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Abstract  

 

The deglacial history and oceanography of Uummannaq Trough, central West Greenland 

continental shelf, was investigated using foraminiferal, sedimentological, and bathymetric 

records together with a radiocarbon chronology, providing a timeline for the retreat of glacial 

ice after the Last Glacial Maximum (LGM). To map ice stream retreat, data were collected from 

cores from the outer (JR175-VC45 and JR175-VC43) and inner (JR175-VC42) Uummannaq 

Trough. A large ice stream, fed by confluent glaciers draining the interior of the Greenland Ice 

Sheet, extended across the outer shelf during the LGM and was retreating by 15.0 cal kyr BP. 

Foraminiferal data indicate that the ‘warm’ West Greenland Current (WGC) was established 

prior to 14.0 cal kyr BP, which is the hitherto earliest record of Atlantic Water found on the 

West Greenland shelf. For each of the cores, foraminifera indicate that ice sheet retreat was 

followed quickly by incursion of the WGC, suggesting that the warm water may have 

enhanced ice retreat. Prior to the Younger Dryas cold event, the existing radiocarbon 

chronology indicates that the ice sheet retreated to the mid-shelf, where it subsequently 

stabilised and formed a large grounding-zone wedge (GZW). After the Younger Dryas, around 

11.5 cal kyr BP, the ice retreated rapidly from the GZW and into the fjords.  
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Introduction 

The recent rapid increase of mass loss from the Greenland Ice Sheet (GIS) (Joughin et al., 

2012; Rignot et al., 2011; Rignot and Kanagaratnam, 2006; van den Broeke et al., 2009) 

underscores its potentially significant contribution to sea level rise in the coming century 

(Nick et al., 2009, 2013). A growing body of evidence supports the idea that the advection of 

warm ocean water to the grounding line of Greenland’s outlet glaciers promotes rapid melting 

(Joughin et al., 2012; Rignot, 2002), increasing ice-flow rates and thinning of marine-

terminating outlet glaciers (Howat et al., 2007), which together lead to retreat of tidewater ice 

streams (Bindschadler, 2006; Holland et al., 2008; Straneo et al., 2010, 2011). The present-

day rapid response of the GIS to modern climatic warming and ocean forcing can be placed 

into a longer-term context by studying the rate, timing, and drivers of ice sheet retreat from 

the maximum ice advance during the LGM and comparing this retreat history to the coeval 

climate oscillations recorded in ice cores (Alley et al., 2010; Long, 2009).  

 

Recent work has shown that two of the large cross-shelf troughs in central West Greenland, 

the Disko and Uummannaq troughs, contained fast-flowing ice streams that drained the 

Jakobshavns and Uummannaq glacial systems and extended to the shelf edge where they 

delivered sediments to large trough-mouth fans (Ó Cofaigh et al., 2013a, 2013b; Dowdeswell 

et al., 2014). In Disko Trough the LGM ice retreat was overprinted by a late Younger Dryas ice 

re-advance to the shelf edge (Jennings et al., 2014; Ó Cofaigh et al., 2013b). In contrast, the 

record of LGM ice retreat from the outer shelf is undisturbed in Uummannaq Trough. The 

timeline of the Uummannaq ice stream retreat is constrained by two radiocarbon dates (Fig. 

1b). A date from glacimarine sediments only 5 cm above basal till in the outer shelf core 

JR175-VC45 (Fig. 1) indicates that the ice margin had retreated from the outer shelf by 14.9 
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cal kyr BP (Ó Cofaigh et al., 2013b). A date from glacimarine sediments in core MSM343520 

(Fig. 1) indicates that the ice stream had retreated from the middle shelf by at least 10.9 cal 

kyr BP (McCarthy, 2011). Cosmogenic isotope ages from the adjacent coastal area suggest that 

Uummannaq ice stream was thinning dramatically by the end of the Younger Dryas and that 

the ice margin had retreated into the fjords by 11.4 kyr, implying rapid ice retreat from the 

deep trough on the inner shelf (Lane et al., 2014; Roberts et al., 2013).  

 

A >40 m thick grounding-zone wedge (GZW) on the middle shelf was formed by delivery of 

deforming subglacial sediments to the front of the Uummannaq ice stream during a pause in 

the ice retreat from the LGM position close to the shelf edge (Dowdeswell et al., 2014). This 

submarine landform, with the characteristic long-profile asymmetry typical of GZWs 

(Batchelor and Dowdeswell, 2015; Dowdeswell and Fugelli, 2012), is evident between the 400 

and 500 m depth contours on the middle shelf (Fig. 1b and 2a). This large GZW, plus two 

smaller ones identified on the inner shelf, indicate that ice retreat in the Uummannaq Trough 

was episodic (Dowdeswell et al., 2008, 2014). The size and thickness of the large mid-shelf 

GZW suggests that decades to centuries were required for its construction (Dowdeswell et al., 

2014). The GZW age is unknown, but, based on the two constraining ages on the outer and 

mid shelf, it must have formed during a stillstand that occurred between 14.9 and 10.9 cal kyr 

BP. Formation created by a possible re-advance during this period cannot be ruled out, but no 

data exist to corroborate this. 

 

Here, we present a study of the palaeoenvironments and history of post-LGM ice retreat in the 

Uummannaq Trough. Using sedimentary lithofacies, ice-rafted detritus (IRD), foraminifera, 

mineralogy, geophysical data (see Dowdeswell et al., 2014) and radiocarbon dating from the 
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cores, we explore the palaeoenvironments and sedimentary processes operating during ice 

retreat, the possibility of a major stillstand during deglaciation, and test the hypothesis that 

‘ocean forcing’ or advection of relatively warm Atlantic Water sustained ice retreat.  

 

Environmental Setting and Previous Work 

The continental margin of West Greenland meets Baffin Bay in a series of deep cross-shelf 

troughs that terminate at the shelf edge and often have trough-mouth fans (TMFs) beyond 

them on the slope (Batchelor and Dowdeswell, 2014) (Fig. 1b). The TMFs were built by 

repeated advances of the GIS to the shelf edge during Quaternary glaciations (Ó Cofaigh et al., 

2013a). The Uummannaq Trough ends in a large TMF that comprises glacigenic-debris flows 

in the upper part of the fan and hemipelagic, iceberg-rafted sediments and turbidites on the 

northern fan (Dowdeswell et al., 2014; Ó Cofaigh et al., 2013a). The trough meets the upper 

slope at 700 m water depth, and shallows eastward to 450 m water depth on the mid shelf at 

the location of a large GZW, which forms a bathymetric high, and then deepens eastward to 

700 m water depth as the trough reaches the fjord mouths (Fig. 2a).  

 

Sub-glacial erosion transports sediments across the continental shelf, providing a record of 

sedimentary provenance along the path of the glacier. Therefore, the bedrock composition of 

the Uummannaq region is important for tracing the ice stream retreat. The bedrock of 

Uummannaq Trough and the fjords that enter the trough is composed of metamorphosed 

granitic Precambrian shield covered by kaolinite-rich Cretaceous sediments, which are 

overlain by sedimentary and basaltic formations in the western fjords (Mowatt and Naidu, 

1994; Pedersen and Pulvertaft, 1992).  The southern fjords of the Uummannaq system have 

exposed reworked Archaean basement (Escher and Pulvertaft, 2010), and the eastern fjords 
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contain Palaeoproterozoic supracrustal metamorphosed sedimentary rock (Escher and 

Pulvertaft, 2010; Mowatt and Naidu, 1994). The southeastern fjords in the Uummannaq area 

contain calcitic marble, while the northwestern fjords contain some traces of calcite and 

dolomite in the Karrat sediment group (Steenfelt et al., 1998). Nevertheless, the main sources 

of detrital carbonate, which generally characterise Heinrich (H)/Detrital Carbonate (DC) 

events, known as Baffin Bay detrital carbonate (BBDC) events in Baffin Bay (Andrews et al., 

1998; Andrews and Eberl, 2011; Simon et al., 2012), are found in the northern Baffin Bay 

(Parnell et al., 2007). 

 

Today, both warm Atlantic- and cold Arctic-sourced surface to subsurface waters access the 

marine margins of the GIS via deep cross-shelf troughs and fjords. The Arctic-sourced water 

that reaches Uummannaq Trough via the Baffin Current enters Baffin Bay from the Arctic 

Ocean through Nares Strait and channels between the Canadian Arctic Islands (Fig. 1A). 

Atlantic-sourced water originates from the Irminger Current and enters Baffin Bay from the 

south through Davis Strait via the West Greenland Current (WGC) (Dunlap and Tang, 2006; 

Münchow et al., 2015; Tang et al., 2004), forming the West Greenland Intermediate Water 

(WGIW) in Baffin Bay (Fig. 1A) (Tang et al., 2004). The Arctic Water mass occupies the upper 

100-300 m of the water column below the locally-formed surface water, while the WGIW is 

usually found from 300-800 m water depth (Tang et al., 2004). 

 

Sea ice in Baffin Bay is present nearly year-round; it begins to form in October in northern 

Baffin Bay, eventually expanding to cover all but the eastern Davis Strait by March. However, 

the extent and thickness of sea ice depends upon air temperature trends as well as the 
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flowpath and strength of the WGC in any given year (Tang et al., 2004; Tang and Dunlap, 

2007).  

