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Abstract. Concentrations and fluxes of seven volatile or-

ganic compounds (VOCs) were measured between August

and December 2012 at a rooftop site in central London as

part of the ClearfLo project (Clean Air for London). VOC

concentrations were quantified using a proton transfer re-

action mass spectrometer (PTR-MS) and fluxes were calcu-

lated using a virtual disjunct eddy covariance technique. The

median VOC fluxes, including aromatics, oxygenated com-

pounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1.

Median mixing ratios were 7.3 ppb for methanol and < 1 ppb

for the other compounds. Strong relationships were observed

between the fluxes and concentrations of some VOCs with

traffic density and between the fluxes and concentrations of

isoprene and oxygenated compounds with photosynthetically

active radiation (PAR) and temperature. An estimated 50–

90 % of the fluxes of aromatic VOCs were attributable to

traffic activity, which showed little seasonal variation, sug-

gesting that boundary layer effects or possibly advected pol-

lution may be the primary causes of increased concentrations

of aromatics in winter. Isoprene, methanol and acetaldehyde

fluxes and concentrations in August and September showed

high correlations with PAR and temperature, when fluxes and

concentrations were largest suggesting that biogenic sources

contributed to their fluxes. Modelled biogenic isoprene fluxes

from urban vegetation using the Guenther et al. (1995) al-

gorithm agreed well with measured fluxes in August and

September. Comparisons of estimated annual benzene emis-

sions from both the London and the National Atmospheric

Emissions Inventories agreed well with measured benzene

fluxes. Flux footprint analysis indicated emission sources

were localised and that boundary layer dynamics and source

strengths were responsible for temporal and spatial VOC flux

and concentration variability during the measurement period.

1 Introduction

Currently over 50 % of the global population lives in urban

areas, and with increasing migration to urban centres, air

quality remains a high public health priority. In the Euro-

pean Union, including in the UK, volatile organic compound

(VOC) emissions are subject to control under the European

Commission Directive 2008/50/EC and emission reducing

technologies have been implemented, yet urban air pollution

continues to be a concern. VOCs from both anthropogenic

and biogenic sources impact urban air quality and climate

through their contribution to tropospheric ozone and aerosol

particle formation. Some VOCs, including benzene and 1,3-

butadiene are also carcinogens that can directly affect hu-

man health (Kim et al., 2001). Most VOCs in urban areas

are assumed to come from fuel combustion or evaporative

emissions (Kansal, 2009; Srivastava et al., 2005). However,

in summer urban vegetation may act as an additional source

of VOCs such as methanol, isoprene and monoterpenes, even

in cities with a temperate climate and little green space such

as London or Manchester (Langford et al., 2009, 2010b).
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Emission inventories such as the London Atmo-

spheric Emissions Inventory (LAEI, http://www.

cleanerairforlondon.org.uk/londons-air/air-quality-data/

london-emissions-laei/road-traffic-emissions) and the

National Atmospheric Emissions Inventory (NAEI,

http://naei.defra.gov.uk/data/) use a “bottom-up” approach

based on activity data and emission factors to estimate

emission rates from pollutant sources. Micrometeorologi-

cally based eddy covariance techniques allow a “top-down”

approach to quantify fluxes and these measurements can be

compared with modelled emission inventory estimates. Such

comparisons are essential as “bottom-up” emission invento-

ries may inadvertently not include specific pollutant sources

or may use unrepresentative emission factors or activity

profiles. “Top-down” approaches using Earth observation

data from satellites are also available for a few chemicals

(Lamsal et al., 2011) but not for primary VOCs. There have

been few studies on VOC fluxes in urban areas, and these

have been limited in spatial and temporal extent (Langford

et al., 2009, 2010b; Park et al., 2010, 2011; Velasco et al.,

2005, 2009). Due to the high technical demands of VOC

flux measurements, it is difficult to increase spatial coverage

or to make measurements for long periods of time. Making

further measurements of this kind is therefore a high priority

in studies of air quality.

In this study we present flux and concentration measure-

ments of seven selected volatile organic compounds made

over 5 months in central London using the virtual disjunct

eddy covariance method. The aims of this study were to

(i) quantify VOC fluxes above an urban canopy using pro-

ton transfer reaction mass spectrometry and virtual disjunct

eddy covariance; (ii) investigate seasonal, diurnal and spa-

tial differences in VOC fluxes and concentrations; (iii) exam-

ine possible major source contributions of speciated VOCs in

central London; and (iv) compare measured fluxes with those

estimated by both the LAEI and the NAEI.

These observations were made as part of the ClearfLo

(Clean air for London) project, which provided integrated

short-term and long-term measurements of meteorology, gas

phase and particulate pollutants over London and surround-

ing areas during 2011 and 2012 (Bohnenstengel et al., 2015).

2 Methods

2.1 Measurement site

Micrometeorological flux measurements were made during

the period 7 August–19 December 2012 from a flux tower lo-

cated on the roof of a building belonging to King’s College,

University of London (51.511667◦ N, 0.116667◦W; ground

altitude 30 m a.s.l.), on the Strand in central London. Al-

though the site is within the London Congestion Charge Zone

(an area encompassing central London requiring road tolls

to be paid and hence an area with reduced traffic density),

surrounding roads supported a medium to high traffic vol-

ume (annual average of 50 000–80 000 vehicles per day; De-

partment for Transport, 2014) with the River Thames situ-

ated 200 m to the south. This site is classified as a local cli-

mate zone class 2 compact midrise according to Stewart and

Oke (2012) (i.e. dense mix of midrise buildings; 3–9 stories;

few or no trees; land cover mostly paved; stone, brick, tile

and concrete construction materials). Land cover types (in %)

were calculated based on the Ordnance Survey map for the

surrounding 9 km2 area (Fig. 1) encompassing the site and

are roads (37 %), buildings (31 %), other paved areas (14 %),

unpaved/vegetation (11 %) and water bodies (7 %).

The sampling inlet and sonic anemometer were mounted

on a triangular mast (Aluma T45-H) at approx. 60.9 m (2.3

times mean building height, zH) above ground level. The

mean building height was around 25 m and the mast was lo-

cated on an elevated area in the centre of the roof. A street

canyon was located to the NW and an enclosed parking area

to the SE, but generally surrounding buildings were of equal

height. The sampling point (which we call KCL) is located

37 m west of a sampling point (KSS) that has been used for

long-term energy and CO2 flux measurements (Kotthaus and

Grimmond, 2012). Although the site is not optimal for mi-

crometeorological flux measurements due to the heterogene-

ity of the urban canopy, its suitability has been assessed in

detail by Kotthaus and Grimmond (2014a, b). This study de-

scribes in detail the measurement area and investigates the in-

fluence of source area characteristics on long-term radiation

and turbulent heat fluxes for the KSS site. They conclude that

the site can yield reasonable data on surface-to-atmosphere

fluxes.

The weather in 2012 was somewhat cooler than the 1981

to 2010 long-term mean for London during summer and au-

tumn, with several cold fronts bringing up to twice as much

precipitation and associated winds as average, suppressing

pollution levels. However, during the period of the Olympic

and Paralympic games (27 July–12 August and 29 August–

9 September 2012) the weather was hot and dry, causing

sustained pollution peaks. Winter 2012/2013 was generally

warmer and drier in London than the 1981–2010 mean (Met

Office, 2013).

2.2 Instrumentation and data acquisition

The CSAT3 sonic anemometer (Campbell Scientific Inc.,

Utah, USA) and inlet were faced toward the predominant

wind direction (SW) to minimise flow distortion. Data from

the sonic anemometer were logged at a frequency of 10 Hz

and flux measurements were calculated using 25 min averag-

ing periods. The rotation angle theta (θ ), used to correct mea-

surements of the vertical wind velocity for minor misalign-

ment of the sonic anemometer, showed no significant distur-

bance of the turbulence from interactions with the building

when plotted against wind direction. Data were recorded in

UTC (universal time coordinated), which is 1 h earlier than
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Figure 1. Map of central London overlaid with the Ordnance Survey grid including the measurement site (KCL) at King’s College (green

point) with references to the geography of Greater London and Great Britain. Outlines of the areas that contribute the maximum (Xmax) as

well as 75, 90 and 99 % to the flux footprint using overall median meteorological values are shown as black contour lines with their respective

labels laid out according to the median wind direction.

local time in summer and coincident with Greenwich mean

time in winter. However, all analyses used local time.

VOC concentrations were measured using a high-

sensitivity proton transfer reaction (quadrupole) mass spec-

trometer (PTR-MS) (Ionicon Analytik GmbH, Innsbruck,

Austria) with three Varian turbomolecular pumps (see for ex-

ample de Gouw and Warneke, 2007; Hayward et al., 2002;

Lindinger et al., 1998, for more detailed description of the in-

strument). Air was drawn through an inlet co-located with the

sonic anemometer. Sample air was purged through a ∼ 30 m
1
2

′′
OD ( 3

8

′′
ID) PTFE tube at a flow rate of 81 L min−1 to

the PTR-MS, which was housed in a utility room below. The

high flow rate ensured turbulent flow was maintained and sig-

nal attenuation minimised (Reynolds number, Re= 11177).

During the campaign, PTR-MS operating parameters were

maintained at 1.95 mbar, 510 V and 50 ◦C for drift tube pres-

sure, voltage and temperature respectively to achieve an

E/N (E is the electric field strength and N is the buffer gas

number density) ratio of 123 Td (1 Td= 10−17 V cm2). This

field strength forms a compromise between reagent ion clus-

tering and fragmentation suppression (Hewitt et al., 2003).

Further instrument parameters and meteorological conditions

are summarised in Table 1. The inlet flow rate into the instru-

ment was 0.25–0.3 L min−1.

The logging program was written in LabVIEW (National

Instruments, Austin, Texas, USA) and operated the PTR-

MS in multiple ion detection (MID) and SCAN modes for

VOC concentrations of nine selected masses and a range

of the protonated mass spectrum m/z 21–206 respectively.

The sonic anemometer was not directly interfaced with the

LabVIEW logging program, requiring the measurements to

be synchronised during post-processing through the use of

a cross-correlation function between the vertical wind ve-

locity w and the VOC ion counts c. A valve system con-

trolled the measurement cycle, which consisted of 5 min

zero air (ZA), 25 min MID followed by 5 min SCAN of

sample air and 25 min MID mode. During the ZA cy-

cle, air was pumped through a custom-made gas calibra-

tion unit fitted with a platinum catalyst heated to 200 ◦C

to provide instrument background values at ambient hu-

midity. In MID mode the quadrupole scanned nine pre-

determined protonated masses with a dwell time of 0.5 s,

www.atmos-chem-phys.net/15/7777/2015/ Atmos. Chem. Phys., 15, 7777–7796, 2015
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Table 1. Summary of instrument operating parameters and average meteorological conditions during the measurements in central London,

August–December 2012.

Parameter Unit Mean (range)

Normalised sensitivity (SN)
a ncps ppb−1 11.5 (m/z 33), 13.3 (m/z 45), 10 (m/z 59), 4 (m/z 69),

3.6 (m/z 79), 2.5 (m/z 93), 1.5 (m/z 107)

Primary ion (m/z 19) Cps 8.31× 106 (6.14× 106–1.15× 107)

Water cluster (m/z 37) Cps 1.92× 105 (9.15× 104–3.86× 105)

% of m/z 19 2.3 (1.5–3.4)

O+
2

% of m/z 19 < 1.45 (1.11–2.01)

Temperatureb ◦C 14.0 (−1.81–30.39)

Relative humidity % 76 (50–97)

Pressure mbar 1004.27 (968.71–1023.27)

Wind speedb m s−1 3.35 (0.12–14.96)

Friction velocity (u∗)
b m s−1 0.5 (0.01–1.50)

SD of vertical wind speed (σw)
b m s−1 0.65 (0.15–1.62)

a SN: normalised sensitivity as calculated using Taipale et al. (2008). b Derived from measurements from the CSAT3 sonic anemometer

(Campbell Scientific).

to which each of the following compounds were ascribed:

m/z 21 (indirectly quantified m/z 19 primary ion count via

[H18
3 O+]), m/z 33 (methanol), m/z 39 (indirectly quantified

m/z 37 first cluster [H3O+ H2O+]), m/z 42 (acetonitrile,

results not shown), m/z 45 (acetaldehyde), m/z 59 (ace-

tone/propanal), m/z 69 (isoprene/furan), m/z 79 (benzene),

m/z 93 (toluene), m/z 107 (C2-benzenes) and m/z 121

(C3-benzenes, results not shown). The total cycle time was

5.5 s. Secondary electron multiplier voltage, as well as O+2
(m/z 32) and photon “dark counts” (m/z 25) signals, were

monitored weekly.

