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H I G H L I G H T S
� Current wisdom considers that energy storage and generation must be separate.

� Integrating energy storage with generation lowers capital costs.
� Integrating energy storage with generation reduces total energy losses.
� Existing policies militate against such integrated systems being developed.
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a b s t r a c t

Generation-integrated energy storage (GIES) systems store energy at some point along the transforma-
tion between the primary energy form and electricity. Instances exist already in natural hydro power,
biomass generation, wave power, and concentrated solar power. GIES systems have been proposed for
wind, nuclear power and they arise naturally in photocatalysis systems that are in development. GIES
systems can compare very favourably in both performance and total cost against equivalent non-in-
tegrated systems comprising both generation and storage. Despite this, they have not hitherto been
recognised as a discrete class of systems. Consequently policy decisions affecting development or de-
monstration projects and policy approaches concerning low-carbon generation are not fully informed.
This paper highlights that policy structures exist militating against the development and introduction of
GIES systems-probably to the detriment of overall system good.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fossil fuelled generation is very controllable. As electricity sys-
tems decarbonise, the challenge of balancing supply and demand
intensifies. Newbery (2010) highlights the problem in connection
with wind generation but it applies to nuclear and most renewable
generation (see Denholm and Hand (2011)). Energy storage is one of
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the primary measures to address this. Within this area, most at-
tention focuses on solutions drawing electrical energy from the grid
and returning it. A different class of technologies warrants atten-
tion-generation-integrated energy storage (GIES) systems.

All grid-scale energy storage techniques store energy in a form
other than electrical energy. These include pumped-hydro,
pumped heat, flywheels, compressed air, vacuum or electro-
chemical storage. Transforming energy from electricity to a stor-
able form and back again carries two strong disadvantages: (i) it
requires equipment to effect the transformations and (ii) it in-
variably loses some further energy1. GIES systems avoid some
transformations when energy passes through storage because
storage is implemented before the conversion to electricity. Energy
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Strictly speaking, it is exergy that is lost rather than energy. We deliberately
concede some thermodynamic precision for the sake of brevity.
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Fig. 1. Generation systems with storage: (A) Non-GIES system with standalone
storage and (B) a GIES system.
Red arrows represent energy transformations. Green arrows represent energy

movements. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Expressions for the transmission and storage efficiencies.

Non-GIES GIES
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flow from the primary energy source is never reversed and flow to
the grid is not (usually) reversed either.

Existing instances of GIES systems include most natural hydro
power plant and selected concentrated solar power plant (Dunn,
2010; Bergan and Greiner, 2014). They have been mooted for wind
power (Ingersoll, 2008; Salter and Rea, 1984; Lee, 2012; Garvey
et al., 2015; Garvey, 2010) and GIES schemes have been proposed
for nuclear generation, e.g. Ren et al. (2014) and Denholm et al.
(2012). Photochemical splitting of water to produce hydrogen
(Ismail and Bahnemann, 2014) also constitutes a GIES technology if
the hydrogen is then used to generate.

Fig. 1 contrasts a Non-GIES system (comprising generation and
standalone storage) and an equivalent GIES system. In the former,
energy passes through one or more transformations to become
electricity and any energy passed through storage undergoes two
further transformations and two moves. In the GIES system, all
electrical energy extracted has undergone two transformations.
Energy put through storage is moved twice but not transformed
further. Examples of energy moves include air passing through
ducts (Garvey, 2010), water being raised in pipes (Whittaker and
Folley, 2012) and heat travelling across heat exchangers (Lee, 2012;
Garvey et al., 2015). Energy movements incur some losses but
these are normally much smaller than the losses due to transfor-
mation. For example, passing air at 100 bar down a pipe with 2%
pressure drop in the pipe loses only 0.44% of the exergy whereas
expanding that air isothermally to produce work will invariably
dispense with 410%. Transferring heat at 900 K across a heat-
exchanger with 95% effectiveness causes the loss of only 1.64% of
the exergy2 whereas converting that same heat into work in any
2 Ambient temperature is assumed to be 280 K here.
real heat engine will destroy over 25% of the exergy. Converting
electrical power to hydraulic power in present-day pumped-hydro
units loses around 10% of the energy processed but the actual
losses due to resistance in the tubes are o0.5%. Evidently the
marginal losses incurred when energy is passed through storage
will be far lower with a GIES system than with a Non-GIES system.
The costs of equipment or provisions simply to move energy are
much lower than equipment costs to transform the same energy –

