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Abstract: Early Jurassic silicic volcanic rocks of the Chon Aike Province (V1: 187 – 182 Ma) are 29 

recognised from many localities in the southern Antarctic Peninsula and northeast Patagonia and are 30 

essentially coeval with the extensive Karoo (182 Ma) and Ferrar (183 Ma) large igneous provinces of 31 

pre-breakup Gondwana. Until recently, plutonic rocks of this age were considered either rare or 32 

absent from the Antarctic Peninsula batholith, which was thought to have been mainly constructed 33 

during the Middle Jurassic and the mid-Cretaceous. New U-Pb zircon geochronology from the 34 

Antarctic Peninsula and recently published U-Pb ages from elsewhere on the Peninsula and 35 

Patagonia are used to demonstrate the more widespread nature of Early Jurassic plutonism. Eight 36 

samples are dated here from the central and southern Antarctic Peninsula. They are all moderately 37 

to strongly foliated granitoids (tonalite, granite, granodiorite) and locally represent the crystalline 38 

basement. They yield ages in the range 188 – 181 Ma, and overlap with published ages of 185 – 180 39 

Ma from granitoids from elsewhere on the Antarctic Peninsula and from the Subcordilleran plutonic 40 

belt of Patagonia (185 – 181 Ma). Whilst Early Jurassic plutons of the Subcordilleran plutonic belt of 41 

Patagonia are directly related to subduction processes along the proto-Pacific margin of Gondwana, 42 

coeval volcanic rocks of the Chon Aike Province are interpreted to be directly associated with 43 

extension and plume activity during the initial stages of Gondwana break-up. This indicates that 44 

subduction was ongoing when Chon Aike Province volcanism started. The Early Jurassic plutonism on 45 

the Antarctic Peninsula is transitional between subduction-related and break-up related 46 

magamatism.    47 
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The plutonic rocks of the Antarctic Peninsula magmatic arc form one of the major batholiths of the 48 

proto-Pacific continental margin (Leat et al. 1995). The Antarctic Peninsula batholith is interpreted to 49 

extend for 1350 km and clear correlations can be established with plutonic rocks in the adjacent 50 

crustal blocks of West Antarctica and Patagonia (Fig. 1). An absence of reliable age data along large 51 

parts of the batholith mean that it is not possible to construct a chronology of its construction and 52 

any shifts in its magmatic axis during the Mesozoic. The Antarctic Peninsula batholith is dominated 53 

(>80%) by calc-alkaline tonalite-granodiorite-diorite compositions, with minor granite-quartz diorite-54 

quartz monzodiorite, typical of a continental margin arc (e.g. Waight et al. 1998). The Antarctic 55 

Peninsula preserves a long-lived plutonic record, from the Ordovician (Riley et al. 2012) until at least 56 

23 Ma (Jordan et al. 2014), although the batholith was largely constructed from the Middle Jurassic 57 

to mid-Cretaceous. Mesozoic magmatism along the proto-Pacific margin of Gondwana has widely 58 

been attributed to long-lived subduction (e.g. Leat et al. 1995), although episodic events, termed 59 

magmatic ‘flare-ups’ (Paterson & Ducea 2015; Riley et al. 2016), that contribute to the development 60 

of the batholith may have been related to other forcing factors (e.g. rifting, plate reconfiguration, 61 

mantle plume influence). 62 

This paper presents new U-Pb geochronology from granite, tonalite and granodiorite from eight 63 

sites on the Antarctic Peninsula. The results are used in combination with recently published U-Pb 64 

zircon ages from isolated sites elsewhere on the Antarctic Peninsula and also from the Patagonian 65 

Andes to construct a more complete chronology of Mesozoic plutonism and to demonstrate how 66 

Early Jurassic volcanism and plutonism in the region are related. 67 

 68 

Geological Setting 69 

 70 

The Antarctic Peninsula was initially interpreted as an autochthonous continental arc of the 71 

Gondwana margin, which developed during Mesozoic subduction (Suarez 1976; Pankhurst 1982). 72 

Vaughan & Storey (2000) re-interpreted the evolution of the Antarctic Peninsula as a collage of para-73 



 4 

autochthonous and allochthonous terranes accreted onto the Gondwana margin. The terrane 74 

hypothesis has recently been challenged by Burton-Johnson & Riley (2015) who favour a model 75 

involving in situ continental arc evolution. 76 

The Mesozoic volcanic and sedimentary successions of the eastern Antarctic Peninsula all have a 77 

characteristic continental affinity (Riley and Leat, 1999) and in the northern Antarctic Peninsula they 78 

unconformably overlie Carboniferous – Triassic metasedimentary rocks of the Trinity Peninsula 79 

Group (Barbeau et al. 2010; Bradshaw et al. 2012). The Trinity Peninsula Group is estimated to have 80 

a thickness of at least 5 km, deposited as submarine fans along a continental margin (Hathway 81 

2000); it overlaps with, and is likely to overlie Ordovician – Permian age crystalline basement (e.g. 82 

Millar et al. 2002; Bradshaw et al. 2012; Riley et al. 2012). 83 

The Mesozoic sequences of the Antarctic Peninsula underwent low- to medium-grade 84 

metamorphism and deformation, potentially during the Palmer Land deformation event (107 – 103 85 

Ma; Vaughan et al. 2002) or during an earlier Late Triassic – Early Jurassic Peninsula deformation 86 

event (Storey et al. 1987). 87 

The Early – Middle Jurassic silicic volcanic rocks of the southern Antarctic Peninsula (Palmer Land) 88 

include the Brennecke and Mount Poster formations (Riley et al. 2001; Hunter et al. 2006), which 89 

form part of the wider first-stage event (V1) of the Chon Aike Province (Pankhurst et al. 2000). They 90 

are associated with minor basaltic successions (Riley et al. 2016) and extensive shallow marine 91 

sedimentary rocks of the Latady Group (Hunter & Cantrill 2006). 92 

Granitoid plutonic rocks form the most widespread igneous outcrops on the Antarctic Peninsula, 93 

occurring as individual plutons, composite intrusions and an extensive batholith constructed during 94 

Mesozoic–Cenozoic time (Leat et al. 1995). The paucity of exposure and 95 

geochronological/geophysical data across large parts of the Antarctic Peninsula mean that it is not 96 

possible to know the full extent and connectivity of many exposed granitoid plutons. 97 

 98 
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Geochronology of the magmatic rocks of West Antarctica and Patagonia 99 

 100 

Leat et al. (1995) collated and assessed all geochronological data for the Antarctic Peninsula 101 

available at the time (mostly Rb-Sr, K-Ar). They identified the most significant peak of magmatism as 102 

Early to mid-Cretaceous (particularly in Palmer Land). However, they also highlighted clear gaps in 103 

intrusive activity; one during the Early Jurassic was attributed to an episode of arc compression. The 104 

mid-Cretaceous peak in plutonic activity has been supported by more recent geochronology; 105 

Flowerdew et al. (2005), Leat et al. (2009) and Vaughan et al. (2012) have all demonstrated a major 106 

peak in pluton emplacement between 110 Ma and 105 Ma, as part of the extensive Lassiter Coast 107 

intrusive suite (Rowley et al. 1983). Mid-Cretaceous arc magmatism has also been recognised in the 108 

adjacent areas of Patagonia (Pankhurst et al. 1992; Hervé et al. 2007) and West Antarctica (Mukasa 109 

& Dalziel 2000; Riley et al. in press). Such extensive plutonism may be classified as a magmatic ‘flare-110 

up’ (c.f. Paterson & Ducea 2015), where magma addition rates are up to 1000 times greater than 111 