The PTR-MS cannot distinguish between different com-

pounds with the same integer mass; therefore, isobaric inter-

ference can occur. For example, m/z 107 may result from

several contributing C8 aromatics: ethyl benzene, (m+p)-

xylene, o-xylene and some benzaldehyde (Warneke et al.,

2003). Further interferences at measured m/z from addi-

tional compounds and fragmentation for this instrument in

an urban environment are discussed in Valach et al. (2014).

Although the O+2 and water cluster ions were kept < 2 % of

the primary ion, interferences from 17O+ isotopes at m/z 33

were taken into account.

Single point calibrations were performed on-site once a

month using a certified multiple component VOC gas stan-

dard (Ionimed, part of Ionicon Analytik GmbH, Austria),

which was validated by cross-calibration with a second in-

dependent VOC standard (Apel Riemer Environmental Inc.,

CO, USA). Before and after the campaign, multistep calibra-

tions were performed with both standards. Standards were di-

luted with catalytically converted zero air, since cylinder con-

centrations were approx. 1 ppm± 5 % uncertainty (Ionimed

Analytik) and 0.5 ppm± 10 % (Apel Riemer). Error propa-

gation resulted in a total calibration uncertainty of < 20 %.

Measured normalised instrument sensitivities (SN, Table 1)

based on Taipale et al. (2008) were used to convert nor-

malised count rates (ncps) of protonated masses (RH+) to

volume mixing ratios (Langford et al., 2010a). Only the o-

xylene isomer was present in the Ionimed standard, which

was used to determine instrument sensitivities for m/z 107,

but sensitivities agreed well when compared with sensitivi-

ties for p-xylene present in the Apel Riemer standard. Any

remaining humidity effects on calibrations were previously

investigated for this instrument and were found to be within

the overall calibration uncertainty (Valach et al., 2014). De-

tection limits of VOC concentrations (Table 2) were calcu-

lated according to Taipale et al. (2008).

2.3 Flux calculations and quality assessment

Fluxes were calculated according to Karl et al. (2002) and

Langford et al. (2009, 2010b) using

F =
1

n

n∑
i=1

w′
(
i− tlag

1tw

)
× c′ (i) , (1)

where w′ and c′ are the instantaneous fluctuations around

the mean vertical wind (w− w̄) and mean VOC concentra-

tion (c− c̄), n is the number of VOC concentration mea-

surements per 25 min averaging period (n= 273), tlag is the

lag time between the wind and PTR-MS measurement due

to the transit through the sampling line and 1tw is the sam-

pling interval of the vertical wind speed measurements of the

sonic anemometer (10 Hz= 0.1 s). Langford et al. (2015) re-

cently demonstrated that the method used to determine the

time lag becomes important where the signal-to-noise ratio

of the analyser is poor, showing that methods that systemati-

cally search for a maximum in the cross-correlation function

within a given window (MAX method) can bias the calcu-

lated fluxes towards more extreme (positive or negative) val-

ues. Their study recommends the use of a prescribed lag time

determined either through the use of a monitored sample flow

Atmos. Chem. Phys., 15, 7777–7796, 2015 www.atmos-chem-phys.net/15/7777/2015/
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Table 2. Summary of 25 min VOC fluxes and mixing ratios above central London during August–December 2012.

Compound Methanol Acetaldehyde Acetone/propanal Isoprene/furan Benzene Toluene C2-benzenes

(m/z) (m/z 33) (m/z 45) (m/z 59) (m/z 69) (m/z 79) (m/z 93) (m/z 107)

Fluxes (mg m−2 h−1)

Lifetime (OHa) 12 d 8.8 h 53 d 1.4 h 9.4 d 1.9 d 5.9 h

N 2920 2811 2945 2119 1908 2315 2053

Min. −2.91 −0.28 −1.74 −0.35 −0.64 −2.31 −3.27

First quartile 0.12 0.06 0.10 0.02 0.002 0.08 0.04

Median 0.27 0.14 0.22 0.09 0.07 0.30 0.33

Mean 0.29 0.16 0.31 0.13 0.09 0.41 0.54

Third quartile 0.42 0.23 0.40 0.20 0.18 0.64 0.91

Max. 3.36 1.09 2.85 1.16 0.59 4.86 8.63

SD 0.25 0.15 0.34 0.16 0.15 0.53 0.86

Skew 0.86 1.27 2.08 1.18 0.32 1.75 2.33

Kurtosis 20.37 2.85 7.57 2.81 0.76 8.04 14.48

Mixing ratios (ppb)

N 4834 4834 4834 4834 4834 4834 4834

Min. 5.73 < LoD (0.14) < LoD (0.02) < LoD (0.03) < LoD (0.04) < LoD (0.05) < LoD (0.14)

1. quartile 6.82 0.59 < LoD (0.65) < LoD (0.16) < LoD (0.18) < LoD (0.38) < LoD (0.57)

Median 7.27 0.82 0.95 < LoD (0.22) < LoD (0.24) < LoD (0.54) 0.75

Mean 7.53 0.94 1.10 0.25 0.29 < LoD (0.65) 0.87

3. quartile 7.90 1.13 1.36 0.30 0.34 0.77 1.03

Max. 17.06 5.17 6.07 1.86 1.71 5.30 4.96

SD 1.12 0.53 0.66 0.14 0.19 0.45 0.50

Skew 2.21 2.14 1.65 1.97 2.80 3.07 2.79

Kurtosis 7.22 7.83 4.06 7.27 12.37 15.89 12.99

LoDb 0.96 0.45 0.66 0.25 0.28 0.66 0.71

a Atmospheric lifetimes with regard to OH for a 12 h daytime average OH concentration of 2.0× 106 molecules cm−3 (Atkinson, 2000).
b LoD: limit of detection calculated using Taipale et al. (2008).

rate or by using the typical lag time derived by searching for a

maximum. Here the prescribed lag times were determined by

fitting a running mean to the time series of daytime lag times

calculated using the MAX method for acetone, which had

large fluxes and the clearest time lags. Prescribed lag times

for all other compounds were set relative to that of acetone,

accounting for the offset introduced by the sequential sam-

pling of the PTR-MS.

Flux losses due to the attenuation of high and low fre-

quency eddies were estimated for our measurement setup.

High frequency flux attenuation was estimated to be on av-

erage 11 % using the method of Horst (1997), and a correc-

tion was applied. Attenuation from low frequency fluctua-

tions for a 25 min flux period was investigated by reanalysing

the sensible heat fluxes for longer averaging periods of 60,

90, 120 and 150 min. The coordinate rotation was applied to

the joined files, which acted as a high pass filter to the three

wind vectors, confirming that fluctuations of eddies with a

longer time period than the averaging time did not contribute

to the flux measurement (Moncrieff et al., 2004). The fluxes

were compared to the 25 min average fluxes, which had the

coordinate rotation applied before joining, again to ensure

only turbulent fluctuations of ≤ 25 min contributed to the

flux (Fig. A1 in the Supplement). Flux losses due to low fre-

quency attenuation were estimated to be < 1.5 % and, there-

fore, no corrections were deemed necessary. The error due to

the disjunct sampling was estimated by comparing the sen-

sible heat fluxes calculated from the continuous data series

with those calculated from a disjunct data series using a set

sampling interval of 5.5 s. The continuous data were aver-

aged to match the sampling frequency of the disjunct data

(i.e. 2 Hz). The difference between the eddy covariance and

DEC sensible heat fluxes was minimal (0.01 %) and thus no

additional corrections were applied.

Many of the 25 min resolved flux measurements were

close to the limit of detection (LoD), based on 1 standard

deviation using the method of Spirig et al. (2005), with an

average fail rate of 82 %. Various techniques to statistically

analyse or replace values below the LoD have been devel-

oped (Clarke, 1998). However, they often result in significant

bias, either high or low depending on the value substituted,

because values tend to be below the LoD when fluxes are

indeed small (Helsel and Hirsch, 1992). In this study, our

analysis focused on diurnally averaged flux profiles and we

www.atmos-chem-phys.net/15/7777/2015/ Atmos. Chem. Phys., 15, 7777–7796, 2015
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decided not to filter out individual flux values on the basis

of being < LoD in order to avoid this bias. When averaging

the 25 min flux data it is appropriate to also average the LoD

which, as shown by Langford et al. (2015), decreases with the

square root of the number of samples averaged (N ). There-

fore, although the majority of the individual 25 min flux mea-

surements were below the LoD, their diurnal average profiles

may exceed the LoD for the average and thus still yield im-

portant data on the net exchange of VOCs above the city.

LoD=
1

N

√√√√ N∑
i=1

LoD2. (2)

The following describes the additionally applied fil-

ter criteria. 25 min flux values with a friction velocity

(u∗) < 0.15 m s−1 were rejected (3.4 % of total data) due to

insufficient turbulence. The stationarity test and data quality

rating methods of Foken and Wichura (1996) and Velasco et

al. (2005) were used, and 47 % of the data files were rejected

on this basis. The high number of files rejected in the sta-

tionarity test is to be expected for eddy covariance measure-

ments over highly heterogeneous canopies, although hori-

zontally averaged canopy morphology recovers some surface

homogeneity. Furthermore, the low measurement height used

can cause an increased sensitivity towards canopy rough-

ness features resulting in non-stationarity. Since urban en-

vironments are inherently not ideal for micrometeorological

flux measurements due to their heterogeneity, integral turbu-

lence characteristics of this site were assessed by comparing

the measured standard deviation of the vertical wind veloc-

ity (σw) normalised by u∗ to the parameters of a modelled

ideal turbulence (Foken et al., 2004). Results showed that

99.6 % of all the data was rated category six or better and

0.4 % was rejected using the criteria of Foken et al. (2004).

This large pass rate gives further confidence that the mea-

surements were not unduly affected by wake turbulence gen-

erated from the structure of the building. Erroneous mete-

orological data (2.6 % of total) were removed around wind

directions of 14–15 ◦ due to minor turbulence interferences

from the presence of other sensors on the mast. Depending on

the compound, between 40 and 61 % of flux data (N = 1934–

2949) passed all of the above quality controls. Exactly 2014 h

of concentration data (N = 4834) was obtained. For consis-

tency, regression coefficients (R2) were used throughout.

The traffic densities used for the analysis were obtained

from a nearby site at Marylebone Road (approx. 3 km to the

NW) and consisted of hourly vehicle counts covering the pe-

riod 7–22 August 2012. The major roads of the Strand and

the Thames Embankment surrounding the measurement site

support a comparable traffic volume with an annual average

of 50 000–80 000 vehicles per day (Department for Trans-

port, 2014) and diurnal patterns in traffic are likely to be sim-

ilar across central London.

Photosynthetically active radiation (PAR) and CO2 mea-

surements used in the analysis were part of the long-term

micrometeorological measurements at the same site and cov-

ered the period from August to September for PAR and from

August to December for CO2. Average diurnal profiles were

calculated for the boundary layer mixing height, which was

measured using three LiDARs located on rooftops within

central London during an approx. 2-week period in summer

and winter 2012 (Bohnenstengel et al., 2015).

Flux footprint calculations

Although there are no operational footprint models for ur-

ban environments that take the complex topography and spa-

tial variability in building height and surface heat fluxes

into account, the analytical footprint model of Kormann

and Meixner (2001) has previously been applied in non-

homogeneous terrain (Helfter et al., 2011; Neftel et al.,

2008). The Kormann–Meixner (KM) model determines the

2-D footprint density function explicitly from micrometeo-

rological parameters, which are provided by the eddy covari-

ance measurements, i.e. friction velocity (u∗), measurement

height (zm), Obukhov length (L), horizontal wind velocity

at the measurement height (u(zm)) and standard deviation

of the lateral wind (σv). The flux footprints were calculated

for each 25 min flux period. Neftel et al. (2008) developed a

Microsoft Excel-based tool that allows the footprint contri-

butions (%) of user-defined spatial elements to be mapped.

In this case we used a total of nine 1 km2 grid squares to

match the Ordnance Survey (OS) grid (Fig. 1), centred on the

measurement site. This grid resolution was validated using a

simple parameterisation model (Kljun et al., 2004) with aver-

age diurnal cycle parameters for σw,u∗ and boundary layer

height (zi) during the campaign, which calculated the dis-

tance of the maximum flux contribution (Xmax) and the ex-

tent of the 90 % flux footprint (X90).

