
Journal of Geophysical Research: Space Physics

Identifying the magnetotail lobes with Cluster
magnetometer data

J. C. Coxon1, C. M. Jackman1, M. P. Freeman2, C. Forsyth3, and I. J. Rae3

1School of Physics and Astronomy, University of Southampton, Southampton, UK, 2British Antarctic Survey, High Cross,
Cambridge, UK, 3UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, UK

Abstract We describe a novel method for identifying times when a spacecraft is in Earth’s magnetotail
lobes solely using magnetometer data. We propose that lobe intervals can be well identified as times
when the magnetic field is strong and relatively invariant, defined using thresholds in the magnitude of BX

and the standard deviation 𝜎 of the magnetic field magnitude. Using data from the Cluster spacecraft at
downtail distances greater than 8 RE during 2001–2009, we find that thresholds of 30 nT and 3.5 nT,
respectively, optimize agreement with a previous, independently derived lobe identification method that
used both magnetic and plasma data over the same interval. Specifically, our method has a moderately
high accuracy (66%) and a low probability of false detection (11%) in comparison to the other method.
Furthermore, our method identifies the lobe on many other occasions when the previous method was
unable to make any identification and yields longer continuous intervals in the lobe than the previous
method, with intervals at the 90th percentile being triple the length. Our method also allows for analyses
of the lobes outside the time span of the previous method.

1. Introduction

Stretching upward of 1000 RE (6,371,000 km) beyond Earth [Dungey, 1965], the magnetotail contains two
main regions: the plasma sheet and the magnetotail lobes. The plasma sheet is on closed magnetic field lines
(i.e., both ends intersecting the Earth), comprises hot plasma, and contains the cross-tail current sheet. The
lobes are north and south of the plasma sheet and contain open magnetic field lines (i.e., connected to Earth’s
polar regions at one end and to the interplanetary magnetic field (IMF) at the other). As the field lines are
open, the lobes are characterized by very low density plasma and by a relatively strong and stable magnetic
field, directed toward Earth (BX > 0 nT) in the northern lobe and away from Earth in the southern lobe. The
plasma sheet and the lobes are separated by the plasma sheet boundary layer (PSBL), comprising newly closed
magnetic field lines which are pulled toward Earth due to magnetic tension, eventually becoming part of
the plasma sheet [Hughes, 1995]. |BX | increases with distance from the plasma sheet, such that |BX | in the
plasma sheet and PSBL is less than in the lobes. The broad structure of the magnetotail was first observed by
Ness [1965].

In the Dungey cycle [Dungey, 1961], magnetic field lines are opened by dayside reconnection and stretched
antisunward by the solar wind, forming the magnetotail lobes, before being closed again via nightside recon-
nection in the magnetotail and returning to the dayside where reconnection can again occur, completing the
cycle. On timescales of the order of an hour, the reconnection rates on the dayside and nightside are unbal-
anced, giving rise to the substorm cycle in which magnetic energy [Perreault and Akasofu, 1978] and open
magnetic flux [Cowley and Lockwood, 1992] are built up (when the dayside reconnection rate is larger than
the nightside) and released (vice versa) [e.g., McPherron et al., 1973; Freeman and Morley, 2009]. In order to
understand this process, it is desirable to measure the magnetic field in the magnetotail lobes throughout the
substorm cycle.

There are relatively few quantitative definitions of the lobes. For example, Fairfield and Jones [1996] simply
identified the lobes as magnetotail regions north and south of two curves in the Y-Z plane (approximately
|Z| ≥ 6 RE where |Y| ≤ 5 RE , increasing to |Z| ≥ 12.5 RE where |Y| = 27.5 RE). A more sophisticated method
was employed by Boakes et al. [2014, hereafter B14], who defined the lobe as the region where the plasma beta
𝛽 is less than some threshold, which was determined from a decrease in the gradient of the plasma density
with 𝛽 . The low-𝛽 lobe region was shown statistically to correspond to noise-level currents as derived from
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Figure 1. FGM data from Cluster 1 between midnight on 20 September 2002 and midnight on 22 September 2002. In
both panels, the four curves show the GSE X (blue), Y (purple), and Z (red) components and the magnitude (black) of
the magnetic field. (top) Color shading indicates the regions identified as lobe by the B14 method in red and as
unknown in yellow. (bottom) Color shading indicates the regions identified as lobe by our method in blue.

the curlometer technique [Dunlop et al., 2002]. The 𝛽 threshold determined by B14 varied with time, in part,
due to the changing availability and quality of the Cluster plasma instruments [Rème et al., 2001]. Additionally,
most of the plasma measurements were made with the Hot Ion Analyser (HIA), which has a lower density limit
of 0.01 cm−3 such that the lobe would be unidentified when the plasma density was below that limit.