a 10 MW heat exchanger costs a small fraction of what would be
required to buy a 10 MW heat engine of similar exergetic efficiency
(if such an engine was even achievable at all).

The message emerging is a familiar one in systems engineering:
a system that must perform two functions may be designed either
as a simple aggregation of two separate components or in some
integrated way. The latter is not necessarily better in any one
system design case but imposing a constraint that the systemmust
comprise two discrete subsystems with prescribed functions is
likely to result in a sub-optimal solution. There are countless ex-
amples illustrating this widely-recognised truth.

Sections 2 and 3 of this paper outline why future electricity
systems comprising generation and energy storage could have
significantly lower total costs and higher performance if some or
all of the energy storage was to be implemented within GIES
subsystems. We do not seek to prove the assertion or claim to have
done so. It suffices, therefore, to include some cost estimates and
comparisons without extensive external referencing that would
distract from the main point of this paper: that even if GIES sys-
tems do offer strong cost and performance advantages over Non-
GIES electricity systems including energy storage, present policy
structures would still favour the latter and stifle GIES
developments.
2. Methods

Fig. 1 associates an efficiency value with each energy trans-
formation or movement for both GIES and Non-GIES systems. In
each case, these individual efficiencies combine to form two im-
portant but different system efficiencies. These two system effi-
ciencies are defined below and Table 1 provides expressions for
them.

:

electrical energy output from the system if noenergy

passed through storage
total primary energy input to system 1Xη =

( )

:

electrical energy output from the system if all energy

passed through storage
electrical energy output from the system if no energy

passed through storage 2

Sη =

( )

The overall throughput efficiency, Tη , of any energy generating
system with coupled energy storage is defined as

:
total electrical energy output from the system

total primary energy input to system 3Tη =
( )
Xη A1η B B1 2η η×

Sη A A A A2 3 4 5η η η η× × × B B3 4η η×



Fig. 2. Relationship between Oχ (%) and Iχ (%).
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For a system having transmission efficiency Xη and storage effi-
ciency Sη , throughput efficiency Tη must always be within the
bracket S X T Xη η η η( × ) ≤ ≤ .

The throughput efficiency depends crucially on what propor-
tion of total energy passes through storage. Two different ways to
express this proportion are explained in the following subsection.

2.1. How much energy will pass through storage in future

Energy storage is not the only measure available to reconcile
electricity supply with demand. Demand side management and
increasing interconnectivity can also contribute. All three certainly
have some role in the future. Despite the completion of several
studies (e.g. Strbac et al., 2012; McKenna and Thomson, 2014;
Taylor et al., 2013), uncertainties on socio-economic factors and
relative future costs of the technologies impede any accurate
prediction of what mixture will emerge. Only energy storage has
the potential to be a complete and fully-controllable solution to
the problem of reconciling supply and demand. Demand side
management depends on user willingness to modify consumption
in response to price or some other stimulus. The effectiveness of
interconnection at any one time depends on the supply-demand
differential having near-zero mean across the interconnected re-
gion at that time. It is thus safe to assume that energy storage will
play a large role.