 

Materials and Methods 

Core locations 

Marine-sediment cores were collected on RRS James Clark Ross cruise JR175 in 2009 (Ó 

Cofaigh, 2009). Core locations were chosen based on high-resolution Topographic Parametric 

Sonar (TOPAS) sub-bottom profiles to allow the transition from basal till to overlying glacial 

marine sediments to be captured within the six metre coring limit of the vibrocorer system 

(Table 1). JR175-VC45 (hereafter VC45) on the outer shelf was taken from the top of a 10 m 

high moraine (Dowdeswell et al., 2014), and JR175-VC43 (hereafter VC43) was collected ca. 

30 km east on the surface of a mega-scale glacial lineation (MSGL - Clark et al., 2003) where 

the upper drape of sediments was thin (Fig. 2). Both of these core sites map within acoustic 

Facies D (conformable sediment drape of glacimarine to hemipelagic origin) of Dowdeswell et 

al. (2014). In VC45, a radiocarbon date of 14.9 cal kyr BP in glacimarine sediments 5 cm above 

the basal diamicton, interpreted as a till, indicates that ice retreat from the outer shelf was 

underway by this time (Dowdeswell et al., 2014; Ó Cofaigh et al., 2013a). JR175-VC42 

(hereafter VC42) was taken within Facies S (acoustically stratified glacial marine to 

hemipelagic sediment drape) of Dowdeswell et al. (2014), from a site east of the GZW on the 

middle shelf (Fig. 1B and 2A) and just north of the transect line represented in Fig. 2A, c. 30 

km east of core MSM343520 (Fig. 1), also from Facies S. At the site of VC42, the contact 

between the till and the overlying glacial marine sequence was sampled. Figure 2 shows that 

the postglacial drape of glacimarine sediments is thicker at the site where MSM343520, a 10 
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m-long core, was taken (McCarthy, 2011). These two cores together capture the full section 

from till through postglacial sediments east of the GZW in the trough.  

The cores were split in half longitudinally and visually described aboard the ship. All cores 

were later x-radiographed to allow more detailed description of the lithofacies. VC45, VC43 

and VC42 end within basal unstratified diamicton.  

 

Radiocarbon dates 

Radiocarbon dates were obtained from mollusc shells and mixed or single-species benthic 

foraminifera (Table 2). Most samples were prepared at the Laboratory for AMS Radiocarbon 

Preparation and Research (NSRL) at the Institute of Arctic, Antarctic and Alpine Research 

(INSTAAR), and most radiocarbon samples were measured at the Keck AMS facility at the 

University of California at Irvine. Only sample AA-89913 was analysed at the University of 

Arizona Accelerator Mass Spectrometer (TAMS); this sample was previously reported in Ó 

Cofaigh et al., 2013b. All radiocarbon dates were calibrated using the CALIB Radiocarbon 

Calibration Program, version 7.1 (Stuiver et al., 2005) with the Marine13 dataset (Reimer et 

al., 2013). A ∆R of 140±30 years was used following the method described in the 

supplemental information for Lloyd et al. (2011). The calibrated ages (Table 2) used here 

correspond to the median ages calculated by CALIB 7.1. For the deglaciation date from core 

MSM343520 (McCarthy, 2011), the radiocarbon age was recalibrated using the same dataset 

and ∆R described above. We stress that not all previous studies from Baffin Bay have applied 

the ∆R of 140 ± 30 yr and in reality the ∆R for MIS 2 in Baffin Bay is unknown. Calibrated ages 

are rounded to one decimal point. 

 

Lithofacies  
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The lithofacies for VC42, VC43 and VC45 were determined by combining data from visual core 

descriptions and foraminiferal assays from small samples sieved and examined in the field, 

and x-radiography. Clasts >2mm counted on the x-radiographs (Grobe, 1987) were used as a 

proxy for IRD in lithofacies interpreted as marine and glacimarine in origin. Sediment colour, 

texture and sedimentary structures (e.g. laminations, bioturbation) were key features used to 

determine lithofacies. Shear strength was measured using a Torvane immediately after core 

splitting at ~10 cm intervals as allowed by lithofacies boundaries.  

 

Mineralogy 

Quantitative x-ray diffraction (qXRD) analyses were used to determine the mineral 

composition of the sediments and to identify changes in sediment sources in lithofacies and 

through time. Samples for qXRD analysis were taken at 10 to 20 cm intervals, with fewer 

samples toward the base of the core. Sediment samples were freeze-dried and processed at 

INSTAAR using the method described by Eberl (2003) and Andrews and Eberl (2011). The 

qXRD samples were analysed on a Siemens D5000 XRD unit at a 0.02 2-θ step with a 2 second 

count, which resulted in 3000 data points; minerals were identified using the program 

RockJock v.6 (Eberl, 2003). 

 

One hundred and thirty samples (including replicates) were processed for qXRD from VC42, 

VC43, and VC45. The approach has been used extensively for descriptions of sediment 

mineralogy on the West Greenland shelf and slope (Andrews et al., 2015; Andrews and Eberl, 

2011; Ó Cofaigh et al., 2013a). For this study we reduced the identified minerals from an 

initial number of 34 down to 25 by eliminating minerals that had wt % estimates ≤ 1%. The 

qXRD data were subjected to a fuzzy mean analysis, using the k-means clustering procedure 
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in the program "FuzMe" to define mineral facies (Granath, 1984; Misnasny and McBratney, 

2002). The exponent in the algorithm was set at 1.5 (a value of 1 results in a “hard” cluster). 

The fuzzy mean results were subsequently analysed using a Principal Component Analysis, 

which was also obtained as output from “FuzMe”. 

 

Foraminiferal Analyses 

Samples for foraminiferal analyses were approximately 6 ml in volume and taken at the same 

depth intervals as the qXRD samples. Subsamples from VC45 and VC42 were never dried. 

They were wet-sieved at 63 and 500 µm and kept in a buffered solution composed of baking 

soda, ethanol and water with a target pH range of 8.0–8.4 to preserve the calcareous and 

agglutinated foraminifera (cf. Lloyd et al., 2005). The use of wet samples for foraminiferal 

assemblage analysis was advocated by Scott and Vilks (1991) to preserve small and delicate 

agglutinated and calcareous species that can otherwise be disaggregated and broken when 

samples are dried and then re-wetted during sieving. This method has been used in previous 

palaeoenvironmental and modern studies in Disko Bugt (Lloyd, 2006a, 2006b; Perner et al., 

2013) and Uummannaq Trough (McCarthy, 2011), allowing for good comparisons with the 

fauna reported herein. The >63µm fraction was analysed. Two hundred foraminifers were 

counted, where possible, to achieve reasonable counting statistics. A wet sample splitter was 

used to split the samples. Calcareous and agglutinated faunas were combined in assemblage 

analyses. Linings and hubs of calcareous taxa, which are remnants of dissolved calcareous 

foraminifera, were counted and tallied. Percentages were calculated for samples with at least 

25 specimens. Foraminiferal concentrations were calculated as number of individuals per 

millilitre of bulk sediment. For VC43, small (<1.8 g) freeze-dried samples that remained from 

the original qXRD samples were wet sieved at 63 µm and foraminifera were tallied. The 
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foraminiferal data were used for correlation purposes between VC45 and VC43 so that their 

radiocarbon dates could be shared.  

 

Results and palaeoenvironmetal interpretation 

Lithofacies Description 

Six lithofacies were identified in the cores (Fig. 3). The lithofacies for MSM343520 were 

inferred from descriptions of the sediment given by McCarthy (2011) and are used for 

correlation and comparison with VC42. Examples of the lithofacies found in the cores are 

illustrated in Figure 3, while the down-core distributions of lithofacies are shown in Figures 4, 

5 and 6. A description of each lithofacies and its interpretation is provided below. 

 

Lithofacies L1: Massive diamicton. L1, the basal unit of VC45, VC43 and VC42, is massive, 

matrix-supported diamicton, barren of foraminifera. L1 is dark grey (5Y 4/1, VC45) to very 

dark grey (5Y 3/1, VC43 and VC42). Abundant subangular to subrounded clasts ranging from 

granule to pebble size are dispersed in a silty-mud (VC45) or sandy-mud (VC43 and VC42) 

matrix. Occasional inclined planar discontinuities are visible within the diamicton (e.g., VC42 

415-430 cm depth). The shear strength of this facies is variable, ranging from 0-25 kPa in 

VC42 and 2-5 kPa in VC43.  

Interpretation: Lithofacies L1. By its stratigraphic context at the base of cores VC45, VC43, and 

VC42, where the coring target was the subglacial to glacimarine contact (Fig. 2A) we 

anticipated that the basal unit of the cores would represent subglacial till. Indeed, L1 in VC45 

is interpreted as till in previous work (Dowdeswell et al., 2014; Ó Cofaigh et al., 2013a). We 

interpret L1 as subglacial till in all three cores based on its stratigraphic position and its 
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acoustic and physical characteristics which are similar to subglacial sediments interpreted 

elsewhere (Jennings, 1993; Ó Cofaigh et al., 2013b; Principato et al., 2005). 

 

Lithofacies L2: Massive Pebbly Mud. L2 is massive dark grey (5Y 4/1, VC45) to very dark grey 

(5Y 3/1, VC43; 2.5Y 3/1, VC42) pebbly mud, sometimes bioturbated and characterized by 

dispersed angular to subangular granule- to pebble-sized clasts (Fig. 3). L2 is the first facies 

above L1 in both VC45 and VC43, and it also occurs again higher in both cores. In VC42 L2 is 

well developed much higher is the stratigraphy. 

Interpretation: L2 sediments represent glacimarine conditions, where calving results in 

moderate to high concentrations of IRD, but where stratification related to turbid meltwater 

plumes is not evident.  