Finally, another method of identifying the lobe was proposed by Jackman and Arridge [2011], who identified
the lobes at Saturn by looking for a relatively strong and stable magnetic field at times of relatively low plasma
density compared to the plasma sheet. In this paper, we develop a new lobe identification method based
on Jackman and Arridge [2011], using solely magnetometer data. We quantify the accuracy of our method
by comparison with the identifications of the B14 method. In this way, we are able to accurately identify the
magnetotail lobes without the necessity for reliable plasma measurements in this low-density region of the
magnetosphere.

2. Sources of Data

The Cluster mission is comprised of four spacecraft (C1–C4) which were launched into elliptical polar orbits
in July and August 2000, with a perigee of ∼4 RE and an apogee of ∼19.5 RE [Escoubet et al., 1997]. Data are
available from 2001 onward and taken from the Cluster Science Archive [Laakso et al., 2010]. In this paper, we
use fluxgate magnetometer data (FGM) [Balogh et al., 2001] at spin resolution (∼4 s).

The B14 method identified the magnetotail lobe using data from the Cluster spacecraft between 2001 and
2009 as part of the European Cluster Assimilation Technology (ECLAT) project. As previously mentioned,
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the lobes were identified as regions where the plasma 𝛽 is less than some threshold which changes in each
year (of order 𝛽 < 0.025). The magnetotail lobe identification was not performed for the entirety of each
year; rather, only during “tail seasons,” which were defined as July–October in each year. Regions were only
identified where the spacecraft was judged to be well within the magnetotail (defined as X <−8 RE and
|Y|<15 RE).

Two days of data from C1 are shown in Figure 1 (top), with the lobe intervals identified by the B14 method
shaded in red. The B14 method identifies C1 in the lobe between 09:32 and 12:44 UT on 20 September 2002
(hereafter called interval 1), before C1 enters the plasma sheet. According to the B14 method, C1 encountered
lobe-like characteristics twice while crossing the plasma sheet: between 16:25 and 17:39 UT (interval 2) and
between 22:53 and 22:59 UT (interval 3), both on 20 September 2002.

Gaps in the identification are observed in each of the three lobe intervals outlined above. Analysis shows that
two gaps of ∼1 min are present in interval 1, splitting the interval into three subintervals. The larger data
gaps in interval 2 can be seen by eye, but both intervals 2 and 3 are also interrupted by ∼1 min gaps. More
importantly, the orbit of Cluster during this time should mean that the spacecraft experiences a lobe inter-
val after encountering the plasma sheet, but the interval after 01:00 UT on 21 September 2002 is defined
as unidentified by the B14 method (which is shown in yellow). This is likely due to low plasma density
impeding measurement of 𝛽 , and it demonstrates the utility of the development of an identification method
independent of plasma density.

3. Method: Identifying the Lobe Solely From FGM Data

We propose an alternative method of lobe identification based on FGM data alone, similar to that of Jackman
and Arridge [2011], using the following four criteria. XGSE is the sunward component of the spacecraft position
in geocentric solar ecliptic (GSE) coordinates, 𝜎 is the standard deviation of the magnitude of the magnetic
field for 20 min on either side of each datum (i.e., a 40 min sliding window), and |BX | is the magnitude of the
sunward component of the magnetic field in GSE coordinates.

1. XGSE < 0RE

2. Radial distance to Earth R ≥ 8RE

3. 𝜎 ≤ 𝜎0

4. |BX | ≥ B0

The first criterion ensures that the spacecraft is on the nightside of the Earth, and the second criterion ensures
that the inner magnetosphere is not identified as the lobe. The third and fourth criteria are designed to identify
the strong and relatively invariant magnetic field characteristic of the lobes.

