the UK have been used to drive a simple model of hailstone formation to project 

changes in hailstorms numbers and hailstone sizes during the 21
st
 century (Sanderson et al., 2015). 

Model validation showed reasonable agreement with observations, and climate change projections 

based on the SRES A1B scenario show a downward trend in damaging hailstorms (with hailstones of 

greater than 15mm diameter). Statistically significant downward trends were found for hailstones with 

diameters between 21 and 50 mm, and melting made little difference to the projected changes. The 

results are subject to large uncertainties, in part due to the convective parameterisations used in the 

model, and by considering only one model run and not an ensemble. 

 

To conclude, the limited number of studies that have investigated projections of hailstorms appear to be 

inconsistent and demonstrate changes which are not very large and often lacking statistical significance. 

Therefore, future projections of hailstorms feature a high level of uncertainty. Furthermore, several 

scientific questions are still unanswered, for example, how the weather systems will change in the 

future, the conditions for the most severe hailstorms, and the relationship between changes in the 

meteorological parameters and cloud microphysics, or to changes in aerosol distributions.  
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Figure 31:  Overview of changes in the Probability Hail Index (PHI) for Germany: Increased hail 
risk based on a model mini-ensemble for 7 regional climate simulations (a) number of runs 
showing an increase and (b) changes when at least five of the seven runs show a significant 
increase according to the Wilcoxon rank-sum test. between 2021–2050 and 1971–2000 
represented by an ensemble of seven climate simulations.   
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3.4  Drought  

Key Messages  

 

Droughts have a significant impact on agriculture, causing reduced yields and economic losses. 

Droughts also affect water resources reducing the availability of surface and groundwater resources. 

The European drought of 2011 for example affected several European countries including Germany, the 

Netherlands, Slovakia and the Czech Republic. River levels were below average in large parts of central 

and eastern Europe, affecting navigability for example on the Rivers Rhine and Danube. Low reservoir 

levels affected electricity production in Serbia, Bosnia and Herzegovina experienced drinking water 

shortages, and winter crop production was reduced in Romania, Bulgaria, Hungary and the Ukraine, 

where winter grain yields were estimated to be 30 percent below average. Unusually dry conditions also 

triggered forest fires in several countries including Germany (Upper Bavaria), the Ukraine, Moldova 

and Slovakia (see case study Section 5.2). 

Drought is a cumulative event, often difficult to define and involving wide-reaching consequences for 

agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought 

may change in the future and which sources of uncertainty are dominant can inform appropriate 

decisions to guide drought impacts assessments.  

This section explores meteorological, soil moisture (agricultural) and hydrological droughts. Drought is 

defined as “a sustained and regionally extensive occurrence of below average natural water availability, 

 Drought can have a significant impact by reducing the availability of surface and groundwater 

resources. Drought is a cumulative event and recent severe droughts include Italy (1997-

2002), the Baltic countries 2005-2009, the European heatwave of summer 2003, and the 

widespread European drought of 2011. 

 The 1950s were prone to long, intense, Europe-wide meteorological and hydrological 

droughts. In Northern and Eastern Europe the highest drought frequency and severity was 

from the early 1950s to the mid-1970s. Southern and western Europe (in particular the 

Mediterranean) show the highest drought frequency and severity from 1990. There has been a 

small but continuous increase of the European areas prone to drought from the 1980s to the 

early 2010s.  

 Both the Palmer and Thornthwaite drought severity indices show little evidence of more 

severe global drought over the last 60 years. The use of combined indices e.g. combined SPI, 

SPEI and RDI can improve on single indicators to identify extreme droughts. 

 Drought studies have identified drought hotspots in the Mediterranean and southern Europe, 

the Carpathians and the Balkans.  

 Drought frequency increased slightly during the decade 2001–2010, during which four 

significant drought events occurred. 

 Regional climate models for Europe project a decrease in summer precipitation until 2100 of 

17% on average, and by 30% in June for the period of 2071-2100. Dry periods are expected 

to occur 3 times more often at the end of the current century and to last longer by 1 to 3 days 

compared to the period of 1971-2000. Future inclusion of evapotranspiration in Earth system 

models will affect these projections.  

 There is significant uncertainty associated with future projections of drought,  climate 

variability being the dominant source of uncertainty in both observed and projected soil 

moisture drought.  

 

 

 

http://cib.knmi.nl/mediawiki/index.php/European_Drought_in_November_2011
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and can thus be characterized as a deviation from normal conditions of variables such as precipitation, 

soil moisture, groundwater and streamflow” (Tallaksen and Van Lanen, 2004) or by the IPCC’s 4th 

Assessment Report as a 'prolonged absence or marked deficiency of precipitation that results in water 

shortage for some activity or for some group', or a 'period of abnormally dry weather sufficiently 

prolonged for the lack of precipitation to cause a serious hydrological imbalance'. Fuller definitions of 

drought include the duration, intensity and spatial impacts on water storage, supply and demand which 

can only be neglected for purely meteorological drought (Lloyd-Hughes, 2012, 2013).  

A persistent drought propagates from meteorological to soil moisture (agricultural) drought affecting 

plant and crop growth, or into a hydrological drought affecting watercourses, water resources 

(groundwater and surface water) and natural ecosystems (Figure 32). Drought is therefore often defined 

in terms of its impacts on agriculture and water availability. For example, the 2005 drought event in 

Spain led to a 49% loss of cereal production and estimated losses for non-irrigated crop and pasture of 

€2,500 million (Sepulchre-Canto et al, 2012). Persistent droughts can have significant social and 

economic impacts in terms of water resources shortages for drinking water and plant growth. 

Significant droughts have occurred in 2010, 2011 and 2015 (Appendix 2). The drought of 2011 is 

featured as a case study in Section 5.  

 

Figure 32: Drought drivers: As well as temperature, several factors affect the development of 

droughts. These should all be taken into account for assessing historical drought trends and the 

contribution of anthropogenic climate change to recent drought events. Red arrows indicate 

factors that contribute to drought, and blue arrows show factors that counteract it. (Seneviratne, 

2012) 

 

 
 

Recently, the EU-FP7 DROUGHT-R&SPI (Rainfall & Standardised Precipitation Index) provided a 

wider view of drought impacts, vulnerability and risks at the pan-European scale (e.g. Blauhut et al., 

2015; De Stefano et al., 2015). Maps for Europe showing likelihood of drought impact occurrence are 

given for agriculture, energy production, public water supply and water quality, as well as maps for 

several vulnerability factors. The European climatology of the three main types of drought are explored 

in the sections below (3.4.1 to 3.4.3). 

http://www.eu-drought.org/
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Current drought information is available from the European Drought Observatory (EDO) shown in 

Figure 33 for the droughts of, and regional centres such as DMCSEE for south-eastern Europe. Global 

drought monitoring systems include the SPEI Global Drought Monitor and the Global Integrated 

Drought Monitoring and Prediction System.  

Figure 33(a) Current drought situation June 2015 and (b) first 10-days of June 2011 (EDO). 

  
(a)                 (b) 

 

Historical drought information is available from the European Drought Centre which hosts the 

European Drought Reference (EDR) and currently classifies 11 major drought events based on SPI from 

daily to 6-monthly timescales (Stagge 2013), and the European Drought Impact Report Inventory 

(EDII), both compiled as part of the EU-FP7 funded DROUGHT R&SPI Project. The EDII now 

contains close to 5000 impact reports from 33 countries. These reports stem from a variety of sources 

that reflect availability and reporting traditions across Europe. The impact reports span the period 1900 

to date, but most entries relate to impacts that occurred since the 1970s with an increasing trend. The 

UK Drought Portal classifies droughts from 1961-2012 based on the standardized precipitation index 

(SPI) for periods of 1-24 months. The German Drought Monitor classifies soil drought on the 

standardized soil moisture index (SMI) based on data from 1953-2014. Other significant research 

projects include WATCH, DEWFORA, DROUGHT_CH, and DrIVER.  

New European drought datasets are becoming available from EDO/JRC-IES)/ETH including SPI, the 

Standardized Precipitation Evapotranspiration index (SPEI) for the period 1950-2013 based on the E-

OBS dataset (Haylock et al. 2008), a standardised runoff index (SRI) (Gudmundsson and Seneviratne, 

2015), and a soil moisture product based on calibrated simple model for 1984-2013 (Orth and 

Seneviratne, 2015, submitted to ERL).  