 

Lithofacies L3: Crudely-stratified mud. This lithofacies only occurs in VC43. L3 sediments are 

dark grey to very dark grey (5Y 4/1, 5Y 3/1, VC43) silty mud with subtle stratification formed 

by grain-size variations of the matrix. Coarser strata are 3 to 4 cm thick whereas finer strata 

are 4 to 10 cm thick. The faint stratification is partly disrupted by vertical burrows (Fig. 3D). 

Relatively low numbers of angular to subangular granule to pebble sized clasts are dispersed 

without regard to the stratification of the matrix.  

Interpretation: L3 is interpreted to represent glacimarine conditions in which deposition of 

suspended sediments from turbid meltwater plumes is a dominant process (cf. Dowdeswell et 

al., 2015; Mugford and Dowdeswell, 2011; Powell, 1990). Thick fine-grained strata with 

vertical burrows suggest rapid sedimentation from suspension that would dilute the 

contribution of coarser clasts from iceberg rafting (cf. Syvitski, 1989).  
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Lithofacies L4: Laminated mud. This lithofacies occurs only in VC42. L4 is very dark grey 

(2.5Y 3/1) mud with fine laminations between silty mud and sandy mud. Thin sand layers 

have sharp basal contacts. Laminations range from 0.1-1.5 cm in thickness. Dispersed angular 

to subangular clasts are distributed without regard to the laminations. Bioturbation is evident 

only at the top of the unit (Fig. 3E). Faulting in the laminae occurs in one interval (Fig. 3E). L4 

is devoid of bioturbation except at the top of the unit and is barren of foraminifera.  

Interpretation: The well-preserved laminations, dispersed IRD and lack of bioturbation are 

consistent with suspended sediment deposition from turbid meltwater plumes occurring 

rapidly enough to preclude biological activity (Ó Cofaigh and Dowdeswell, 2001). Thin sand 

layers with sharp basal contacts may reflect deposition from turbidity currents released by 

failure of rapidly deposited unstable sediments or potentially from turbid meltwater released 

at the ice front. The sediment characteristics are consistent with Acoustic Facies S, which is 

characterized by strongly stratified glacimarine sediments near the till-glacimarine boundary, 

reflecting ice proximal conditions. 

 

Lithofacies L5: Stratified pebbly mud. This dark grey (2.5Y 3/1) lithofacies occurs in VC43 and 

VC42. It is best expressed in VC42 where it overlies L1 (subglacial till) with a gradational 

contact. Mud layers with dispersed >2mm clasts and much coarser clast-rich layers form 

couplets that range from 1.5-4 cm thick. No bioturbation was observed. The mud layers 

contain coarser material and IRD. L5 is barren of foraminifera except in its upper occurrence 

in VC42. 

Interpretation: L5 falls along a continuum with L4 in terms of its stratification. These two 

lithofacies reflect variations in the dominance of ice rafting and deposition of sediments 

suspended in turbid meltwater plumes. We interpret this lithofacies to reflect a greater 
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contribution of sediments from iceberg rafting than from turbid meltwater plumes. In the case 

of L5 overlying L4, this progression would reflect relatively greater distance from a marine 

terminating ice front (cf. Syvitski, 1989). The coarse to fine strata may reflect a version of 

‘glacimarine varves’ as described by Cowan et al. (1997) from southern Alaskan fjords in 

which coarse layers are deposited in winter when meltwater plumes cease and icebergs 

release debris, and finer layers with IRD are deposited in the summer melt season. This 

couplet-forming scenario differs from that proposed for sites off East Greenland (Dowdeswell 

et al., 2000; Jennings and Weiner, 1996). Off East Greenland, fine mud layers are thought to 

represent extremely cold conditions in which sea ice cover precludes transit of icebergs 

through the fjord and fine material is deposited from suspension, whereas coarse layers 

represent warmer conditions in which icebergs are freely transiting the fjord. However, in the 

present case, it represents a calving environment within the shelf trough. Because the fine 

layers in L5 contain sand and coarser material it seems more likely that these layers represent 

relatively warm conditions when meltwater plumes are active. The coarse layers likely 

represent periods of low turbid plume release from the ice front. L5 in VC42 is similar to the 

stratified diamicton reported from inner Disko Trough by Hogan et al. (this issue).  

 

Lithofacies L6 is dark grey (5Y 4/1, VC45 and VC43) or dark olive grey (5Y 3/2, VC42) 

bioturbated silty mud that forms the core-top sediments in the three cores. L6 sediments 

generally contain low numbers of >2mm clasts and are strongly bioturbated.  

Interpretation: The L6 sediments show little to no ice-rafting activity indicating very distal 

glacier margins. The heavy bioturbation indicates relatively slow sedimentation rates. L6 

represents environments with little glacier influence, similar to those of today. 
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qXRD: Mineral Composition and Fuzzy Mean Clusters 

Our working qualitative model suggests that, as the Uummannaq ice stream retreated from 

the shelf break towards the present coastline, erosion of the underlying bedrock would be 

recorded in the mineralogy of ice-rafted and glacial meltwater-transported sediments (Fig. 

1c). In order to assess this model we need to establish if there are distinct “mineral facies,” 

(MF) here defined as intervals of similar mineral composition. The fuzzy k-mean clustering 

procedure (Granath, 1984; Misnasny and McBratney, 2002) was used to define mineral facies, 

thus allowing for qXRD method estimation errors (Andrews and Vogt, 2014). The evaluation 

criteria for the most appropriate number of clusters/MF (Minasny and McBratney, 2002) 

indicated 2 distinct clusters for the qXRD dataset. The mineralogy clearly indicates that the 

MF for VC45 and VC43 are very similar, while VC42 differs in the dominant MF and records 

more down-core variability (Fig. 4A).  

 

To illustrate the range in MF we plot scores on the 1st Principal Component (PC1) (Davis, 

1986) for a) the three cores, and b) for the two MF solution (Fig. 4A and B). The results 

indicate that the PC1 scores on VC42 are, on average, distinct from those in VC43 and VC45 

(4A). Furthermore, VC43 and VC45 are nearly exclusively in MF 2a (only 1 and 3 samples, 

respectively, from these two cores are not grouped in MF 2a), whereas VC42 contains 

significant samples of both 2a and 2b MFs (Figs. 4–7). Discriminant Function Analysis (DFA) 

(Davis, 1986) indicated that the 2 MF clusters correctly classified samples, with <5% 

mismatches. Figures 4C and 4D show box plots of selected minerals important for defining the 

two mineral facies and how these are represented overall within each of the 3 cores. VC43 

and VC45 have similar wt % mineral distributions, whereas VC42 is distinguished by higher 
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values of albite and oligoclase feldspars, two of the sodium-rich plagioclase feldspars (Figure 

4D). Given the location of VC42 close to the limits of Cretaceous sediments and early Tertiary 

basaltic outcrops (Chalmers et al., 1999; Pedersen and Pulvertaft, 1992), we were surprised 

that the sediments had much lower wt % of minerals that are associated with these outcrops, 

such as pyroxene, kaolinite, and smectite (saponite) (Andrews et al., 2015). On the outer shelf 

above the basal diamicton, the sediments are dominated by MF 2a. In VC45, the few samples 

directly above its basal diamicton also had a small but consistent component of MF 2b. The 

basal diamicton (=till) in VC43 is the only part of that core with significant component of MF 

2b. The basal diamicton unit of VC42, L1, was dominated by MF 2b, while MF 2a comes in as a 

strong but variable contribution above the basal diamicton. MF 2a therefore represents 

minerals more strongly associated with the fjords, and MF 2b represents minerals more 

strongly associated with shelf sediments. 

  

Sediment Stratigraphy  

Sediments of VC45, outer shelf 

The basal diamicton, subglacial till unit, L1 (141-133 cm) in VC45 (Fig. 5) was so pebbly and 

thin that no shear vane measurements and no foraminiferal or qXRD samples were taken. L1 

is overlain by L2, massive pebbly mud (133-100 cm) with a diffuse contact (Fig. 3). The basal 

4 cm of L2 are very pebbly and have up to 0.2 membership in MF 2b. From 129 to 120 cm the 

massive pebbly mud has low IRD counts and faunal abundance. However, above 120 cm there 

is increasing IRD, bioturbation, and foraminifera. Above the basal 4 cm, L2 mineralogy is 

dominated by MF 2a. The radiocarbon date calibrated to 15.0 cal kyr BP (previously 14.9 cal 

kyr BP) was obtained on foraminifera at 125-127 cm, below the interval of highest faunal 
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abundance. Centred at 100 cm is a band of IRD containing brown intraclasts (Fig. 3). This unit 

coincides with a total carbonate (dolomite and calcite) peak of 21% that represents detrital 

carbonate (DC). The DC peak occurs between 110 and 95 cm, increasing from a ~1% total 

carbonate background. The visual DC unit marks the top of L2. It is overlain by L6, 

bioturbated mud with low IRD counts. Dispersed IRD increases between 63-69 cm, but the 

unit overall has very little coarse IRD. The foraminiferal abundances are high at the base of 

the unit such that a date (13.9 cal kyr BP) was obtained on a single species of benthic 

foraminifera 5 cm above the DC peak. A pronounced rise in IRD between 38-16 cm marks the 

return to L2, massive pebbly mud. This unit is the last IRD-rich unit in the sequence on the 

outer shelf. It has some large burrows at the top but otherwise is massive. The transition at 16 

cm from the pebbly mud (L2) to overlying bioturbated mud (L6) is sharp and disturbed by 

bioturbation indicating a much slower sedimentation rate in L6. The low IRD content and 

transition to greyish red (2.5Y 4/2) at the top of the unit suggest it represents modern marine 

sedimentation in the outer Uummannaq Trough. 

