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Abstract Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic
electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical
possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four
decades, there have been limited experimental precipitation observations to support this concept. We have
combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based
observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an
additional four examples, we are able to constrain for the first time the location, size, and energy range of
EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC
wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. These
observations will better constrain modeling into the importance of EMIC wave-particle interactions.

1. Introduction

It has long been recognized that wave-particle interactions with electromagnetic ion cyclotron (EMIC) waves
are an important driver for precipitation of relativistic electrons [e.g., Thorne and Kennel, 1971; Summers and
Thorne, 2003; Thorne, 2010]. EMIC waves are observed in the Pc1-Pc2 frequency range (0.1-5Hz). Thermal
anisotropy in the ring current proton population (tens to hundreds of keV) causes the waves to be generated
near the magnetic equator propagating as left-handed circularly polarized waves [e.g., Cornwall, 1965; Kennel
and Petschek, 1966], hence the term “ion cyclotron.” Recent experimental studies have shown that EMIC wave
growth can occur at all local times and can persist for hours and sometimes even days [Paulson et al,, 2014;
Saikin et al, 2015]. Recent modeling studies have concluded that EMIC waves are very important sources
of relativistic and ultrarelativistic electron losses from the outer radiation belt [e.g., Drozdov et al., 2015;
Ni et al., 2015].

Despite the decades of recognition that EMIC waves could be significant drivers of electron precipitation,
until recently, there has been little experimental evidence of this. However, some progress is now being
made. Some of the earliest confirmation comes from ground-based measurements showing evidence of rela-
tivistic electron precipitation from subionospheric very low frequency (VLF) and riometer observations along
with the start of simultaneous EMIC waves in ground-based magnetometers [Rodger et al., 2008]. Following
on from this, the properties of probable EMIC wave precipitation events detected using the expected signa-
ture for EMIC wave-driven losses seen in low-Earth orbit satellite data have been presented [Carson et al.,
2013]. One of these probable EMIC wave precipitation events was investigated in a case study using multiple
ground-based experiments [Clilverd et al.,, 2015] and was confirmed to be intense and EMIC wave driven, but
with unexpectedly low-energy cutoffs <400 keV similar to those suggested by Hendry et al. [2014]. At highly
relativistic electron energies, indirect evidence of the efficiency of EMIC waves to drive losses has been pro-
vided by Canadian ground-based magnetometer data and >2.3 MeV trapped relativistic electron from the
Van Allen Probes [Usanova et al.,, 2014]. Thus, although there is increasing evidence of electron precipitation
from EMIC waves, the detailed characteristics of the precipitation and associated waves remain uncertain.

However, there are many examples in the literature where EMIC waves are observed on the ground or in
space for which there appears to be no electron precipitation occurring, even when the measurements are
available [e.g., Usanova et al,, 2014; Engebretson et al.,, 2015]. There is also a growing recent experimental
evidence which suggests that EMIC waves may precipitate electrons with energies as low as a few hundred
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keV [Hendry et al,, 2014; Clilverd et al., 2015; Blum et al., 2015] rather than the relativistic energies which are
widely produced in theoretical modeling [e.g., Meredith et al., 2003; Chen et al., 2011; Usanova et al., 2014].
There is some theoretical support for such comparatively low energy thresholds for EMIC-driven electron pre-
cipitation. The minimum resonant energy for a He band EMIC wave inside the plasmasphere was shown to be
as low as ~100 keV for waves at ~1 Hz [Omura and Zhao, 2013, Figure 2], and some quasi-linear theory has
indicated minimum resonance energies of ~300-400 keV [Summers and Thorne, 2003; Ukhorskiy et al., 2010].

In order to better constrain modeling and understand the importance of EMIC wave-particle interactions, it is
necessary to have in situ observations of the wave and plasma characteristics for EMIC waves which are
confirmed to be driving electron precipitation. In this paper we provide in situ observations supported by
ground-based precipitation measurements to fulfill this goal. We provide a detailed description of one event,
identifying for the first time the location, size, and energy range of EMIC-induced electron precipitation
caused by waves with in situ measurements of EMIC wave frequency, wave power, and ion band. We also
provide the wave and plasma parameters for four other similar events.

2. Experimental Data Sets

2.1. Van Allen Probes Observations

We make use of multiple experiments on board the Van Allen Probes, in particular the magnetometer and
wideband observations from the Electric and Magnetic Field Instrument Suite and Integrated Science
(EMFISIS) [Kletzing et al, 2013], including the cold plasma densities measurements [Kurth et al., 2015].
EMFISIS provides observations of the EMIC waves as well as the geomagnetic field intensities. Pitch angle
resolved electron fluxes are provided by the Magnetic Electron lon Spectrometer (MagEIS) [Blake et al.,
2013] and the Relativistic Electron-Proton Telescope (REPT) [Baker et al., 2013] instruments.