Figure 1 (bottom) shows the lobe intervals in blue defined using our method with 𝜎0 = 3.5 nT and B0 = 30 nT.
Three differences between Figures 1 (top) and 1 (bottom) should be highlighted. First, interval 1 has been
successfully identified and extended, starting at 07:30 and ending at 12:43 UT (with one gap in the last minute
of the interval).

Second, intervals 2 and 3 are not identified by our method because |BX | falls well below the required threshold
(shown by the horizontal dashed lines in Figure 1 (bottom)). It is possible that these intervals are a result of
current sheet flapping while C1 was in the boundary layer between lobe and plasma sheet [Davey et al., 2012].
To identify these intervals as lobe, both criteria would need to be relaxed, which would increase the probability
of false detection (POFD).

Third, the lobe interval which was expected after the plasma sheet crossing (which was unidentified by the B14
method) is identified by our method on 21 September 2002, starting at 10:46 UT and continuing to 14:07 UT.
There are then sporadic identifications until an uninterrupted interval starts at 15:09 UT and lasts until 04:06
UT on 22 September (beyond the range of the plot).

4. Comparison With Previous Methods

Figure 1 illustrates the main limitation of the B14 method, in that it frequently fails to return any
identification. However, when the B14 method does identify the lobe, we have no a priori reason to doubt
this. Consequently, we choose thresholds 𝜎0 and B0 to optimize the agreement between our method and the
B14 method. Figure 2 shows the occurrence frequency of |BX | and 𝜎 measured by the FGM instrument on
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Figure 2. Occurrence of magnetotail regions identified by the B14 method as a function of |BX | and 𝜎, with the scales in
thousands of data. The regions shown are (a) the lobe, (b) the plasma sheet, and (c) the unknown region. Dashed lines
indicate thresholds chosen for B0 and 𝜎0 which are discussed in the text. Data from C1 are plotted from 2001 to 2009.

Cluster 1 for 2001–2009, sorted according to the corresponding region identified by the B14 method
(as labeled on the plot). The bin sizes are 2.5 nT for |BX | and 0.5 nT for 𝜎.

In Figures 2a–2c, the lobe and plasma sheet are well separated in |BX |, and higher 𝜎 is observed in the plasma
sheet. The thresholds B0 = 17.5 nT and 𝜎0 = 1.5 nT are indicated by the dashed black-and-white lines and
B0 = 30 nT and 𝜎0 = 3.5 nT (the thresholds used in Figure 1, and which will be discussed in more detail later)
are indicated by the dashed blue-and-yellow lines. Figure 2a shows that lobe data were identified by the B14

Table 1. Contingency Table of Lobe Identificationsa

ECLAT

Coxon Lobe Not Lobe Total

Lobe
3,371,826 1,246,880 4,618,706

(2,201,930) (2,416,776)

Not lobe
885,694 3,426,055 4,311,749

(2,055,590) (2,256,159)

Total 4,257,520 4,672,935 8,930,455
aA contingency table which compares the number of data which are iden-

tified as lobe by both ECLAT and our method, solely by our method, solely by
ECLAT, or data which are identified as not the lobe by both methods. Data are
from the tail seasons for C1 and do not include data unidentified by ECLAT.
Numbers in brackets indicate the expected values given the null hypothesis
that the two methods are independent. The thresholds used to generate this
table were B0 = 7.5 nT and 𝜎0 = 1.5 nT, and data are taken from 2001 to 2009.
The 𝜒2 statistic for the table is 246,0339.
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Figure 3. Variation of the measures of the agreement between
our method and the B14 method as a function of thresholds B0
and 𝜎. (a) Accuracy, (b) the probability of false detection, and
(c) the Heidke skill score (HSS). The color scale for each panel is
plotted to the right of the panel; dark red indicates a larger
number. Dashed lines indicate thresholds chosen for B0 and 𝜎0
which are discussed in the text. Data from C1 are plotted from
2001 to 2009.

method at relatively low |BX | values, but low-
ering the threshold increases the probability of
misidentifying plasma sheet data (Figure 2b) as
lobe data.

4.1. Comparison Across the Whole Data Set
In order to decide on the thresholds of our def-
inition of the lobes, we construct contingency
tables which shows the number of data identi-
fied by each method for a given combination of
B0 and 𝜎0. An example is shown in Table 1 which
shows data from 2001 to 2009 using thresholds
of B0 = 17.5 nT and 𝜎0 = 1.5 nT, respectively
(shown as the black-and-white lines in Figure 2).
Only data during the tail seasons which are
positively identified by the B14 method are
considered; no data labeled “unknown region”
(Figure 2c) are included.