 

Sediments of VC43, outer shelf 

L1 is the basal unit of VC43 (311-247 cm; Fig. 6). It is a soft, massive, matrix-supported 

diamicton interpreted to represent the subglacial environment of a MSGL formed beneath a 

fast-flowing ice stream that reached the outer shelf (cf. Dowdeswell et al., 2014; Ó Cofaigh et 

al., 2013b). The unit has weak vertical alignment and concentrated large clasts above 268 cm. 

Shear strength values are low (3.5 to 5 kPa) and the unit is barren of foraminifera. Such weak 

massive diamictons have been documented within MSGLs on other polar continental shelves 

(e.g., Dowdeswell et al., 2004; Ó Cofaigh et al., 2005, 2007), where they have been interpreted 
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as the product of deforming bed processes beneath fast-flowing ice streams. Aligned clasts 

and planar discontinuities represent zones of subglacial shear within the soft sediments (Ó 

Cofaigh et al., 2007). The mineralogy of L1 shows shared membership between MF 2a and 2b. 

Clast counts are assigned a value of 20 to indicate that they are high (saturated) and uniform 

(Fig. 5). L2, massive pebbly mud, overlies L1 (247-228 cm) with a sharp contact (Fig. 3). IRD 

increases upwards in L2. Bioturbation begins by 235 cm. The unit has low foraminiferal 

content and is fully within MF 2a. A fairly thin unit of L5 (228-207 cm), stratified pebbly mud, 

abruptly overlies L2. The base of this IRD-rich unit is a 5 cm thick band of angular pebbles 

followed by alternating coarse and fine layers. L5 transitions to L3 (207-164 cm). In this unit 

the IRD is dispersed and the bands are formed from slightly coarsening matrix. Vertical 

burrows suggest rapid sedimentation (Fig 3) and the foraminiferal abundance increases. High 

faunal abundances continue into the overlying unit, L2, massive bioturbated pebbly mud 

(164-115 cm). IRD counts are high. Lithofacies L3 (115-90 cm) is best described as 

alternating bioturbated mud and IRD rich intervals. From 90-70 cm is a distinct interval of 

bioturbated mud with granules showing overall finer, bioturbated sediments with low 

foraminiferal content. A radiocarbon date from a gastropod from near the top of this interval 

gave an age of 11.5 cal kyr BP, suggesting the overlying boundary with L2 is post-Younger 

Dryas in age. The overlying unit of L2 (70-10 cm) is massive, bioturbated pebbly mud in 

which the IRD is fairly uniformly distributed. This is the last IRD-rich interval in the core. 

Foraminiferal abundance increases in this unit. The uppermost 10 cm of VC43, L6, comprises 

bioturbated mud with very rare dropstones. The boundary between L2 and L6 is disturbed by 

large burrows that bring L6 mud into underlying L2. This surface mixing and the very 

bioturbated nature of L6 suggest that it was deposited slowly, representing modern outer 

shelf sedimentation, but the timing of the transition to L6 is not constrained.  
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Sediments of VC42, mid shelf 

A thick unit of subglacial sediment, L1, forms the basal unit of VC42 (552-203 cm; Fig. 7). This 

massive, matrix supported diamicton includes rare large clasts up to 5 cm in diameter but 

more commonly clasts are closer to 0.5 cm diameter. The clasts were not counted directly, but 

rather represented by an arbitrary count of 20, as the number of clasts was always high, fairly 

uniform, and essentially at the saturation of the method. The clasts in some intervals show 

vague vertical alignment and elsewhere there are planar discontinuities within the diamicton 

matrix visible on the x-radiographs. Shear strength values range from 20 to 25 kPa in this 

unit. The weak matrix, planar discontinuities and generally massive structure are all 

consistent with an origin as subglacial till formed, at least in part, by deforming bed processes 

(Ó Cofaigh et al., 2007). A major shift in mineralogy coincides with the transition from 

subglacial L1 to glacimarine L5. MF 2b dominates L1 with limited variations. Above L1 the 

mineralogy is significantly more variable and the MF switch rapidly between MF 2a and 2b. L1 

transitions gradually to L5, stratified pebbly mud (203-160 cm). L5 transitions abruptly to L4, 

laminated mud (160-127 cm) with a loss of coarse IRD and onset of fine laminations (0.1-1.5 

cm laminations) with dispersed dominantly granule and smaller sized IRD. Faulting in the 

laminae is apparent between 140 and 150 cm (Fig. 3E). The top of the unit is bioturbated, 

largely destroying the evidence of laminae (Fig. 3E). Laminated mud transitions abruptly to 

stratified pebbly mud, L5 (127-98 cm) with a sudden increase in coarse IRD. L5 is clearly 

grain-size stratified with concentrations of coarse material alternating with mud containing 

dispersed IRD (Fig. 3F). The MF shows an increase in cluster 2a. Within this unit faunal 

abundance rises above barren for the first time. The transition from L5 to massive 



 20 

bioturbated mud, L2 (98-45 cm), occurs with the disappearance of the coarse strata. L2 is 

associated with rapid variations between MF 2a and 2b, and relatively consistent 

foraminiferal abundance. L2 is overlain by L5 (45-14 cm). The stratification is disrupted by 

bioturbation, suggesting a decreased sedimentation rate. The uppermost 14 cm is massive 

bioturbated mud with rare IRD, L6, which likely represents modern sedimentation at the site. 

 

Foraminifera 

Species groups 

The foraminifera are here split into two main groups: “warmer” species that are often 

associated with Atlantic Water and "colder" species that are usually associated with Polar 

Water (Table 3). However, because Nares Strait and the Canadian Arctic Islands were blocked 

by ice sheets for most of the time period represented in our record, the Polar-derived water 

inferred from faunal assemblages must have entered Baffin Bay as part of the East Greenland 

Current component of the WGC or reflects glacial meltwater. Other significant environmental 

allocations are “productivity,” i.e. species that are linked to habitats with increased food 

availability, and “meltwater,” encompassing species that tolerate the unstable environments 

and low salinities associated with high glacial meltwater fluxes. Species that comprised less 

than 2% of the foraminiferal abundance were not included in the statistical analyses and were 

not considered important indicators of environmental conditions. 

 

Foraminiferal Stratigraphy 

A total of 40 foraminiferal species were identified in cores VC45, VC43 and VC42; 16 species 

were agglutinated and 24 species were calcareous. Only species comprising at least 5% of at 
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least one sample in its respective core are plotted in the figures; all species included in the 

foraminiferal assemblage plots are shown, along with their general environmental 

preferences, in Table 3. In VC45 (Fig. 8), there is evidence of dissolution of calcareous 

foraminifera (hubs and linings) in all faunal zones except for zone F45-2 (see following 

section Foraminiferal zones). No foraminifera were expected or found in the till (L1) 

lithofacies in the cores.  

The foraminiferal assemblages for VC43 (Fig. 9) were counted based on dried samples so 

linings were not preserved; most of the samples were too small to achieve the cut-off value of 

25 foraminiferal specimens to constitute a “full” assemblage. The interval that contains 

sufficient foraminifera for assemblage analysis coincides with zones F45-1, F45-2 and F45-3. 

The main outer shelf core, VC45, has much higher foraminiferal abundances than the mid-

shelf core, VC42. 

In VC42 (Fig. 10), the pattern is similar, with more calcareous hubs toward the bottom of the 

core (F42-1 and the bottom of F42-2), and the highest numbers of calcareous linings in the 

top of the core, in F42-3.  

The presence of calcareous hubs and linings in many samples indicates that there is some loss 

of calcareous foraminiferal tests by carbonate dissolution. Based on the morphology of the 

hubs and linings, we infer that the calcareous hubs are from Islandiella spp. or Cassidulina 

neoteretis, while the calcareous linings are likely from Elphidium excavatum f. clavata. They 

are used to infer presence of these calcareous species prior to dissolution. The hubs and 

linings comprise only a small percentage of the assemblage (Fig. 8, 10). 

 

Foraminiferal zones 
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Constrained, minimum variance cluster analysis was run on square-root transformed faunal 

data to determine assemblage zones using the Multivariate Statistical Package (MVSP) 

(Kovach, 1998) for cores VC42 and VC45. Species included in the statistical analysis of the 

individual cores comprised at least 2% of at least one sample. Cluster analysis illustrates that 

the most distinct change in the foraminiferal assemblages of core VC45 is the transition from 

a calcareous-dominated assemblage in the lower half of the core to a fauna dominated by 

agglutinated taxa from 60 cm to the top of the core. A similar transition from calcareous to 

agglutinated assemblages also forms the most distinct zonal boundary in VC42. The 

assemblage of VC43 did not contain sufficient foraminifera to apply the cluster analysis 

technique; therefore no faunal zones were created for VC43. The sequence of faunal zones and 

their association with the sequence of lithofacies is shown in Figures 8 and 10, while the 

foraminiferal assemblages for VC43 are presented along with lithofacies in Figure 9. Faunal 

zone boundaries are placed at the midpoint between samples. They are labelled F45-1, F42-1, 

etc.  

Foraminifera in VC45, outer shelf  

VC45 was divided into four faunal zones (Fig. 8): Lithofacies L1 was determined to be barren 

of foraminifera by examination of the ‘shoe’, or core cutter material from the vibrocorer, when 

the core was collected. 