  

http://edo.jrc.ec.europa.eu/
ttp://www.dmcsee.org/
http://sac.csic.es/spei)
http://drought.eng.uci.edu/
http://drought.eng.uci.edu/
http://www.geo.uio.no/edc
http://www.eu-drought.org/
https://eip.ceh.ac.uk/apps/droughts
http://www.ufz.de/droughtmonitor
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3.4.1 Meteorological Drought  
 

3.4.1.1 Observations - meteorological drought 

Meteorological drought is defined in terms of absolute rainfall or period of rainfall deficiency based on 

rainfall accumulation periods representing drought duration, from days or weeks for a meteorological 

drought, to months or seasons for a soil moisture or hydrological drought. Common drought indices 

include those based only on precipitation, for example SPI (Standardized Precipitation Index) and CDD 

(Consecutive Dry Days); those based on temperature, e.g. the warm spell duration index (WSDI); and 

those which include evapotranspiration like the SPEI and the Palmer Drought Severity Index (PDSI) 

(Gudmensson 2015, Seneviratne et al. 2012, Heim and Brewer, 2012), Table 5.  

Table 5: List of Drought indices described in section 3.4 

Drought Index Ref  Notes 

The Standardized 

Precipitation Index 

(SPI) 

McKee et al. 1993 A probability index which uses a standardized scales 

showing negative for drought, and positive for wet 

conditions. Originally developed for US 1889-1991. 

Standardised 

Precipitation 

Evapotranspiration 

Index (SPEI) 

Vicente-Serrano et al. 

2010 

A multi-scalar drought index based on climatic data used for 

determining the onset, duration and magnitude of drought 

conditions in a variety of natural and managed systems. 

Originally developed for Iberia 1961-2011. 

Consecutive Wet/Dry 

Days, Wet/Dry Spells 

Index CWD, CDD 

ETCCDI see Appendix 

4.2 

A period of consecutive wet or dry days when precipitation is 

above or below a 1mm threshold (ETCCDI). 

Palmer Drought 

Intensity Index (PDSI) 

Sheffield et al. 2012, 

Palmer W. C., 1965  

Precipitation and temperature analyzed in a water balance 
model; comparison of meteorological and hydrological 
drought across space and time. See also Palmer 
Hydrological Drought Index (PHDI). 

Self-calibrating PDSI 

(scPDSI) 

Antofie 2015, Van der 
Schrier 2014, Wells & 
Goddard 2004 

Improves on PDSI by changing the (US based) 
standardization and measures the departure of soil moisture 
from the normal conditions, using a hydrological accounting 
system. 

Reconnaissance 
Drought Indicator(RDI) 

Spinoni 2015, Antofie 

2015 

The ratio of rainfall to PET. 

Palfai Drought Index 

(PADI) 

Antofie 2015, Palfai 1990 The ratio of the mean temperatures from April to August and 
the monthly precipitation from October to August.  

Soil Water Index Copernicus  METOP ASCAT satellite product Global, 0.1° and continents 
at various depths 
http://land.copernicus.eu/global/products/swi  

Crop moisture index Heim 2002, Bradford 

2000, Palmer W C., 1968 

Derived from the PDSI, the CMI estimates short-term crop 

moisture and drought for US crop-producing regions.  

https://www.drought.gov/drought/ 

Surface Water Supply 

Index (SWSI) 

Heim 2002, Bradford, 

2000, Shafer and 

Dezman, 1982. 

Developed in the US (Colorado) to complement PDSI in 

managed catchments. 

  

Standardised precipitation indices (SPI & SPEI) show a tendency to wetter conditions throughout the 

20th century in Europe, while seasonal analyses show an increase in mean precipitation in winter, and 

decreases over much of Europe in summer (IPCC, 2014). The SPI is suitable for short timescales when 

it is closely related to soil moisture, to longer timescales when it can be related to groundwater and 

reservoir storage. In their drought analysis for Calabria in southern Italy, Buttafuoco et al. (2014) 

evaluated SPI to identify the area with extreme dry conditions over 1916-2006. The analysis identified 

http://land.copernicus.eu/global/products/swi
https://www.drought.gov/drought/
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several droughts in the region and suggested a trend towards drier conditions for the period, although 

not persistent throughout the series length.  

The SPEI calculates PET from measured climate variables (wind speed, surface humidity and solar 

radiation) and is a better indicator of drought than just rainfall. For example, the use of PET data 

showed clearly the drought signal for the 2003 summer drought in Central Europe (Teuling et al. 2013). 

SPEI data are available from NCAR-UCAR
33

 for 1901-2011 based on modelled input data
34

 and the 

Penman-Monteith method. A Thornthwaite SPEI product is available from CSIC
35

. 

The widely used Palmer Drought Severity Index (PDSI) uses temperature, precipitation, PET and 

antecedent wetness (prior month) to estimate relative dryness. It is effective in determining long-term 

drought, but is not as comparable across regions as SPI, although improved by the self-calibrating PDSI 

(Antofie, 2015).  

PDSI values are sensitive to the method of calculating PET. Penman Monteith generates higher values 

of PDSI in recent decades, and a lower percentage area in drought compared with the temperature-only 

Thornthwaite method (Figure 34). Both methods show little evidence of more severe global drought 

over the last 60 years, contradicting previous studies (Seneviratne 2012). However PDSI but can be 

reformulated to show an increase in droughts over the same period (Sheffield et al. 2012). 

Figure 34: Impact of parameterization of potential evaporation (Blue PDSI_Th, Red PDSI_PM) 

(Sheffield et al., 2012) 

 

Hence some studies have produced apparently conflicting results of how drought is changing over 

time, attributed to the formulation of the PDSI and the reduction in the number of observations stations 

in the underlying datasets (Trenberth, 2014).  

 

Accurate attribution of the causes of drought needs to account for natural variability, and 

teleconnections with global phenomena such as El Niño (drier over land) and La Niña (wetter over 

                                                           
33

 National Center for Atmospheric Research (NCAR), University Corporation for Atmospheric Research (UCAR) 
https://climatedataguide.ucar.edu/climate-data 
34

 CRU TS3.2 dataset: http: //badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_0c08abfc-f2d5-11e2-
a948-00163e251233 ; doi: 10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992 
35

 Consejo Superior de Investigaciones Científicas http://sac.csic.es/spei/database.html 

https://climatedataguide.ucar.edu/climate-data
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAAahUKEwjtiriF7oXHAhUFvhQKHXLrB1I&url=http%3A%2F%2Fwww.csic.es%2F&ei=s6u7Va3lB4X8UvLWn5AF&usg=AFQjCNH8n8NHJNruxUOzzaJAC7cUMAFW7g
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAAahUKEwjtiriF7oXHAhUFvhQKHXLrB1I&url=http%3A%2F%2Fwww.csic.es%2F&ei=s6u7Va3lB4X8UvLWn5AF&usg=AFQjCNH8n8NHJNruxUOzzaJAC7cUMAFW7g
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land) events. Increased heating from global warming may not cause droughts, but it is expected that 

when droughts occur they are likely to set in quicker and be more intense. There appears to be evidence 

of a “dry gets drier, wet gets wetter” tendency on European if not global scale. In addition to the 

limitations of estimating PET (above), the use of temperature as a driver for drought overlooks the fact 

that, in dry conditions, the causal link is often reversed, that is, drought itself induces hot temperatures 

when the lack of soil moisture leads to a suppression of evaporative cooling (Seneviratne, 2015). 

The use of combined indices can improve on single indicators to isolate the drought signal. Spinoni et 

al. (2015) combined SPI, SPEI and RDI, (the ratio of rainfall to PET) in a combined drought indicator 

to identify the most severe droughts in northern, central and southern Europe 1950-2012 (Figure 35).  

 

Figure 35a: Northern Europe country drought series for the period 1950–2012 according to the indicator 

X-12 for some selected countries (drought events are marked in red).  X-12 represents an index based on 

the average of values for SPI, SPEI and RDI accumulated over 12-months. 

 

 

 

 

 

Figure 35b: Central Europe country drought series for the period 1950–2012 according to the 

indicator X-12 for some selected countries. 
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Figure 35c: Southern Europe country drought series for the period 1950–2012 according to the 

indicator X-12 for some selected countries. 

 

 

Recent severe droughts include Italy (1997-2002), the Baltic countries 2005-2009, the European heat 

wave of Summer 2003, and the widespread European drought of 2011, (see the case study below). 

Drought hot-spots were identified in S=southern Europe e.g. south-west Germany, the Carpathians, and 

the Balkans (e.g. Romania 2007). The highest drought frequency and severity in northern and eastern 

Europe has been shown to be from the early 1950s to the mid-1970s. The 1950s were most prone to 

long, intense, Europe-wide meteorological and hydrological droughts, of which two (1951–52, 1953–

54) involved half of Europe. Southern and western Europe (in particular the Mediterranean) showed the 

http://cib.knmi.nl/mediawiki/index.php/European_Drought_in_November_2011
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highest drought frequency and severity since 1990. There has been a small but continuous increase of 

the European areas prone to drought from the 1980s to the early 2010s. 