‘normal’ arc conditions. The exact triggers for changing arc tempos and higher magma production 112 

rates are uncertain, but ‘flare-ups’ are often associated with cycles of crustal thickening, followed by 113 

tectonic thinning. Subduction was probably ongoing during the mid-Cretaceous ‘flare-up’ and was 114 

potentially responsible for an increase in volatile fluxing into the mantle wedge. A similar analysis 115 

from the Sierra Nevada batholith of North America (Paterson & Ducea 2015) also identified a mid-116 

Cretaceous magmatic peak with >70% of the magma added to the lower crust at 30 – 70km depth. 117 

A Middle Jurassic magmatic ‘flare-up’ is also recognised, at approximately 170 Ma, and is largely 118 

represented on the Antarctic Peninsula and Patagonia as equivalent to the V2 (171 – 167 Ma) event 119 

of the silicic Chon Aike Volcanic Province (Pankhurst et al. 2000; Riley et al. 2010). In contrast to the 120 

Early Jurassic V1 volcanic event, the V2 episode is also accompanied by contemporaneous granites 121 

and granodiorites occurring in the same geographical area as the volcanic rocks (Pankhurst et al. 122 

2000). 123 
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Early Jurassic volcanism in the Antarctic Peninsula and Patagonia is well recognised as belonging 124 

to the V1 episode (187 – 182 Ma) of the Chon Aike Province (Féraud et al. 1999; Pankhurst et al. 125 

2000). Rhyolitic tuffs and ignimbrites of this episode dominate the thick (>2 km) volcanic successions 126 

and crop out in the southern Antarctic Peninsula (Brennecke and Mount Poster formations) and the 127 

North Patagonian Massif (Marifil Formation). The Marifil Formation (Malvicini & Llambías 1974) of 128 

northeast Patagonia consists of thick (75 – 100m), flat-lying, strongly welded, reddish ignimbrite 129 

units, interbedded with crystal and lapilli tuffs. The Brennecke Formation (Wever & Storey 1992) 130 

comprises silicic metavolcanic rocks that crop out at various localities in eastern Palmer Land (Fig. 2). 131 

The principal lithologies are massive rhyodacite lavas and welded pyroclastic rocks. The Mount 132 

Poster Formation of south-eastern Palmer Land (Fig. 2) comprises rhyodacitic, crystal-rich ignimbrite 133 

units, which reach a maximum thickness of almost 2 km and preserve evidence of an intracaldera 134 

setting (Riley et al. 2001). 135 

Geochronological data for the Marifil Formation have been given by Rapela & Pankhurst (1995), 136 

Féraud et al. (1999) and Pankhurst et al. (2000), with ages of ca. 188 to 174 Ma. The majority of 137 

40Ar/39Ar ages fall in the interval 187–182 Ma and a single U-Pb zircon age of 187 ± 3 Ma (BAS 138 

unpublished data), so it is possible the true age range could be narrower. The Mount Poster 139 

Formation and Brennecke Formation of the southern Antarctic Peninsula have been dated using U-140 

Pb geochronology in the much narrower interval, 184 – 183 Ma; Pankhurst et al. (2000) dated two 141 

samples of the Brennecke Formation at 184 ± 2 Ma, whilst Hunter et al. (2006) dated several 142 

disparate exposures of the Mount Poster Formation, which range in age between 185 Ma and 178 143 

Ma, and yielded an average age of 183.4 ± 1.4 Ma. 144 

However, sub volcanic equivalents to the V1 volcanic event have never been recognised and Leat 145 

et al. (1995)’s analysis of the chronology of the Antarctic Peninsula batholith identified a near 146 

absence of Early Jurassic ages in the range 187 – 182 Ma. There is a similar picture in the North 147 

Patagonian Massif where there are also no identified local plutonic equivalents of the Marifil 148 

Formation. 149 
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It is also relevant here to mention the adjacent Ellsworth-Whitmore Mountains crustal block of 150 

West Antarctica (Fig. 1), which is a displaced terrane and was originally located adjacent to the 151 

southern Africa/Weddell Sea sector of the Gondwana margin (Storey et al. 1988a). The Ellsworth 152 

Mountains consist of a thick succession of Palaeozoic siliciclastic, volcanoclastic and volcanic rocks 153 

(Curtis & Lomas 1999), which are intruded by Jurassic-age, A-type granites (Lee et al. 2012). Rb-Sr 154 

whole rock ages (Millar & Pankhurst 1987) and U-Pb zircon ages (Lee et al. 2012) record Jurassic 155 

granitoid magmatism in the interval 181 – 164 Ma, indicating at least some overlap with the Early 156 

Jurassic plutonic rocks of the Antarctic Peninsula and Patagonia. The tectonic cause of the Ellsworth-157 

Whitmore Mountains magmatism remains unclear as is its relation to volcanism on the Antarctic 158 

Peninsula. Storey et al. (1988b) favour an origin from Jurassic crustal melting and hybridization with 159 

mafic magmas, triggered by extension following a phase of compression. 160 

Here we will investigate the case for a broader plutonic event at ~183 Ma using recently 161 

published geochronology, in combination with the new U-Pb zircon data presented in this paper. 162 

 163 

Previous work 164 

 165 

Several isolated outcrops of Early Jurassic granitoids from the Antarctic Peninsula and the 166 

Subcordillera plutonic belt of Patagonia have recently been dated and record U-Pb zircon ages in the 167 

interval, 187 – 181 Ma, coincident with the V1 volcanic event of the Chon Aike Province (Pankhurst 168 

et al. 2000). This recent geochronology will be reviewed here. 169 

 170 

Patagonia 171 

Rapela et al. (2005) reported U-Pb ages from granitoids from what they termed the Subcordilleran 172 

plutonic belt of northwest Patagonia, a linear, discontinuous suite of Early Jurassic plutonic rocks 173 

that extend, approximately north-south for >250 km to the west of the North Patagonian Massif (Fig. 174 

3). The Subcordilleran plutonic belt lies slightly oblique to the present-day continental margin and is 175 
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compositionally more felsic in the north and more mafic to the south. The Subcordilleran plutonic 176 

belt lies to the west of the North Patagonian Massif and Rapela et al. (2005) suggested a shift in the 177 

axis of plutonism from the Patagonian batholith to the west. Rapela et al. (2005) selected four 178 

granitoid samples for U-Pb analysis from the northern Subcordilleran plutonic belt, including a 179 

biotite-hornblende granodiorite and quartz monzodiorite. The four samples yielded ages of 181 ± 2, 180 

181 ± 3, 185 ± 2 and 182 ± 2 Ma, all in the range 185 – 181 Ma. These are consistent with a 40Ar/39Ar 181 

(plagioclase) age for gabbroic rocks from the southern Subcordillera plutonic belt reported by Page 182 

and Page (1999) as 182.7 ± 1.0 Ma. 183 

It is possible that the plutonic rocks of the Early Jurassic Subcordilleran plutonic belt continue 184 

further south, but are obscured by Cretaceous sedimentary rocks and Middle Jurassic rhyolitic 185 

ignimbrites of the V2 Chon Aike Formation. The Subcordilleran plutonic belt is distinct from the 186 

neighbouring Patagonian batholith (Fig. 3), where the oldest granitoids are Late Jurassic and the 187 

batholith is dominated by granitoids of Cretaceous to Neogene age (Hervé et al. 2007). Jurassic 188 

granitoids appear to be absent from the North Patagonian Massif (Fig. 3), i.e. there is no exposed 189 

sub volcanic equivalent to the Marifil Formation, although there are widespread Triassic (220 – 206 190 

Ma) granites exposed, which are considered to share a common lower crustal source with the Marifil 191 

Formation volcanic rocks (Rapela & Pankhurst 1996). In the central part of the North Patagonian 192 

Massif, the Lonco-Trapial Formation is formed of mostly andesitic lavas and dykes, which have been 193 

dated at ~185 Ma (40Ar/39Ar amphibole) by Zaffarana & Somoza (2012).. This age is coeval with the 194 

adjacent Marifil Formation, although the Lonco-Trapial Formation was interpreted by Zaffarana & 195 