The KM footprint calculation requires the Monin–

Obukhov stability parameter (ζ ) to be within the interval

[−3, 3], where

ζ =
zm− d

L
, (3)

with d(d = 2
3
zH = 16.7 m) being the displacement height es-

timated as a fraction of the canopy height (Garrat, 1992). The

footprint estimation for cases of extreme stability is of lower

quality but still provides useful information. The vertical tur-

bulent flux Fc(0,0,zm) measured at the height zm is related

to the corresponding surface flux area Fc(x,y,0), which is

upwind of the measurement point, such that

Fc (0,0,zm− d)=

−∞∫
∞

∞∫
0

Fc (x,y,zm− d)

×8(x,y,zm− d)dxdy, (4)

where zm is the measurement height and the x axis is aligned

with the mean horizontal wind direction. 8(x,y,zm− d) is

Atmos. Chem. Phys., 15, 7777–7796, 2015 www.atmos-chem-phys.net/15/7777/2015/
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Figure 2.

the footprint function and includes a weighting function to

describe the influence of a unit point source on the flux from

any surface location (x,y). In order to compare VOC fluxes

with estimated emissions from the LAEI, a 9 km2 section of

the 1 km2 resolution OS grid system was used, which on av-

erage included 90 % of the footprint contribution to all mea-

sured fluxes. This area was limited to central London and par-

tially included the following boroughs: Westminster (squares

1, 4, 5 and 7), Southwark (2, 3 and 6), Camden (8) and the

City of London (9) (Fig. 1).

3 Results and discussion

3.1 Diurnal profiles of VOC fluxes and concentrations

Average diurnal cycles of measured VOC fluxes and mix-

ing ratios are shown in Fig. 2 with descriptive statistics

for all the data summarised in Table 2. Largest me-

dian (interquartile range in parenthesis) fluxes per day

were from C2-benzenes and toluene, with 7.86 (0.92–

21.8) kg km−2 d−1 and 7.26 (1.83–15.3) kg km−2 d−1

respectively, followed by oxygenated compounds, i.e.

methanol with 6.37 (2.99–10.0) kg km−2 d−1, acetaldehyde

3.29 (1.52–5.62) kg km−2 d−1 and acetone 5.24 (2.33–

9.62) kg km−2 d−1. Isoprene and benzene showed the

smallest median fluxes with 2.14 (0.56–4.85) kg km−2 d−1

and 1.78 (0.06–4.34) kg km−2 d−1 respectively. The highest

median mixing ratios were of the oxygenated compounds

methanol (7.3 (6.8–7.9) ppb), acetone (0.95 (< LoD–

1.36) ppb) and acetaldehyde (0.82 (0.59–1.13) ppb), fol-

lowed by aromatics (C2-benzenes, toluene and benzene),

and isoprene.

Oxygenated compounds commonly have relatively long

atmospheric lifetimes and widespread origin including an-

thropogenic and biogenic sources and photochemistry, re-

sulting in elevated concentrations and less pronounced diur-

nal profiles (Atkinson, 2000). Most VOC fluxes and concen-

trations were comparable to or lower than those previously

observed in London (Langford et al., 2010b) and other UK

cities (Langford et al., 2009), although C2-benzene fluxes

and concentrations, as well as isoprene and benzene concen-

trations, were slightly higher. The discrepancy in isoprene

and benzene concentrations is consistent with photochemi-

cal loss during transport to the higher measurement height of

the previous studies. Compared to other cities such as Hous-

ton Texas (Park et al., 2010) and Mexico City (Velasco et al.,

2005), VOC fluxes and concentrations were lower with the

exception of C2-benzenes, which were comparable or higher;

however, it must be noted that C2-benzenes in this study rep-

resent the sum of multiple VOC species. Unlike the other

studies cited, Park et al. (2010) use relaxed eddy accumu-

lation to measure VOC fluxes and hence the data obtained

are not directly comparable with measurements made by EC-

based methods.

www.atmos-chem-phys.net/15/7777/2015/ Atmos. Chem. Phys., 15, 7777–7796, 2015



7784 A. C. Valach et al.: Trends in concentrations and fluxes of volatile organic compounds

Figure 2. Part 1: average diurnal profiles in local time for selected VOC fluxes (mg m−2 h−1) separated into all days, weekdays (red dashed

line) and weekends (blue dotted line) with traffic density (vehicles h−1), detection limit (patterned area) and upper and lower confidence

intervals (shaded area). Traffic density (with weekday and weekend) and boundary layer mixing height (for summer and winter) are shown

in separate panels. Compounds are m/z 33 (methanol), m/z 45 (acetaldehyde), m/z 59 (acetone/propanal), m/z 69 (isoprene/furan), m/z 79

(benzene), m/z 93 (toluene) and m/z 107 (C2-benzenes). Part 2: average diurnal profiles in local time for selected VOC mixing ratios

(ppb) separated into all days, weekdays (red dashed line) and weekends (blue dotted line) with detection limit (dotted line) and upper

and lower confidence intervals (shaded area). Traffic density (with weekday and weekend) and boundary layer mixing height (for summer

and winter) are shown in separate panels. Compounds are m/z 33 (methanol), m/z 45 (acetaldehyde), m/z 59 (acetone/propanal), m/z 69

(isoprene/furan), m/z 79 (benzene), m/z 93 (toluene) and m/z 107 (C2-benzenes). The mixing ratio axes start from 0 apart from that of

methanol, which begins at 6.4 ppb due to the high atmospheric background.

Diurnal profiles of aromatic fluxes and concentrations pre-

sented two clear rush hour peaks during the morning and

evening (07:00–10:00 and 17:00–20:00 local time). Concen-

tration peaks are thought to be linked to additional advec-

tion of traffic-related pollution from larger commuter roads

outside of the city centre, as well as boundary layer ef-

fects and photochemistry. VOC concentration measurements

at canopy height can be affected by boundary layer depth

(Vilà-Guerau de Arellano et al., 2009). The rush hour emis-

sion peaks mostly coincide with the boundary layer expan-

sion and collapse and therefore the effect of each factor

cannot be separated. The morning concentration peak was

slightly higher than the evening peak across traffic-related

species even though fluxes tended to be larger during the

evening rush hour. Morning emissions enter a shallow noc-

turnal boundary layer leading to relatively larger concentra-

tions compared to higher afternoon emissions entering a de-

veloped boundary layer leading to relatively lower concen-

trations. This enhanced dilution effect is found more often

during summer when the boundary layer mixing height is

higher (Fig. 2). Therefore, the regression analyses below only

refer to data from August (cf. Sect. 3.1.2 for comparisons

with winter). Furthermore, increased photochemical degra-

dation during the day removes VOCs, further contributing

to the midday minimum in mixing ratios. The diurnal flux

profiles of methanol, acetone, isoprene and to a smaller ex-

tent acetaldehyde showed one large peak just after midday

(approx. 13:00 local time), which was only reflected in the

concentration profiles of acetone and isoprene. Acetaldehyde

concentrations presented a slight double peak similar to mix-

ing ratios of aromatics. Methanol has a relatively long at-

mospheric lifetime and therefore high background concen-

trations, and hence mixing ratios showed no distinct diurnal

profile.
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3.1.1 Correlations with possible controlling variables

of VOC fluxes and concentrations

Aromatic compound fluxes closely followed the diurnal pro-

file of traffic density with good correlations (R2
= 0.51–0.92,

p < 0.05) and slightly lower fluxes observed on the week-

ends. In central urban areas in the UK, traffic densities –

and therefore traffic-related VOC fluxes – increase steadily

throughout the day, with discernible peaks during morning,

midday and evening (Nemitz et al., 2002), which was also

observed in this study. Previous studies have shown that

the Marylebone Road traffic count point can be used as a

proxy representative of traffic flows throughout central Lon-

don (Helfter et al., 2011).

The aforementioned concentration dilution due to bound-

ary layer expansion resulted in negative correlations between

boundary layer height and aromatic mixing ratios in August

(R2
= 0.33–0.56, p < 0.01). As aromatic compound fluxes

slightly dipped around midday, the mixing ratios were further

diluted by the deep boundary layer. The above evidence sug-

gests that traffic-related emissions were the main contribu-

tors to fluxes and mixing ratios of aromatic compounds. Ace-

tone and isoprene showed peak midday fluxes, which main-

tained daytime mixing ratios and produced positive correla-

tions with boundary layer height (R2
= 0.16 and 0.59 respec-

tively; p < 0.01). De Gouw et al. (2005) reported that changes

in boundary layer meteorology could result in greater effects

on observed concentrations of methanol and acetone due to

their high background values. The mixing ratios of these

compounds are, therefore, likely dominated by advected pol-

lution rather than the local flux. Possibly a combination of

boundary layer and photochemical effects were seen with

methanol mixing ratios wherein correlations with mixing

height were negative (R2
= 0.70, p < 0.01), whereas acetone

and isoprene fluxes seemed to be sufficiently high during

the day to maintain peak midday mixing ratios (Fig. 3 ex-

ample of isoprene). Vehicle emissions may have contributed

to acetaldehyde and isoprene levels directly or indirectly

(Fig. 3 example of isoprene), because correlations of fluxes

with traffic density were fairly high (R2
= 0.60 and 0.46 re-

spectively; p < 0.05). The diurnal concentration profile of ac-

etaldehyde to some degree mimicked those of traffic-related

compounds reflecting a slight double peak.

VOC fluxes and concentrations plotted as a function of

PAR showed strong daytime (defined as 06:00 to 18:00 lo-

cal time) correlations for methanol, acetaldehyde and iso-

prene fluxes (R2
= 0.71–0.78, p < 0.001) and concentrations

(R2
= 0.66–0.83, p < 0.001). Plotted as a function of tem-

perature, high correlations with methanol, acetaldehyde and

isoprene fluxes were seen (R2
= 0.75, 0.63 and 0.94 re-

spectively; p < 0.001), whereas only methanol and acetone

concentrations showed higher correlations with tempera-

ture (R2
= 0.64 and 0.81 respectively; p < 0.001). Methanol

fluxes correlated linearly with temperature (R2
= 0.75,

p < 0.001), but acetaldehyde and isoprene fluxes (R2
= 0.64

Figure 3. Examples, using isoprene, of averaged VOC fluxes (left)

and mixing ratios (right) as a function of photosynthetically ac-

tive radiation (PAR) (µmol m−2 s−1), temperature (◦C), traffic den-

sity (vehicles h−1) and boundary layer mixing height (m) based on

25 min VOC means with linear or exponential regressions, formu-

lae,R2 values and detection limit (shaded area for fluxes and dashed

line for mixing ratios).

and 0.94; p < 0.01) and mixing ratios (R2
= 0.45 and 0.55;

p < 0.01) had exponential relationships with temperature

(Fig. 3 example of isoprene). The relationships of mixing

ratios with PAR and temperature for these compounds im-

proved greatly when night-time values were excluded (de-

fined as PAR < 100 µmol m−2 s−1) and when times of low

temperature (< 5 ◦C) were excluded. This indicates either

separate source contributions or effects of boundary layer

meteorology in these instances, whereby increased mixing

ratios of these compounds with low PAR and temperature

likely result from reduced dilution within a shallow bound-

ary layer, e.g. at night or in winter, or from possible contri-

butions of anthropogenic sources such as exhaust emissions,

which are largely independent of light and temperature. In-

creases in concentrations due to high PAR and temperature

suggest biogenic sources, increased evaporative emissions

and/or secondary atmospheric formation driven by oxidation

of precursor hydrocarbons (Singh et al., 1994). Oxygenated

compounds have a variety of different source contributions

such as tailpipe emissions, evaporative emissions from fuel

and solvents, direct emissions from plants, leaf decomposi-
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A

B

Figure 4. Diurnal profiles by month with confidence intervals and bar charts showing hourly averages for the respective month and repre-

sentative compound (top) fluxes (mg m−2 h−1) (m/z 45, 69 and 79) and (bottom) mixing ratios (ppb) (m/z 59, 69 and 79). Letters (a–d)

indicate statistically significant subgroups using Tukey’s Honestly Significant Difference post hoc test.

tion and secondary atmospheric production (Langford et al.,

2009, and references therein).

Modelling studies have indicated that the contribution

of secondary atmospheric formation to VOC concentra-

tions could be more significant, especially in urban areas,

during summer, i.e. with high PAR and temperatures (de

Gouw et al., 2005; Harley and Cass, 1994). Acetone fluxes

reached a maximum when PAR and temperature were around

1000 µmol m−2 s−1 and 15–20 ◦C respectively before declin-

ing, whereas mixing ratios increased exponentially with light

and temperature. These observations resemble measurements

over forest canopies (e.g. Schade and Goldstein, 2001). Aro-

matic compound concentrations and fluxes showed no cor-

relations with PAR. Weak negative correlations were seen

between aromatic concentrations and temperature, and weak

positive correlations were seen between fluxes and temper-

ature likely due to increased thermal mixing. The observed

light and temperature responses associated with isoprene

fluxes and mixing ratios in August and September can be

explained by biogenic sources (cf. Sect. 3.1.3).