Further analysis identified thirteen droughts in the Carpathian region over the period 1961–2010 based 

on four daily drought indicators (RDI, SPEI, SPI, and the Palfai Aridity/Drought Index or PADI), and 

two climate indicators (the Köppen-Geiger climate classification and the FAO-UNEP aridity index). 

The most intense droughts occurred in 1990, 2000, and 2003, and the wettest years were 2005 and 

2010. A study of the most severe drought events confirmed that, in general, the drought frequency 

increased slightly during the decade 2001–2010, during which four out of the thirteen drought events 

occurred. The Carpathians are not classified as an arid area according to the FAO-UNEP aridity index, 

but they form an orographic barrier between mild oceanic (South and West) and continental (North and 

East) climates. A shift from oceanic to continental climate has been observed over the last 20 years, 

especially in the Romania Carpathians, and on the country borders between Serbia and Hungary 

(Spinoni et al., 2013).  

Sepulchre-Cento et al., (2012) developed a drought indicator to detect agricultural drought which 

combines the 3-month Standardized Precipitation Index (SPI-3), soil moisture and the fraction of 

Absorbed Photosynthetically Active Radiation (fAPAR). In a study of European drought episodes 

2000-2011, the indicator discriminated successfully between areas affected by agricultural drought, and 

it has been adopted by EDO for European-wide drought maps . The indicator could be also used with 

shorter term indicators such as SPI-1 to identify relatively short intense droughts e.g. Romania 2007.  

Drought studies have identified drought hotspots in the Mediterranean and southern Europe, with higher 

rainfall in the high northern latitudes. A study of the Iberian peninsula by Vicente-Serrano et al. (2014) 

found evidence of increasing drought severity caused by temperature rise in southern Europe (Figure 

36). Both SPI and SPEI showed increased drought frequency and an increase in drought area over the 

period 1961-2011, with the SPEI indicating more intense droughts than SPI over the last two decades.  

Greve at al. (2014) analyzed more than 300 combinations of various data sets of historical land dryness 

changes from 1948 to 2005 to test whether dry regions are drying out further, and wetter regions are 

becoming wetter as the climate warms. Significant changes were found in transitional regions, generally 

towards drier conditions, including for example, the western Mediterranean. Only 11% of the global 

land area showed a robust ‘dry gets drier, wet gets wetter’ pattern, compared to 9.5% of global land area 

with the opposite pattern, that is, dry gets wetter, and wet gets drier. This single study suggests that 

aridity changes over land do not follow a simple intensification of existing patterns. 

Drought severity climatology has been produced for the Carpathian region using the self-calibrating 

PDSI for the period 1961-2010 (Antofie et al. 2015) including the amount of water needed for drought 

recovery and the climatological probability of receiving that amount of water for the Carpathian region.  

 

Recent new datasets provide retrospective estimates of precipitation, soil moisture, and streamflow 

deficits in Europe. The drying tendency seen in recent decades in the Mediterranean region is consistent 

with modelled climate projections.  
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Figure 36: (a) Changes in the SPI; (b) Changes in SPEI at 54 stations for the period 1961–2011; 
(c) Changes in the monthly difference between the SPEI and the SPI estimated using least 
squares regression (Vicente-Serrano et al., 2014). 

 

 

 

Impacts  

The impacts of drought include reduced soil moisture, reduced streamflows and reduced water 

availability for water supply and irrigation. Secondary impacts include reduced crop yields, especially if 

occurring in the growing cycle, and adverse impacts on natural ecosystems and habitats. Extremes of 

heat and drought are also correlated with wildfires, for example those in summer 2013 in southern 

Greece (Sarris et al. 2013).  

 

Increased temperatures due to global warming may not cause droughts but it is expected that when 

droughts occur they are likely to set in quicker and become more intense, (Trenberth 2014). Drought 

indices can therefore be useful as a potential predictor of fire (or burned area), and of impacts on the 

water environment (reduced hydropower, habitat stress, power station cooling, environmental low flows 

etc.).  

 

The Drought:R&SPI project reproduced maps of a Europe wide standardised drought vulnerability 

index based on diverse variables (Figure 37). These include freshwater abstraction, a water exploitation 

index, water body status, population density, etc. and shows elevated vulnerability in the Iberian 

Peninsula, Italy and parts of northern Europe.  

Figure 37: The vulnerability indices of sensitivity (left) and adaptive capacity (right), NUTS-

combo scale (Blauhut & Stahl, 2015 from De Stefano et al. 2015). 
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3.4.1.2 Projections – meteorological drought 

There is a degree of consistency in model projections which indicate drier and warmer Mediterranean 

regions, and a northward shift of climatic regimes in Europe (Van Loon, 2015). Previous studies of 

drought have identified hotspots, particularly in the Mediterranean and eastern Europe (Blenkinsop and 

Fowler, 2007; Dai, 2013; Giorgi and Lionello, 2008; Orlowsky and Seneviratne, 2013), but they have 

sometimes produced inconsistent results regarding the future severity of droughts, which may in part be 

due to the coarse resolution of the global climate models or, in the cases where RCMs have been used, 

the application of regional averaging, which can both act to smooth extremes. 

 

An assessment of European dry spells projected for the mid-21
st
 century from the ENSEMBLES RCMs 

considered indices such as the SPI, Palmer Z-Index and PDSI (Heinrich and Gobiet, 2012). In common 

with other studies, drier conditions were projected for southern European sub-regions, along with 

increases to event length, magnitude and area. The recent study by Spinoni et al., (2015) looked at 

drought projections under the SRES A1B scenario for 2041-70 and 2071-2100 and found higher 

increases in southern Europe.  Similarly Jacob et al. (2014) found increases in the length of dry spells in 

the future, particularly over southern Europe (Figure 38). 

 

Buttstaedt & Schneider (2014) use regional climate projections (A1B scenario) of the statistical 

downscaling models STARII and WETTREG and the dynamical climate models REMO and COSMO-

CLM for the city of Aachen, Germany. The model outputs are compared with the 30-year baseline 

period of 1971-2000 in order to assess future precipitation patterns for the summer months of June, July 

and August. Climate projections for the city indicate a decrease in precipitation in summer until 2100 

with -17% on average. The highest decrease is shown by COSMO-CLM with -30% rainfall in June for 

the period of 2071-2100. Dry periods are expected to occur 3 times more often at the end of the current 

century and to last longer by 1 day (COSMO-CLM) to 3 days (WETTREG) compared to the period of 

1971-2000. 

Recent studies, (Orlowsky & Seneviratne, 2012) considered seasonal as well as regional drought for 

IPCC SREX. Projected changes in precipitation and dryness extremes were more ambiguous than those 

of temperature extremes, despite clear features showing increasing dryness over the Mediterranean and 
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increasing heavy precipitation over the northern high latitudes. The assessment of projected changes in 

dryness was sensitive to the choice of index, and models showed less agreement regarding changes in 

soil moisture than in the commonly used CDD index, which is based on precipitation data only. 

 

Figure 38: Jacob et al. 2014. Projected changes in the 95th percentile of the length of dry spells (days) for 

2021–2050 compared to 1971-2000 (a, c, e) and 2071–2100 compared to 1971–2000 (b, d, f) for A1B (a, 

b), RCP8.5 (c, d) and RCP4.5 (e, f) scenarios. Hatched areas indicate regions with robust and/or statistical 

significant changes.  

 

The DROUGHT-R&SPI  project (Stagge et al., 2015) found significant increases in drought frequency 

and severity in the Mediterranean region, in addition to the Atlantic coast and south-eastern Europe. 

Most of northern Europe is projected to have fewer precipitation based droughts due to increasing 
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rainfall over these regions. The results were considered to be robust with good agreement between the 

suite of GCM and RCM model projections.  

 

The inclusion of evapotranspiration could alter projections based solely on precipitation metrics, and 

since evapotranspiration is largely driven by radiation and surface temperatures, future projections 

using the SPEI could be more severe than projections based on SPI alone (Stagge et al., 2015). 