Somoza (2012) as a distinct event. They concluded that the Lonco-Trapial Formation andesites and 196 

the granitoids of the Subcordilleran plutonic belt were both directly related to subduction along the 197 

proto-Pacific margin, whereas the V1 volcanism of the Marifil Formation may have been more 198 

closely linked to rifting and plume-related magmatism of the Karoo large igneous province (Riley et 199 

al. 2001). 200 

 201 
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Antarctic Peninsula 202 

The geochronology of the Antarctic Peninsula batholith was reviewed by Leat et al. (1995) and 203 

indicated a clear gap in pluton emplacement during the Early Jurassic. However, Rb-Sr and K-Ar 204 

whole rock and mineral data can be affected by resetting following subsequent magmatic and 205 

metamorphic events. Therefore, the geochronology of the Antarctic Peninsula plutonism reviewed 206 

here will rely on more recently acquired U-Pb zircon geochronology to demonstrate the greater 207 

ubiquity of pluton emplacement at ~180 Ma. 208 

 209 

Graham Land: Riley et al. (2012) dated crystalline metamorphic and magmatic rocks from eastern 210 

Graham Land that included three granitoids from the Eden Glacier and Avery Plateau (Fig. 2). The 211 

two samples from the Eden Glacier are a tonalite and quartz monzonite and both yielded ages of 185 212 

± 3 Ma, whilst a weakly deformed granodiorite from the Avery Plateau yielded an age of 184 ± 3 Ma. 213 

Pankhurst et al. (2000) also identified inheritance at ~184 Ma in the granitoids of eastern Graham 214 

Land. The Bildad Peak granite (Fig. 2), which was dated by Pankhurst et al. (2000) at 169 ± 2 Ma, had 215 

inherited grains at 186 and 185 Ma, whilst a granite from the Mapple Glacier (Fig. 2) was dated at 216 

164 ± 2 Ma, with inheritance at 183 Ma. The presence of inherited Early Jurassic zircon grains in 217 

Middle Jurassic plutons emplaced at mid-crustal levels suggests that they are inherited grains are of 218 

plutonic origin and not from a volcanic source. 219 

 220 

Palmer Land: Early Jurassic plutonism in the interval, 185 – 180 Ma age has been identified from 221 

several sites in Palmer Land, away from the primary areas of V1 volcanism (Brennecke and Mount 222 

Poster formations; Fig. 2). Leat et al. (2009) reported three Early Jurassic ages (U-Pb) from northwest 223 

Palmer Land; two weakly deformed granitic gneisses from Goettel Escarpment (Fig. 2) were dated at 224 

180 Ma and 184 Ma (see Fig. 1b in Leat et al. 2009), coincident with Early Jurassic plutonism from 225 

elsewhere on the Antarctic Peninsula. Leat et al. (2009) also dated (183.0 ± 2.1 Ma) a felsic 226 

orthogneiss from Cape Berteaux in northwest Palmer Land (Fig. 2), although there is an element of 227 
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uncertainty regarding the protolith. The sample is a medium grained, foliated felsic lithology, but a 228 

possible relict phenocryst texture led Leat et al. (2009) to interpret the protolith as volcanic. 229 

However, silicic volcanic rocks of ~183 Ma age are unknown outside eastern Palmer Land, so a 230 

plutonic origin to the protolith is preferred. 231 

Flowerdew et al. (2006) examined the crustal source of granitic gneisses from eastern Palmer 232 

Land and identified several inherited core ages of ~180 Ma from a leucocratic gneiss at Mount 233 

Nordhill (Fig. 2), which is close to the sample site area of this study. 234 

 235 

This study 236 

 237 

A broad selection of granitoids from the southern Antarctic Peninsula were dated as part of a wider 238 

study investigating the tectonic evolution of the Antarctic Peninsula. Eight of the analysed samples 239 

recorded Early Jurassic ages and they form the basis of this study. Five samples are from eastern 240 

Palmer Land; sample R.2143.3 is a sheared granitoid from Engel Peaks (Fig. 2), N11.115.1 is a 241 

sheared tonalite from Mount Jackson (Fig. 2), R.7170 is a moderately sheared granodiorite from 242 

Mount Sullivan (Fig. 2), N10.395.2 is a moderately foliated granitoid from Eileson Peninsula (Fig. 2), 243 

whilst N10.470.1, also from the Eileson Peninsula is a sheared biotite granite. The three remaining 244 

samples analysed here are R.6308.1, a foliated granodiorite from the Batterbee Mountains (Fig. 2) 245 

and two samples from southernmost Graham Land; sample R.6157.1 is a granitic gneiss from 246 

Reluctant Island (Fig. 2, Loske et al. 1997) and sample BR.015.1 is a foliated granite from Roman Four 247 

Promontory (Hoskins 1963, Fig. 2). 248 

 249 

Analytical procedures 250 

 251 
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U-Pb zircon geochronology was carried out using the Cameca IMS 1280 ion microprobe, housed at 252 

the NORDSIM isotope facility, Swedish Museum of Natural History (Stockholm) and the Sensitive 253 

High Resolution Ion Microprobe (SHRIMP) at the Australian National University, Canberra. 254 

Zircons, separated by standard heavy liquid procedures were mounted in epoxy and polished to 255 

expose their interiors. They were imaged by optical microscopy and cathodo-luminesence (CL) prior 256 

to analysis. The CL images were used as guides for analysis targets because they reveal the internal 257 

structure of the grains. The analytical methods using the NORDSIM facility closely followed those 258 

detailed by Whitehouse & Kamber (2005). U/Pb ratio calibration was based on analysis of the 259 

Geostandard reference zircon 91500, which has a 206Pb/238U age of 1065.4 ± 0.6 Ma and U and Pb 260 

concentrations of 81 and 15 ppm respectively (Wiedenbeck et al. 1995). At the SHRIMP facility the 261 

analytical method followed that outlined by Williams (1998). Calibration was carried out using zircon 262 

standards mounted together with the samples (mostly AS-3; Paces & Miller 1993). 263 

Common lead corrections (for NORDSIM data) were applied using a modern day average 264 

terrestrial common lead composition (207Pb/206Pb = 0.83; Stacey & Kramers 1975) where significant 265 

204Pb counts were recorded. Age calculations were made using Isoplot v.3.1 (Ludwig 2003) and the 266 

calculation of concordia ages followed the procedure of Ludwig (1998). The results are summarised 267 

in Table 1. The uncertainty in the calculated ages is 2/95% confidence limits. 268 

 269 

Results 270 

 271 

Large broken zircon grains and squat prisms (>250 µm) were recovered from sample R.2143.3 (Engel 272 

Peaks).  The majority of the grains exhibited diffuse growth zoning patterns under CL 273 

(Supplementary Fig. 1a). Evidence for zircon growth other than that during crystallisation of the 274 

granitoids was not detected. Seven analyses from 7 grains yield weighted mean of the 206Pb/238U 275 

ages of 188 ± 1 Ma and a MSWD of 1.9 (Fig. 4a), which is taken to date intrusion. Three analyses with 276 
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large common Pb corrections were excluded from the age calculation as it is likely that these have 277 

also suffered some recent Pb loss.   278 

Sample N11.115.1 (Mount Jackson) yielded prisms which typically range in length between 150 279 

µm and 200 µm have aspect ratios of 3:1 and exhibit simple diffuse growth zoning. A thin <10 µm CL 280 

bright rim is ubiquitous (Supplementary Fig. 1b), and although this rim was not analysed, it probably 281 

grew during tonalite crystallisation along with the zircon with a diffuse zoning pattern. Inherited 282 

zircon cores are sometimes recognised using the CL images. Twenty analyses were carried out on 18 283 

grains, 16 of which were located within zircon with a diffuse CL character. Excluding one analysis, 284 

which is interpreted to have suffered recent Pb loss, a weighted mean of the 206Pb/238U ages of 182 ± 285 