In what follows, we define a to be the number of
data identified as the lobe by both our method
and the B14 method (top left cell of Table 1). The
number only identified by our method (top right
cell) is b. The number only identified by the B14
method (bottom left cell) is c. The number not
identified as the lobe by either method (bottom
right cell) is d.

First, let us ask whether the two methods are
related. The bracketed numbers in Table 1 are
the number of data that would be expected to
be in each cell given the null hypothesis that the
two data sets are unrelated. For all four observ-
ing combinations the expected value (assuming
independence of a given table entry) is calcu-
lated by multiplying the number of observations

in the entry’s row by the number in the entry’s column, divided by the total number of observations in the
table. Using the𝜒2 statistic, the null hypothesis that the methods are independent is rejected at the 10−15 sig-
nificance level, indicating that it is highly unlikely that the lobe identifications using the B14 method and our
method are statistically different for the chosen values of B0 and 𝜎0.

Given that the two methods are associated, then let us ask how well, and in what ways. From the table we
see that a total of a + d = 6, 797, 881 data are identified as the same region in both lists, giving our method
with these thresholds an accuracy A = (a + d)∕(a + b + c + d) = 0.76 in reproducing the identifications from
the B14 method. Using our method, we identify b = 1, 246, 880 data as lobe which the B14 method does
not identify as such, corresponding to a probability of false detection F = b∕(a + d) = 0.27 and suggesting
that some of the data we identify as lobe actually exhibit boundary layer or plasma sheet characteristics. The
B14 method identifies c = 2, 483, 257 data as lobe which our method does not identify, corresponding to a
miss rate of M = c∕(a + c) = 0.21, which quantifies the impact of our method’s failure to identify lobe-like
data according to the B14 method during plasma sheet intervals; the identification of the lobe during these
intervals may also be due to movement of the plasma sheet (assuming that the identifications from the B14
method are correct). The high miss rate also gives an indication of how conservative our method is, which will
be explored in more detail later.

More generally, the Heidke skill score (HSS) is given by

HSS = 2(ad − bc)
(a + c)(c + d) + (a + b)(b + d)

(1)
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Table 2. The Best Values of B0 and 𝜎0 Per Year, for BX > 0 nTa

B0 𝜎0 HSS A F

2001 25.0 2.0 0.6 0.87 0.10

2002 32.5 3.5 0.67 0.84 0.16

2003 32.5 2.5 0.53 0.81 0.15

2004 30.0 3.0 0.53 0.79 0.18

2005 32.5 4.5 0.60 0.83 0.17

2006 37.5 7.5 0.51 0.85 0.10

2007 45.0 8.0 0.51 0.91 0.03

2008 45.0 10.0 0.58 0.91 0.07

2009 50.0 8.0 0.26 0.99 0.01

Whole Range 32.5 5.0 0.55 0.81 0.16

First Half 30.0 3.5 0.58 0.81 0.18

Second Half 45.0 9.0 0.51 0.89 0.04
aAlso tabulated are the Heidke skill score, the accuracy A, and the probabil-

ity of false detection F for the two tabulated thresholds in each year.

where HSS is in the range −∞ ≤ HSS ≤ 1 and gives the relative improvement in a forecast of categorical
(yes/no) observations with respect to a reference forecast. For the contingency table given in Table 1,
HSS = 0.52, which shows moderate skill.

It should also be noted that in the C1 data, 2,641,497 data identified as unknown region during the tail season
are now identified as the lobe by our method, with an additional 1,353,621 data identified as the lobe outside
of the tail seasons. This means a total of 3,995,118 data are identified which were not previously classified by
the B14 method. Added to the 4,618,706 data that were identified as lobe in Table 1, this is a total of 8,613,824
data identified as the lobe by our method. The B14 method identified 4,257,520 data as the lobe, meaning
that we identify 202% the number of data that they identified with these thresholds. We cannot calculate how
accurate our method is during intervals unidentified by the B14 method, but we assume that our method is at
least as accurate during these times. (We note that the B14 method does not identify regions when the plasma
density is very low, which is a characteristic of the lobes and may mean that our method is more accurate
during unidentified intervals.)