 

3.4.2 Hydrological drought  

3.4.2.1 Observations - Hydrological drought 

Hydrological drought is an outcome of meteorological and soil moisture drought, and is assessed in 

terms of river or stream flow, and surface water or groundwater storage, at  timescales which reflect 

catchment characteristics. (Tallaksen and Van Lanen, 2004; Van Loon & Van Lanen, 2012). Less 

responsive groundwater-dominated or larger catchments are sensitive to rainfall deficits over longer 

multi-year timescales, but in responsive catchments, single season droughts can develop rapidly as a 

result of rainfall deficiencies over 3-6 months. The assessment of climate induced runoff is complicated 

due to its very high variability (Van Huijgevoort et al., 2012), with zero flows for much of the year in 

drier regions, and scarcity of data in some regions, especially southern Europe (Stahl et al., 2014). 

Specialized statistical distributions are needed to describe a large proportion of very low or zero 

summer flows (Stahl at al 2010 & 2012). 

Vicente-Serrano et al. (2012a, 2014) assessed the magnitude of streamflow droughts in the Iberian 

peninsula over the period 1961-2009 in terms of the Standardised Streamflow Index (SSI). Figure 39(a) 

shows an increasingly negative change in the streamflow/precipitation ratio with annual streamflow 

(Blue: natural basins; yellow: regulated basins; red: highly regulated basins). Figure 39(b) shows the 

Pearson’s r correlation between the annual streamflow/ precipitation ratio and evapotranspiration (ET0), 

dotted lines indicating the limits of significance. Figure 39(c) and (d) show the spatial distribution of the 

magnitude and the correlation respectively. 

Hydrological drought is commonly assessed in relation to a threshold, which is useful for water 

management where the onset, duration and termination of a deficit below a threshold are of interest for 

operational water management decisions. The variable threshold method (Zelenhasić & Salvai 1987) 

which is best applicable in regions with non-zero runoff most of the time, calculates the deficit over an 

extended time period time to identify seasonal trends and features. It identifies deficit periods relative to 

a daily, monthly or seasonally varying threshold, allowing droughts to be compared between different 

locations and seasons. A range of different thresholds have been used in applications of the variable 

threshold method (e.g. Q70, Q80, Q90, Q95), preference depending on location, catchment 

characteristics, etc. A regional variant of the variable threshold method, the Regional Deficiency Index 

(RDI; Stahl & Demuth 1999), was used to identify and characterise major pan-European drought events 

(Parry et al., 2012) and analyse their spatial coherence in Europe over the 1961-2005 period (Hannaford 

et al., 2011).  

Other hydrological indices include the base flow index which is the ratio of base flow to total flow, and 

recession indices which express the rate of streamflow decay during low rainfall periods, and indices 

based on water balance calculations (Figure 40, Stahl et al., 2012). 
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Figure 39: (a) Magnitude of change in the streamflow/precipitation ratio for Iberian peninsula, 

1961-2009 (Vicente-Serrano et al., 2014). (b) shows the Pearson’s r correlation between the 

annual streamflow/ precipitation ratio and evapotranspiration (ET0), dotted lines indicating the 

limits of significance. (c) and (d) show the spatial distribution of the magnitude and the 

correlation respectively. 
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Figure 40: European Drought Trends in simulated August flow 1963-2001 (Stahl et al., 2012). 

Negative (more severe) drought shown red, positive (less severe) drought shown blue. 

 

 
 

A global drought study by Van Huijgevoort et al. (2012) combined the characteristics of the variable 

threshold level and the consecutive dry days (CDD) methods to identify hydrological drought events 

which occur during positive and zero runoff periods. For drier regions, the method better estimated 

drought duration compared with the CCD method alone which does not identify droughts during 

periods of runoff. It was used to identify droughts from discharge observations of four major rivers 

situated in different climate regions, and from the simulated runoff of five land surface models. The 

new method was shown to more consistently identify regional droughts. 

Applications of the threshold level method considers the end of drought to be the instantaneous point in 

time at which flows rise above the threshold. This understates the often significant transitions between 

drought and ‘normal’ conditions at the end of a drought. An alternative approach was developed which 

defines drought termination as the end of a period of consecutive above-threshold anomalies (i.e. a site-

specific criterion), which can be characterised with metrics including duration and rate of change (Parry 

et al. 2015). This approach was used to produce a chronology of historic drought termination in the 

Thames catchment in the UK, and to place contemporary events and their characteristics into a long-

term historic context. Such an approach has also been applied throughout the UK and could potentially 

be applied across Europe to better characterise the variability of drought termination at a continental 

scale, as well as helping to investigate the drivers and impacts of such events. 

 

A reliable forecast of seasonal droughts is important as summer droughts that continue into winter, and 

winter droughts that continue into summer can both have impacts on water resources replenishment. 

Drought conditions at the onset of the dry season in warm seasonal climates and at the beginning of 

winter in cold seasonal climates, is the most reliable predictor of the drought situation during and at the 

end of the dry winter season (Van Loon at al., 2014). For the prediction of hydrological droughts in 

seasonal climates, both precipitation forecasts and information about the seasonal cycle of temperature 

and precipitation are required. Including this knowledge in hydrological drought forecasting could 

increase forecasting skill considerably, as it makes the forecast less dependent on the forecast skill of 

actual precipitation and temperature.  The study identified seasonality effects for soil moisture and 

discharge drought characteristics which cannot be explained by meteorological processes alone. 
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Meteorology-based drought indices (e.g. SPI, PDSI) are used as indicators of hydrological drought but 

do not account for the effects of seasonality on climate, for example, high evapotranspiration or 

snowpack. Due to the nonlinear response of soil moisture, groundwater, and streamflow to the 

meteorological situation in climates with strong seasonality, hydrological drought characteristics cannot 

be derived straightforwardly from meteorological drought characteristics (Van Loon & Van Lanen 

2012, Van Lanen et al., 2013; Van Loon et al., 2014 & 2015). 

There is no clear agreement on the choice of scale for quantifying drought magnitude as it has a 

significant impact on the extreme, with selection depending on spatial and temporal scales of 

application. The DrIVER (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning 

Research) project tested nine key distributions for appropriateness with SPI and SSI and found the 

Tweedie distribution was to be best for UK. Catchment control (van Lanen et al., 2013) is the effect of 

hydrological scale on catchment characteristics which determine the lags between meteorological 

drought and hydrological drought. For catchments in the UK, the strongest correlations between 

accumulation periods of SPI and SSI vary depending on catchment characteristics (Barker et al., 2015). 

There are a number of projects aimed at improving understanding of drought, developing indices, and 

mapping drought risk. The Water and Global Change (WATCH) project combined ERA 14 model 

reanalysis with a soil moisture indicator (Weedon et al., 2011). The DrIVER project used standardised 

drought indices (SPI, SPEI and SSI) to improve drought monitoring and early warning systems in three 

continents through an understanding of how drought indicators link to drought impacts to reduce 

vulnerability. For example, Blauhut and Stahl (2015) used SPI and SPEI derived from E-OBS data to 

map drought risk for the period 1970-2012 in terms of its impact on water quality, agriculture, and 

industry for the Drought: R&SPI project.  

 

3.4.2.2 Projections - hydrological drought 

A majority of studies of trends in future drought occurrence have tended to focus on meteorological and 

soil moisture drought (van Loon, 2015) but there have been a number which focus on hydrological 

drought.  

Forzieri et al. (2014) simulate increasing severity and frequency of European stream flow drought due 

to climate change by coupling a hydrological model with an ensemble of bias corrected climate 

simulations based on the SRES A1B scenario (Figure 41). The analysis showed that streamflow 

droughts will become more severe and persistent in many parts of Europe, except in northern and north-

eastern parts of Europe. In particular, southern regions will face strong reductions in low flows. Future 

water use will aggravate the situation by 10-30% in southern Europe, whereas in some sub-regions in 

western, central and eastern Europe a climate driven signal of reduced droughts may be reversed due to 

intensive water use.  

Studies have shown that assessed trends in streamflow may not necessarily be representative of longer 

term changes as a result of interdecadal variability (Hannaford et al., 2013). Uncertainties in 

hydrological drought projections can stem from different representation of terrestrial water-cycle 

processes in hydrological models (Prudhomme et al., 2013). To overcome this, Van Huijgevoort et al. 

(2014) suggested selecting combinations of climate and hydrological models which performed best 

during the control period. 
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Figure 41: Ensemble-average change in the 20 year return level minimum flow (left) and deficit 
volumes (right) due to only climate change between the corresponding time slices and the 
control period (1961–1990). Fig 8 from Forzieri et al., 2014.  
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Some studies indicate a move towards probabilistic and ensemble based studies of drought. Taylor et al. 