1 Ma is calculated (Fig. 4b), and this age is interpreted to date the tonalite intrusion. Inherited grains 286 

yielded ages of c. 218 Ma, 465 Ma, 515 Ma and 969 Ma.   287 

Zircons from the sheared granitoid sample N10.395.2 (Eileson Peninsula) are elongate prisms 288 

with 4:1 aspect ratios and are typically 200 – 250 µm long. Although the zircons are rather 289 

characterless under CL (Supplementary Fig. 1c), sector zoning is sometimes evident and it is likely 290 

that this zircon grew during granitoid intrusion. Inherited cores are not evident from the CL images. 291 

Ten analyses from 9 grains were carried out and excluding a single analysis from a possible inherited 292 

grain, and two analyses with large common Pb contents which have suffered recent Pb loss, a 293 

weighted average of the 206Pb/238U ages of 183 ± 1 Ma with an MSWD of 1.1 is calculated from the 294 

remaining grains (Fig. 4c), which is interpreted to date the intrusion of the granitoid. 295 

Sample N10.470.1 (Eileson Peninsula) yielded prisms typically 200 µm long with 3:1 aspect ratios. 296 

Under CL, the zircons are generally featureless and non-luminescent (Supplementary Fig. 1d). Five 297 

analyses were carried out on 5 grains and excluding the 2 analyses with sufficiently high uranium 298 

contents that the calibration with 91500 standard may become inappropriate, the remaining 3 299 

analyses yield a weighted average of the 206Pb/238U ages of 182 ± 2 Ma with an MSWD of 0.9 (Fig. 300 

4d), which is taken to record the granite intrusion. 301 



 13 

Zircons from sample BR.105.1 (Roman Four Promontory) are squat prisms with simple growth 302 

zoning patterns under CL.  Textural evidence for multiple zircon inheritance or zircon growth 303 

subsequent to the growth zoned zircon is lacking.  Seven analyses were carried out on 7 grains, five 304 

of which yielded a weighted average of the 206Pb/238U ages of 182 ± 2 Ma with an MSWD of 1.7 and 305 

is interpreted to date the intrusion.  The remaining two analyses, which were also carried out on the 306 

same zircon growth zones are younger, likely suffered recent Pb loss and so have been excluded 307 

from the age calculation. 308 

Sample R.7170.1 (Mount Sullivan) granodiorite contains zircons which are prismatic with 2:1 309 

aspect ratio and are growth-zoned and inclusion-rich. Some grains apparently contain inherited 310 

cores, confirmed by  a single core analysis which yielded a c. 238 Ma age. The remainder yield a 311 

weighted average of the 206Pb/238U ages of 183 ± 3 Ma with an MSWD of 1.1, which is taken to date 312 

intrusion. 313 

Zircons from granodiorite gneiss R.6308.1 (Batterbee Mountains) are inclusion-rich prisms, which 314 

are occasionally large with long axes exceeding 500 µm. All grains exhibit a fine-scale CL growth 315 

zoning pattern and whilst evidence for inherited grains are evident, these are rare. Sixteen analyses 316 

from 15 grains which lack evidence for inheritance yield ages which range between 190 ± 5 Ma and 317 

171 ± 8 Ma and a weighted mean of the 206Pb/238U ages of 181 ± 3 Ma (MSWD = 3.6). The high 318 

degree of scatter may have resulted from small degrees of Pb loss during subsequent tectonism. By 319 

excluding the youngest four analyses in the age calculation, any slight Pb loss might be 320 

circumnavigated and an age of 184 ± 2 Ma and a MSWD of 1.6 results. This age may therefore better 321 

estimate the age of the granite intrusion. 322 

Sample R.6157.1 (Reluctant Island) contains c. 200 µm prismatic zircons with 3:1 aspect ratios.  323 

They display simple growth zoning patterns under CL and lack evidence for inherited grains. Of the 324 

ten analyses from ten different grains, one exhibits Pb loss and accompanying common Pb.  325 

Exclusion of this analysis a calculated weighted average of the 206Pb/238U ages of 184 ± 2 Ma results, 326 

which is interpreted to date crystallisation of the granitic gneiss protolith. 327 
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 328 

 329 

Discussion 330 

 331 

New U-Pb geochronology presented here, in combination with recently published, high precision 332 

geochronology from elsewhere on the Antarctic Peninsula and Patagonia indicate that there is a 333 

distinctive plutonic event at ~183 Ma. 334 

The well recognised major volcanic event at ~183 Ma that crops out in northern Patagonia and 335 

the southern Antarctic Peninsula forms the V1 event of the wider Chon Aike Province (Pankhurst et 336 

al. 2000). There is no known subvolcanic equivalent to the V1 volcanism in either of the regions 337 

where V1 volcanic rocks are widespread, although this could be a feature of the exposure level 338 

(Pankhurst et al. 2000). A feature of the entire Chon Aike Province is the migration of volcanism from 339 

the northeast of Patagonia towards the southwest of the region over ca. 25 Myr (Féraud et al. 1999; 340 

Pankhurst et al. 2000; Fig. 5); as pointed out by the latter authors, this pattern is also observed in the 341 

Gondwana pre-breakup position of the Antarctic Peninsula, with migration of volcanism from 342 

southern Palmer Land to northern Graham Land (Fig. 5). The migration of volcanism is consistent 343 

with the petrogenetic model of Riley et al. (2001) who demonstrated that the rhyolitic volcanic rocks 344 

were the result of lower crustal melting, associated with the development of highly fusible crust 345 

through volatile enrichment above a long-lived continental margin. A feature of the petrogenetic 346 

model is that large volume silicic volcanism dominates during the melting phase associated with 347 

extension, but once the fusible part of the crust is exhausted (typically <2 Myr) then the locus of 348 

magmatism migrates. 349 

The geographical overlap of ~183 Ma plutonism with the V2 volcanism (171 – 167 Ma) in eastern 350 

Graham Land, shown as part of this study, is counter to the general model and migration of the Chon 351 

Aike Province, if indeed the ~183 Ma plutonism is the subvolcanic equivalent of the V1 volcanism. 352 
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However, there is no reported evidence of the ~183 Ma plutonic rocks in the same geographical area 353 

as the V1 volcanic fields. 354 

Given the location of the identified ~183 Ma granitoid plutons across Patagonia and the Antarctic 355 

Peninsula (Figs. 2 and 3), the most likely petrogenetic scenario is that the phase of ~183 Ma 356 

plutonism was not directly related to the coeval volcanism of the V1 event. The granitoids of the 357 

Subcordilleran plutonic belt of northwest Patagonia have a linear (north-south) outcrop pattern (Fig. 358 

3), sub parallel to the continental margin, to the west of the Patagonian batholith and were 359 

interpreted by Rapela et al. (2005) to represent a subduction-related magmatic arc along the proto-360 

Pacific margin of Gondwana with the axis of magmatism shifting to the west from the Patagonian 361 

batholith. The timing of plutonism indicated that subduction was ongoing during the eruption of the 362 

V1 volcanism of the Marifil Formation on the North Patagonian Massif. Rapela et al. (2005) 363 

investigated the geochemistry and geochronology of the Subcordilleran plutonic belt granitoids 364 

(granodiorites and quartz monzodiorites) and compared them to the coeval volcanic rocks of the 365 

Chon Aike Province and also to the Triassic plutonic rocks from elsewhere in Patagonia. They 366 

concluded that the Early Jurassic plutonism of the Subcordilleran plutonic belt was not present 367 

elsewhere in Patagonia. The trace element geochemistry, however, is not particularly diagnostic and 368 

although typical of magmatic rocks in convergent continental margins, it is essentially akin to other 369 