4.2. Year-By-Year Comparison
Figure 3 shows the parameter space of B0 and 𝜎0, for the time range 2001–2009, with the color scales to the
right of the plots. Figure 3a shows A, Figure 3b shows F, and Figure 3c shows HSS. We define the optimal

Table 3. The Best Values of B0 and 𝜎0 Per Year, for BX < 0 nTa

B0 𝜎0 HSS A F

2001 22.5 1.5 0.57 0.81 0.12

2002 27.5 3.5 0.64 0.82 0.23

2003 27.5 2.5 0.55 0.78 0.18

2004 22.5 2.0 0.59 0.79 0.23

2005 20.0 1.5 0.53 0.77 0.30

2006 20.0 1.5 0.55 0.78 0.25

2007 17.5 1.5 0.62 0.82 0.26

2008 17.5 1.5 0.55 0.78 0.34

2009 17.5 2.0 0.50 0.76 0.30

Whole range 17.5 1.5 0.53 0.77 0.30

First half 22.5 2.0 0.55 0.77 0.25

Second half 17.5 1.5 0.55 0.78 0.29
aAlso tabulated are the Heidke skill score, the accuracy A, and the probabil-

ity of false detection F for the two tabulated thresholds in each year.
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Table 4. Contingency Table of Lobe Identificationsa

ECLAT

Coxon Lobe Not Lobe Total

Lobe
1,774,263 527,367 2,301,630

(1,097,283) (1,204,347)

Not lobe
2,483,257 4,145,568 6,628,825

(3,160,237) (3,468,588)

Total 4,257,520 4,672,935 8,930,455
aA contingency table which compares the number of data which are iden-

tified as lobe by both ECLAT and our method, solely by our method, solely by
ECLAT, or data which are identified as not the lobe by both methods. Data are
from the tail seasons for C1 and do not include data unidentified by ECLAT.
Numbers in brackets indicate the expected values given the null hypothesis
that the two methods are independent. The thresholds used to generate this
table were B0 = 30 nT and 𝜎0 = 3.5 nT, and data are taken from 2001 to 2009.
The 𝜒2 statistic for the table is 1,075,358.

thresholds as the thresholds for which HSS is maximized, as in the previous section (for Figure 3, the optimal
thresholds are B0 = 17.5 nT and 𝜎0 = 1.5 nT).

In order to properly explore the optimal thresholds, we perform the same analysis as in Figure 3, but we filter
by the sign of Bx and also do the analysis on a year-by-year basis. Positive BX is observed in the Northern
Hemisphere, and negative BX is observed in the Southern Hemisphere. The optimal thresholds for BX > 0 nT
are presented in Table 2, and the thresholds for BX < 0 nT are presented in Table 3. Tables 2 and 3 show that
the thresholds in the magnetic field characteristics of the lobe vary with year. As such, we would recommend
that for analyses of the lobe taking place during 2001–2009, the appropriate thresholds are adopted from
Tables 2 and 3.

However, if analysis needs to be performed during more recent times than the B14 method, it is necessary
to consider the best thresholds to use. Although the optimal thresholds from the analysis in section 4.1 are
B0 = 17.5 nT and 𝜎0 = 1.5 nT, the year-by-year list of optimal thresholds demonstrates that these thresholds
may not be as accurate earlier in the mission, nor in the northern hemisphere. As such, we select more con-
servative thresholds for our analysis. We select thresholds of B0 = 30 nT and 𝜎0 = 3.5 nT, based on the optimal
value for 2001–2005 from Table 2, as our more conservative values. Figure 2 (yellow-and-blue lines) shows
that these thresholds, while perhaps missing a number of lobe data, avoid mischaracterization of plasma
sheet data as lobe data. These more conservative thresholds have an accuracy A = 0.66 and a Heidke skill
score of 0.31, both decreases from the values quoted in section 4.1. However, the POFD decreases from 0.27
to 0.11, which is a marked improvement. The contingency table for these thresholds is shown in Table 4, and
with these thresholds, 3,655,559 data are identified which were not previously classified by the B14 method.
Added to the 2,301,630 data that were identified as lobe in Table 4, this is a total of 5,957,189 data, so our
method identifies 140% the number of data identified by the method of B14.