(2013) utilised four drought indices in order to assess a range of categories of drought: the SPI, Soil 

Moisture Anomaly (SMA), the PDSI and the Standardised Runoff Index (SRI). These were calculated 

for the SRES A1B and RCP2.6 from monthly model output from a 57-member perturbed parameter 

ensemble (PPE) of the HadCM3C model. Although patterns of drought globally were comparable 

between the A1B and RCP2.6 scenarios, the RCP2.6 scenario (which represents climate mitigation) 

tended to reduce future changes in drought. In general, climate mitigation reduced the area over which 

there was a significant increase in drought but had little impact on the area over which there was a 

significant decrease in time spent in drought.  

Wanders et al. (2015a & 2015b) quantified the impact of climate change on future low flows and 

associated hydrological drought characteristics on a global scale using an alternative drought 

identification approach that considers adaptation to future changes in hydrological regime. They 

assessed a fixed versus varying threshold approach in order to account for potential adaptation, 

effectively basing the threshold definition on a moving average and assuming the populations will make 

progress towards adapting to these changes over time. They found that there was a significant negative 

trend in the low flow regime over the 21
st
 century over certain regions, which included the 

Mediterranean. They concluded that using an approach that accounts for adaptation could have a 

substantial influence on future hydrological drought characteristics. Vidal et al. (2012) also considered 

adaptation but distinguished between ‘retrospective adaptation’ and ‘prospective adaptation’ and also 

concluded that adaptation reduces the expected changes in drought severity. A global scale study by 

Prudhomme et al. (2014) found that including plant response to increased CO2 levels predicted little or 

no increase in streamflow drought frequency in the future, in contrast to other models. 

 

3.4.3 Soil moisture drought  
 

3.4.3.1 Observations - soil moisture drought 

Soil moisture drought occurs when there is a deficit of soil moisture in the plant rooting zone causing 

moisture stress and reductions in growth. A persistent soil moisture drought may develop into to a 

hydrological drought affecting streamflow, groundwater resources and water sensitive ecosystems. 

Indices of soil moisture drought include the Palmer Drought Severity Index (PDSI) and soil moisture 

anomaly (SMA) defined in Appendix A.1. A key study based on PDSI (Sheffield, 2012) showed little 

change in global drought over the past 60 years. However, previous assessments of changes in drought 

over the last 115 years indicate an increase in the severity and frequency of drought may be happening 

globally. In particular, calculations based on the Palmer Drought Severity Index (PDSI) show a 

decrease in moisture globally since the 1970s with a corresponding increase in the area in drought, due 

in part to surface warming (Dai et al., 2004, Briffa et al., 2009 cited in Trenberth 2014). A number of 

recent studies have produced inconsistent results of how drought is changing under climate 

change which could be due to the formulation of the PDSI and the datasets used to determine 

the evapotranspiration component (Trenberth et al., 2014). Additional investigation shows that 

assessing how precipitation has changed is a factor. 

 

Maps of soil moisture, CDD precipitation anomaly are available for significant events from the EDO 

based on comparison with the base period 1961-1990. For example maps for autumn 2011 are shown in 

Figures 42-44: (EURO4 CIB
36

). 

                                                           
36 http://cib.knmi.nl/mediawiki/index.php/European_Drought_in_November_2011 
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Figure 42: Precipitation anomaly in percentage of the 1961-1990 climatology. The Danube 

catchment is included for illustrative purposes. Left: Autumn 2011, right: November 2011. 

 
 

Figure 43: Consecutive number of dry days for stations throughout central Europe. Left: 

November climatology 1961-1990, right: November 2011 (EDO). 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                        
 

Figure 44: ESA soil moisture map for November 2011 in m
3
/m

3
. Note that the areas in the 

Netherlands, northern Germany and Denmark with high soil moisture content are areas where 
groundwater levels are regulated. The satellite registers the soil moisture content of the upper 
~2 cm of the soils. With a value of 0.10 m

3
/m

3
 soil moisture, this corresponds to storage of 

approximately 100 mm water in 1 m
3
 soil or 1 mm in the top cm. 

 

http://cib.knmi.nl/mediawiki/images/9/9c/Nov2011Drought_SM_RE01_MIR_CLF3MA_20111101T000000_20111130T235959_245_002_7_DBL_reg_nc_baselayers_world_polygons_Soil_Moisture_baselayers_overlay_0000-00-00T00-00-00Z_large.png
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Using the PDSI and its intermediate Z-index product for the Mediterranean region, Dubrovsky et al. 

(2014) discovered a significant decrease in soil moisture in all seasons, with the most significant 

decrease occurring in summer. The displayed changes exhibit high inter-model agreement. A stochastic 

daily weather generator, calibrated with the modelled daily data, indicated a trend toward more extreme 

weather in the Mediterranean. Temperature maxima will increase not only because of an overall rise in 

temperature means, but partly (in some areas) because of increases in temperature variability and daily 

temperature range. Increased mean daily precipitation sums on wet days occurring in some seasons, and 

some parts of the Mediterranean may imply higher daily precipitation extremes, and decreased 

probability of wet day occurrence will imply longer drought spells all across the Mediterranean.  

Figure 45 shows changes in summer soil moisture between the periods 1961 to 1990 (baseline) and 

2021 to 2050 (scenario). At the pan-European scale, soil moisture content has not changed significantly 

since the 1950s (Kurnik et al., 2014b). At the sub-continental scale, however, significant trends in 

summer soil moisture content can be observed. In parts of northern Europe soil moisture content 

increased; these increases are likely due to increases in precipitation amounts. In the Mediterranean 

region decreases in soil moisture were observed, particularly large changes being recorded in south-

eastern Europe, south-western Europe, and southern France. However, limited availability of climate 

data in the region affects confidence in of the modelled trends.  

 

Figure 45: Projected changes in summer soil moisture between the periods 1961 to 1990 

(baseline) and 2021 to 2050 (scenario)
37

 

 

 

                                                           
37

 http://www.eea.europa.eu/data-and-maps/indicators/water-retention-3/assessment 



 

88 

3.4.3.2 Projections - soil moisture drought 
 

The greatest difference in future drought predictions between future scenarios is given by the PDSI 

metric which is strongly influenced by temperature via its impact on evapotranspiration. Climate 

mitigation (under the RCP2.6 scenario) generally reduced future changes in drought compared to the 

business as usual scenario (A1B) and had a larger impact on significant increases than decreases in time 

spent in drought.  

There are considerable uncertainties in future projections. Drought thresholds have been found to have 

relatively little effect on the proportion of time spent in drought. Higher thresholds generally produced a 

larger affected land area with a reduced time spent in drought, particularly for SPI. This study showed 

that the choice of drought index is of less importance than absolute threshold when conducting impacts 

assessments of changes in future physical drought hazards, although there are inevitably threshold 

effects when considering socio-economic impacts.  

Projections from the Burke et al. (2010) study of drought for the 21st century were estimated by 

applying non-stationary extreme value theory to monthly drought indices. All drought indices show an 

overall increase in drought in the future. However, the spread of values is considerable ranging from 

little change or a slight decrease to a significant increase depending on ensemble member and, to a 

smaller extent, location. The impacts of these projections are put in the context of the severe UK 

drought in 1976. This work provides preliminary steps towards a probabilistic assessment of changes in 

future drought.  

Orlowsky and Seneviratne (2013) found that internal climate variability is the dominant source of 

uncertainty in projections of soil moisture drought and for the far future (end of the 21th century) the 

differences between climate models become dominant.  
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Appendices 

A.1 Temperature, precipitation, drought and excess heat indices 
 
No. ID Definitions of the ETCCDI core indices (1-27) and independent indices (28-44) 

1 FD Number of frost days: Annual count of days when TN (daily minimum temperature) < 0
o
C. Let TNij be 

daily minimum temperature on day i in year j. Count the number of days where: TNij < 0
o
C. 

2 SU  Number of summer days: Annual count of days when TX (daily maximum temperature) > 25
o
C. Let 

TXij be daily maximum temperature on day i in year j. Count the number of days where:TXij > 25
o
C. 

3 ID Number of icing days: Annual count of days when TX (daily maximum temperature) < 0
o
C.Let TXij be 

daily maximum temperature on day i in year j. Count the number of days where:TXij < 0
o
C. 

4 TR Number of tropical nights: Annual count of days when TN (daily minimum temperature) > 20
o
C.Let TNij 

be daily minimum temperature on day i in year j. Count the number of days where:TNij > 20
o
C. 