Andean batholiths and also the volcanic rocks of Patagonia. 370 

The outcrop pattern of Early Jurassic plutonic rocks of the Antarctic Peninsula do not show the 371 

same obvious linear outcrop pattern as the Subcordilleran plutonic belt of Patagonia. However, the 372 

dimensions of the Subcordilleran plutonic belt are approximately 350 km in length by 150 km width, 373 

which is not dissimilar to the extent of the Early Jurassic plutonism observed on the Antarctic 374 

Peninsula (Fig. 2). 375 

 376 

Isotopic comparisons 377 

 378 
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Isotopic comparisons between different generations of felsic magmatism on the Antarctic Peninsula 379 

and Patagonia are also not particularly diagnostic (Fig. 6), as the source region characteristics are 380 

similar. Silicic volcanic rocks of the V1 and V2 events in Patagonia and the Antarctic Peninsula exhibit 381 

very similar initial ratios in 87Sr/86Sr (0.7065-0.7070) and Nd (-2 to -3; Riley et al. 2001), which are in 382 

turn very similar to the isotopic ratios from the Triassic granitoids of the North Patagonian Massif 383 

(Rapela & Pankhurst 1996). Much the same range in isotope values (Fig. 6) is also observed in the 384 

Middle Jurassic silicic volcanic rocks of the Thurston Island crustal block (Fig. 1) in West Antarctica 385 

(Riley et al. in press) and also the Cretaceous I-type granitoids of northeast Palmer Land (Wever et al. 386 

1994). Local exceptions do occur, where upper crustal contamination has resulted in more enriched 387 

isotopic values (e.g. Mount Poster Formation; Riley et al. 2001). 388 

Isotopic values from the ~184 Ma Subcordilleran plutonic belt are rather distinctive with 87Sr/86Sri 389 

values of 0.705 and Ndi values of ~ -1 (Fig. 6); they therefore form a separate geochemical group to 390 

the Chon Aike volcanic rocks, and the plutonic rocks of the North Patagonian Massif and the Central 391 

Patagonian batholith (Rapela et al. 1992). A subset of the ~183 Ma plutonic rocks of the Antarctic 392 

Peninsula have published isotope geochemistry (Wever et al. 1994; Leat et al. 2009), including 393 

several of the plutons described as part of this study;in addition, two further granitoids (R.2143.3, 394 

R.7170.1) were analysed here (Table 2). Although there is some range in isotopic values from the 395 

~183 Ma plutonic rocks, it is apparent that where upper crustal contamination isn’t prevalent, then 396 

the granitoids have 87Sr/86Sri values of ~0.7055 – 0.7060 and Ndi values of -1 to -5 (Fig. 6). These 397 

values overlap, in part, with those from the Subcordilleran plutonic belt, although there is also a 398 

clear trend towards the volcanic rocks of the V1 event, so a simple relationship to subduction isn’t 399 

borne out by the isotope data alone. 400 

 401 

Conclusions 402 

 403 



 17 

1. New U-Pb geochronology data presented here from the Antarctic Peninsula, in combination with 404 

recently published high-precision geochronology from elsewhere on the Antarctic Peninsula and 405 

Patagonia indicate that there was a significant episode of granitoid emplacement in the interval 185 406 

– 181 Ma, and not a hiatus as previously suggested (Leat et al. 1995). 407 

 408 

2. The granitoid plutonism at ~183 Ma is coincident with the major episode of silicic ignimbrite 409 

volcanism, which crops out extensively in northeast Patagonia and the southern Antarctic Peninsula. 410 

This is the V1 event (187 – 182 Ma) of the wider Chon Aike Volcanic Province (Pankhurst et al. 2000). 411 

 412 

3. There is no known sub-volcanic component to the V1 volcanic event in the geographical area of 413 

the exposed volcanism. However the V2 volcanic event (171 – 167 Ma) of the Antarctic Peninsula is 414 

characterised by an exposed subvolcanic equivalent (granitic plutonism) to the rhyolitic ignimbrites. 415 

 416 

4. The  ~183 Ma granitoids (mostly tonalite, quartz diorite, granodiorite) are considered to represent 417 

a distinct magmatic event from the contemporaneous V1 volcanism of the Chon Aike Province. The 418 

plutonic rocks of the Subcordilleran plutonic belt are associated with subduction-related magmatism 419 

along the proto-Pacific margin of Gondwana; implyingthat subduction was ongoing at the onset of 420 

Chon Aike Province volcanism. As suggested by Zaffarana & Samoza (2012), the silicic volcanic event 421 

could have been related the early stages of Gondwana breakup (Pankhurst et al., 2000) and plume 422 

activity associated with the contemporaneous Karoo and Ferrar LIPs (183 Ma; Svensen et al. 2012; 423 

Burgess et al. 2015), whereas the plutonism was subduction-related. 424 

 425 

5. The ~183 Ma granitoids of the Antarctic Peninsula are interpreted as potential correlatives of the 426 

185 – 181 Ma granites of the Subcordilleran plutonic belt of north-western Patagonia. Both regions 427 

form relatively narrow belts, sub parallel to the proto-Pacific margin of Gondwana. The Antarctic 428 

Peninsula granitoids are isotopically distinct to the coeval V1 volcanic rocks (Brennecke and Mount 429 
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Poster formations; Riley et al. 2001), but are marginally more enriched compared to the granitoids of 430 

the Subcordilleran plutonic belt. 431 

 432 
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List of Figures 606 

 607 

Fig. 1: Reconstruction of Gondwana at approximately 180 Ma showing the extent of the main 608 

granitoid batholiths of the proto-Pacific margin in West Antarctica and South America. TI: Thurston 609 

Island; MBL: Marie Byrd Land; AP: Antarctic Peninsula. Batholiths : PCB: Peruvian Coastal Batholith; 610 

PFB: Patagonian and Fuegian Batholiths; APB: Antarctic Peninsula Batholith; LCIS: Lassiter Coast 611 

Intrusive Suite. 612 

 613 
Fig. 2: Map of the Antarctic Peninsula showing the extent of the V1 volcanism of the Mount Poster 614 

and Brennecke formations and the locations/ages of the Early Jurassic plutonic rocks. The extent of 615 

the mid-Cretaceous Lassiter Coast intrusive suite is also shown. 616 

 617 

Fig. 3: Sketch map of southern South America (after Pankhurst et al. 2000) showing the extent of the 618 

V1 volcanism of the Marifil Formation, V2 volcanism of the Chon Aike Formation and the 619 

intermediate volcanism of the Lonco-Trapial Formation. The extent of the Andean batholith and the 620 

Subcordilleran plutonic belt are shown. NPM: North Patagonian Massif. 621 

 622 

Fig. 4: Concordia diagrams for analysed zircons from the Antarctic Peninsula (a) R.2143.3 sheared 623 

granitoid from Engel Peaks; (b) N11.115.1 sheared tonalite from Mount Jackson; (c) N10.395.2 624 

 foliated granitoid from Eileson Peninsula; (d) N10.470.1 sheared biotite granite from Eileson 625 

Peninsiula; (e) R.7170 is a granodiorite from Mount Sullivan; (f) R.6308.1 granite from Batterbee 626 

Mountains; (g) R.6157.1 granitoid gneiss from Reluctant island; (h) BR.015.1 granite from Roman 627 

Four Promontory. 628 

 629 

Fig. 5: Gondwana Pacific margin reconstruction at ~185 Ma showing the extent of the major large 630 

igneous provinces of the Karoo, Ferrar and the Chon Aike. The lines highlight the migration of silicic 631 
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volcanism from 185 Ma to 155 Ma towards the proto-Pacific margin (Pankhurst et al., 2000). DML: 632 

Dronning Maud Land; MBL: Marie Byrd Land. 633 

 634 

Fig. 6: 87Sr/86Sri vs. Ndi for Early Jurassic magmatic rocks from the Antarctic Peninsula and 635 