Tables 2 and 3 indicate that for the majority of the time, these thresholds are either close to or more conserva-
tive than the optimal thresholds. A notable exception is the Northern Hemisphere from 2006 onward, during
which time our B0 threshold is significantly under the optimal threshold. However, we note that only 66,776
lobe data were found using the B14 method in the Northern Hemisphere in this period versus 2,150,750 in
the Southern Hemisphere, such that 97% of the lobe data were located in the Southern Hemisphere during
this 4 year period; we therefore conclude that the Northern Hemisphere data during this period will not have
a significant effect on the results.

5. Discussion

The Cluster mission was initially launched into an elliptical polar orbit and is therefore expected to spend
a lot of time in the lobes. In Figure 1 (bottom), our method identifies lobe intervals lasting 5, 4, and 13 h,
consistent with these orbital characteristics. However, using both magnetic field and plasma measurements,
the B14 method fails to identify the lobe in the latter part of the interval where we would expect it, in contrast
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Figure 4. Histograms of the identified duration of lobe intervals by (left column) the B14 method and (right column) our
method. Intervals lasting less than 1 min have been omitted. In each panel, black-and-white dashed lines show the 50th,
90th, 95th, and 99th percentiles from left to right. From top to bottom, data from C1 to C4 are plotted from 2001 to 2009.

to the successful identification from our method. As a result, while the use of the B14 method where an iden-
tification has been made is recommended, we have successfully provided a method which is able to make
identifications in places where the B14 method cannot.

To examine the difference between our method and the B14 method further, Figure 4 compares the duration
of lobe intervals identified by the B14 method and by our method for each spacecraft in 2001–2009. (We
use the intervals B0 =30 nT and 𝜎0 =3.5 nT, as in section 4.2. No interval that was shorter than 1 minute is
included.) It can be seen that the longest intervals identified by the B14 method are no more than 15 h long for
C1 and C3 and no more than 6 h for C2 and C4. This difference is likely due to instrumentation differences. Poor
statistics are expected in C2, since both CODIF (the COmposition and DIstribution Function sensor) and HIA
(the Hot Ion Analyser sensor) were nonoperational on that craft and the lobe was identified using PEACE data
from 2001 to 2009. Furthermore, the quality of CODIF data degraded such that it was unreliable in 2003–2009;
while both C1 and C3 use HIA during this period, C4 uses CODIF because the HIA instrument on that craft was
nonoperational. Our method achieves intervals up to 18–19 h long, and the distributions are similar for all four
spacecraft, confirming that this feature of the identifications of the B14 method arises from the plasma data.

Percentiles of the distributions in 2001–2009 further quantify this improvement. The percentiles for each
spacecraft are similar, so we choose to examine C1. The median length of the intervals was 0.07 h in the B14
method and 0.16 h in our method: our method was 2.4 times longer. The 90th percentiles were 0.79 h and
3.0 h long, respectively: our method was 3.8 times longer. It can be seen from Figure 4 that a large number of
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Figure 5. Percentage histograms of FGM data identified as lobe by the B14 method binned by (left column) the value of
|BX | (nT) and (right column) the value of XGSE (RE ). Histograms are of data from (top row) 2001–2005 and (bottom row)
2006–2009. The red (blue) line only includes data with a positive (negative) BX .

the intervals identified in both methods are under an hour long: over 90% of intervals in the B14 method are
under an hour long, compared to under 80% of intervals in our method.

In 2001–2005, the longest lobe interval identified by the B14 method was 8–9 h long; in this time frame,
our longest intervals last twice as long. However, in 2006–2009, the longest intervals identified by the two
methods are of comparable length, with both methods yielding maximum intervals ∼15 h. The B14 method
identifies more lobe data relative to the number of their identified plasma sheet data in 2006–2009, indicating
that the B14 method identifies the lobe more readily in this time period.

Tables 2 and 3 indicate that the populations of the lobe identified by the B14 method exhibit generally lower
values for both 𝜎 and |BX | in the Southern Hemisphere (and vice versa for the Northern Hemisphere) as the
mission progresses. We attribute this to the lower values in both of the chosen magnetic field parameters. The
lower |BX |, as well as the larger number of identifications from the B14 method, is due to the evolving orbit
of Cluster: In earlier years, the apogee was located close to Z = 0; i.e., it was situated in the plasma sheet.
In later years, the apogee moved such that it was located at points Z < 0, meaning it was more often situ-
ated in the southern magnetotail lobe during the tail season. Additionally, the apogee was located at large
downtail distances in the part of the lobe closest to the plasma sheet, meaning that the spacecraft spends
proportionally more time in part of the lobe with weaker magnetic field.