3.1.2 Seasonal variability of VOC sources and

meteorology

Most compounds showed larger fluxes in August and

September than in October, November and December with

the exception of acetaldehyde, which also showed increased

fluxes in December (Fig. 4 top). Increased acetaldehyde

fluxes in December may have resulted from an additional

source, such as domestic biomass burning (Andreae and Mer-
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Table 3. Summary of site meteorology by month in central London during 2012.

Parameter Data coverage Median Wind speed Dominant wind Footprint∗ Footprint

(%) stability (ζ ) (m s−1) direction (%) length (m) width (m)

Aug 67 −0.0086 3.3 S (54) 2417 1355

Sep 83 −0.0154 3.2 W (48) 1285 880

Oct 89 −0.0006 3.5 S (29) 2624 1327

Nov 51 −0.0037 3.4 S (53) 2329 1156

Dec 40 0.0047 3.4 N (32) 1804 990

∗ Calculated 2-D description of the oval footprint according to the KM model. Length parameter is the length between the point nearest to

the sensor where the crosswind-integrated footprint function reaches 1 % of its maximum value to the point where it drops below 1 % of

the maximum value.

let, 2001; Lipari et al., 1984), although there are only few

residential buildings in this area of London. Only toluene

fluxes in September were significantly higher than in other

months and benzene fluxes showed no significant seasonal

differences. Seasonal variability in fluxes was likely due to

increased emissions in summer, especially for compounds

with biogenic and secondary atmospheric sources. Average

monthly meteorological parameters are summarised in Ta-

ble 3.

Mixing ratios of aromatics were generally lower in sum-

mer and highest in December (Fig. 4 bottom). This is likely

due to less dilution effects in winter when the boundary layer

is shallow or from advection of additional sources such as

heating, since there was no increase in fluxes. Generally, in

summer the boundary layer mixing height is higher and col-

lapses later in the evening which maintains the dilution ef-

fect for VOC concentrations. In winter the average boundary

layer mixing height is lower. It develops later in the morning

and collapses earlier in the afternoon, which could increase

not only overall VOC mixing ratios but also individual max-

ima, e.g. during rush hours. Comparing average diurnal pro-

files of compound mixing ratios with boundary layer height

during summer and winter shows that aromatic compound

concentrations were associated with negative correlations in

summer (cf. Sect. 3.1.1) which became positive during win-

ter (R2
= 0.10–0.33, p < 0.01), while fluxes maintained pos-

itive correlations with boundary layer height regardless of

season. This suggests that boundary layer effects may be

an important driver of increased concentrations in winter.

Furthermore, traffic counts for the Congestion Charge Zone

in central London indicate lower monthly average vehicle

counts in December (Department for Transport, 2014). Oxy-

genated compounds and isoprene mixing ratios were highest

in summer with the exception of acetone, which increased in

December likely from boundary layer effects, reduced pho-

tochemical degradation or advection. Correlations of mix-

ing ratios and fluxes with boundary layer height were pos-

itive for acetone and isoprene during summer and winter,

whereas methanol and acetaldehyde presented negative cor-

relations during summer, indicating stronger dilution effects

(cf. Sect. 3.1.1).

Increased summer mixing ratios of oxygenated com-

pounds and isoprene indicated a temperature dependent, pos-

sibly biogenic source contribution. While biogenic emis-

sions may be advected from outside of the city, the con-

current increase in isoprene fluxes suggests the source to be

largely local to the flux footprint. The temperature-dependent

fraction of observed isoprene mixing ratios, which may in-

clude advected pollution, was estimated using the isoprene

temperature response function from Fig. 9 in Langford et

al. (2010b), which estimated a 30 and 20 % contribution in

August and September respectively. These values were sig-

nificantly higher than for isopentane, a non-biogenic com-

pound available from the Automatic Hydrocarbon Network,

to which the same analysis was applied. The temperature-

dependent component of isoprene in October, November and

December showed no significant difference to that of isopen-

tane, suggesting the biogenic component was reduced or ab-

sent at lower temperatures. High correlations of m/z 69 with

light and temperature during August and September indicate

that isoprene was the likely major component during these

months; however, during the rest of the period the contribu-

tion of additional compounds such as furan and other alkenes

at that mass may have increased, thereby overestimating the

isoprene signal (Yuan et al., 2014).

3.1.3 Modelling the biogenic isoprene contribution in

London

An attempt was made to model the biogenic isoprene com-

ponent during August and September using the light and

temperature algorithms of Guenther et al. (1995), hereafter

termed G95. The foliar-emissions-based model calculates

VOC fluxes as follows:

F =D× ε× γ, (5)

where D is the foliar density (kg dry matter m−2), ε is an

ecosystem-dependent base emission rate (µg C m−2 s−1 nor-

malised to a PAR flux of 1000 µmol m−2 s−1 and leaf temper-

ature of 303.15 K) and γ is a dimensionless activity adjust-

ment factor accounting for the effects of PAR and leaf tem-

perature. Ambient air temperature and PAR measurements
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Figure 5. (a) Time series of both measured (grey) and modelled (black) fluxes, as well as PAR and temperature measurements for August and

September 2012. (b) Correlation between modelled and measured isoprene fluxes (mg m−2 h−1) by wind direction using the G95 algorithm

with temperature as a third variable, ordinary least squares regression lines, 99th confidence intervals, formulae and R2 value.

were used to calculate the light- and temperature-controlled

parameters CLand CT for γ , where

γ = CL×CT. (6)

The slope of the linear regression of the measured total iso-

prene flux and γ provided an emission factor in mg m−2 h−1,

which was converted to µg g−1 h−1 by dividing by the fo-

liar density (D = 0.129 kg m−2). The foliar density was es-

timated using the total tree leaf area as seen from visible

satellite imagery within the flux footprint and tree leaf dry

weight for representative species commonly planted in the

area, such as Platanus x acerifolia (City of Westminster,

2009), that are also high isoprene emitters (Geron et al.,

1994). The resulting base emission rate ε from the measured

fluxes was 6.5 µg g−1 h−1, which compares well with the fig-

ure given in the literature (5 µg g−1 h−1) for cities in a cool

climate (Guenther et al., 1995). For details of this calcula-

tion, see Sect. B in the Supplement. These estimates are rep-

resentative of the biogenic isoprene fluxes from a highly het-

erogeneous canopy within the flux footprint, including both

high- and low-isoprene-emitting species as well as low av-

erage foliar density due to the sparse distribution of urban

roadside and park trees. Green areas, as defined on the OS

map, comprised 9 % of the total grid area and were evenly

distributed across the 9 km2. Only grid square 1 included a

large green area of 23 ha (St. James’ Park). The National

Forest Inventory (NFI, http://www.forestry.gov.uk/forestry/

hcou-54pg9u) of England only included 4.4 % green areas

within the grid selection (NFI). The NFI excluded individual

trees in parks and avenues, which can encompass up to 50 %

of trees maintained by the local authority in central London

(City of Westminster, 2009).

Figure 5 shows that the modelled isoprene fluxes using

the calculated base emission rate compared well with the

measured fluxes by wind direction. Linear regressions from

wind directions that have a strong anthropogenic compo-

nent are lower, e.g. W (R2
= 0.13, p < 0.001), than from

those areas dominated by biogenic sources, e.g. SE (R2
=

0.81, p < 0.001), due to the nearby Temple Gardens. Mod-

elled emissions seemingly underestimated observed isoprene

fluxes since these included the traffic component; however, it

appears that biogenic isoprene represents a detectable source

contribution in summer.

3.2 VOC / VOC correlations and ratios

Correlations of VOC /VOC fluxes (R2
= 0.40–0.62,

p < 0.001) indicated two groups of compounds with good

correlations within each group, i.e. compounds related to

traffic sources, such as aromatics, and oxygenated and bio-

genic compounds, such as methanol, acetone and isoprene

(Fig. 6 top). Correlations of VOC /VOC concentrations

(R2
= 0.13–0.84, p < 0.001) showed the highest correla-

tions between traffic-related compounds (R2
= 0.45–0.84,

p < 0.001) and good correlations between the oxygenated

and biogenic compounds (R2
= 0.55–0.69, p < 0.001) (Fig. 6

bottom). High correlations between oxygenated VOCs could

indicate source commonality or formation mechanisms

that depend on similar environmental factors. Scatter plots

between aromatic compounds and isoprene/oxygenated

compounds tend to show bimodal distributions indicating

Atmos. Chem. Phys., 15, 7777–7796, 2015 www.atmos-chem-phys.net/15/7777/2015/
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Toluene flux (mg m−2 h−1)C
2

−
B

en
ze

ne
 fl

ux
 (m

g 
m

−2
 h

−1
)

0

2

4

6

8

−2 0 2 4

●

●

●

●●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●●
●

●
●

●

●●
●●

●

●
●

●
●

●

●

●●●●

●●
●

●

● ●
●

●
● ●●

●

● ● ●
●

●

●

●

●●

● ●●

●●

●

●

●
●
●●
● ●
●

●

●
●

●

● ●
●

●

●
●

●
●●

● ●

●●
●

●

● ●

● ●
●●

●

●
●●

●●

●

●

●
●

●
●●

●
●

●

●
●

●● ●

●

●●●
●●

●●
●
●

●
●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

● ●

●

●

●
●

●
●

●●
●●● ●

●

●
●
●●
●

●
●●

●

●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●
●

●
●●

●
●●

●●
●

●

●
●

●

● ●
●

●●
●

●
●

●

●

●
● ●●

●●

●

●

●
●

●

●●
●
●

●
●
●●

●

●
●

●●

●

●
●
●

● ●
●●

●●

●

●

● ●
●
●
●

●

●
●
●

● ●
● ●● ●

●
● ●

●
●

●
●

●●● ●

●

●

●●● ●●
●

●

●●●
●
●

●
●

●

●

●
●

●
●

●

●
● ●

●
●
● ●

●

●
●●

●
●

●
●

●

●

●
●●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●
●●

●
●●●●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●

● ●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●●
● ●●

●
● ●

●
●

●
●
●

●

●●

●

●

●●● ●●
●

●

●

●
●●

●
●

●

●
● ●

●
● ●

●
●

●
●

●
●●●●

●
● ●

●
●
●● ●

●

● ●

●

●

●
●

●

●●

●●
●

●

●

●

●●

●

●●●
●●●
●

●●●●

●
●●

●●●

●

●
●

●
● ● ●

●
●

●●
●●●●● ●

●
●

●
●

●
●●

●

●
●●

●
●

●

●
●

●●●●
●

●

●

● ●●

●
●

●

●●●●●● ●

●●

●
●
●

●
●●●●●
●●

●

●●
●

●

●●●

●

●
●●
●
●●

●
●

●
●
●● ●● ●
●● ●

●
●●

●
●●

●
●

●

●
●

●

●
●

●
●●●●
●

●

●
●

● ●●●

●●●
●

●●
●

●●
●

●

● ●●

●

●

●

●●●
●●
●●

●●●●

●

●●●
●●

●
●

●●●
●

●

●
●

●● ●●●
●

●●●●
●

●
●

●

●●
●● ●●●●●

●●●
●●●

●
●

●
●

●●●●
●●●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●●
●●●

●
●●

●

● ●
●

●
●

●
●●
●

●●
●
●●●

●
●
●

●
●

●
●●
●●

●●
●
●●
●

●●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●●
●

●●●
●●●● ●●

●●
●●●●

● ●●●
●

●●

●

●●●●●● ●
●●
●●●●●●●●●●●●●●●●●

●●
●

●
●

●

● ●
●

●
● ●

●
●●

●

●●
●●
●●
●●

●●

●●
● ●●

●●

●●●●
●
●● ●

●
●

●●
●●
●

●
●

●
●●

●

●
●●

●●● ●
●

●●
●

●●●

●
●●●●●

●

●

●●
●

●
●

●●●
●●●

● ●●●
●

●●●●
●

●●
●●●●●

●
●●

●●●
●●● ●

●
●
●●●●●
●

●●

●●●
●
●

●
●

●
●

●
●

●

● ●●

●
●

●
●●●●
●●●●●●●●

●●
●●

●

●

●

● ●
●
●●●●●●● ●●●

●
●

●
●

●
● ●●●
●●●●
●●●●

●

●
●

●●
●●●●●
●●●●●●

●●
●●●●●●●●●●●●●●

●
●

●
●

●

●
●●
●● ●

●

●●

●
●●●●

●

●
●

●
●
●
● ●
●

●
●

●

●●●●●
●

● ●
●
●

●

●

●●
●
●●
●

●

●●●
●

●

●
●

●● ●

●●
●● ●
●
●
●

●
●
●
●

●
●●

●●
●

●

●●
● ●●

●●●●
●●

●

● ●

●●●

●
●
●●●

●●●
●●

●
●
●●

●●●●●●
●

●●●●●
● ●

●
●

●

●

●
●
●●●●●●●●

● ●

●●
●●
●●●

●

●

●
●●
●

●●

●●

m107f=0.76[m93f]+0.31 R2=0.25 

0 5 10 15 20 25
Temperature (°C) 