Zone F45-1 (VC45: 133-122 cm) coincides with the lower IRD-rich part of L2 directly above 

the basal diamicton. The assemblage is calcareous and dominated by Elphidium excavatum f. 

clavata and Cassidulina reniforme, indicative of glacimarine conditions, and Islandiella 

norcrossi, linked to chilled Atlantic Water (Table 3). Several species suggestive of relatively 

high marine productivity, Melonis barleeanus, Stainforthia concava and S. feylingi, occur in the 
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deepest sample of this zone but are absent in the overlying two samples. This zone includes a 

sample dated to 15 cal kyr BP, which provides a constraint on the timing of ice retreat from 

the outer shelf, although the presence of M. barleeanus, S. concava and I. norcrossi, especially 

in the deepest sample of this zone, is not indicative of ice-proximal conditions and that the 

earliest deglacial environments are not preserved at this site. 

Zone F45-2 (VC45: 122-100 cm) corresponds to the upper unit of L2 that ends with the 

visible DC event. It includes the samples with the highest concentrations of foraminifers in the 

core. The zone is dominated by calcareous species, along with low percentages of the 

agglutinated species Spiroplectammina biformis. It differs from F45-1 in that the percentages 

of E. excavatum f. clavata decrease to low values and C. reniforme becomes the dominant 

species. I. norcrossi and S. feylingi are subdominant. The presence of Pullenia osloensis 

supports an interpretation of relatively high marine productivity early in this zone. Altogether 

the faunal composition is consistent with somewhat reduced glacial influence and increasing 

Atlantic Water influence on the outer shelf. 

Zone F45-3 (VC45: 100-60 cm) occurs entirely within L6 sediment. In this zone, E. excavatum 

f. clavata disappears from the assemblage and C. reniforme becomes subdominant to I. 

norcrossi and S. feylingi. C. neoteretis, a strong indicator of Atlantic Water influx, enters the 

assemblages in this zone along with Melonis barleeanus, a species that reflects stable marine 

productivity or buried food. Several agglutinated species occur in this zone including S. 

biformis and Textularia torquata. P. bipolaris enters the assemblage for the first time in the top 

of this faunal zone. The presence of calcareous hubs (generally reflecting corroded Islandiella 

helenae, I.norcrossi or C. neoteretis) and linings (representing dissolved E. excavatum f. 

clavata) indicate some loss of specimens to dissolution, but the faunal abundances are still 
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reasonably high. A radiocarbon date of 13.9 cal kyr BP was acquired from I. norcrossi near the 

base of this zone. Overall the faunal characteristics of this zone suggest continued decrease in 

glacial influence and relative increased influence of Atlantic Water in the environment (WGC) 

by 13.9 cal kyr BP. 

Zone F45-4 (VC45: 60-0 cm) covers the transition from L6 to L2 and back to L6 sediments. 

This zone marks the transition to a largely agglutinated fauna with calcareous linings, 

suggesting poor preservation of calcareous tests and overall low faunal abundances. The 

dominant agglutinated species are P. bipolaris and T. torquata, both of which are Arctic 

species common in the shelf and fjord areas of East and West Greenland today, and are in 

general indifferent to the temperature and salinity of water masses (McCarthy, 2011). Other 

than Bovinellina pseudopunctata, a calcareous species indicative of high productivity, there 

are very low numbers of calcareous specimens, although the presence of calcareous linings 

suggests that some of the calcareous assemblage was lost to dissolution. A frequent 

observation from Disko Bugt and Disko Trough cores is linings emerging from corrosion of E. 

excavatum f. clavata tests (cf. Jennings et al., 2014). It is likely that the intervals of calcareous 

linings in F45-4 represent periods of presence of E. excavatum f. clavata. The assemblage 

composition of this zone is consistent with cooling and decreased Atlantic Water influence. 

 

Foraminifera in VC43, outer shelf 

VC43 foraminiferal assemblages were completed on small dried samples in an effort to see if 

the fauna could provide correlation points so that the radiocarbon dates could be shared in 

the two outer shelf cores. Samples from VC43, having been dried, would be expected to have 

fewer of the fragile calcareous species such as Stetsonia horvathi and Stainforthia feylingi as 
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well as fewer agglutinated taxa. In addition, calcareous linings are not preserved in dried 

samples.  

 

VC43 is barren of foraminifers from the basal diamicton, L1, through L5 (311-207cm). Within 

the overlying lithofacies, L3 and L2 the foraminiferal abundances rise and allow percentage 

calculations. Assemblages over this interval begin with dominant E. excavatum f. clavata and 

then shift to an assemblage dominated by C. reniforme and I. norcrossi but still containing E. 

excavatum f. clavata. These shifts match well the main composition of F45-1 and F45-2 

(VC45), except that S. feylingi is very rare in the VC43 assemblages. This lack of S. feylingi 

likely is a consequence of analysing dried samples. Based on the faunal comparisons and the 

lithostratigraphy, we place the 15.0 cal kyr BP age in VC45 at 200 cm in VC43 (Fig. 9). C. 

neoteretis and S. biformis enter the VC43 assemblage at 165 cm. This faunal shift is similar to 

that which occurs between F45-2 and F45-3 in VC45. On this basis we tie these cores together 

and assign an age of 13.9 cal kyr BP to ~165 cm in VC43 (Fig. 9).  

 

VC43 has a radiocarbon date of 11.5 cal kyr BP at 72 cm, immediately below the contact 

between L6 and L2 (Fig. 6). The increase in IRD marked by L2 is the last IRD event recorded 

on the outer shelf. The unit is overlain by L6 assumed to represent postglacial to modern 

conditions. Based on the foraminiferal assemblages, this last IRD rise in VC43 likely 

corresponds to the similar rise in IRD in VC45, which also has a sequence of L2 to L6 at the 

core top, but has no associated dates. This correlation of lithofacies and foraminiferal 

assemblages is possible due to the close geographical proximity of the two cores (VC43 is ~35 

km east of VC45). Above the L6 interval, VC43 has a further succession of calcareous 

foraminiferal faunas not seen in VC45, so this section cannot easily be correlated between the 
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cores. Most conservatively, the tie point from VC43 to VC45 would occur between the first 

occurrence of Portatrochammina bipolaris (65 cm in VC45) and the first occurrence of 

Textularia earlandi (20 cm in VC45). This is a very wide interval that precedes and postdates 

the beginning of L2 in VC45 and encompasses the final rise in IRD. We argue that the date of 

11.5 cal kyr BP from VC43 falls within this range in VC45. In addition, the coincidence of E. 

excavatum f. clavata in VC43 in samples at 60, 50 and 40 cm, above the 11.5 cal kyr BP date 

and the presence of calcareous linings within the last IRD event in VC45 (at 30 and 20 cm) 

that most likely come from E. excavatum f. clavata, provide additional evidence for correlation 

between the two cores. On this basis we infer that the increase in IRD coinciding with the 

lithofacies shift from L6 to L2 is the same event in both cores and dates to post Younger Dryas 

(c. 11.5 cal kyr BP). 

 

Foraminifera in VC42, mid shelf 

VC42 was divided into three faunal zones. The core was barren from L1, subglacial till through 

the lowermost glacial marine lithofacies (L5) until 156 cm, where very low numbers of S. 

biformis and C. reniforme appear in the laminated mud of L4. These samples had too few 

foraminifera to calculate percentages. The first sample with a statistical count is at 115.5 cm, 

within L5, stratified pebbly mud.  

 

Zone F42-1 (VC42: 116-85 cm) straddles the upper part of unit L5 and the lower part of L2. 

This faunal zone is dominated by calcareous foraminifera, but also contains some relatively 

common agglutinated taxa. The most abundant species included S. horvathi, C. reniforme, S. 

feylingi, C. neoteretis, S. biformis, P. bipolaris and D. grahami. The species assemblage is 
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diversely associated with episodic productivity, meltwater, sea ice cover, and chilled Atlantic 

water, suggesting a subsurface Atlantic water influence on the retreating ice margin.  

 

Zone F42-2 (VC42; 85-45 cm) straddles the transition from L2 to L5 sediment. The zone is 

dominated by agglutinated foraminifera. The most abundant species are S. biformis and P. 

bipolaris which suggest cold conditions as these two species are also co-dominant in Mikis 

Fjord, a meltwater-influenced, Polar water dominated fjord on East Greenland (Jennings and 

Helgadottir, 1994). Other agglutinated species, C. crassimargo, Cuneata arctica, Reophax 

fusiformis and Textularia torquata occur in lower percentages. The zone also has low 

percentages of S. feylingi and S. concava, which are often found in connection with high 

productivity events. The dominance of S. biformis is consistent with dominance of polar water 

and/or meltwater, rapid sedimentation and ice-distal glacimarine conditions.  

 

Zone F42-3 (VC42: 45-0 cm) covers the transition between L5 to L6 sediment at the top of 

the core. This zone is dominated by agglutinated taxa and calcareous linings. The most 

abundant species are S. biformis and T. torquata. Subsidiary species include P. bipolaris, C. 

crassimargo, C. arctica, A. glomerata and T. earlandi. The agglutinated foraminifera show a 

mixture of colder-water (Polar) and warmer water (Atlantic) influence, and some 

productivity (S. feylingi). Common calcareous linings indicate that E. excavatum f. clavata was 

originally common in this zone, consistent with cooling and reduced salinity. The zone 

represents waning of glacimarine environment and onset of modern conditions on the shelf 

(McCarthy, 2011). 