Patagonia. Data sources: Marifil Formation (Pankhurst & Rapela 1995); Brennecke Formation (Riley 636 

et al. 2001); Mount Poster Formation (Riley et al. 2001); Subcordilleran plutonic belt (Rapela et al. 637 

2005); Palmer Land plutonic rocks (Wever et al. 1994; Leat et al. 2009; this study; BAS unpublished 638 

data). NPM: North Patagonian Massif. 639 

 640 

 641 

 642 

Supplementary Figure 1: Cathodoluminescence images of analysed zircon grains from sites on the 643 

Antarctic Peninsula. Circles indicate the position of analysis. (a) R.2143.3 Engel Peaks; (b) N11.115.1 644 

Mount Jackson; (c) N10.395.2 Eileson Peninsula; (d) N10.470.1 Eileson Peninsula; (e) R.7170 Mount 645 

Sullivan; (f) R.6308.1 Batterbee Mountains; (g) R.6157.1 Reluctant island; (h) BR.015.1 Roman Four 646 

Promontory. 647 

 648 

Supplemenatry text 649 

Analytical methods: Sr and Nd isotope geochemistry 650 

Samples were weighed into Savillex teflon beakers and spiked with mixed 149Sm-150Nd and single 84Sr 651 

isotope tracers, prior to dissolution using HF-HNO3-HCl. Ion exchange columns packed with Eichrom 652 

AG50x8 cation exchange resin were used to separate Sr and a bulk rare-earth element fraction. Sm 653 

and Nd were separated from the REE concentrate using EICHROM LN-SPEC columns. Sm fractions 654 

were loaded onto one side of an outgassed double Re filament assembly using dilute HCl, and 655 

analysed in a Thermo Scientific Triton mass spectrometer in static collection mode. Replicate 656 

analysis of the BCR-2 rock standard across the time of analysis gave a mean Sm concentration of 6.34 657 
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± 0.06 ppm (1-sigma, n=7). Nd fractions were also loaded onto one side of an outgassed double Re 658 

filament assembly using dilute HCl, and analysed in a Thermo Scientific Triton mass spectrometer in 659 

multi-dynamic mode.  Nd data were normalised to 146Nd/144Nd = 0.7219.  Across the time of analysis, 660 

19 analyses of the JND-i standard gave a value of 0.512102 ± 0.000005 (10.4 ppm, 1-sigma). All other 661 

standard and sample data is quoted relative to a value of 0.512115 for this standard. Seven analyses 662 

of La Jolla gave 0.511864 ± 0.000006 (11.5 ppm, 1-sigma). Replicate analysis of the BCR-2 rock 663 

standard gave a mean Nd concentration of 28.1 ± 0.3 ppm and 143Nd/144Nd = 0.512638 ± 0.000006 664 

(11.9 ppm, 1-sigma, n=12). Sr fractions were loaded onto outgassed single Re filaments using a TaO 665 

activator solution, and analysed in a Thermo-Electron Triton mass spectrometer in multi-dynamic 666 

mode. Data were normalised to 86Sr/88Sr = 0.1194.  Across the time of analysis, 143 analyses of the 667 

NBS987 standard gave a value of 0.710250 ± 0.000006 (9 ppm, 1-sigma). Replicate analyses of the 668 

BCR-2 rock standard run with the samples gave a mean Sr concentration of 340.6 ± 5.1 ppm, and 669 

87Sr/86Sr = 0.705041 ± 0.00023 (33 ppm, 1-sigma, n=15). The calculated Rb/Sr (weight) ratio for BCR-670 

2 is 0.1379 ± 0.0013 (1-sigma). 671 

 672 



Riley et al.
Fig. 1

South
America

Africa

East Antarctica

Aus
tra

lia

AP
MBL

TI

India

PCB

PFB

LCIS
APB



65°S

70°S

o75 S 60°W

60°W

o
80 W

Palmer
Land

tsao
C ellivrO

dnaL 
mahar

G

B
la

c
k 

C
o

a
s
t

100 km

70°W

70°W
60°W

100°W 20°W

50°W 40°W

60°S 60°S

70°S

80°S

70
°S

80
°S

5000

km

0°W

20°W

N

Falkland Islands

SCOTIA SEA

WEDDELL SEA

South   
Georgia

South Orkney
Islands

Coats 
Land

Ronne
Ice Shelf

80°W

100°W

50°S

t
s

a
o

C r
eti

s
sa

L

EarlyJurassic silicic 
volcanic rocks (V1)

0

Mount Poster Fm
183 ± 1 Ma
(Hunter et al. 2006)

tsaoC II r
acs

O

Eielson Peninsula
(N10.395.2) 184 ± 2 Ma,
(N10.470.1) 182 ± 1 Ma

Mount Jackson
(N11.115.1)
182 ± 1 Ma

Batterbee Mts
(R.6308.1)
184 ± 2 Ma

Engel Peaks
(R.2143.1)
188 ± 1 Ma

Mt Sullivan
(R.7170.1)
183 ± 3 Ma

Cape Berteaux
183.0 ± 2.1 Ma
(Leat et al. 2009)

Reluctant Is.
(R.6157.1)
184 ± 2 Ma

Roman Four
Promontory
(BR.015.1)
183 ± 1 Ma

Goettel Escarpment

Eden Glacier
185 ± 3 Ma
185 ± 3 Ma
(Riley et al. 2012)

Mapple Glacier

Ave
ry

 P
la

te
au

18
4 

± 
3 

M
a

Bildad Peak

Lassiter Coast
intrusive suite
~105 Ma

Brennecke Fm
184 ± 2 Ma
(Pankhurst et al. 2000)