5 GSL Growing season length: Annual (1st Jan to 31st Dec in Northern Hemisphere (NH), 1st July to 30th 
June in Southern Hemisphere (SH)) count between first span of at least 6 days with daily mean 
temperature TG>5

o
C and first span after July 1st (Jan 1st in SH) of 6 days with TG<5

o
C.Let TGij be 

daily mean temperature on day i in year j. Count the number of days between the first occurrence of at 
least 6 consecutive days with: TGij > 5

o
C.and the first occurrence after 1st July (1st Jan. in SH) of at 

least 6 consecutive days with:TGij < 5
o
C. 

6 TXx Monthly maximum value of daily maximum temperature: Let TXx be the daily maximum temperatures in 
month k, period j. The maximum daily maximum temperature each month is then:      

           
  

7 TNx Monthly maximum value of daily minimum temperature: Let TNx be the daily minimum temperatures in 
month k, period j. The maximum daily minimum temperature each month is then:      

           
  

8 TXn Monthly minimum value of daily maximum temperature: Let TXn be the daily maximum temperatures in 
month k, period j. The minimum daily maximum temperature each month is then:      

          
  

9 TNn Monthly minimum value of daily minimum temperature: Let TNn be the daily minimum temperatures in 
month k, period j. The minimum daily minimum temperature each month is then:      

           
  

10 TN10p Percentage of days when TN < 10
th

 percentile :Let TNij be the daily minimum temperature on day i in 
period j and let TNin10 be the calendar day 10

th
 percentile centred on a 5-day window for the base 

period 1961-1990. The percentage of time for the base period is determined where:TNij < TNin10To 
avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base 
period (1961-1990) requires the use of a bootstrap procedure. Details are described in Zhang et al. 
(2005). 

http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html


 

90 

11 TX10p Percentage of days when TX < 10
th

 percentile :Let TXij be the daily maximum temperature on day i in 
period j and let TXin10 be the calendar day 10

th
 percentile centred on a 5-day window for the base 

period 1961-1990. The percentage of time for the base period is determined where:TXij < TXin10 to 
avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base 
period (1961-1990) requires the use of a bootstrap procedure. Details are described in Zhang et al. 
(2005). 

12 TN90p Percentage of days when TN > 90
th

 percentile :Let TNij be the daily minimum temperature on day i in 
period j and let TNin90 be the calendar day 90

th
 percentile centred on a 5-day window for the base 

period 1961-1990. The percentage of time for the base period is determined where: TNij > TNin90 to 
avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base 
period (1961-1990) requires the use of a bootstrap procedure. Details are described in Zhang et al. 
(2005). 

13 TX90p Percentage of days when TX > 90
th

 percentile :Let TXij be the daily maximum temperature on day i in 
period j and let TXin90 be the calendar day 90

th
 percentile centred on a 5-day window for the base 

period 1961-1990. The percentage of time for the base period is determined where: TXij > TXin90 to 
avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base 
period (1961-1990) requires the use of a bootstrap procedure. Details are described in Zhang et al. 
(2005). 

14 WSDI Warm spell duration index: Annual count of days with at least 6 consecutive days when TX > 90
th

 
percentile. Let TXij be the daily maximum temperature on day i in period j and let TXin90 be the 
calendar day 90

th
 percentile centred on a 5-day window for the base period 1961-1990. Then the 

number of days per period is summed where, in intervals of at least 6 consecutive days: TXij > TXin90 

15 CSDI Cold spell duration index: Annual count of days with at least 6 consecutive days when TN < 10
th

 
percentile. Let TNij be the daily maximum temperature on day i in period j and let TNin10 be the 
calendar day 10

th
 percentile centred on a 5-day window for the base period 1961-1990. Then the 

number of days per period is summed where, in intervals of at least 6 consecutive days:TNij < TNin10 

16 DTR Daily temperature range: Monthly mean difference between TX and TNLet TXij and TNij be the daily 
maximum and minimum temperature respectively on day i in period j. If I represents the number of 
days in j, then:  

      
            

 
   

 
 

17 Rx1 
day 

Monthly maximum 1-day precipitation: Let RRij be the daily precipitation amount on day i in period j. 
The maximum 1-day value for period j are: Rx1dayj = max (RRij) 

18 Rx5 
day 

Monthly maximum consecutive 5-day precipitation: Let RRkj be the precipitation amount for the 5-day 
interval ending k, period j. Then maximum 5-day values for period j are:  
Rx5dayj = max (RRkj) 

19 SDII Simple precipitation intensity index: Let RRwj be the daily precipitation amount on wet days, w (RR ≥ 
1mm) in period j. If W represents number of wet days in j, then:  

       
       

 
   

 
 

20 R10 
mm 

 Annual count of days when PRCP≥ 10mm: Let RRij be the daily precipitation amount on day i in period 
j. Count the number of days where: RRij ≥ 10mm 

http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html
http://www.climdex.org/27_indices.html
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21 R20 
mm 

Annual count of days when PRCP≥ 20mm: Let RRij be the daily precipitation amount on day i in period 
j. Count the number of days where: RRij ≥ 20mm 

22 Rnn 
mm 

Annual count of days when PRCP≥ nnmm, nn is a user defined threshold: Let RRij be the daily 
precipitation amount on day i in period j. Count the number of days where: RRij ≥ nnmm 

23 CDD Maximum length of dry spell, maximum number of consecutive days with RR < 1mm: Let RRij be the 
daily precipitation amount on day iin period j. Count the largest number of consecutive days where: 
RRij < 1mm 

24 CWD Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1mm: Let RRij be the 
daily precipitation amount on day in period j. Count the largest number of consecutive days where: RR ij 
≥ 1mm 

25 R95p 
TOT 

Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 
1.0mm) in period i and letRRwn95 be the 95

th
 percentile of precipitation on wet days in the 1961-1990 

period. If W represents the number of wet days in the period, then:  
 

              
 
     where RRwj > RRwn 95 

26 R99p 
TOT 

Annual total PRCP when RR > 99p: Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 
1.0mm) in period i and let RRwn99 be the 99

th
 percentile of precipitation on wet days in the 1961-1990 

period. If W represents the number of wet days in the period, then: 
 
              

 
     where RRwj > RRwn 99 

27 PRCP 
TOT 

Annual total precipitation in wet days: Let RRij be the daily precipitation amount on day i in period j. If I 
represents the number of days in j, then: 

                  
 
    

   

  Indices independent of ETCCDI (28-44) 

  Precipitation indices 

28 S95p 
TOT 

Unlike R95pTOT, which uses a fixed climatological 95th percentile, the S95pTOT assumes a separate 
95th percentile for each year based on a Weibull distribution fit to the wet-day precipitation amounts, an 
analytical expression for S95pTOT is derived. Leander et al, 2014 

29 SPI The Standardized Precipitation Index : A probability index which uses a standardized scales showing 
negative for drought, and positive for wet conditions. Originally developed for US 1889-1991. McKee et 
al., 1993 

30 SPEI Standardised Precipitation Evapotranspiration Index: A multi-scalar drought index based on climatic 
data used for determining the onset, duration and magnitude of drought conditions with respect to 
normal conditions in a variety of natural and managed systems such as crops, ecosystems, rivers, 
water resources, etc. Originally developed for Iberia 1961-2011. Vicente-Serrano et al., 2010 

31  Threshold based indices : A threshold associated with a significant climatic value or requiring some 
operational intervention, e.g. flood or drought mitigation. 

32 SDII Simple day (precipitation) intensity index: The ratio of annual or seasonal total rainfall to the number of 
days during the year or season when rainfall occurred. 

33 EPIC European Precipitation Index based on simulated Climatology: An index based on simulated 
climatology used as to monitor the European domain for upcoming severe storms possibly leading to 
flash floods. Originally developed for the simulation period e.g. 1971-2001. Alfieri et al., 2012. 

34 CEI Circulation Extremity Index: An event ranking index based on a 28-member model ensemble. Originally 
developed for the period 1958-2002. Kaspar & Mueller, 2014 
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35 mCEI Modified Circulation Extremity Index: 5-component circulation index incorporating max/min temp, PDSI, 
number wet/dry days and proportion of heavy rain days, originally developed for the period 1950 to 
2012. Gallant et al., 2014. 