 

Comparison between VC42 and MSM343520  
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Core VC42 captures the ice retreat from the middle shelf GZW making it an important record 

for glacial history. Unfortunately, no radiocarbon dates were obtained from this core. We 

have, however, taken advantage of a well-dated core that was collected approximately 32 km 

west in Uummannaq Trough, MSM343520 (Fig. 1b) (McCarthy, 2011). Core MSM343520 ends 

within glacimarine sediments and has a high-resolution Holocene record, whereas VC42 

sampled the till and ice-proximal glacimarine section and has a truncated Holocene record. 

Combined, these two cores provide a full sediment record representing subglacial to 

postglacial marine conditions through the Holocene. The faunal assemblages from the two 

cores were compared to determine where the sedimentary records overlap and to find a tie 

point in VC42 for the deepest date in MSM343520, which constrains deglaciation (McCarthy, 

2011). The appearance of the agglutinated foraminiferal species C. arctica in VC42 occurs in 

zone F42-2 at approximately 70 cm (Fig. 10), while the first appearance of this species in core 

MSM343520 is found at the top of faunal zone FAZ1b (McCarthy, 2011). The abundance 

pattern of this species is similar in both cores, with abundances increasing upward in their 

respective zones. In MSM343520, this interval was dated to 10.9 cal kyr BP (recalibrated to 

10.8 cal kyr BP using the Marine13 dataset and ΔR described in Methods). We therefore 

assign 70 cm in VC42 the age of 10.8 cal kyr BP (Fig. 10) that comes from the top of FAZ1b in 

MSM343520 (McCarthy, 2011).  

 

Discussion 

Retreat from the outer shelf to the mid shelf GZW (VC45) 

Core VC45 was taken from a moraine ridge in the outermost trough, which is considered to 

mark the terminus of the Uummannaq Ice Stream at the Last Glacial Maximum (Ó Cofaigh et 

al., 2013b; Dowdeswell et al., 2014). The earliest date of deglacial sediments taken from VC45 

was calibrated to 15.0 cal kyr BP; however, the lithological sequence suggests that the full 
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deglaciation sequence was not captured. Rather, glacimarine sediments and foraminiferal 

faunas with both Atlantic and Polar water associated species, and the absence of typical ice-

proximal foraminiferal faunas (cf. Steinsund, 1994), indicate that deglaciation occurred prior 

to 15.0 cal kyr BP. The sediments containing this assemblage were first assigned to the till (Ó 

Cofaigh, et al., 2013b), but based on the faunal content they are now considered to be a 

condensed unit, or lag deposit, representing a time period after ice retreat and prior to 15 cal 

kyr BP. The mineralogy of this thin, IRD-rich unit indicates the presence of subglacial erosion 

products and therefore glacial ice influence. The MF 2b membership is consistent with its 

stratigraphic position above till and supports its provenance as a condensed unit 

representing, in part, residual sediments reflecting earlier, more ice-proximal conditions.  

Above the condensed unit is pebbly mud, which initially contains a thin interval with a 

glacimarine faunal signal dated to 15.0 cal kyr BP (F45-1). The dates indicate that only 32 cm 

of sediment were deposited in 1000 years in what is stratigraphically the most ice-proximal 

unit of this core. The bioturbation, diminishing glacial influence on the fauna, and lack of 

stratification suggest that these sediments were deposited increasingly distal to the ice 

margin. Low resolution sediment records of deglaciation from the outer shelves relative to the 

rapid sedimentation and meltwater-influenced record of the inner shelves is a common 

pattern around Greenland and reflects the presence of bathymetric deepening toward the 

land. The deepening forms sediment traps, differing from the outer shelf conditions where 

there is greater exposure to currents, wave action, and reworking by deep-keeled icebergs (cf. 

Dowdeswell et al., 2010; Evans et al., 2009; Gilbert et al., 1998; Jennings et al., 2002, 2013). 

 

The significant differences seen in the early records of the outer shelf cores may reflect a 

more complete deglacial sequence in VC43 than is found in VC45. The full deglacial sequence 
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includes evidence of meltwater and rapid sedimentation soon after deglaciation. The 

sediments directly overlying the till represent, stratigraphically, the most ice-proximal 

conditions in VC43 (cf. Hogan et al., 2012): this interval is barren of foraminifera, but contains 

abundant sand-sized diatoms (cf. Coscinodiscus oculus-iridis) indicating cold sea-surface 

temperatures (Arto Miettinen, personal comm., 2014).  

 

The faunal sequences in VC45 and VC43 are similar beginning at the 15.0 cal kyr BP tie-point 

(Fig. 8, 9). At ca. 15 cal kyr BP, both cores show assemblages dominated by glacimarine 

species (F45-1) that transition to faunas reflecting increasing Atlantic water influence and 

decreasing glacial influence between 15 and 13.9 cal kyr BP (F45-2). The DC layer, ca. 14 cal 

kyr BP, tops the pebbly mud and supports a distal glacimarine environment, with icebergs 

sourced from both Greenland and northern Baffin Bay (cf. Jennings et al., 2014).  

 

Directly overlying the DC layer, a unit of bioturbated mud encompasses a foraminiferal 

assemblage showing the least glacimarine influence and the greatest faunal association with 

Atlantic Water (F45-3, dated to ca. 13.9 cal kyr BP) in the core. The lithology suggests 

diminished iceberg drift to this area from both Greenland and northern Baffin Bay ice 

margins. In VC43, 35 km landward into the trough, an Atlantic Water fauna, including C. 

neoteretis, is also present, but is here associated with IRD-bearing mud. Dominant Atlantic 

water fauna suggest that the WGC was established on the outer shelf by 13.9 cal kyr BP. 

Although there are insufficient data to conclude that the WGC played a strong role in initiating 

the ice-stream retreat (cf. Knutz et al., 2011), it is likely that the warm current helped to 

sustain the ice retreat, as has been observed along modern marine Greenland ice sheet 

margins (Holland et al., 2008; Straneo et al., 2010, 2011). 
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After the maximum occurrence of Atlantic fauna (F45-3), a general cooling on the shelf is 

indicated by a shift to very low faunal abundances, dominated by agglutinated taxa with Arctic 

associations (F45-4, Fig. 8, Table 3). Similarly in VC43, the Atlantic fauna ends in a barren 

interval. Both cores show barren or nearly barren faunal intervals with low counts of IRD 

followed by the IRD events, interpreted as a still-stand or a possible re-advance of the ice 

followed by rapid retreat.  

 

The start of the upper IRD event in VC43 is dated to 11.5 cal kyr BP; we infer that this shift 

occurred at the same time as did the upper IRD event in VC45. The timing of this interval 

suggests that the IRD event coincided with the end of the Younger Dryas. Although not dated 

specifically, the conditions leading up to the deposition of the IRD probably coincide with the 

cooling and onset of more unstable conditions during the Younger Dryas chron recorded 

around the North Atlantic (cf. Bakke et al., 2009; Jennings et al., 2006, 2014; Murton et al., 

2010; Pearce et al., 2014). Within the last IRD event, foraminiferal faunas indicating warmer 

water and high productivity (Fig. 8 and 9) are present in both outer shelf cores, suggesting 

that Atlantic-sourced water was present and possibly helped to speed up the ice retreat 

across the inner shelf (cf. Bindschadler, 2006).  

 

Significance of Detrital Carbonate in VC45 

The DC layer in VC45 is of interest because its mineralogy reflects an origin outside of the 

Uummannaq Trough. Based on its colour and mineralogy, the DC layer matches a northern 

Baffin Bay provenance (Andrews and Eberl, 2011). Multiple detrital carbonate layers rich in 

dolomite have been documented in late Quaternary sediments from Baffin Bay (Andrews et 
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al., 1998; Simon et al., 2012). The youngest of these layers, BBDC1 and BBDC2, are dated in 

Baffin Bay to ca. 10.5 to 12 kyr and ca. 15.5 to 13.5 kyr, respectively (Simon et al., 2012). The 

chronology of VC45 suggests that the DC layer in this core matches the end of BBDC2. There 

were no BBDC units found in VC43 or in core HE006-04-02 (Fig. 1B), located further north 

along the Uummannaq Trough mouth fan. Jennings et al. (2013) noted a DC layer on the 

central West Greenland slope dated between 14.4 and 13.9 cal kyr BP, where it is interpreted 

to reflect enhanced melting of northern Baffin Bay icebergs as they came in contact with the 

WGC. The northernmost core that contains a likely BBDC layer is JR175-VC46, located on the 

upper slope of the Uummannaq Trough (Fig. 1B). The presence (VC45, VC46) or absence 

(HE006-4-2, VC43) of the DC event delineates the northern- and easternmost distribution of 

IRD for this DC event, which also marks the boundary between the northward-flowing WGC 

and colder surface conditions of northern and western Baffin Bay. This interpretation is 

consistent with the presence of Atlantic-associated fauna in core VC45 and suggests that the 

DC layer provides an independent marker of the presence of the WGC on the shelf. Previously, 

the earliest evidence of the subsurface influence of the WGC in Baffin Bay was from 

foraminiferal fauna recorded in northern Baffin Bay at 10.9 cal kyr BP (Knudsen et al., 2008).  

 

Retreat from mid shelf grounding-zone wedge (VC42) 

VC42 provides a record of ice retreat from the mid-shelf GZW. Instead of the thin glacimarine 

sequence of the outer shelf, the mid-shelf has a distinct stratified to massive sequence that 

reflects the combined influence of turbid meltwater plumes and ice-rafting processes during 

ice retreat (Fig. 7) (cf. Hogan et al., 2012). Rapid fluctuations between the mineral facies in 

VC42 (Fig 10) occur in the ca. 2 m thick glacimarine sequence. Such variability is not present 
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in VC45 and VC43 on the outer shelf, which underscores the limited preservation or 

deposition of ice-proximal sediments in the outer shelf cores (cf. Jennings et al., 2002).  