Acetaldehyde flux (mg m−2 h−1)

A
ce

to
ne

 fl
ux

 (m
g 

m
−2

 h
−1

)

−1

0

1

2

3

0.0 0.5 1.0

●
●

●

●

●●
●●

●

● ●● ●●

●

●

●
●

●

●●

●

● ●●
●●●●
●

●
●

●●●●●
●

●●

●●

●

●

●

●
●

●

●
●

● ●
●●●●●

●

●
●
●

● ●
●

●
●

●

● ●
●● ●●●●

●●
●

●
●

●
●

●

● ●

●

●

●
●●

●●●●● ●
●

●●● ●●
●

● ●
● ●●

●● ●
●●●

●●
●●●●●

●●● ● ●
●●

●
●

●
●
●●

● ●

● ●
●

●●
●●●

●
●

●
● ●●●

●
●

●●
●
●●●

●
●
●

●

●● ●

●

● ●

●
●

●
●

●●
● ●

●
●

● ●● ● ●

●
●

●
●

●●●

●
●

● ●● ●

●
●

●

●

●

●

●
●
●

●●
●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●
●

● ●
●

●

●●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●●

●●

● ●●
● ●●

●
●

●

●
●

●

●

●
●

●

●

●
●

●●●● ●●●
●

●
●●

●

●
●

●

●●●●●
● ●

●

●

●
●

●●

●

●●
●

●
●

●●●●
● ● ●

● ●●
●
●● ●●

●●
●
●●

●
●

●
●

●
●

●
●

●
●●

●

●
●

● ●
●

●

●●
●

●●

●

●

●
●●
●

●
●

●●●

●
●

● ●●●●

●●

●
●

●

●

●

●
●

●
●

●
●
●

●●
●

●

●

●
●

●
●

● ●

●

●

●
●

●
●● ●
●

●●
●

●●●
●

●●
●

●

●●●●

●

●

●

●

●

●●
●

●
●●●

●
●●

●

●
●

●●

●

●●●

●

●●
●●

●
●

●

●

●
●

●

●●
●●●

● ●●●●●

●

●

●
●

●

●
●

●
●

●●● ●●
●● ●
●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●● ●

●

●●●

●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●

●●●

●●

●
●

●

●

●●

●

●●

●●
●

●
●●

●

●
●

●

●

●

●

●

●● ●● ●

●

● ●
●●●●

●
●

●
●

●
●

●

●
●
●●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●
●●

●

●

●

●

●●
● ●

●
●

●

●

●

●

●
●

●●

●

●
●●●●

● ●
● ●

●●●
●

● ●

●●

●

● ●

●
●

●

●
●

●

●
●

●
●● ●

●
●

●

●
●
●

●

●
●

●
●

● ●

●●●

●

●

●

●

●

●
●

●●
●●●● ●
●●●●● ●●

●

● ●●
●

●
● ●

●
●

●

●

●●

●

●● ●

●●
●
●

●
● ●

●

●●●
●

● ●●●
●●

●
●

●
●●

●●
●

●●
●

●
● ●● ●

●
●

●
●●

●

● ●

●

●

● ●

●

●

●●
●
●●● ●●●

●
●
●
●

●●●●
● ●●

●● ●●
●●●●●

●
●

●
● ● ●

●● ●●●●
●

●

●
●

● ●●
●●●●●

●●

●
●●●●

●●
●●
●

●

●

●●
●●

●
●

●
●

●

●
●●●●●

●

●
●

●

●

●

●
●●

● ●

●
●●●

●

● ●●
●●●●

●

●

●●●
●●●
●● ●
●
●● ●
●
●●

●
●
●●

●
●●●●

●

●

●
●

●
●

● ●
●

●

●
●●

●
●
●

●●
●

●●
●●

●
●

●●
●

●●●
●

●
●

●
● ●

● ●

●

●
●

●
●●●

●

●
●●

●

●
●●●

●
●

●●
● ●●
●●

●

●
●

●

●
●

● ●

●
●

●●
●

●●
● ●●

●

●●
●

●

●

●●
●

●●

●●●

●

●●

●●
●●●●

●
●

●

●
●●

●

●●● ●●●●
●●●
●
●

●●●
●
●

●●●
●●

●●●●●● ●
●
●●●● ●●
●●

●

●
●●

●
●●

●

●●●
●●
●●●●

●
●●
●

●

●

●
●●

● ●
●
●●

●
●

●●

●
●
●●

●
●

●
●

●●
●

●●
●

●
●
●

●●●●
● ●
●● ●● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●●●

● ●
●
●●●● ●

●●
●●

●

●●●●●●

● ●
● ●●

●

●● ●●●
●

●
●●

●
●●●
●●● ●●●

●

●
●
●●●● ●

●● ●●●
●●●
●
●●●

●● ●
●

●●
●●

● ●

●● ● ●
●

●

●

●

●

●

●

●
●
●
●●●●●
●

●●

●
●●●●

●
●●● ●● ●●

●●
●

●
●●

●●●●

●●

●
●

●

●●
●
●

● ●
●●

●

●
●
●●

●●●●●

●
●●●●●●● ●●●●●●●● ●●

● ●●
●

●

●
●

●

●
●

●
●●●● ●●●

●
● ●

●

●
●● ●●●

●
●
●●●● ●●
●

●●
●

●

● ●●●

●

●●●
●

●●●●
●
●●●

●

●●● ●●
●●●● ●●
●

● ●●
●
●

●●●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

● ●● ● ●● ●●●●● ●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●●
●●
●●

●

●
● ●
●●

●
●

●

●
●

●

●

●
●
●

●
●●

●
●

●
●

●●●●●
●

●

●

●
●●●

●
●●●●●●●●●

●

●

●
●

●●
●● ●

●●
●

●
● ●●●

●●● ●●●
●●

●
●●●

●
●●

●●

●●●●
● ●●●

●
●

● ●●●●●●
●●

●
●

●
●●

●

●

●

●●●●
●
●●

●
●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●●●●
●
●●●

●●●
●

●●●●●●
●

●

●
● ●● ●●

● ●

●
●

●●
●

●●●●
●
●●●● ●●
●
●

●
●

●●

●

●● ●
●●●●

●
●

●●●●
●

●●
●

●●●●●
●●●●●

●

● ●●●
●●

●●
●● ●

●
●

●

●
●
●
●●

● ● ●●
●
●●
● ●

●
●

●●

●

● ●

●● ●
● ●
●●

●●●
●
●●
●

●●
●●● ●●

●
● ●●
●●●● ● ●
●

●●

● ●● ●
● ●●
● ●

●
●

●

●
●
●●
●● ●

●●

●

●

●
●

● ●
●

●●●
●●

●

●
●

●● ●● ●
●●●

●

●●
●

●● ●●
●●

●●●●●

●

●●●

●

●●●
●●

●
●

●●

●

● ●
●

●
●●●●●● ●

●● ●
●●

●
●

●●
●

●●

●
●●●

● ●●●●●

●●●

●●● ●● ●
●

●
●
●●
●●

●
●●●

●
●

●●●●● ●

●

●●●●
●
●●

●
●

●●
●●

●
●●●●

●

●●
●

●●
●●●

●
●●●●●●●
●●

●

●

● ●
●●●

●●

●

●●●●●

●● ●●
●

●
● ●●

●●●
●●

● ●●● ●●●●●

●

●
●●●

● ●●●
●

● ●●●●●●
●

●
●●

●

● ● ●

●
●

●

●●

●●
●● ●
●
●●
●

●

●
●●●
●

●
●●●●●● ●●●
●

●●●●
●●

●
●●●●●●●●

●

●● ●●
●

m59f=1.5[m45f]+0.078 R2=0.39 

Isoprene [ppb] 

B
en

ze
ne

 [p
pb

] 

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●
●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●
●●

●
●

●

●

●
●●

●●●●
●

●●
●

●●●●
●●●●● ●●

●●●●●●●
●

●
●●●●●
●●●

●●●●●●●
●

●●

●
●

●
●

●

●

●●
●●

●●●●●●● ●●
●●●●●●

●
●●
●●●

●●
●
●●●●●
●●

●
●●
●●●●●
●●●●●

●●●●
●●●●●●
●

●●●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●

●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●

●●●●●
●

●●●
●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●●●●●●●● ●●●●●●●●

●●●●
●●

●●●●●●●●●●●●●
●●●

●●
● ●

● ●●●●●●●●●
●●●●●●●●●●●
●●●
●
●

●
●●
●

●

●
●●
●

●
●●

●
●●●●
● ●●● ●●●●

●
●●

●●●●●● ●●●●●●●
●●
●

●●●●●
●●●●
●●●●●●●
●

●
●●●●●
●●
●●●

●●●●●●●●
●
●●
●●●●●
●●

●●

●
●●

●●●●
●

●●●●●●●●●
●●

●●●
●
●●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●● ●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●

●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●

●● ●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●

●●●●
●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●

●
●●●

●●●
●●●

●

●●● ●
●●●●

●●●●
●●●

●●●
●●

●

●

●
●

●●● ●●
●

●
●

●●●●●●●
●
●●●●●
● ●●●●●●●●
●●●●●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●

●●●
●●●●

●●
●

●

●
●●
●●

●
●●●●

●●●●●●●
●●
●●

●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●

●●
●●●●

●●●
●●●●●●

●●●
●●

●
●

●●
●●●●●

●
●●●●●●● ●●●●●

●
●●●● ●●●●

●●●
● ●●●●●●●●●●

●●
●●●

●●●
●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●●

●●●●●●●●
●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●●
●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●●●●
●●●●
●●●●●●●
●●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●
●●
●
●●●●

●
●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●
●●●●●●●
●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●
●
●
●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●
●●●●●
●●●●
●●●

●
●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●

●●●●●●●●●

●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●

●
●●

●
●

●
●●●●●●●
●●●●●●●
●●●
●

●●●●

●

●

●
●●
●

●
●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●●
●●
●
●
●●●●●●●

●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●

●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●
●●●●

●●
●●
●●

●●●●●
●●

●
●●

●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●
● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●● ●●

●

●
●●●●●●●●●

●●
●

●●
●●
●●

●
●●
●
●
●

●●●●
●

●●●●●
●●
●●●●●●●●●●●●●

●

●●●●●●
●●●
●●

●●
●
●●●●●●●●●●●●●●

●●
●●
●

●●
●
●●●●●●●●●●●
●●●
●●●
●

●

●
●
●●●
●●

●
●

●

●

●

●●

●

●
●

●
●

●
●●●

●●●
●
●●
●●
●
●●
●●●●●●

●●●●●●
●
●

●
●

●●
●

● ●●
●●

●
●●●●●
●●●●●
●●●●

●●●●●
●
●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●
●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●

●
●
●●

●●●

●●
●●
●
●●●●●
●●●
●

●●●
●
●●

●●●●●●●●●●●●●●
●●●●
●●

●
●
●●●●
●●●●●●●●

●
●
●●●
●

●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●

●
●●
●●●●●
●●●●●●

●● ●
● ●
●●●●

●●
●●●●●●●

●●●●●●●●●●
●●●●●
●●●●

●
●●●●●●●●●
●●
●●
●●
●
●●●●●●●

●●

●
●●●●

●●●●●
●●
●●
●●

●●●
●

●

●●●
●●●●●●●●
●●
●●

●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●

●●●●●●●●●
●●●
●
●●●●●●
●●

●

●●●
●●●●
●●●●●●●●●●●●●●

●●●●●
●
●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●
●●●

●

●
●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●●●●●●

●
●●●
●
●●

●
●●●●

●

●
●●

●

●

●

●●●●●●
●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●

●●●
●●●
●●●
●

●●●●●●●
●●●●●●●●
●●●●
●●●●●

●●
●●

●●●
●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●
●●●●
●●●●●●●●●●●●
●

●●
●●●●

●
●

●●
●●●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●
●●

●●
●●

●●
●

●
●

●●●●●●●●●●●●
●●
●●

●
●●

●●●●●●●●●●●●●
●
●

●
●●
●

●
●●●

●●●
●●●

●●●●●●●●●●●
●
●
●●
●●
●
●

●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●
●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●
●

●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●

●●●●●●●
●●
●

●●

●●
●

●
●●
●●

●
●●

●

●
●

●
●

●

●
●●●●

●
●

●

●●●●●
●●●●●●●●

●●
●●●
●

●

●
●●

●●

●●
●
●●●●●●●●●●●●●●

●●●
●●●
●●
●●●●●●●●●●
●

●●●

●
●●●

●
●●●
●
●●●
●●●

●●
●
●●●
●
●
●

●●
●

●●●

●●
●

●

●
●●●●●
●

●●●
●
●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●
●
●
●●
●
●●●●●●●●●●●●
●●●
●●
●●●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●