  Drought indices 

36 PDSI Palmer Drought Intensity Index: Precipitation and temperature analyzed in a water balance model; 
comparison of meteorological and hydrological drought across space and time. See also Palmer 
Hydrological Drought Index (PHDI). Sheffield et al. 2012, Palmer W. C., 1965 

37 scPDS
I 

Self-calibrating PDSI: Improves on PDSI by changing the (US based) standardization and measures 
the departure of soil moisture from the normal conditions, using a hydrological accounting system. 
Antofie 2015, Van der Schrier 2014, Wells & Goddard 2004 

38 RDI Reconnaissance Drought Indicator The ratio of rainfall to PET. Spinoni 2015, Antofie 2015 

39 PADI Palfai Drought Index : The ratio of the mean temperatures from April to August and the monthly 
precipitation from October to August. Antofie 2015, Palfai 1990 

40 SWI Soil Water Index: METOP ASCAT satellite product Global, 0.1° and continents at various depths 
http://land.copernicus.eu/global/products/swi Copernicus 

41 CMI Crop moisture index: Derived from the PDSI, the CMI estimates short-term crop moisture and 
drought for US crop-producing regions. https://www.drought.gov/drought/ Heim 2002, Bradford 2000, 
Palmer W C., 1968 

42 SWSI Surface Water Supply Index: Developed in the US (Colorado) to complement PDSI in managed 
catchments. Heim 2002, Bradford, 2000, Shafer and Dezman, 1982. 

  Excess heat indices 

43 EHF Excess heat factor from Perkins & Alexander (2013) and Nairn (2009). 

EHI(accl) = ((Ti + Ti-1 + Ti-2) / 3) – ((Ti-3 + ... + Ti-31)/30) 

EHI(sig) = ((Ti + Ti-1 + Ti-2) / 3) – T95 

EHF = max(1, EHI(accl)) x EHI(sig) 

When EHF > 0, then heat wave conditions are present. This index is used for forecasting purposes 
(BoM) and the UK Met Office Global Hazard Map but also for the impacts studies (e.g. PwC 2011). 

44 HWM Heat Wave Magnitude Index from Russo et al. (2014) 

The HWMI is defined as the maximum magnitude of the heat waves in a year, where a heat wave is 
the period >= 3 consecutive days with maximum temperature above the daily threshold for the 
reference period 1981-2010. This threshold is the 90

th
 percentile of the daily maximum centred on a 31 

day window (Russo et al. 2014). 

http://land.copernicus.eu/global/products/swi
https://www.drought.gov/drought/
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A.2 Case studies 

A2.1 Case study: 2010 Russia heat wave 
 

Comprehensive reviews of this extreme event are given by Grumm (2011) and Barriopedro et al. (2011) 

which show the highest July temperature in the region since records began (WMO, 2010). The event 

lasted nearly two months without respite, from late June well into August. The high temperatures, 

which had been preceded by very dry conditions, resulted in widespread wildfires, which, as in Greece 

in 2007, worsened the impacts of the heat, especially in urban centres (Kovonalov et al., 2011). The 

excess mortality figures are of a similar magnitude as those from the 2003 event in western Europe 

(around 55,000 e.g. Matsueda 2011, Barriopedro et al., 2011), and there were substantial economic 

losses, especially in agriculture (Coumou & Rahmstorf 2012). The spatial extent of this event was 

greater than that of the previous significant event, in 2003 (Barriopedro et al., 2011). A number of 

studies have connected the events in Russia with the extreme flooding event in Pakistan which occurred 

roughly at the same time (Lau & Kim, 2010, Trenberth & Fasullo, 2012, Galarneau et al., 2012). Otomi 

et al. (2012) suggest that a reversal of the Arctic Oscillation early in the summer drove the high 

temperatures seen in Europe, but also Japan, as well as the preceding cold winter. In determining to 

what extent this event is attributable to anthropogenic climate change two apparently opposing results 

were obtained (Dole et al., 2011, Rahmstorf & Coumou 2011). However, Otto et al. (2012) have 

reconciled these two studies by finding that the magnitude (intensity) of the heat wave was possible 

without human influences, but that its probability of occurring has increased as a result of 

anthropogenic emissions. 

This event can be represented in a number of different ways.  Using an individual station from HadISD 

(Dunn et al., 2012), the daily timeseries can show clearly the duration of the event and its intensity. 

Figure 46 shows the daily average temperature in 2010 for the station in the Moscow Botanic Gardens, 

compared to the average and expected range. By integrating these excess degrees over time for each 

station, maps of a combined duration and intensity show the extent of the heat wave (Figure 46 left). 

Showing the same event using one of the indices suggested in Perkins & Alexander (2013), the Excess 

Heat Factor (EHF, Nairn et al., 2009) has a much wider extent (Figure 46 right). For the ETCCDI 

percentile based indices, again there are subtle differences depending which dataset it used. Figure 47 

(Donat et al., 2013a) shows the overall characteristics of this heat wave are very similar, with high 

numbers of warm days and warm nights in July and August. 
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Figure 46: The year of 2010 for the station in Moscow Botanic Gardens (lat=55.8, lon=37.6) is 

shown in green from HadISD (Dunn et al., 2012). The climatological mean calculated over 1975-

2005 and smoothed by a 21-point binomial filter is shown by the black curve. The 5
th

 and 95
th

 

percentiles are shown by the red lines, with yellow shading in between. The area highlighted in 

red is what is measured by the integrated degree days index in Figure 47. 

 

 
 

Figure 47: (left) the integrated degree days and (right) the integrated EHF calculated from HadISD for 

July and August 2010. 

 

Figure 48: the TN90p (left) and the TX90p (right) indices from HadEX2 (Donat et al., 2013a) for 

July and August 2010. In a normal month, the expectation would be for around 3 days to be 

above the 90th percentile when using the TX90p and TN90p measures. 
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A3.2 Case study: 2002 and 2013 extreme precipitation  
 

ECA&D data have been analysed by KNMI for two noteworthy Central European heavy precipitation 

events of 11 and 12 August 2002 and 30 May-2 June 2013. Precipitation amounts exceeded 100mm 

during late May /early June 2013 over a sizeable area of Switzerland, Austria, southern and eastern 

Germany and Czech Republic (Figure 49. Some stations recorded over 200mm, close to the average 

monthly precipitation amount. Figure 50 shows precipitation anomalies for the two events compared 

with the 1981-2010 baseline.  

 

 Figure 49: Total observed precipitation for the events of 11-12 August 2002 (left) and 30 May - 2 

June 2013
38

. 

 

 

Figure 50: Precipitation anomaly in percentage for July 2002 (left) and May 2013 (right) with respect to 

the normal amount over the period 1981-2010 (source: E-OBS). 

  
 

Although generally similar, the events differ in terms intensity, duration and antecedent conditions and 

generated very different impact in terms of flooding. The 2002 event was a high intensity short duration 

event concentrated over the Elbe basin. The 2013 event was less intense but followed a wetter than 

average month with record high soil moisture values in a large part of Germany. Examination of 

historic ECA&D data for 1951- 2012 did not indicate any significant trend in extreme precipitation. 

                                                           
38

 http://cib.knmi.nl/mediawiki/index.php/Central_European_flooding_2013 

http://www.ecad.eu/
http://cib.knmi.nl/mediawiki/index.php/Central_European_flooding_2013
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Figure 51 suggests a trend towards more heavy precipitation days in May, and the opposite in June, but 

the differences are generally not significant (green circles). A seasonal analysis indicates a significant 

shift towards wetter winters.  

 

Figure 51: Trend in very heavy (>20mm) precipitation days 1951-2012 for May (left) and June 

(right) (source: E-OBS). 

 

  
 

The study concludes that there is no convincing evidence of a tendency towards more extreme 

precipitation events in this region during the warm season. However, the frequency of weather patterns 

associated with heavy rainfall event has increased, and heavy precipitation events are projected to 

increase in frequency, intensity and/or amount under global warming (Hirabayashi et al., 2013). The 

study also highlights the influence of high sea surface temperatures in the eastern Mediterranean and 

especially the Black Sea, and persistence of the low pressure system due to meanders in the Northern 

Hemisphere jet stream
39

 on the heavy precipitation events. 

 

Scientific Issues  

 

Data are required at a resolution sufficient to quantify intensity and location of heavy and extreme 

rainfall. Rain gauge data are available over land only, and are sparse in some places. Satellite data 

provides greater coverage, and radar data provides high resolution data in certain areas. There are a 

number of merged synoptic and radar/satellite data, but they combine data from different sources and 

methodologies. 

 

Gauge records are of variable length and there may be discontinuities when they are moved or replaced. 

Satellite data are available for at most 30 years, and may contain several updates to instruments and 

processing algorithms resulting in temporal discontinuities. The use of different datasets by country or 

region can result in spatial discontinuities at national borders.  