Onshore wind farms typically have capacity factor3 �26% (the
RenewableUK website cites 25.74 in July 2015). Hourly data for UK
electricity consumption and wind resource for 2001 were studied
by Barton et al. (2013) and Barnacle et al. (2013). These data show
that had the country been powered completely by onshore wind
turbines with large energy stores capable of delivering exactly the
required total energy, 30.3% of all energy consumed would have
passed through storage. Photovoltaic (PV) systems currently
achieve capacity factors of �10% to 20% depending on location. The
same data for the UK system in 2001 show that had all UK power
come from PV with storage, 57.1% of all energy consumed would
have passed through storage. Evidently, if future electricity sys-
tems are powered largely from inflexible sources, substantial
fractions of all electrical energy consumed may pass through
storage.
3 For any renewable energy Capacity Factor is the ratio between average power
output and the peak power output when the resource is strong.
We define two new dimensionless quantities Oχ and Iχ as fol-
lows:

:
electrical energy output that has passed through storage

total electrical energy output 4Oχ =
( )

:
primary energy input that will pass through storage

total primary energy input
.

5Iχ =
( )

Quantities Oχ and Iχ would be equal if 100%Sη = or if 0Oχ = or
1Oχ = . In all other cases Iχ exceeds Oχ . The appendix shows that

1 6I
O

S O S

χ
χ

η χ η
=

+ ( − ) ( )

and the results section illustrates this relationship.
The proportion Oχ is established by the profiles of demand and

primary energy input resource. Overall system throughput effi-
ciency, Tη , is determined from Iχ according to:

1
1 7T X I I S

X S

S S O

η η χ χ η
η η

η η χ
= × (( − ) + × ) =

×
( + ( − ) × ) ( )

Throughput efficiency is close to transmission efficiency, Xη , if
1Sη ≈ or if 1Oχ < < .

A fundamental motivation for this paper is that in many future
electrical power (sub)systems, significant fractions of electricity
consumed will have passed through storage. In such cases, the
arguments for adopting an integrated system are especially strong.

2.2. Cost analysis

Fig. 2 presents the relationship between Oχ and Iχ for several
different values of storage efficiency, Sη . Note that if Sη is low, Iχ
may be significantly greater than Oχ .

GIES systems can deliver large energy storage capacities into
future power systems at low marginal costs. To understand this,
we must recognise and value that GIES systems provide both
generation and storage.

For a given generation type, we can assume that the cost of
generation is proportional to the output power. We term this the
transmission cost CX (d/kW) although strictly it addresses the cost
of both transforming power and moving it a small distance.
Transmission cost does not include costs of any element associated
directly with energy storage. GIES systems tend to have fraction-
ally higher transmission cost than their generation-only



Table 2
Illustrative possible cost levels for Non-GIES and GIES systems.

Cost Component Conventional
GenerationþStandalone

Generation-
Integrated
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counterparts due to the (possible) requirement for a more complex
power transmission/conversion system. There are further costs for
power conversion/movement into storage, CSI (d/kW) and for
power conversion/movement out of storage, CSO (d/kW). Com-
bined, these two costs are often similar to CX or higher. For illus-
tration, the power conversion and transmission system for a
conventional wind turbines might typically account for �25% of
total cost (c.f. p37 of Krohn et al. (2009)) putting this at �d200/
kW for onshore machines in 2014. Open-cycle gas-fired generation
plant typically cost upwards of d300/kW and one such plant rated
at 10 MW comprises most but not all of the main components that
would be required for the power conversion equipment in a
10 MW-rated compressed air energy storage installation. The plant
required for pumped thermal energy storage is necessarily more
expensive because thermal pumping involves a high ratio between
the total exergy converted and the net exergy moved. A notional
value of d300/kW each way for power conversion equipment is
above the estimate suggested in Wagner (2012) which suggests
d292/kW for two-way conversion (excluding certain items of
“balance-of-plant”) but clearly in the correct order of magnitude.
GIES systems have capital costs associated with moving energy
into and out of storage but these will normally be much lower
than the costs associated with the power-transformation equip-
ment required for equivalent Non-GIES systems.

We do not attempt a comprehensive examination of achievable
costs for GIES and Non-GIES systems. Some evidence is given in
the results section suggesting that GIES systems are likely to have
significantly lower capital costs than Non-GIES equivalents.