●●
●●●●●
●●
●●●●

●

●●
●●

●●

●

●
●●
●●●●●

●●
●

●

●

●

●

●●

●

●

●

●
●

●●●
●

●●●
●●

●
●●●
●

●
●●●

●
●●
●●●●

●●
●●●●●●●●●●

●●
●●●●

●●●●
●●●●

●
●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●
●●
●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●
●
●●●●●●●●
●●●

●●●●●●●●●●●●
●

●●●●●

●●
●
●

●
●●

●●●●●●●●●●
●●●
●

●●●
●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●

●
●●
●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●

●●●●●
●●●

●●
●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●

●●
●●

●●
●

●
●
●●

●●
●

●●●
●●●

●●
●●

●
●

●●●●
●●

●●●●●●
●
●
●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●
●●●
●●
●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●
●
●
●●
●●●●●
●●
●●

●●
●●●●●

●

●

●●

●●
●

●

●

●

●●●●●●●●●
●●

●●●
●
●
●

●

●●
●

●●
●
●
●

●
●●

●●
●
●

●

●

●

●●●
●
●

●●●●
●
●●
●●●
●●

●●
●
●
●
●●●●
●●
●
●●
●●
●●

●●●●
●

●
●

●●●
●●

●●
●

●●
●●●●●●●●●●●

●
●

●
●
●

●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●
●
●

●

●

●
●
●

●
●
●●●●●

●●
●●●●●●●●●●●●●●●
●●
●●
●
●●●●●●●●●

●
●●●●●
●●●
●
●

●●
●●●●●●●●●●
●●●●●●●

●●●●●
●
●
●●●
●●●
●●●●●

●
●●●●
●
●●

●
●●

●●●●●
●

●●●
●

●

m79c=0.77[m69c]+0.097 R2=0.34 

Toluene [ppb] 

C
2−

B
en

ze
ne

 [p
pb

] 

0

1

2

3

4

5

0 1 2 3 4 5

●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●
●

●●
●

●●●
●●●

●●●●●
●●●●●●●●●●●

●●●●●●
●●●

●
●

●
●

●
●●

●●●●
●
● ●

●
● ●
●
●

●
●●●●●●

● ●●●●●●

●●

●
●●

●●
●

●●
●●●●●●●
●

●●

●

●

●

●
●

●

●●
●●
●●●●●●●●

●

●
●
●●
●

●
●

●●
●●

●

●●
●
●●●●●

●
●

●
●●

●●●●●●●●●●
●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●

●

●
●

●

●●
●●●●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●

●●●●●
●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●●

●●

●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●

●●
●●●●●●
●●●
●●●

●●●●
●●●●
●

●●●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

● ●●

●
●
●

●●●

●

●
●

●

●
●

●
●●

●●●●●●●●●●●●

●
●
●●●

●●●●●●●●●
●●

●●

●

●

●
●

●
●

●

●
●
●●

●
●
●●
●
●●●

● ●●●●●●
●

●

●●

●●●●●●●
●●●

●
●

●
●

●

●●

●●
●

●●

●

●●
●●●●●●●●●●●●

●
●●

●●
●●●●●●●

●
●

●

●●●●●
●●

●●●●
●●●●●●●●●●● ●●●●●●●●●●
●●●●

●
●●

●●
●●●
●
●
●●●●

●
●

●
●

●●●●●●
●
●
●●
●●●●●●

●●●●●●●●
●●●●
●
●

●
●
●●
●
●●●●●●

●
●●●
●●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●

●●●●●
●
●●

●

●
●
●●●●●●●●●●
●●●
●●●●

●
●●●●●●●●●●●●
●●
●
●●●
●●●●●●●●●

●
●●●
●
●●
●●●●
●●●●●●●
●
●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●
●
●

●●
●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●

●
●

●●●

●●●●●●●●●
●●●●

●●
●
●

●●●●●●●
●●●●●
●
●

●●
●

●
●● ●

●
●●●
●●

●
●●

●●●
●●
●●●●●

●●●●●●●●
●●●●●●
●●

●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●●●●●

●
●
●●●●●
●●●●●●●●●●●●●

●●●●
●

●
●●●●●
●●●

●
●●●

●

●●●●

●

●●
●
●●●●●●

●●

●

●

●

●

●●●
●

●●
●

●●
●●●●●

●
●●

●●● ●
●

●
●●

●
●●

●
●

●●●●●
●●

●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●● ●●●●●
●●●●●●●●●●
●

●●●●

●
●

●

●●●
●●●

●

●

●

●●
●

●

●
●●

●

●

●
●●●●●

●●●

●●

●
●●

●●●●
●
●●●●●●●●●●●●●●
●

●●●
●

● ●
●

●●●●
●●

●●●●●
●●●●●●

●
●
●●

●●●●●
●

●●
●●

●●
●

●
●
●●●●

●
●●●●●●●

●
●
●

●●●●●
●●

●
●

●●
●●

●
●●

●
●●
●●
●●●

●●
●●

●●●●
●●

●●
●●●●●●●

●●●●●●
●●●●

●●
●
●

●●●●●●
●

●●
●●●
●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●
●●●
●●●●

●●●●●
●●●●
●
●
●●
●

●●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●●●●●
●

●●●
●●●●●●●
●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●

●
●●●●●●●

●
●●●
●●●

●●
●

●
●

●
●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●
●●●●
●●

●
●●●●●

●

●●●●
●●

●●●

●●●●●●
●

●●●●●●●
●●●●
●●●●
●●●●●●
●●●

●●
●●●●

●●●
●●●●
●●●
●●
●

●●
●

●●●●●●●●●●
●●

●●●
●●●●●●●●●●
●

●●
●
●●

●
●
●

●
●●

●●
●●●●

●
●
●
●●
●●●●●●●●

●
●

●●●●●●●●
●

●●
●

●
●

●

●
●●●●●
●●●●●●●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●

●●●
●

●●●●●●●●●●●●
● ●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●
●●

●
●
●●●

●
●

●●●●●●●●●
●
●●●

●
●
●

●

●
●
●●●●●●●●●●●●●●●
●●

●
●●

●●●●●●●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●

●

●
●

●●
●
●●
●

●

●
●
●

●●●
●●

●●●
●

●

●

●
●

●

●

●

●●●

●
●

●●●●
●●●●
●●●●

●●●●●●●●●●●●●
●
●●●

●●●●
●
●

●
●●●●

●●●●●●●●●●●●●●
●●

●
●●●

●
●●●●●●

●●●
●●●●●●

●●●●●●
●

●●●
●●●●●●
●●●●
●●●

●●●●●●●●●●
●●●●●●●

●●●
●●
●●
●●
●●
●●

●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●
●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●
●

●●●●●●●●●●●●
●
●●

●●
●
●●●●●●●●●●●

●●
●●●●●●●

●

●●
●

●
●

●●●●
●

●●●●●
●
●

●●●●●●●●●●●●●●
●●●●●●

●●●
●●

●
●●
●●

●●●●●●●●
●●●●●●

●
●

●

●●
●●●●●●●●●●●

●●●●
●●●
●

●

●

●
●●●

●
●

●
●

●

●

●

●●

●

●●

●
●

●
●●●

●●
●
●
●●

●●
●
●
●●●●●●●

●●
●●●●●
●●●

●
●●

●●●●
●●●●●●●●

●●●
●

●
●●●

●
●

●●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●

●●
●

●
●

●●●●
●
●
●●●●●●● ●●●

●●●
●●

●●●●●●
●●●●●●

●
●

●●
●●●

●
●●

●

●

●●
●

●
●

●
●

● ●

●

●●●
●●

●

●

●●

●

●

●

●●
●

●
●●

●●
●●●
●●●●●●●●●●

●●

●

●
●

●●

●●
●●

●
●●●
●

●

●
●●●

●

●
●●●●●●●●●●●●●●●●
●●●
●

●●
●
●●●
●
●●

●●●

●●●●
●●

●●●●●●
●●●●●●●
●

●●●●
●●●●●●●●●

●●●●
●●

●●●●●
●

●
●●●●●
●
●●●●●
●●●
●●

●
●●
●●●●●●●●●●●●●
●●●●

●●
●●●●

●
●●●●●●●
●●●●●●

●●
●●●●●●●●

●●

●

●●●●
●●
●●●

●●
●

●
●●

●●●●

●

●●
●
●●●●●●

●●●●
●●

●

●●
●●●

●●●●●●●●●●●●●●●
●●

●
●●●●●●●●●

●
●
●●●●
●●●

●●
●
●

●
●●●●●
●●

●

●●
●

●●●●

●●
●●

●
●●●●●●●●●
●●●●
●

●

●
●

●

●●
●●●●●●●●●●●●●●●●●●●●

●●●
●

●
●

●

●

●
●●●●●

●
●●●●●●●

●

●●●●
●●●●●●●●●●

●●●●●●
●

●

●

●
●
●
●

●●●
●●●●●●●●

●●●●
●

●●●●●
●●●●
●●●
●

●●●
●

●●
●●

●
●

●
●
●●
●
●●

●
●●

●●

●
●

●●

●

●

●

●
●●●●●

●●●●●●●●●●●●
●

●

●
●●●●●

●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●
●

●

●●
●●●

●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●

● ●
●●●●

●●●●
●
●●●●
●●●●

●
●●●●

●●●
●●●

●●●●●●●●●●●●
●●●●●

●
●

●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●●

●●
●●●●
●

●● ●● ●●●
●

●●●●●●●●●●●●●●●●●

●●●
●
●
●●
●●●●

●●
●●

●
●●●

●

●
●

●
●●●●●●●●●●●

●●●
●

●

●●

●●●●●●●
●●●●

●
●
●

●
●

●
●

●
●

●●
●

●●●●●●●●●●●●●●●●●
●

●

●

●

●
●

●
●

●●●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●
●●●●●
●●●●

●
●●
●●

●
●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●
●●
●●●

●●
●●

●●●●●●●●●●●●●●
●●

●
●

●●●●●●
●●●●●●●●●●●●
●●●●●
●●

●●
●

●
●●●●●●●
●●

●●
●●
●●

●
●●●●

●●
●

●●●
●●●●●●
● ●●●●●●●●

●
●

●
●●

●●

●●●●●●●
●●●●●●●●●●●
●●

●
●
●

●●
●●●●●●●●●
●●

●●
●

●●●●
●●●●●●●●●●●●●

●●●●
●

●●

●
●

●●●
●

●●
●●

●●
●

●●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●●
●

●●●
●●●●●●●
●●●
●●
●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●
●

●

●

●
●●● ● ●

●
●

●
●

●●

●●●●●

●
●●
●●

●
●●

●●●
●
●

●

●

●
●

●●

●

●●

●●
● ●

●●●●

● ●
●

●
●●

●

●●●
●●●
●●●●●●●●

●●●●
●●●●
●●

●●●
●

●

●

●
●

●●
●

●

●

●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
● ●

●
●

●●●●●●●
●
●

●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●

●
●●
●●●

●●
●●●●

●

●●●●●

●●
●●

●●
●

●●●●●●●
●
●●

●●●
●

●
●●

●●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●

●
●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●●●●●●

●●●
●

●●●●●●●
●●●●●●●●●●●
●●

●
●●

●●●
●
●
●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●
●

●
●●●●

●●
●
●●●

●

●
●●

●
●●
●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●

●●●●●
●●●
●●

●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●●

●●●●●
●
●●
●●

●
●●

●●●
●
●

●

●

●
●

●●
●

●

●

●

●●●●●
●●●●●●●●
●

●
●

●

●

●
●

●

●●
●

●
●

●

●●

●●●
●

●

●

●●●●
●●●●●●●

●●●●●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●●
●
●
●
●

●
●

●
●●

●

●
●

●
●
●●

●

●
●

●●●●
●

●
●●
●
●●
●●

●
●●

●●
●●●
●●
●

●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●
●
●

●

●

●●
●

●
●

●
●
●●

●●●●●●●●●●●●●●●●●●
●●●

●
●

●●
●

●●
●

●●●
●

●●
●
●

●
●●●
●●

●●
●●●

●●●●●●●●●●●●●●
●●●●●
●●

●●
●●●●●●●

●
●
●●

●
●●●●●●

●●
●●
●
●

●

●

●
●

●●

●

m107c=0.99[m93c]+0.23 R2=0.78 

Acetaldehyde [ppb] 

A
ce

to
ne

 [p
pb

] 