To further investigate this point, Figure 5 shows histograms of the percentages of FGM data identified as
lobe by the B14 method, binned by |BX | and XGSE and subdivided by the sign of BX (such that the North-
ern Hemisphere is represented by the red line and the South Hemisphere by the blue line) and by time span
(2001–2005 at the top, 2006–2009 at the bottom). Looking at |BX | (Figure 5, left column), lobe data in the
Northern Hemisphere are identified by the B14 method at generally higher values of |BX | than those in the
Southern Hemisphere, and this effect is more pronounced later in the mission. The peak in the Northern Hemi-
sphere is at 37.5–40.0 nT in both panels, whereas the Southern Hemisphere has a peak at 35.0–37.5 nT in
2001–2005 and a peak at 20.0–22.5 nT in 2006–2009. The radial distance of the data (Figure 5, right column)
is also plotted; Southern Hemisphere lobe data are identified by the B14 method at a range of distances with
a slight bias toward closer distances in 2001–2005 and toward more distant measurements in 2006–2009.
The Northern Hemisphere data have a peak at 8RE in both panels, with that peak being larger in 2006–2009.
(The plots show the proportion of the data in each bin, so it is worth restating that there are fewer data in the
Northern Hemisphere than in the South Hemisphere and this difference is extreme in 2006–2009.)
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It is also possible that the difference could also be attributed to a solar cycle effect: the solar maximum of solar
cycle 23 was in 2000, whereas the solar maximum in solar cycle 24 occurred well after 2009 (the exact point
of maximum is still disputed). Solar cycle 23 was more active than 24, which implies that IMF penetration into
the magnetosphere would have been larger earlier in the Cluster data set. This might be a component in the
explanation for why the value of |BX | was greater earlier in the mission. This investigation will form the basis
of a follow-up study regarding the IMF interconnection field observed in the lobes, and so we hope to shed
more light on this in the future (J. C. Coxon et al., Magnetic field fall-off in the magnetotail lobes, 25th Cluster
Workshop, Venice, Italy, manuscript in preparation, 2015). The average solar wind pressure was also higher
during 2001–2005, which would also contribute to higher observed |BX |.

6. Conclusion

We outline a novel method of identifying the magnetotail lobes purely from thresholds in spacecraft position
(on the nightside, at least 8RE from Earth) and magnetic field (magnitude of BX and the standard deviation of
|B|). In order to select the magnetic field thresholds, we explore the parameter space of varying thresholds
and compare the result to identifications from the same time frame in a recent catalog of magnetotail regions
derived from magnetic field and plasma measurements [Boakes et al., 2014].

We report the optimal thresholds of the magnetic field by year and sign of BX , as well as determining the
most skilful thresholds to use across the entire data set, determined to be B0 = 17.5 nT and 𝜎0 = 1.5 nT.
We choose more conservative thresholds than these in order to limit the number misidentifications in the
Northern Hemisphere and earlier in the mission, selecting B0 = 30 nT and 𝜎0 = 3.5 nT. These thresholds have
a Heidke skill score of 0.31, with an accuracy of 0.66 and a probability of false detection of 0.11. Although our
chosen thresholds are not the most skilful thresholds for the 9 year period in both hemispheres, we argue that
the much lower probability of false detection makes these thresholds more suitable, and so we adopt these
thresholds as conservative thresholds of the magnetic characteristics of the lobe. We find that the number of
data identified as lobe by our method during 2001–2009 is 140% the number identified by the method of B14.

Finally, our method, using the selected conservative thresholds, yields uninterrupted lobe intervals which last
much longer than those of the B14 method. Specifically, the median length in our method was 0.16 h long and
in the B14 method was 0.07 h long; the lengths of the 90th percentile were 2.98 and 0.79 h long, respectively.
For both, our method at least tripled the length, with lengths consistent with the expected duration of lobe
measurements from an elliptically polar orbiting spacecraft. This better continuity will be useful for various
studies of the temporal evolution of tail properties on hour to day time scales and will be exploited by us
in forthcoming studies examining both the properties of the magnetic field in the lobes and how magnetic
energy is stored and released during a substorm cycle.
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