 

A2.3 Case study: Drought in 2011 in Europe 
 

A study
40

 of the European drought of 2011 found the autumn was dry over most of Europe, when 

several European countries including Germany, the Netherlands, Slovakia and the Czech Republic 

                                                           
39

 The jet stream is a narrow band of fast flowing air at high altitudes generally flowing from the west to east over the mid-
latitudes and are caused by a combination of the planet's rotation on its axis and atmospheric heating (by solar radiation). 
40

 http://cib.knmi.nl/mediawiki/index.php/European_Drought_in_November_2011 

http://www.ecad.eu/download/ensembles/ensembles.php
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1911.html
http://cib.knmi.nl/mediawiki/index.php/File:R20mm_19512012_june_trend.png
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reported the lowest recorded precipitation in November. River levels were below average in large parts 

of central and eastern Europe, affecting navigability for example on the Rivers Rhine and Danube. Low 

reservoir levels affected electricity production in Serbia, Bosnia experienced drinking water shortages, 

and winter crop production was reduced in Romania, Bulgaria, Hungary and the Ukraine, where winter 

grain yields were estimated to be 30 percent below average. Unusually dry conditions also triggered 

forest fires in several countries including Germany (Upper Bavaria), the Ukraine, Moldova and 

Slovakia.  

An analysis of EC&D station data for 200 stations showed that November 2011 was the driest 

November since 1920 and autumn 2011 was the sixth driest autumn since 1920. An analysis of three 

indices, the total precipitation amount, the number of consecutive dry days (CDD) and the monthly 

maximum consecutive 5-day precipitation amount (RX5d), showed an increasing trend in autumn 

(SON) precipitation over this period, although parts of Europe showed the opposite - a reduction in 

November precipitation (Klein Tank et al., 2009). The study showed a reduction in the number of 

consecutive dry days in autumn, while a general increase, especially in eastern Europe, was observed in 

November although the pattern is noisy. For the month of November in the study period, eastern Europe 

showed a drying trend while western Europe is observed to get wetter. The extensive drought of 

November 2011 and the dry conditions during the whole autumn season are not consistent with the 

long-term trends observed.  

 

The analysis of the 2011 European drought
3
 included an analysis of long term trends in terms of 

precipitation anomaly, CDD and SPI. Only stations for which the trend is significant at the 25% level 

are shown. Hence, November 2011 drought and the dry conditions during the whole autumn season, are 

not consistent with the long-term trends as observed in a large number of stations (Figures 52 and 53, 

van den Besselaar). 

 

2011 was the mid-point of a significant multi-year drought in the UK from 2010 to 2012 (Kendon et al., 

2013). In terms of rainfall accumulations over 12–24 months, the drought was in the top ten most 

significant events across England and Wales in the last 100 years in lowland regions. Reduced spring 

rainfall impacted severely on water resources, streamflows and agriculture causing environmental 

stress, and loss of amenities. From early April 2012, there was an abrupt change in the jet stream 

position and UK weather patterns which transformed the hydrological situation. Exceptional rainfall 

terminated the drought abruptly, avoiding the anticipated economic, social and environmental impact, 

and concern turned to flooding (Marsh et al., 2013).  
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Figure 52: Trend over the period 1951-2012 when the trend is significant at 25% or higher. 

Stations for which the trend is not significant at 25% are not shown. Top left: Precipitation in 

autumn, top right: precipitation in November, middle left: consecutive dry days in autumn, 

middle right: consecutive dry days in November, bottom left: Maximum 5-day precipitation 

amount in autumn, bottom right: Maximum 5-day precipitation amount in November. Note that 

the erratic nature of precipitation adds to the noisy character of the trends in precipitation 

amount and maximum 5-day precipitation amount. 

 

Autumn      November

  

  

http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_rr_trend_19512012_son_nc_baselayers_world_polygons_RR_baselayers_overlay_2011-11-30T00-00-00Z_large.png
http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_rr_trend_19512012_nov_nc_baselayers_world_polygons_RR_baselayers_overlay_2011-11-30T00-00-00Z_large.png
http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_cdd_trend_19512012_son_nc_baselayers_world_polygons_CDD_baselayers_overlay_2011-11-30T00-00-00Z_large.png
http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_cdd_trend_19512012_nov_nc_baselayers_world_polygons_CDD_baselayers_overlay_2011-11-30T00-00-00Z_large.png
http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_rx5day_trend_19512012_son_nc_baselayers_world_polygons_RX5Day_baselayers_overlay_2011-11-30T00-00-00Z_large.png
http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_rx5day_trend_19512012_nov_nc_baselayers_world_polygons_RX5Day_baselayers_overlay_2011-11-30T00-00-00Z_large.png
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Figure 53: 20-year return values of consecutive dry days in November determined over the 

period 1991-2010. 

 

 

  

http://cib.knmi.nl/mediawiki/index.php/File:Nov2011Drought_cdd_returnvalue_20yr_nov_19912010_nc_baselayers_world_polygons_cdd_baselayers_overlay_2011-11-30T00-00-00Z_large.png
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A2.4 Case Study Hail 
 

Following a heat wave in late July 2013 with temperatures in excess of 35 °C, weather front Andreas 

affected large parts of Central Europe. Severe hailstorms occurred in two regions in Germany, the first 

around Hannover and Wolfsburg on 27
th
 July; the second was in the Baden-Württemberg region of 

southern Germany, where golf-ball sized hail stones caused major damage to roofs, windows, solar 

panels and other installations the cities of Rotenberg, Tuebingen und Reutlingen
41

 (Figure 54). Total 

losses for the insurance industry are estimated to be €4.2 billion including insured losses of €3.2 bn 

(Munich Re).  

Figure 54: Images of hail damage and largest hailstone on 6 August 2013, Swabian Jura 

  

  
 

Radar-based hail hazard assessment reveals a large-scale increase in hail probabilty from northern-to-

southern Germany, as well as local-scale hot spots due to flow modifications by orography. Statistical 

models indicate an increase in hail coccurence in past decade and an increased hail potential in the 

future due to increased convective energy caused by an increase in low-level moisture.  

The southern event occurred on the Swabian Jura, a high plateau extending 220 km from south west (at 

the foot of the Black Forest) to northeast, and approximately 50 km wide. Research shows that hail 

storms are related to orography, often occurring leeward of elevated terrain (Baldi et al., 2014).   

Figure 55 (a) shows hail size and location in Germany 27
th
 July-6

th
 August 2013, with larger hail stones 

exceeding 8cm. Figure 56 shows the number of hail days per 1 x 1 km² in which hail signals were 

detected in DWD radar data between 2005 and 2013 . Distincy clusters can be seen in southern and 

central Germany.  

                                                           
41

 http://www.swissre.com/media/news_releases/nr_20130923_hailstorms.html 

http://thecelestialconvergence.blogspot.com/2013/07/extreme-weather-anomalies-hail-storm.html
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Figure 55: (a) Hail size and location in Germany 27
th

 July-6
th

 August 2013 (b) Number of hail days 

per 1 x 1 km² in which hail signals were detected in DWD radar data between 2005 and 2013. 

Source: Karlsruher Insitut für Technologie (KIT). 

  

Figure 56 shows a close correlation between the Overshooting Tops (OT) based climatology and model 

derived hail day density (Punge et al., 2014), showing the increased likelihood of hail in elevated 

regions of northern Italy and southern Germany. It also demonstrates the usefulness of this satellite 

based remote sensing technology for estimating hail risk.  

Figure 56: Comparison between (a) OT-based climatology (occurences per year and 100 km²) 

and (b) Hail day density (Hand and Cappelutti, 2011). 

 

Research predicts an increase in the frequency and magnitude of severe hail events in future. This case 

study demonstates the benefits of PHI and OT to improve the identification and quantification of 
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extreme hail events, enabling measures to be taken to mitigate their impact and reduce costs associated 

with hail damage.   

The July 2013 event was joint first largest on record along with the event in 1984 which affected 

Munich. Flooding occurred in southern and eastern Germany in June, then large parts of Central Europe 

experienced a heat wave with temperatures peaking far beyond 35 °C in late July – the highest 

temperature in Germany was recorded in Rheinfelden (Baden) at 38.6 °C. The storms developed in the 

coastal regions of southern France, in the zone between warm sub-tropical air and cool Atlantic air, 

developing into a mesoscale convective complex (MCC). A hail bearing weather front crossed large 

parts of Central Europe between 26 and 30 July, and in Germany, a region 5 km by 27 km south of 

Stuttgart on the borders of the Swabian Alb, and a zone northeast of the Ruhr up to Wolfsburg, were 

severely affected. At €2.8 billion, the hailstone damage was the most expensive hailstorm in Germany’s 

history and the world’s most expensive event for the insurance industry in 2013
42

. 

  

                                                           
42

 http://www.genre.com/knowledge/publications/iipc1404-en.html 

http://www.genre.com/knowledge/publications/iipc1404-en.html
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