0

1

2

3

4

5

6

0 1 2 3 4 5

●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●

●
●●
●●●

●
●●●●●●●●●●●

●●●●
●●●●

●●
●●●●●

●●
●

●

●
●

●●●

●●
●●●

●●
●

●
●●
●

●●
●

●

●

●

●
●

●

●
●●

●●●●●●●●●
●

●●
●●●●●
●
●●

●●●●
●●

●

●

●
●

●●

●
●

●
●●●●
●
●

●●●●●●●

●
● ●

●●
●●●

●●●●●
●
●

●
●●●●●●●●●●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●
●●●●●●●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●
●●●●●●
●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●

●●
●●●●●
●●●

●●●
●

●
●●●
●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●
●●●●

●●●●●●● ●
●
●

●●●●●●●●●
●

●●●●●●●
●●●●●●
●

●●
●●●●●●●●●●●

●●
●

●●●●●
●

●
●

●
●

●●● ●

●

●
●

●

●
●●

●●●●●●●
●●●

●●●
●

●
●●

●●
●●●●●●●●●●●

●

●●●
●●

●●
●●
●●

●

●

●
●

●

●

●●

●

●

●●
●●

●●
●
●●

●●
● ●
●●●
●
●●●●
●●●
●

●

●●
●

●●
●●

●●●●●●●●●●●●●●●
●
●●●

●
●●●

●

●
●
●

●
●

●●●●
●
●●●●●

●
●●
●
●

●●●
●●

●●
●
●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●

●
●

●
●●●

●
●●

●
●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●
●●●●

●
●

●●●●●●●●
●●●●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●●
●

●
●●
●●●●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●
●●●●●●

●●
●

●●
●●●
●●●●●●●●●●
●●
●●●●●●●

●
●●●

● ●

●
●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

● ●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●● ●

●
●

●●●●
●

●●

●

●

●
●●
●

●●
●●

●●●●●
●

●●●●
●●

●

●

●●

●●●
●●●

●●
●

●
●●●● ●●● ●●●●●

●●●
●●

●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●●●
●●
●
●●●●●●●●●●●●●●

●●
●

●●●
●

●
●

●

●

●
●

● ●

●

●●
●●●●●●●

●●
●

●

●●●
●
●●

●●●●●●●●●●●●●●●●
●●●●●

●●●

●
●

●●●●
●

●●●●
●●

● ●
●●●●●

●
●●
● ●

●●●●●●●
●●●●

●●●●●●●

●●●●●

●●

●●
●●●●●●●●●●●●● ●●

●●
●

●●●
●●●●
●
●●
●

●●●●
●●●●

●●
●●●●●●●●●●●●●●

●

●●●
●●

●

●●

●●●●

●
●●●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●
●●

●
●

●●●●●
●●●

●●●●●
●

●

●

●
●●

●●●
●●●●●●●●●●●●●●

●
●●

●
●
●

●

●●●●

●
●●●●

●
●
●●●

●
●●●●●

●●

●●●●●●●
●●

●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●● ●●●

●●

●●
●●●●●

●
●
●●●●

●●

●
●

●●●●●●●●●●●●●●
●
●●●●●●●●●● ●●

●●●●●●
●●

●●●●●

●●●●●●●
●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●

●
●

●
●

●●●●
●

●●
●
●

●

●●●●●

●●●●●
●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●●●●

●●●
●●

●●●●●●●●●●●
●
●

●●●●●●●●●●●● ●●●
●

●●
●●●●●●

●

●
●

●
●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●
●●
●●
●●●●●●●●
●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●

●●●
●●●●
●●●

●
●

●●●
●●●●

●●●●
●

●
●●●●

●
●●●●●●●●●●●●●

●

●●●●●
●●
●●●●

●
●

●

● ●●
●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●●● ●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●

●●
●●●

●●●
●●●

●●●●
●●●●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●
●
●●
●●●●●

●●●●
●

●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●
●●●

●
●
●●●●
●●●●●●●●●●

●
●●

●●
●●●●●●●●●●●●
●●●

●●●
●

●

●
●●●●
●●

●
●

●

●

●
●

●
●

●●

●
●
●● ●●

●●●●●●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●
●●●

●
●

●●

●
●●

●
●●
●●●●●
●●●●●●

●●●

●
●

●

●●●●●●●●●●●●
●
●●●

●●●● ●
●●
●●●

●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●
●
●

●●
●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●●
●●●●●●

●
●●●

●●
●

●
●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●
●●●●●●●●●

●●●●●●
●●●●●

●●●
●●●●●●●
●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●●
●●●●●●●●●●●●●●●●●●

●●
●

●●●
●●●●●●●●●●
●●●●●●●●
●●●●●

●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●●●●

●●●●●●●

●

●

●●
●

●
●

●
●●●●●●

●●●●
●
●●●●●●●●●●●●●

●●
●●●●

●●
●
●

●

●●
●
●●●●
●●

●
●●●●

●
●●●
●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●
●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●● ●

●●●
●

●●●●
●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●

●
●●
●●
●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●

●●
●

●
●●

●●●

●

●

●
●

●●
●●●●

●
●●

●●●●●●●●●●●●
●●●

●

●●●
●●●

●
●

●
●●●
●
●
●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●●●●●

● ●●
●●

●●●●●●●●●

●
●●●●●

●●●●●
●●

●
●●●●●

●●●●●
●●●●●

●●●●
●

●
●
●

●●

●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●

●
●
●●●

●
●
●

●
●
●●

●

●●
●

●●●●●●●
●

●●
●●●●●

●●
●●●● ●

●
●

●
●

●
●

●
●
●●

●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●
●●●●

●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●

●●●●●●●●●
●
●●●●●●

●
●●●●●

●

●●●●●●●●
●●

●
●

●

●
●●●●●

●
●●
●●●

●

●

●

●●
●●●●
●
●●●●●●●●●

●●●●●●●●●●●
●●●●

●
●●
●●

●
●●
●●
●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●
●●
●
●●●

●
●
●●●●

●●●
●●●●●●
●

●●●●●●●●
●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●
●

●●●●●
●●●
●

●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●

●●

●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●●
●

● ●●●
●

●
●●

●●●●●
●

●● ●●●●
●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●
●●●●
●●●
●●
●●●●●●

●
●
●●

● ●
●

●
●
●

●●●●●●●●●●●●●●●
●

●

●

●

●

●
●

●
●●●

●●
●

●●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●●
●

●
●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●● ●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●

●●
●

●
●●●

●●●●●●●●●
●●●

●●
●●●

m59c=1[m45c]+0.14 R2=0.66 

Figure 6. Selected scatter plots of representative correlations of VOC /VOC fluxes (top) and mixing ratio (bottom) with temperature as a

third variable showing an example of bimodal, strong linear and medium linear correlations as commonly seen in the mixing ratio correlations

with R2 values, 1 : 1 line, 1 : 2 and 2 : 1 lines for the bimodal example in the bottom left panel.

separate source contributions. Using temperature or, to a

smaller extent, PAR as a third variable highlights a tempera-

ture or light dependency of the second source supporting the

existence of additional biogenic and/or atmospheric sources.

In the example of isoprene against benzene the relationship

changes with temperature from 2 : 1 to 1 : 2.

3.2.1 Benzene to toluene ratios

Benzene to toluene (b/t) ratios can help identify source types

and changes in ratios can indicate the photochemical age of

an air mass as toluene reacts at a faster rate with OH in the

atmosphere, assuming sufficient OH concentrations to drive

the reaction (Warneke et al., 2007). Median (and interquartile

range, IQR) b/t flux ratios were 0.21 (0.02–0.43) and me-

dian (IQR) b/t concentration ratios were 0.45 (0.39–0.48).

Individual maxima and minima were seen in the b/t concen-

tration ratios, examples of which are discussed below.

The observed ratios compared well with those of other Eu-

ropean cities, which showed b/t concentration ratios of 0.35

in Zurich (Heeb et al., 2000), 0.57 in Manchester (Langford

et al., 2009), 0.57–0.63 in London (Valach et al., 2014) and

0.1 at 190 m above London (Langford et al., 2010b). Traffic-

related emissions are considered to be an important source of

benzene and toluene in London. B/t exhaust emission ratios

based on derived yearly emissions in other megacities, such

as Mexico City, were found to be 0.4 (Zavala et al., 2006),

which agreed well with observed b/t concentration ratios

in this study. Airborne flux measurements over Mexico City

have shown average b/t flux ratios of 0.31 with lower ratios

of 0.07 to 0.1 over industrial areas due to increased toluene

emissions from industrial processes (Karl et al., 2009; Ve-

lasco et al., 2007). Evaporative emissions from gasoline or

direct industrial toluene emissions may have contributed to

the lower b/t flux ratios in London. Furthermore, low b/t

concentration ratios of 0.26 from diesel emissions have been

reported (Corrêa and Arbilla, 2006). The widespread use of

diesel fuel in London (buses, taxis and some cars and trains)

and diesel emissions from roads which exclude passenger

cars, such as Oxford Street (approx. 1.3 km W from the mea-

surement site), or central railway nodes, such as Waterloo

railway station (1 km S), may have affected b/t ratios.

Wind speed and direction can play a role for b/t concen-

tration ratios by transporting pollution over longer distances

allowing more time to react with or exposure to higher OH

concentrations, thus increasing the ratio. An example of this

(Fig. 7) was seen on 12 August when median (IQR) b/t

concentration ratios reached 0.5 (0.45–0.56) with stronger

SE winds (mean 3.67 m s−1) possibly advecting pollution

from Benelux/northern Europe, whereas on 9 August me-

dian b/t ratios were 0.34 (0.30–0.38) with low wind speeds

(mean 1.28 m s−1), indicating higher contributions of lo-

cal sources (i.e. 60 % London influence) (Bohnenstengel et

al., 2015). On both days OH concentrations above London

were around 1.25× 106 molecules cm−3 and b/t flux ratios

were not significantly different, making pollution advection

www.atmos-chem-phys.net/15/7777/2015/ Atmos. Chem. Phys., 15, 7777–7796, 2015
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Figure 7. Top: 24 h back trajectories from the NOAA HYSPLIT tra-

jectory model during selected days in August 2012 corresponding

to periods of low (left) and high (right) benzene/toluene concentra-

tion ratios. Daily release in 3 h intervals (10 m height) for 24 h prior.

Bottom: scatter plots showing benzene-to-toluene concentration ra-

tios during 9 August 2012 (left) and 12 August 2012 (right) with

linear regression with 95th confidence interval, regression equation

and coefficient (R2).

a likely cause of the observed difference (L. Whalley, per-

sonal communication 2014). Calculated back trajectories us-

ing the HYSPLIT trajectory model (Hybrid Single Particle

Lagrangian Integrated Trajectory Model; Draxler and Rolph,

2008) were run at 3 h intervals starting at ground-level (10 m)

from London and propagated 24 h backwards in time. Dur-

ing periods of high b/t ratios the back trajectories indicated

that air had passed over continental Europe in the past 24 h,

during which freshly emitted pollutants would have been en-

trained.

The median monthly b/t flux ratio during the measure-

ment period stayed between 0.18 and 0.26, which is to be

expected since only local fluxes were detected; however, the

median (IQR) monthly b/t ratio for concentrations steadily

increased from 0.41 (0.36–0.47) to 0.62 (0.55–0.70) from

August to December. Advected pollution from mainland Eu-

rope may be common in winter or biomass burning may play

a greater role in colder months, as this is associated with

higher b/t ratios, e.g. 1.67 (Lemieux et al., 2004), due to

the different fuel combustion emission profile. Furthermore,

OH concentrations in London are often below the detection

limit during winter (Bohnenstengel et al., 2015), resulting in

less local photochemical removal during the winter months.

Median (IQR) concentration ratios for benzene to C2-

benzenes were 0.31 (0.28–0.33) and toluene to C2-benzenes

were 0.72 (0.63–0.81), which both agree with previous val-

ues and suggest that these masses are indeed the ascribed

traffic-related compounds (Heeb et al., 2000; Warneke et al.,

2001).

3.2.2 VOC-to-CO2 correlations and ratios

Good correlations were found among averaged VOC fluxes

plotted as a function of averaged CO2 fluxes, which

were measured concurrently at the site (R2
= 0.03–0.81,

p < 0.001). Traffic-related compounds were initially among

the lowest correlations with CO2 fluxes (R2
= 0.03–0.48,

p < 0.01). However, when points of peak CO2 fluxes were

removed, the correlations with traffic-related VOC fluxes in-

creased significantly to R2
= 0.65–0.91 (p < 0.001). Presum-

ably, the initial poor correlations resulted from an additional

strong CO2 source, such as vents from gas-fired boilers in

nearby buildings, which have a lower source commonality

with aromatic VOCs, i.e. a lower VOC /CO2 emission ratio

than that of traffic emissions for aromatic compounds. The

LAEI indicates that VOC /CO2 flux ratios for benzene are

higher for traffic emission sources (i.e. 2× 10−5) than gas

sources (i.e. 0.6× 10−5) within the flux footprint. The im-

proved correlations are greater for traffic-related compounds

due to the limited range of source types contributing to this

group compared with oxygenated/biogenic compounds. The

regression coefficient (R2) of benzene with CO2 fluxes in-

creased from 0.48 to 0.91, whereas for isoprene fluxes the

increase was small, i.e. 0.68 to 0.70 (Fig. 8), as isoprene has

a range of different sources of which only a few are com-

monly shared sources with CO2.