Finally, there are costs associated with energy storage capacity.
Every energy store has some associated design residency-time4,5,
TS, defining the energy storage capacity6 in terms of the overall
rated (output) power of the system. The marginal costs of energy
storage capacity, CSE (d/kW h), are comparable for GIES and Non-
GIES systems if the energy is stored in the same form in both cases.

2.3. Setting GIES system parameters

The designer of a GIES system must set three different power
ratios. Power input from the primary energy source (efficiency B1η
in Fig. 1B) is taken as the reference rating acting as the denomi-
nator for each of the three ratios:

γSI : determining the power rating for putting energy into
storage(efficiency B3η characterises this energy movement)

γSO : determining the Power rating for recovering energy from
storage (efficiency B4η characterises this energy movement)

γG : determining the electricity generation power rating (effi-
ciency B2η characterises this energy movement)

Setting γSI is trivial. It is invariably set so that all primary power
could pass into storage at any one time. For most GIES systems, the
same hardware would be used for moving into and out of storage
(heat-exchangers, water pipes and compressed air ducts are all
“reversible”). In all such cases γSI¼γSO. The value of γSO chosen
depends on γG. In most practical cases we would set γSO very
slightly larger than γG to account for losses in the movement of
energy between storage and generation.

Initially it seems natural to consider setting γG ¼1 but this
warrants deeper thought. If a GIES whose primary energy input
was intermittent was implemented offshore or in some other
environment where marginal costs of transmission from GIES
4 Described as storage duration by Strbac et al. (2012).
5 Most energy stores also have some time-constant indicating the timescale

over which energy leaks from the system. This is normally much longer than design
residency-time.

6 Input and output efficiencies for the storage play a role here also but only
slight.
output to the grid/demand-centre could be extremely high com-
pared with other costs, it would be logical to consider using the
energy storage to achieve a flat output profile. In such cases we
might set γG equal to the capacity factor – �0.3 for an onshore
wind farm or ∼0.15 for PV.

With γG¼1 for a GIES with intermittent primary power source
(i.e. wind/wave/tide/sun) or γG441 for a GIES whose primary
power source is naturally uniform (i.e. nuclear fission), output
power can be profiled significantly to match demand – especially
where the integrated energy store is itself large – i.e. with
TS¼50 h. Such systems could provide much of the total supply-
demand reconciliation function for the UK or similar regions. The
illustration of the following section shows that value of χO for
these systems could be very high and this would tend to deliver
excellent value from a given investment as the previous section
explained.
3. Results

3.1. Cost comparison for GIES/Non-GIES systems

Table 2 provides some data for the purposes of illustrating a
comparison calculation. These data are based on best present es-
timates of what might be achievable for a well-engineered wind
farm with associated energy store based on pumped thermal
technology and what might be achievable for a wind-power GIES
also using thermal storage as described by Garvey (2014) and
Garvey et al. (2015). If the system is engineered to have energy
residency time TS¼80 h and if equipment is sized in the simplest
way, the total capital costs of the conventional and GIES systems
are d2.15 M/MW and d1.72 M/MW respectively. More sophisti-
cated approaches to the sizing of equipment are certainly war-
ranted but the contrast remains large and in favour of the GIES
systems. Since no large-scale system has yet been implemented
that integrates energy storage with wind power, the cost estimates
are necessarily uncertain. We do not claim that a GIES system
based around wind generation will necessarily have lower total
cost than any Non-GIES system comprising wind generation and
storage with the same performance but this is likely.