Riley et al.
Fig. 2



Chon-Aike Province
Volcanic Rocks

Subcordilleran
plutonic belt

Patagonian/Fuegian batholith

74°W 70°W 66°W 62°W

40°S

52°S

48°S

44°S
Gastre Fault Zone

NPM

Marifil
Formation

Chon Aike
Formation

Lonco-Trapial
Formation

Deseado
Massif

Riley et al.
Fig. 3



Riley et al.
Fig. 4

0.044

0.046

0.048

0.050

0.052

0.054

32 33 34 35 36 37
238U/206Pb

2
0

7
P

b
/2

0
6
P

b
R.2143.3, Engel Peaks

170 

178 

186 

194 

188 ± 1 Ma, 
MSWD 1.9 

0.040

0.044

0.048

0.052

0.056

33.4 33.8 34.2 34.6 35.0 35.4 35.8 36.2 36.6
238U/206Pb

2
0

7
P

b
/2

0
6
P

b

N11.115.1, Mount Jackson

177 

181 

185 

189 

182 ± 1 Ma
MSWD 1.0

0.040

0.044

0.048

0.052

0.056

0.060

0.064

31 33 35 37 39
238U/206Pb

2
0

7
P

b
/2

0
6
P

b

N10.395.2 
Eileson Peninsula

166 

174 

182 

190 

183 ± 1 Ma 
MSWD 1.1

0.046

0.048

0.050

0.052

0.054

0.056

32.5 33.5 34.5 35.5 36.5
238U/206Pb

2
0

7
P

b
/2

0
6
P

b

N10.470.1, Eileson Peninsula

182 ± 2 Ma
MSWD 0.9

177 

181 

185 

189 

193 

0.047 

0.049 

0.051 

0.053 

0.055 

32.5 33.5 34.5 35.5 36.5 37.5 
238U/206Pb

2
0

7
P

b
/2

0
6
P

b

172 

176 

180 

184 

188 

192 BR.015.1 
Roman Four

183 ± 1 Ma 
MSWD 1.1

0.044 

0.048 

0.052 

0.056 

0.060 

0.064 

0.068 

0.072 

22 26 30 34 38 42 
238U/206Pb

2
0

7
P

b
/2

0
6
P

b

R.7170.1
Mount Sullivan

183 ± 3 Ma 
MSWD 1.1

170 

180 

190 

200 

0.04 

0.06 

0.08 

0.10 

30 32 34 36 38 40 
238U/206Pb 

2
0

7
P

b
/2

0
6
P

b

R.6308.1
Batterbee Mountains

184 ± 2 Ma 
MSWD 1.6

155 

165 

175 

185 

195 

205 

0.044 

0.048 

0.052 

0.056 

0.060 

0.064 

31 33 35 37 39 41 43 45 
238U/206Pb 

2
0
7
P

b
/2

0
6
P

b

R.6157.1
Reluctant Island

184 ± 2 Ma 
MSWD 1.6

172 

176 

180 

184 

188 

192 

196 



Africa

New
Zealand

East Antarctica

Karoo

2000 km

South 
America

MBL

palaeo-Pacific Ocean

Antarctic 
Peninsula

Ferrar
DML

Riley et al.
Fig. 5

Chon-
 Aike

155 Ma

170 Ma

185 Ma



2

0

-2

-4

-6

-8

-10
0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740

Marifil Fm (187 - 182 Ma)

V2: Chon Aike Fm/Mapple Fm (171 - 167 Ma)

Brennecke Fm (184 Ma)
Thurston Is.
(182 Ma)

Lower
Crust

Upper
Crust

Antarctic Peninsula granitoids (187 - 181 Ma)

NPM
Triassic

granitoids

Subcordilleran plutonic belt (185 - 181 Ma)

Mt Poster Fm
(183 Ma)

eN
d

i

87 86
Sr/ Sri

Riley et al.
Fig. 6



N11.115.1 - Mount Jackson

5. 180 ± 3

4. 973 ± 14
6. 184 ± 3

N10.470.1 - Eileson Peninsula

4u. 188 ± 3 5. 181 ± 3

N10.395.2 - Eileson Peninsula

2. 183 ± 2

3. 184 ± 2

R.2143.3 - Engel Peaks

1. 184 ± 2
3. 184 ± 2

2. 183 ± 2

BR.015.1 - Roman Four

2.1 179 ± 51.1 182 ± 4

R.7170.1 - Mount Sullivan

7.1 183 ± 7

8.1 182 ± 9

R.6308.1 - Batterbee Mountains

1.1 181 ± 7

2.1 179 ± 5

2.2 185 ± 10

R.6157.1 - Reluctant Island

9.1 184 ± 510.1 181 ± 4

Riley et al.
Supplementary Fig. 1



Table 1: Zircon U-Pb ion-microprobe geochronology

Spot
1 U (ppm) Th (ppm) Pb (ppm) Th/U f

206
 (%)