The presence of a strong separate CO2 source within the

flux footprint is supported by the high averaged VOC-to-

CO2 concentration correlations for traffic-related compounds

(R2
= 0.92–0.96, p < 0.001). This differs from the fluxes,

which are influenced only by sources in the flux footprint,

where one strong point source with a different emission ratio

may have a larger effect on emission rates of one compound

but not the other. Concentrations are influenced by advected

pollution from outside the flux footprint for both CO2 and

VOCs, where shared emission sources with relatively higher

VOC /CO2 ratios are more widespread. Averaged VOC to

CO2 concentration correlations were lower with the oxy-

genated/biogenic compounds (R2
=< 0.71–0.90, p < 0.05).

Median VOC /CO2 flux ratios ranged from 1.7× 10−5

to 7.7× 10−5 (mg m−2 h−1/mg m−2 h−1) with isoprene and

benzene showing low ratios due to their low fluxes and

toluene and C2-benzenes showing high ratios. Highest flux

ratios for all compounds were with W winds, whereas lowest

for biogenic compounds with N and for traffic-related com-

pounds S wind directions. Flux ratios declined towards De-

cember as CO2 fluxes increased and VOC fluxes decreased.

Similarly, VOC /CO2 concentration ratios were between

0.45× 10−6 and 14.6× 10−6 (ppb/ppb) with isoprene and

benzene representing the lowest and methanol and acetone

Atmos. Chem. Phys., 15, 7777–7796, 2015 www.atmos-chem-phys.net/15/7777/2015/
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Figure 8. Scatter plots showing averaged flux and concentration re-

gressions of isoprene and benzene as a function of CO2 fluxes and

concentrations based on 25 min VOC means with linear regressions,

formulae, R2 values and detection limit (shaded area for fluxes and

dashed line for mixing ratios).

the highest ratios. Highest concentration ratios were seen in

August for oxygenated compounds/isoprene and December

for traffic-related species.

3.3 Wind direction and flux footprint analysis

Polar annulus and polar plots were constructed for VOC

fluxes and mixing ratios respectively and representative com-

pounds are shown (Fig. 9). Polar plots use a generalized ad-

ditive model to interpolate between wind direction and wind

speed averaged data points within the OpenAir package in

R (see Carslaw and Ropkins, 2012; Hastie and Tibshirani,

1990; Wood, 2006). Polar annulus plots averaged by time of

day instead of wind speed show diurnal variability with wind

direction. The majority of the time (83 %), unstable and near

neutral conditions prevailed (ζ < 0.2), although the frequency

varied between months with 87, 89, 82, 84 and 69 % during

August, September, October, November and December re-

spectively. Wind directions with mostly unstable conditions

were with W and S winds and near neutral with N or E winds.

Mixing ratios were on average highest with low wind speeds

(showing a negative correlation) when pollutants accumulate

due to reduced mixing, indicating local emissions (Fig. 9,

bottom).

Largest fluxes for all compounds were from the NW with

either one daytime peak (e.g. isoprene) or two distinct rush

hour peaks (e.g. benzene) (Fig. 9, top). On average, fluxes

were largest from the W > E≥N > S (F statistic= 60.37–

227.06, p < 0.001) because of increased emission rates of

specific compound sources. Separated by month, fluxes

were largest from W > N > E≥S in August and September,

whereas during October, November and December fluxes

followed the pattern W > E≥N > S. The flux footprint in this

study was relatively small compared to that of measurements

Figure 9. Polar annulus and polar plots for isoprene (m/z 69) and

benzene (m/z 79) fluxes (top) and mixing ratios (bottom) (colour

scale) by time of day (top), wind speed (bottom) and wind direction.

previously made at 190 m height from the BT Tower in cen-

tral London (Langford et al., 2010b). Due to the relatively

low measurement height in this study, flux measurements

were always closely coupled with the surface layer, unlike

measurements by Langford et al. (2010b) that were at times

disconnected from the surface layer during stable night-time

conditions.

The average length of the maximum flux footprint con-

tribution (Xmax) was around 330 m and 90 % of all the

fluxes (X90) originated from within 900 m. The median foot-

print area was 1.8 km2. This established that the majority of

emission sources contributing to the measured fluxes must

have been local. Additionally, the selected emission grid (cf.

Sect. 2.3.1 above) encompassed 97 % of the footprint with S

and W wind directions but only 80 and 84 % during E and

N winds. Grid square 5 represented the maximum contri-

bution area because it encompassed the measurement point.

Average footprint contributions (mean±SD) comprised of

grid squares 1 (2± 4 %), 2 (5± 7 %), 4 (4± 5 %) and 5

(52± 31 %) during S and W wind conditions, squares 6

(4± 9 %) and 9 (4± 10 %) indicated E wind conditions and

square 8 (18± 27 %) N wind conditions. During October

contributions from square 9 increased to 10 % and were more

frequent at 30 % in December. Squares 3 (0.6± 2 %) and 7

(0.9± 2 %) provided minimal average contributions.

The River Thames to the S may have caused the low fluxes

associated with S winds (i.e. squares 1, 2 and 3). Contribu-

www.atmos-chem-phys.net/15/7777/2015/ Atmos. Chem. Phys., 15, 7777–7796, 2015
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tions of traffic-related compound fluxes were statistically sig-

nificant from the W (i.e. squares 4, 5, and 7), followed by

the N (square 8) and E (squares 6 and 9) likely from the

nearby heavily trafficked roads (Kingsway, Charing Cross,

Strand and Blackfriars areas respectively). Biogenic com-

pound fluxes were highest from the W and E, which coin-

cides with significant nearby green areas within the flux foot-

print.

Correlations of fluxes with grid square contributions in

the footprint can also give information on emission source

strengths within the respective grid square (Fig. 1). Gen-

erally positive correlations with fluxes across most com-

pounds were seen from the W (squares 4, 5 and 7), con-

firming that high emission rates from sources within these

grid squares were driving the large fluxes. The strongest

correlations of fluxes with contributions from squares 4, 5

and 7 were seen during October and November (R2
= 0.40–

0.46, p < 0.001), especially for masses associated with bio-

genic sources (m/z 33, 45, 59 and 69). Square 8 showed

positive correlations for benzene and only in August for all

compounds. Correlations of fluxes with contributions from

squares 1, 2, 3, 6 and 9 were negative, indicating weaker

emission sources in these squares or increased VOC depo-

sition.

Highest mixing ratios with wind direction were from

E > N≥W > S for traffic-related compounds, whereas oxy-

genated compounds/isoprene followed a similar pattern

as the fluxes of W≥E > N≥S (F statistic= 47.49–86.95,

p < 0.001). Easterly winds in London are often associated

with synoptic conditions that bring European continental air

masses to the UK, resulting in higher background concen-

trations. Furthermore, since the boundary layer was on av-

erage more stably stratified and mixing heights were lowest

(640± 80 m) with E wind conditions, it is likely that pollu-

tant concentrations were allowed to build up, resulting in the

observed higher concentrations to the E for the more ubiqui-

tous compounds, whereas concentrations of compounds with

biogenic contributions additionally had strong sources to the

W, such as several green areas (St. James’ Park, Hyde Park

and Regents Park; total 331 ha).

3.4 Comparisons with LAEI and NAEI

The LAEI and NAEI produce yearly emission estimates over

the 1 km2 OS grid for a range of pollutants and emission

sources. Total VOC emission estimates are provided, but

only benzene and 1,3-butadiene are estimated separately.

Measured emissions were compared with annual estimated

emissions for the above OS grid area selection from 2012 for

benzene using the LAEI and indirectly speciated VOCs of

the NAEI. Using the average flux footprint, the grid square

estimates were compared with the scaled flux measurements

from the equivalent area (Fig. 10).

LAEI emission estimates included contributions from ma-

jor (69 %) and minor roads (4 %) as well as evaporative
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Figure 10. Bar chart showing scaled comparisons of LAEI and

NAEI estimates against measured fluxes in t km−2 a−1 for speci-

ated VOCs with error bars.

emissions (27 %) (LAEI). No data were available on cold

start emissions for benzene. The calculated standard errors

provided some uncertainty approximation. Measured fluxes

compared well with emission estimates, although the LAEI

predicted slightly smaller benzene fluxes. Comparisons of

fluxes with wind directions (Sect. 3.3) agreed well with the

LAEI emission estimates for the respective grid squares with

highest emissions from squares 4, 5, 7 and 8 (i.e. W and N

directions). This comparison assumes that the benzene fluxes

during the measurement period were representative of annual

emissions with any significant seasonal variation in benzene

emission rates captured in this 5-month period. Section 3.1.2

confirmed that there was little month-to-month variability in

the benzene flux.

Using speciated VOC emission contributions (percent of

total VOC emissions) for 2006 (Bush et al., 2006) and emis-

sion maps from 2012 for total non-methane VOC emis-

sions, speciated estimates could be compared with observa-

tions (Fig. 10). The NAEI includes a wide range of emis-

sion sources divided into 11 SNAP (Selected Nomenclature

for sources of Air Pollution) sectors including industrial,

commercial and residential processes, transport, waste treat-

ment, solvent use, point sources, agriculture and nature, al-

though the latter two were unavailable for the London ur-

ban area. NAEI estimates for benzene exceed the LAEI due

to the inclusion of a wider range of sources beyond traffic-

related emissions. Total C2-benzene emission estimates con-

sisted of ethyl benzene, (m+p)-xylene and o-xylene. Ben-

zene and methanol emissions agreed very well; however, for

all the other compounds, estimated emissions were signifi-

cantly lower than the measured fluxes. Uncertainties related

to the measurements, such as isobaric interferences within

the PTR-MS could have contributed to measurement over-

estimation, whereas uncertainties within the modelled emis-

sions and the use of older speciation values may have im-

pacted the estimates. In the case of isoprene, only minimal

emissions are assumed, which do not include the biogenic

sources that contributed to the measured fluxes. It is also

Atmos. Chem. Phys., 15, 7777–7796, 2015 www.atmos-chem-phys.net/15/7777/2015/
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likely that some of the m/z 69 signal could be attributed

to cyclic alkenes, but Sect. 3.1.3 showed that biogenic iso-

prene provided a significant contribution during August and

September in central London.

4 Conclusions

Our measurements show that vehicle emissions are the domi-

nant source of the fluxes and concentrations of VOCs in cen-

tral London, although biogenic sources and secondary atmo-

spheric formation may make a significant contribution, par-

ticularly in summer for some compounds. There were ob-

servable spatial variations in flux rates, which result from the

varying spatial distribution of emission types and strengths

of emission sources, such as vegetation and traffic. Temporal

variations in relative source strengths can be seen in the di-

urnal and seasonal profiles, reflecting the diurnality and sea-

sonality of some of the driving factors. The measured VOC

fluxes mostly originated from an area within a 1 km radius

around the measurement site but some instances of pollu-

tion advection were seen to affect concentrations at the site.

However many of the spatio-temporal differences in the ob-

served mixing ratios were attributable to changes in emis-

sion sources and strengths combined with effects of meteo-

rological conditions. The diurnal and seasonal dynamics of

the boundary layer mixing height are significant drivers of

changes in observed VOC concentrations at the site.

The biogenic component of isoprene emissions was mod-

elled using the G95 algorithm, and the calculated base emis-

sion rate closely matched previous published values for ur-

ban areas. Even in this central urban area with a temperate

climate there is a detectable biogenic component to isoprene

emissions. Because of the relative importance of isoprene in

atmospheric chemistry, its inclusion in photochemical pollu-

tion models is essential.

Close agreement between the flux footprint contributions

and the LAEI for benzene emissions, a compound which

is thought to be accurately estimated in the inventory but

associated with high measurement uncertainty, gives confi-

dence in the PTR-MS measurements. Good agreement was

also seen with methanol estimated from the NAEI, but other

compounds were all greatly underestimated in the emissions

inventory.

This study provides further evidence for the successful im-

plementation of VOC flux measurements in heterogeneous

urban landscapes when measurement sites fulfil basic eddy

covariance criteria. Further VOC flux observations are es-

sential for the validation of “bottom-up” emission invento-

ries, especially as the latter are widely used for regulatory

and compliance purposes.

The Supplement related to this article is available online

at doi:10.5194/acp-15-7777-2015-supplement.
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