Throughput efficiency also affects an economic comparison.
Assume, for illustration, that a Non-GIES wind power system is
characterised by 92%A1η = and 84%A A2 3η η= = (see Garvey et al.
(2015)). This leads to 92%Xη = and 70.5%Sη = for that system.
Following Garvey et al. (2015), we take the GIES system to be
characterised by 93%B B1 2η η= = and 94%B B3 4η η= = to calculate

86.5%Xη = and 88.5%Sη = for the GIES system. Fig. 3 shows how
total throughput efficiency, Tη , varies with the fraction of output
energy that has passed through storage for the two systems. The
Non-GIES system has higher throughput efficiency, Tη , if very little
energy passes through storage. However, if most of the energy
emerging from the system has passed through storage, the GIES
system achieves a throughput efficiency up to 17.7% higher than
that of its Non-GIES counterpart.
Energy Storage Energy
Storage

Primary Harvester CX d750 k/MW d820 k/MW
Storage Input Power CSI d300 k/MW d50 k/MW
Storage Output Power CSO d300 k/MW d50 k/MW
Energy Storage Capacity CSE d40 k/MW h d40 k/MW h



Fig. 3. Throughput efficiency for non-GIES and GIES systems.
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Fig. 4. A notional zero-carbon electricity system: 2 workable configurations.

7 This number is based broadly on pumped thermal energy storage-see Section
2.2.
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3.2. A simple system illustration

Fig. 4 depicts a very simple island system with three zero-car-
bon generation sources: wind, PV and nuclear. The maximum,
minimum and mean power ratings of these three generation
sources and of the demand (without any demand-side response)
are summarised in Fig. 4 together with two extremes of possible
configuration: (a) a system relying fully on standalone energy
storage to balance electricity supply and demand and (b) a system
exploiting GIES implementations of wind and nuclear to provide
all requisite flexibility. Demand and power flow into the energy
storage is considered to be negative generation for the purposes of
the figure. For simplicity, the losses due to energy storage are ig-
nored initially in this illustration. We comment on these at the end
of the section.

With option (a), all flexibility is provided by standalone energy
storage. With the input and output ratings being 90 GW and 70GW
respectively, we might expect that the cost of power-conversion
equipment for such a standalone energy store would be in the
realm of ((70 GWþ90 GW)�d300/kW7)¼d48bn.
Taking the cost of energy storage capacity to be d40/kW h and

supposing that 1 TW h (equivalent to 25 h at 40 GW) was required,
the energy store itself might cost d40bn.

With option (b), the flexibility is provided completely from
GIES. The capital costs of the nuclear, wind and PV generation
facilities might be estimated as (20 GW� d4 bn/GW),
(70 GW� d0.8 bn/GW) and (30 GW�d2 bn/GW) respectively –

summing to d196bn. Table 2 indicated that marginal costs for in-
tegrating storage with wind generation might be 22% (excluding
the energy storage itself). If the same applied to nuclear genera-
tion, a rough estimate for the combined costs of upgrading the
wind and nuclear facilities to GIES might be (22%� d136bn)¼d

30bn.
Comparing options (a) and (b) shows the marginal costs of

energy storage to be d88bn and d70bn respectively – 45% and 35%
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of primary generation costs. Given that the cost estimates are
necessarily very crude, an apparent cost reduction of 20% might
not seem compelling. The contrast increases if we assess the losses
associated with passing energy through storage. If, say, 50% of all
electrical energy consumed had passed through storage, the net
throughput efficiencies (from Fig. 3) might differ by 6.5% in favour
of the GIES system. To compensate for this difference in losses, the
capacity of primary generation in the Non-GIES case would have to
be greater by 6.5% and this would carry an associated cost of
�d13bn. This changes the cost comparison to d101bn vs d70bn.
Since the marginal costs of integrating energy storage with nuclear
and wind generation are still very unclear, the only reliable mes-
sage from this simple illustration is that true marginal system
costs of installing energy storage may be substantially smaller for
GIES systems compared with their Non-GIES counterparts.
4. Discussion

There is increasing acceptance that energy storage will play a
major role in future electricity systems to provide at least a partial
replacement for the flexibility naturally present in fossil-fuelled
generating stations. Demand side management and interconnec-
tion will also play some roles. For the purposes of this paper, it is
necessary only to suppose that these will not form complete so-
lutions obviating the requirement for any energy storage. The re-
markable increase in support for energy storage research and
development projects in numerous countries over recent years
endorses this supposition.