 

The first quantifiable fauna present in VC42 occurs in stratified pebbly mud. This lithofacies 

has similarities to ice-proximal glacimarine units in Disenchantment Bay, Alaska (Ullrich et al., 

2009), which have been interpreted to represent winter-deposited diamicton, summer 

meltwater plumes, and iceberg rafting deposits. The foraminiferal assemblages in this interval 

are consistent with a strong meltwater signal and a subflow of chilled Atlantic Water (WGC).  

 

While VC42 did not contain sufficient carbonate material for radiocarbon dating, its inferred 

tie point with MSM343520 provides a minimum deglacial date of 10.8 cal kyr BP. The tie point 

with MSM343520 (Fig. 7) lies 1.5 m above the till, within distal glacimarine, massive pebbly 

mud that contains a strong meltwater faunal signal. This date indicates that ice had retreated 

from the mid-shelf GZW and was east of both MSM343520 and VC42 by 10.8 cal kyr BP; 

therefore, the initial retreat from the mid-shelf GZW must have been earlier (cf. Lane et al., 

2014). We infer that the ice retreat recorded in VC42 corresponds to the last IRD event 

recorded in the outer shelf cores, beginning at the end of the Younger Dryas chron, ca. 11.5 cal 

kyr BP.  

 

Retreat dynamics of Uummannaq Ice Stream on the shelf 

Previous work has shown that ice sheet outlets filled the fjords in the Uummannaq system, 

and extended to the shelf break as a confluent ice stream (Dowdeswell et al., 2014; Lane et al., 

2014; Ó Cofaigh et al., 2013b, 2013b; Roberts et al., 2013). Based on the constraining age in 

VC45, ice retreat from the outer shelf was underway by 15.0 cal kyr BP. The occurrence of 
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“warm water” foraminifera soon after the proximal glacial sediments in all three cores 

suggests that the WGC was present on the shelf soon after the initial deglaciation of the outer 

shelf, as well after the Younger Dryas ice retreat from the GZW. Today such influx of warm 

water off an ice shwlf has been shown to accelerate ice retreat (Holland et al., 2008; Mouginot 

et al., 2015). While it is likely that the WGC played an important role in sustaining ice retreat 

after the Younger Dryas and through the early Holocene (Andresen et al., 2011; Gramling, 

2015), the lack of initial deglacial sediments does not allow us to determine whether the WGC 

also played a role in initiating the early ice retreat. After the Younger Dryas, the ice stream 

retreated rapidly into the fjords (Lane et al., 2014; Roberts et al., 2013).  

Close inspection of TOPAS profiles from the outer shelf shows that thicker till deposits, or 

lobes, occur at three locations between the outer shelf moraine and the mid-shelf GZW (Fig. 

2B). Each of these deposits occurs as an acoustically-homogenous lobe, interpreted in this 

environment as subglacial till following Dowdeswell et al. (2014), on the seaward side of a 

subtle bathymetric shallowing 20-60 m in height. These deposits may have accumulated as 

ice-marginal features during pauses in the ice retreat, indicating that retreat was episodic in 

nature (Andreassen et al., 2014; Dowdeswell et al., 2008, 2013; Dowdeswell and Fugelli, 

2012; Evans et al., 2009; Ó Cofaigh, 2012; Ó Cofaigh et al., 2008). Slower retreat would be 

supported by the overall landward shallowing bathymetry on the outer shelf, with steps in the 

bathymetry temporarily stabilising the ice margin. Following this, the presence of the large 

GZW on the mid-shelf (Fig. 2A) confirms that the ice stabilised at that position for some time 

before a final retreat into the fjords.  

Cosmogenic radiogenic nuclide (CRN) dates from 233 m above sea level on Ubekendt Ejland, 

which bisects the entrances to Karrats and Uummannaq fjords, indicate that this island 

became ice free by 12.4 kyr BP (Figure 1B; Roberts et al., 2013). Due to our interpretation of 
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the ice retreat from the mid-shelf GZW, we believe that the CRN dates from Ubekendt Ejland 

are too old on account of either incomplete resetting of the cosmogenic isotope clock by 

glacial erosion, or ice thinning but not marginal retreat. In other aspects, our reconstruction is 

in agreement with terrestrial CRN ages and a radiocarbon date from Karrat Lake in the 

northern sector of the Uummannaq fjords (Lane et al., 2014). These dates indicate that the ice 

stream had retreated to the inner fjords by 11.6 BP (Fig. 1B) under the influence of rising sea 

level and deepening bathymetry (Lane et al., 2014). A parallel scenario is presented by 

Roberts et al. (2013) from the southern sector of the Uummannaq fjords, with rapid ice 

retreat into the fjords by 11.4 to 10.8 cal kyr BP (Fig. 1B). We suggest that this rapid retreat 

represents the end phase of retreat off the mid-shelf GZW and that this event is captured on 

the outer shelf by the final phase of IRD. 

 

The timing of the retreat of the Uummannaq Ice Stream from the outer shelf corresponds with 

the onset of the warmer Bølling-Allerød interstadial (Grootes et al., 1993), while the presence 

of the GZW and its inferred date on the mid-shelf corresponds with the Younger Dryas chron 

(Fig. 11a, b). This suggests that the Uummannaq Ice Stream was responsive to the climatic 

signals of the Bølling-Allerød and Younger Dryas, similar to findings from southern and 

northern Greenland (Knutz et al., 2011; Larsen et al., 2015). When compared with the GISP2 

18O climate record (Grootes et al., 1993), stabilisation of the ice stream margin on the mid-

shelf coincides with cooling from the Bølling interstadial into the Allerød period (Fig. 11b). 

The timing of the mid-shelf still-stand suggests that climatic cooling played a significant role 

in stabilising the ice stream. The uppermost IRD-rich interval in VC45 and VC43 commenced 

ca. 11.5 cal kyr BP, which we propose was coincident with the retreat from the GZW and 

deglaciation of MSM343520 and VC42 (Fig. 11a). Many of the terrestrial exposure dates on 
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central West Greenland suggest that the ice margin did not retreat in earnest until the 

Younger Dryas ended and Holocene warming began in the Baffin Bay region (de Vernal and 

Hillaire-Marcel, 2006; Roberts et al., 2009, 2013). The warming effect was especially 

pronounced where the WGC had a strong impact on the eastern margin of Baffin Bay (Kaplan 

and Wolfe, 2006; Knutz et al., 2011; Roberts et al., 2009). After the Younger Dryas, the ice 

retreated rapidly across the Uummannaq Trough (Fig. 11a), and faunal evidence from VC42 

suggests that retreat likely was aided by the presence of the WGC. 

 

Evidence for a moraine-building Younger Dryas episode around Greenland has been scarce 

(Funder et al., 2011; Hall et al., 2008; Larsen et al., 2015; Miller, 2008). However, offshore 

evidence for the Younger Dryas ice margin is emerging off central West Greenland. Marine 

geological studies show that the LGM retreat of the ancestral Jakobshavns Isbrae from the 

outer shelf into Disko Bugt was succeeded by a Younger Dryas readvance to the shelf edge (Ó 

Cofaigh et al., 2013b), while Younger Dryas-aged moraines suggest a readvance in northern 

Greenland (Larsen et al., 2015). The onset of rapid ice retreat from the outer Disko Trough via 

calving is constrained to 12.2 ± 0.4 cal kyr BP (Jennings et al., 2014). Rapid ice retreat onto 

land at the head of Disko Bugt was achieved by c. 10.1 ± 0.3 cal kyr BP (Kelley et al., 2013), 

and followed by subsequent stillstands and moraine formation episodes (Hogan et al., 2011; 

Kelley et al., 2013; Young et al., 2011). The results of this study on the Uummannaq Trough, in 

combination with the Disko Trough studies, indicate a positive mass balance response to 

Younger Dryas cooling by central West Greenland ice streams.  

 

 

Conclusions 
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The Greenland ice sheet margin was in retreat from its offshore Last Glacial Maximum (LGM) 

position on the outer shelf of the Uummannaq Trough, West Greenland, by 15.0 cal kyr BP, 

around the start of the Bølling period. By this time, the ‘warm’ West Greenland Current (WGC) 

was affecting the outer shelf, as evidenced by the presence of Atlantic Water foraminifera in 

the earliest marine sediments overlaying the glacial diamicton. This is the earliest record of 

Atlantic Water found on the West Greenland shelf after the LGM. Unfortunately, the 

palaeoenvironments represented in the outermost shelf core at this site suggest that the 

sedimentary record did not include the most ice-proximal conditions (cf. Ó Cofaigh et al., 

2013a), and the data thus does not allow tracking of the initial retreat of the LGM ice or the 

first onset of the WGC. 

Geophysical data indicate that the retreating ice stream stabilised on the mid-shelf sometime 

after 13.9 cal kyr BP, and likely remained there until the end of the Younger Dryas event, 

forming a large grounding-zone wedge (GZW) (Dowdeswell et al., 2014). The foraminiferal 

fauna during this time indicate strong stratification with a Polar or meltwater lid, which was 

likely sourced from meltwater flux from the local ice margin on the mid-shelf.  

Based on a concurrent IRD signal in the two outer shelf core the Uummannaq ice stream 

began to retreat from the GZW by 11.5 cal kyr BP. Intervals of high IRD concentration on the 

outer and middle shelf suggest that the retreat from the GZW involved calving at an ice-

stream margin, exporting icebergs across Uummannaq Trough.  