2 238
U/

206
Pb ±s (%) 207

Pb/
206

Pb ±s (%)
207

Pb/
206

Pb 

age (Ma)
±s

206
Pb/

238
U 

age (Ma)
±s

NORDSIM data

N11.115.1.  Mount Jackson sheared tonalite

9x 135 65 4 0.48 0.28 38.029 0.82 0.04819 2.62 108.4 60.7 167.3 1.3

5 128 45 4 0.35 0.00 35.425 0.81 0.05296 2.39 327.3 53.4 179.5 1.4

16 166 95 6 0.58 0.27 35.230 0.75 0.05061 1.86 222.9 42.3 180.4 1.3

18 166 68 6 0.41 0.29 35.191 0.84 0.05056 1.90 220.8 43.3 180.6 1.5

19 145 64 5 0.44 0.14 35.164 0.74 0.04977 1.98 184.3 45.5 180.8 1.3

17 160 77 6 0.48 0.23 34.987 0.76 0.04921 2.50 158.1 57.5 181.7 1.4

2 103 38 3 0.37 0.26 34.943 0.81 0.05159 2.83 267.1 63.8 181.9 1.4

11 171 97 6 0.56 0.31 34.911 0.80 0.05062 2.13 223.8 50.1 182.1 1.4

21 135 62 5 0.46 [1.37] 34.896 0.77 0.04849 4.74 123.3 107.9 182.1 1.4

1 166 78 6 0.47 0.08 34.800 0.79 0.04777 2.49 87.7 57.9 182.6 1.4

15 198 103 7 0.52 0.25 34.760 0.76 0.04931 1.69 162.7 40.1 182.8 1.4

7 107 44 4 0.41 0.19 34.752 0.79 0.05191 2.98 281.6 66.7 182.9 1.4

3 126 51 4 0.40 0.11 34.721 0.88 0.04817 2.43 107.6 56.4 183.0 1.6

6 197 90 7 0.46 0.17 34.611 0.79 0.04846 1.94 121.7 46.3 183.6 1.4

20 202 112 7 0.55 0.09 34.571 0.74 0.04890 1.96 143.0 45.3 183.8 1.3

14 180 104 6 0.58 0.12 34.378 0.75 0.04847 1.76 122.3 41.0 184.8 1.4

12i 150 75 7 0.50 [0.91] 28.341 1.67 0.07021 7.04 934.6 138.2 223.5 3.7

8i 135 32 11 0.24 0.08 13.331 2.42 0.05785 3.07 523.9 66.0 466.3 10.9

13i 160 71 16 0.45 0.13 12.013 0.85 0.05772 1.21 519.0 26.4 515.5 4.2

4i 199 114 41 0.57 0.05 6.137 0.77 0.07507 0.68 1070.5 13.6 973.2 7.0

R.2143.3.  Engel Peaks, sheared granitoid

6x 307 228 11 0.74 [0.36] 35.980 0.70 0.05059 1.48 -79.9 48.7 176.1 1.2

8x 170 135 6 0.80 [0.48] 34.882 0.73 0.04834 2.85 157.3 79.9 181.3 1.3

10x 62 31 2 0.51 [0.74] 34.320 0.71 0.04876 3.19 -175.7 140.9 183.8 1.3

7 380 306 14 0.81 0.26 34.266 0.70 0.05021 1.31 204.6 38.9 185.4 1.3

9 993 973 40 0.98 0.11 34.150 0.70 0.05009 0.84 199.0 21.6 186.1 1.3

4 192 116 7 0.60 0.12 34.020 0.72 0.04982 1.89 186.5 43.3 186.8 1.3

2 636 541 25 0.85 0.04 33.952 0.71 0.04957 1.29 174.9 29.7 187.1 1.3

1 380 332 15 0.87 0.22 33.691 0.71 0.04956 1.33 174.6 39.5 188.6 1.3

5 760 753 31 0.99 0.14 33.595 0.70 0.04991 1.00 190.7 26.3 189.1 1.3

3 499 514 20 1.03 0.17 33.352 0.70 0.04959 1.16 176.0 32.6 190.4 1.3

N10.395.2.  Eileson Peninsula, sheared granitoid

4x 742 358 23 0.48 [1.51] 37.858 0.68 0.04651 2.39 24.3 56.3 168.1 1.1

10x 5133 3822 179 0.74 [0.93] 36.092 0.70 0.04899 3.44 147.1 78.6 176.2 1.2

9 3371 2399 123 0.71 [1.46] 35.194 0.75 0.05128 8.32 253.6 180.9 180.6 1.3

5 144 60 5 0.42 0.18 35.018 0.80 0.05116 1.61 247.9 36.7 181.5 1.4

2 505 338 18 0.67 0.16 34.805 0.67 0.05019 0.95 203.8 26.0 182.6 1.2

6 421 139 14 0.33 0.05 34.734 0.70 0.04941 1.09 167.4 25.3 183.0 1.3

1 850 731 33 0.86 0.20 34.541 0.67 0.05027 0.83 207.6 25.0 184.0 1.2

3 1555 1601 62 1.03 [0.35] 34.505 0.67 0.04935 0.88 164.6 20.4 184.2 1.2

8i 5132 3102 194 0.60 [1.49] 33.453 0.73 0.04983 1.41 187.0 32.4 189.9 1.4

N10.470.1.  Eileson Peninsula, sheared biotite granite

5 600 138 19 0.23 0.07 35.112 0.71 0.05030 0.79 209.0 19.9 181.0 1.3

6 487 280 17 0.57 0.37 34.729 0.71 0.05068 1.21 226.1 44.5 183.0 1.3

2 580 442 22 0.76 [3.04] 34.689 0.72 0.05090 3.41 236.3 76.8 183.2 1.3

4u 1120 1127 45 1.01 [0.62] 33.756 0.71 0.04942 1.86 167.6 42.9 188.2 1.3

1u 2534 2972 107 1.17 0.04 33.741 0.71 0.04969 0.41 180.7 9.9 188.3 1.3

SHRIMP data

BR.015.1.  Roman Four granite

5.1 659 245 21 0.4 0.17 39.842 1.23 0.0510 1.82 242.2 4.4 159.8 2.0

4.1 2522 1165 85 0.5 6.87 38.233 2.78 0.1043 7.27 1702.4 123.7 166.4 4.6

2.1 552 292 21 0.5 0.32 35.544 1.31 0.0522 1.51 295.1 4.5 178.9 2.4

3.1 532 281 20 0.5 0.22 35.263 1.26 0.0514 1.56 260.1 4.0 180.3 2.3

1.1 1486 1061 60 0.7 0.16 34.903 1.13 0.0510 1.14 238.6 2.7 182.1 2.1

6.1 966 578 38 0.6 0.00 34.476 1.15 0.0497 1.39 181.5 2.5 184.3 2.1

7.1 885 505 35 0.6 0.21 34.120 1.23 0.0513 1.85 256.1 4.7 186.2 2.3

R.6157.1.  Reluctant Island gneiss

8.1x 198 63 6 0.32 1.31 40.660 1.98 0.0595 2.69 585.1 15.7 156.6 3.1

1.1 417 186 15 0.45 0.04 35.487 1.45 0.0500 2.60 196.9 5.1 179.1 2.6

10.1 743 608 31 0.82 0.23 35.035 1.18 0.0516 1.36 266.4 3.6 181.4 2.1

4.1 250 118 9 0.47 0.53 34.920 1.42 0.0539 3.32 368.5 12.2 182.0 2.6

6.1 244 73 9 0.30 0.44 34.890 1.68 0.0533 2.46 340.3 8.4 182.2 3.1

9.1 512 401 21 0.78 0.12 34.559 1.42 0.0507 2.17 226.3 4.9 183.9 2.6

5.1 525 202 20 0.38 0.26 34.478 1.31 0.0518 2.45 277.5 6.8 184.3 2.4

7.1 363 130 13 0.36 0.37 34.271 1.37 0.0527 2.49 315.5 7.8 185.4 2.5

3.1 775 300 29 0.39 0.49 34.024 1.18 0.0537 2.01 357.2 7.2 186.7 2.2

2.2 783 330 30 0.42 0.17 33.877 1.24 0.0511 1.72 246.7 4.2 187.5 2.3

R.6308.1.  Batterbee Mountains granite

102.1x 110 62 4 0.56 0.93 37.281 2.33 0.0571 5.71 495.8 28.3 170.6 4.0

101.1x 143 80 5 0.56 0.80 36.781 2.09 0.0561 8.10 454.7 36.8 172.9 3.6

6.1x 531 376 16 0.71 0.92 36.735 1.23 0.0570 1.74 490.4 8.5 173.1 2.1

7.1x 108 59 3 0.54 3.49 36.183 1.88 0.0775 2.67 1133.1 30.3 175.7 3.3

4.1 114 59 3 0.52 3.03 35.649 2.06 0.0738 2.94 1036.3 30.5 178.3 3.7

8.1 384 355 13 0.92 0.72 35.478 1.41 0.0554 2.09 428.0 9.0 179.2 2.5

2.1 204 125 6 0.61 1.55 35.334 1.47 0.0620 2.03 673.8 13.7 179.9 2.6

1.1 195 104 6 0.54 1.56 35.128 1.91 0.0621 3.93 677.2 26.6 180.9 3.4

3.1 138 86 4 0.63 2.58 34.680 1.95 0.0702 2.27 933.9 21.2 183.3 3.6

11.1 136 78 4 0.58 2.11 34.595 1.80 0.0665 2.35 821.8 19.3 183.7 3.3

5.1 162 97 5 0.60 1.84 34.490 1.73 0.0643 3.42 751.5 25.7 184.2 3.2

2.2 447 410 16 0.92 0.69 34.280 2.91 0.0552 2.83 418.7 11.8 185.4 5.4

9.1 185 100 6 0.54 2.04 34.075 1.60 0.0659 2.61 803.2 21.0 186.5 3.0

14.1 142 84 5 0.59 1.53 33.794 1.90 0.0618 2.36 667.9 15.8 188.0 3.6

10.1 73 36 2 0.49 4.51 33.551 2.12 0.0856 4.25 1328.5 56.5 189.3 4.0

13.1 248 173 8 0.70 1.60 33.502 1.42 0.0624 1.94 689.2 13.4 189.6 2.7



12.1i 86 13 13 0.15 1.25 6.523 2.47 0.0812 3.09 1226.8 37.9 919.4 22.7

R.7170.1.  Mount Sullivan granodiorite

9.1 312 185 11 0.6 0.60 36.310 2.05 0.0546 2.99 395.5 11.8 175.1 3.6

5.1 471 116 15 0.2 0.23 35.134 1.89 0.0516 2.75 269.5 7.4 180.9 3.4

10.1 231 92 8 0.4 0.81 35.056 1.88 0.0563 3.00 462.2 13.9 181.3 3.4

8.1 109 88 4 0.8 1.07 34.994 2.55 0.0583 4.13 541.8 22.4 181.6 4.6

7.1 193 117 7 0.6 1.64 34.765 1.99 0.0628 4.63 702.1 32.5 182.8 3.6

6.1 267 96 9 0.4 0.38 34.424 2.22 0.0528 3.29 321.5 10.6 184.6 4.1

4.1 68 57 3 0.8 0.71 34.233 3.62 0.0555 5.03 430.8 21.7 185.6 6.7

2.1 505 159 17 0.3 0.28 34.125 1.40 0.0520 1.79 284.1 5.1 186.2 2.6

3.1 69 63 3 0.9 1.28 33.414 2.98 0.0600 4.60 602.1 27.7 190.1 5.7

1.1i 401 293 20 0.7 0.26 26.531 1.70 0.0532 1.82 336.5 6.1 238.5 4.1

1
Analysis identification. Identifyers followed by x (recent Pb loss), i (inherited grain) or u (high uranium content) indicate analyses excluded from age calculations.

2
Percentage of common 

206
Pb estimated from the measured 

204
Pb. Data is not corrected for common Pb, except for values given in parentheses.



Table 2: Sr-Nd isotope geochemistry

Sample Location Age Sm Nd
147
Sm/

144
Nd

143
Nd/

144
Nd 143

Nd/
144
Ndi eps(Nd) Rb Sr Rb/Sr

87
Rb/

86
Sr

87
Sr/

86
Sr 87

Sr/
86
Sri

R.7170.1 Mount Sullivan 183 6.72 33.47 0.1213 0.512317 0.512171658 -4.5 356.2 109.6 3.25 9.424 0.730279 0.705758

R.2143.3 Engel Peaks 188 7.52 39.62 0.11478 0.51236 0.512218802 -3.5 145 43.8 3.356 9.733 0.732115 0.706097

Detailed analytical procedures are in the supplementary file. Rb-Sr and Sm-Nd isotope analyses were performed at NIGL, Keyworth, UK.
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