The early sections of this paper provide evidence that (a) GIES
systems represent an important class of energy storage system not
already recognised explicitly and (b) there are indications, at the
very least, that GIES systems can have significantly lower capital
costs and lower marginal losses than their Non-GIES equivalents.
These cost and performance advantages would ultimately be ex-
perienced by the energy consumer.

Policy will play a crucial role in determining whether/how GIES
systems are developed in the near future. Three distinct features of
present UK energy policy militate against these systems being
attractive for commercial investment:

1) The fact that incentives provided for renewable energy gen-
eration are based on the number of kW h(e) delivered into the
system penalise GIES systems because losses associated with
passing energy through storage necessarily occur “behind the
meter” and thereby subtract from the rewards available to the
operator.

2) Within the UK Electricity Market Reform (EMR), all energy
storage (not only that present in GIES systems) is rewarded only
as a capacity asset – competing with gas-turbine peaking plant.
Its ability to generate when required is valued but no value is
attached to the other service that energy storage provides to the
grid – the ability to reduce net surplus generation by consum-
ing energy usefully.

3) Under the UK EMR, no one facility is allowed to claim rewards
for both providing low carbon generation and flexibility. Thus a
GIES system could not recover the partial reward for services
that other forms of energy storage can access presently.

A rational future incentives policy supporting further integra-
tion of low-carbon generation into electricity generation should
reflect that generated electrical power has greatest value when
demand is high (especially demand local to the generation). This is
especially important if renewable energy sources retain present
priority dispatch status among generators. Instances of negative
electricity prices already occur (Nicolosi, 2010; Paraschiv et al.,
2014). At such times, at least some renewable energy has reduced
(arguably zero) value and it is obviously sensible to differentiate
between the incentives that would be secured by an inflexible
generator and one that can also offer flexibility.

A revised incentives policy might consider rewarding each
MW h(e) of low-carbon energy generation with some multiple of
(an appropriate assessment of) the energy value at the time of
delivery in addition to using a fixed value per MW h. The total
reward to the operator would then be

t a b v P dIncome . . . 8
t

0
∫ τ τ τ( ) = ( + ( )) ( ) ( )

where Income(t) represents cumulative income to the operator
over the period [0, t], a denotes a fixed value per MW h(e), v τ( )
denotes (some assessment of) the actual value per MW h(e) at
time τ and b denotes a simple multiplier. Obviously, P τ( ) re-
presents the actual power being delivered into the grid at time τ .
Setting a 0= and b 1= would return the income collected by any
standard generating plant (not low-carbon).

Prior to the UK's EMR, renewable generation was rewarded
with Renewable Obligations Certificates (ROCs). The ROCs effec-
tively set a value upon a and had b 1= . The value of a was de-
termined exactly after each one-year period when it was clear
which utilities had met their renewables obligation but a reliable
guideline value was available in the form of the buy-out price
(d43.30 for the year ending April 1, 2015). Different forms of low-
carbon generation would attract different numbers of ROCs per
MW h(e) but in all cases receiving one or more ROCs per MW h(e),
a exceeded b v. τ( ( )). With b 1= in all cases under the ROCs, there
was at least some motivation for an operator to deliver power
when its value was high.

Under the present (June, 2015) implementation of EMR, re-
newable generation is rewarded with Contracts for Difference
(CfDs). The key difference between the ROCs and the CfDs is that
the latter offer more certainty to the investor by guaranteeing a
pre-determined value per MW h(e). The intention behind the CfDs
is that system operators will accept lower total income in return
for increased certainty of that income. In effect, the CfDs set b 0=
– removing all motivation for an operator of the renewable gen-
eration plant to deliver power when its value is high.