The ice stream had retreated landward of the mid-shelf by 10.8 cal kyr BP, but the long 

sequence of distal glacimarine sediments preceding the tie-point for the date suggests that 

VC42 was deglaciated well before this time. Lithofacies in VC42 indicate strong meltwater and 

IRD production during ice retreat into rapidly deepening water depths. We propose that the 
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retreat from the mid-shelf GZW by 11.5 cal kyr BP was concurrent with the deglaciation of 

VC42 on the mid-shelf, as a result of very rapid ice retreat at the end of the Younger Dryas 

cold event, which could have been aided by the warm WGC.  
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Table Captions 

Table 1. Location and measurements of cores discussed in this study. 

 

Table 2. Radiocarbon dates and their calibrations from marine sediment cores in the 

Uummannaq Trough. The 14C ages were calibrated using the Marine13 dataset and a ∆R of 

140±30. 

 

Table 3. Foraminiferal species and their established environmental preferences. 
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Figure captions 

Figure 1. A) Location of the Uummannaq system, West Greenland; the main ocean currents 

are shown, after Jennings et al. (2013). Map created in Ocean Data Viewer, available at 

http://data.unep-wcmc.org. B) Map of the Uummannaq Trough, including bathymetry, 

location of core sites and deglacial dates. The ice margin deglaciation date of 11.4 BP was 

determined by Roberts et al. (2013) (orange diamond); the Karrat Lake deglaciation date 

(11.6 BP) was determined by Lane et al. (2014) (purple diamond). The cores presented in this 

paper are labelled with green dots, while the cores included for comparison are labelled with 

yellow dots. The grey lines on the outer shelf and mid-shelf represent the ice extent at the Last 

Glacial Maximum (LGM) and the possible Younger Dryas stillstand. The translucent pink 

outline represents the "pinch-out" of the ice-rafted detritus (IRD) belt mentioned in the paper. 

The red dots and dark grey line in the fjords represents the deglacial dates found by Roberts 

et al. (2013). TMF = trough mouth fan (Dowdeswell et al., 2014; Ó Cofaigh et al., 2013a). C) 

Map of basic bedrock geology discussed in this paper. The bedrock discussed in this paper is 

shown in colour; the mineralogy of the seafloor and fjords is not discussed in this paper, and 

is shown in grey. The extant Greenland Ice Sheet is shown in white. Adapted from Roberts et 

al., 2013. 

Figure 2. A) TOPAS sub-bottom profiles for the coring transect along the Uummannaq 

Trough. Solid lines indicate location of profiles B and E; the dotted line for profile F indicates 

where the profile for VC42 would fit on profile A, since VC42 is was taken approximately 4 km 

north of the long profile in A; B) Detailed profile across site of core VC45, showing 

stratification of sediment in basin between moraine features; C) Bathymetry of the outer shelf 

showing moraine features described in the text; D) Details of mega-scale glacial lineations 

(MSGLs) near VC43 on the outer shelf; E) Detailed profile of core VC43, which is located west 

of the GZW on the outer shelf; F) Detailed profile across core site VC42, east of the moraine 

and GZW. This profile, and VC42, is located ca. 4 km north of the profile shown in panel A. 

Figure 3. Lithofacies examples of core sediments based on x-radiographs (core depth-scale in 

cm downcore). Examples of each lithofacies are shown. A) L1, massive, matrix-supported 

diamicton; B) transition from L1 to L2, massive pebbly mud; C) transition from L1 to L2; D) 

L3, crudely-stratified, bioturbated mud with dispersed IRD; E) L4, laminated mud with 
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dispersed IRD; F) L5, stratified pebbly mud; G) transition from L2 to L6, bioturbated mud. The 

thick, buff-coloured detrital carbonate (DC) layer is shown in both x-radiograph and core 

photograph (H). The b represents examples of bioturbation found in the cores. 

Figure 4. Results from fuzzy mean statistical analysis of qXRD mineralogy. A) PC-1 scores for 

the individual cores; B) PC-1 scores for the two mineral clusters (2a and 2b); C) distribution 

of minerals within the two mineral clusters; D) distribution of minerals within the cores. 

Figures 5, 6 and 7. Sediment data for core VC45, including >2mm IRD counts, shear strength 

measurements, fuzzy mean-derived cluster analysis results of the qXRD mineralogy, benthic 

foraminifera per millilitre of wet sediment, core lithology and detailed core log. The legend for 

the core logs in figures 5, 6 and 7 is presented here. Arrows represent correlated dates and 

tie-points between cores. 

Figure 6. Sediment data for core VC43 (see Fig. 5 for more detail). 

Figure 7. Sediment data for core VC42 (see Fig. 5 for more detail). 

Figure 8. Foraminiferal assemblage data for core VC45. Faunal data is shown in percentage 

(calcareous and agglutinated foraminifera add to 100%; hubs and linings are included in the 

calcareous assemblage). Total foraminiferal concentration represents the total number of 

individual foraminifera per millilitre (ml) sediment in the sample, and the total calcareous 

and total agglutinated curves concentrations represent the total number of respective 

foraminifera per ml sediment in each sample. The >2mm IRD is shown in as individual counts 

based on radiograph images. Foraminiferal zones are shown as dashed lines and designated 

F45-1, F45-2, etc. Lithological zones are shown in solid lines and designated L1, L2, etc. The 

grey box represents the compressed unit discussed in the text. Arrows represent correlated 

dates and tie-points between cores.  

Figure 9. Foraminiferal assemblage data for core VC43. The core contained insufficient 

number of foraminiferal specimens to constitute an assemblage, so cluster analysis could not 

be run and no faunal zones were created. See Fig. 8 for further detail. 

Figure 10. Foraminiferal assemblage data for core VC42. Foraminiferal zones are shown as 

dashed lines and designated F42-1, F42-2, etc. See Fig. 8 for more detail. 



 52 

Figure 11. A) Representation of the proposed retreat of the Uummannaq ice stream. The 

solid line represents the proposed ice retreat. The short dotted line represents the proposed 

still-stand of the ice on the mid-shelf, which formed the grounding zone wedge (GZW); the 

diamond represents the date by which Roberts et al. (2013) found exposure dates on Illorsuit 

Island; the stars represent the radiocarbon dates from this paper. B) Comparison of the 

Uummannaq ice stream retreat with the 18O record from the GISP2 ice core record (Grootes 

et al., 1993). The darker grey bar on the right represents the time by which the ice had 

retreated from VC45, and the lighter grey bar represents the retreat from the proposed still-

stand at the GZW on the mid-shelf. During the early Holocene, the ice continued to retreat 

across the shelf and into the fjords. 

 



Core Latitude Longitude Water depth, m Core length, cm
Coring 

technique

JR175-VC45 70.56650° -60.307500° 648 141 Vibro core

JR175-VC43 70.62283° -59.620833° 629 315 Vibro core

JR175-VC42 70.88217° -56.092500° 554 550 Vibro core

MSM343520 70.81585° -56.848300° 546 989 Gravity core

Table 1



Core Lab Code Depth, cm Material 14
C age

Cal. age 

range, 2σ
Cal. age, BP

VC45 CURL-14050 93-95 I. norcrossi 12555±30
13760-
14037

13895

VC45 AA-89913 125-127
Mixed 

benthic 

foram.

13211±92
14517-
15366

15041

VC43 CURL-14054 71-72.5 Mollusc shell 10535±25
11257-
11722

11467

Table 2
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Calcareous Species

Bolivinellina pseudopunctata X (Jennings et al., 2004; Rytter et al., 2002) 

Cassidulina neoteretis X
(Jennings and Helgadottir, 1994; Jennings and 

Weiner, 1996; Seidenkrantz, 1995) 

Cassidulina reniforme X
(Hald and Korsun, 1997; Mackensen et al., 
1985) 

Cassidulina reniforme X (Korsun and Hald, 2000; Scott et al., 2008)

Elphidium excavatum f. clavata X X
(Hald and Korsun, 1997; Jennings and 
Helgadottir, 1994) 

Islandiella norcrossi X (Lloyd, 2006b; Steinsund, 1994) 

Melonis barleeanus X  X 
(Caralp, 1989; Corliss, 1991; Jennings et al., 

2004) 

Nonionellina labradorica X (Jennings et al., 2004; Polyak et al., 2002) 

Pullenia osloensis X  X (Lloyd et al., 2011)

Stainforthia concava X  (Jennings and Helgadottir, 1994) 

Stainforthia feylingi X X
(Alve, 1994; Knudsen and Seidenkrantz, 
1994) 

Stetsonia horvathi X (Lagoe, 1977) 

Agglutinated Species

Adercotryma glomerata X (Lloyd et al., 2011; Lloyd, 2006b)

Cribrostomoides crassimargo X (Lloyd, 2006b)

Cuneata arctica X (Schafer and Cole, 1988) 

Deuterammina grahami  X Indifferent

Portatrochammina bipolaris  X
(Jennings and Helgadottir, 1994; Lloyd, 
2006b) 

Reophax catella X (Loeblich and Tappan, 1984) 

Reophax fusiformis X
(Hald and Korsun, 1997; Jennings and 
Helgadottir, 1994)

Saccammina difflugiformis X
(Schafer and Cole, 1988; Scott and Vilks, 

1991)

Spiroplectammina biformis X
(Jennings and Helgadottir, 1994; Schafer and 
Cole, 1986)

Textularia earlandi   X
(Jennings and Helgadottir, 1994; Schafer and 
Cole, 1986)

Textularia torquata   X  X (Ishman and Foley, 1996) 

Table 3
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