Noting that the systems of both ROCs and CfDs conform to
instances of Eq. (8), it is clear that the balance of rewards can be
adjusted by changing the ratio a b v: . τ( ( )). The possible existence of
GIES systems motivates a serious examination of this. Evidently,
investors place some value on certainty and changing the ratio
a b v: . τ( ( )) from its present 1:0 towards 0:1 would increase un-
certainty for those investors and would be likely to have the effect
of (slightly) increasing the total cost to the energy consumer for
generation of a given quantity of low-carbon MW h(e). However,
what appears not to be accounted-for at all in the EMR rationale is
that such a change towards rewarding low-carbon generation in
proportion to instantaneous power value might reduce overall
system costs quite substantially – possibly making a dramatic re-
duction in very substantial payments that might otherwise be
required to provide sufficient system flexibility to reconcile supply
and demand. This possible change in reward structure could de-
liver value even with conventional (Non-GIES) approaches to en-
ergy storage but it has especially strong relevance when GIES
possibilities are recognised. From the foregoing (and also Toke
(2011)), there is a strong case for some modelling to be done to
explore the net effects of changes in the reward structures for low-
carbon generation. Such modelling is far beyond the scope of this
paper.
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5. Conclusions and policy implications

Energy storage becomes increasingly important as electricity
systems decarbonise. Generation-integrated energy storage (GIES)
systems form an important class of systems not previously re-
cognised. GIES systems can be superior in both cost and perfor-
mance to a combination of conventional pure (low-carbon) gen-
eration systems with standalone energy storage systems. GIES
systems perform well when much of the energy output from a
system incorporating both generation and storage passes through
the storage. It is accepted that in some circumstances, economies
of scale might so improve the case for specific standalone energy
storage systems that the costs of a Non-GIES was lower than the
cost of its nearest GIES equivalent but in most instances, this will
not be the case. The paper illustrates a possible future zero-carbon
generation system including nuclear, wind generation and PV
components. A contrast is made between such a system where all
grid flexibility is delivered by standalone energy storage and one
where the same flexibility is delivered from GIES implementations
of the nuclear and wind generation units.

Present policy structure in the UK is a significant hindrance to
the evolution of GIES systems. The fact that this class of system is
not explicitly recognised obviously precludes that any develop-
ment or demonstration funding can be directed at it. Even if such
systems were developed privately without support, the present
structures of incentive schemes based exclusively on reward per
unit of electrical energy delivered into the grid militates strongly
against their adoption since, in effect, a net negative value is then
attached to the ability provided to pass energy through storage
prior to the generation of electricity.

Two other aspects of current UK energy policy also obstruct
GIES developments: (a) the treatment of all energy storage purely
as a capacity resource (pitting it against gas-fired peaking plant)
and (b) the explicit preclusion of any one generating unit obtaining
rewards for both low carbon generation and flexibility.

There is a strong argument for further policy revision if af-
fordable and secure low-carbon generation systems are to be de-
livered in future. Specifically, changing the reward structure for
low-carbon generation such that a high proportion of the reward
reaped was dependant on delivering electrical energy into the
system at times of high value is a proposition that has obvious
potential and relatively low possible disadvantage. There is also a
strong argument for some detailed modelling to be directed spe-
cifically at such reward structures existing within electricity sys-
tems containing energy storage where various fractions of the
energy storage are implemented in GIES configurations.
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Appendix A. Derivation of the relationship between χi and χο

Define the following quantities:

A : Input energy that will not pass through storage A.1I = ( )

A : Output energy that did not pass through storage A.2O = ( )

B : Input energy that will pass through storage A.3I = ( )
B : Output energy that did pass through storage A.4O = ( )

Obviously all of these quantities are non-negative. From the
definitions of the transmission efficiency Xη and storage efficiency Sη ,
we have

A A , A.5O X Iη= ( )

B B , A.6O X S Iη η= ( )

The definitions of Iχ and Oχ yield

B
A B

: ,
A.7I

I

I I
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+ ( )

B
A B
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O

O O
χ =

+ ( )

Combining the latter equation with the previous equations for
AO and BO provides
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It is then trivial to multiply both sides of the above by
1 I S Iχ η χ(( − ) + ) and gather terms in order to discover the required

relationship

1 A.10I
O

S O S

χ
χ

η χ η
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+ ( − ) ( )
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