2.2. Low-Earth Orbit Precipitation Observations

One source of precipitation observations comes from the Medium Energy Proton and Electron Detector
(MEPED) instrument on board the Polar-orbiting Operational Environmental Satellite (POES) [Evans and
Greer, 2004]. This data set is unusual in that it measures precipitation electron fluxes inside the bounce loss
cone. The characteristics of the POES electron precipitation measurements have been comprehensively
described in the literature [e.g., Rodger et al., 2010a, 2010b; Carson et al., 2013].

2.3. Ground-Based Observations

The other source of precipitation observations comes from narrowband subionospheric VLF sites that are
part of the Antarctic Arctic Radiation-belt Dynamic Deposition-VLF Atmospheric Research Konsortia
(AARDDVARK) network [Clilverd et al., 2009] (for further information see the description of the array at
www.physics.otago.ac.nz/space/AARDDVARK_homepage.htm). Subionospheric VLF responds to electron
precipitation which penetrates beneath the lower boundary of the ionosphere, that is, electrons with mini-
mum detectable electron precipitation energies of ~150keV (day) and ~50 keV (night) [Rodger et al., 2012].

3. EMIC Event on 24 September 2013—Wave Activity

Figure 1 presents a set of spectrograms showing an EMIC event which started at 16:42 UT on 24 September
2013 observed by EMIFISIS on board RBSP-A. Figure 1 (first to third panels) shows the three components of
the magnetic field in GSM coordinates. Figure 1 (fifth panel) shows the variation in the magnitude of the
geomagnetic field, also observed by the EMIFISIS magnetometer (Figure 1 (fourth panel) shows the variation
in the SYM-H geomagnetic index). Shortly before the onset of the EMIC wave the geomagnetic field changes,
with the magnitude of the total field altering by ~30nT (i.e., ~14%) in 4 min from 16:40 UT. This change can
also be seen in the He and O ion gyrofrequencies which are plotted as white lines in the spectrogram panels.

This is a fairly strong and clear example of a He band EMIC wave event. A summary of the wave and plasma
properties determined from the EMFISIS observations of this event is given in Table 1. The observations indi-
cate that this event occurred in the afternoon sector and about 0.6 R¢ inside the plasmapause.

Figure 2 (top) shows a spectrogram of the EMFISIS magnetic field extremely low frequency (ELF) and VLF
observations from RBSP-A across the same time period as shown in Figure 1. Here the spectrograms of the
summed magnetic field components have been taken. Figure 2 (bottom) shows the wave normal angle for
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Figure 1. (first to third panels) Spectrograms of the three components of the magnetic field in GSM coordinates from the EMFISIS experiment on board RBSP-A on 24
September 2013. Wave power has units of nTZ/Hz. The white lines show the local ion gyrofrequencies for He (top) and oxygen (bottom) ions. (fourth panel) The
SYM-H geomagpnetic index. (fifth panel) The absolute value of the DC magnetic field reported by the same instrument. A blue dashed line marks the start of the EMIC

wave at 16:42 UT.

the observations shown in Figure 2 (top). Typically, signals with wave normal angles <45° are likely to be
whistler mode waves, while those >75° would be indicative of magnetosonic waves [Gurnett and
Bhattacharjee, 2005] that are restricted to the region of the geomagnetic equator. Figure 2 indicates that
the ELF-VLF wave activity in the time period considered is quiet. Around this time there is an ~100-200 Hz
magnetosonic wave that is fading out, as well as a weak ~50-90 Hz magnetosonic wave which starts around
the time of the geomagnetic field decrease. Whistler mode wave activity is weak, particularly in the time
period of the strong EMIC wave. It is well known that whistler mode waves can pitch angle scatter electrons

Table 1. Properties at the Times of the Observed EMIC Wave-Driven Precipitation Events®

Date (Time: UT)

24 Sep 2013 (16:41)

24 Mar 2013 (6:57)

14 Aug 2013 (4:57)

27 Aug 2013 (15:52)

27 Aug 2013 (16:52)

L 5.1 57 53 53 58
MLT 165 237 18.1 17.9 18.7
fupper (H2) 05 0.9 0.4 0.55 035
fiower (H2) 0.25 03 0.2 047 0.15
PSD wave power

Typical (nT%/Hz) 08 0.1 3 03 03
Peak (nT%/Hz) 10 1 42 2 6
N, (cm™3) 190 79 63 112 43
foe (kH2) 120 80 72 95 58
fre (kH2) 55 39 43 49 3.
RBSP satellite A B B A A
lon band He H He He He

#The first event is that described in detail in this study. The parameters listed are as measured by RBSP. fuppers fiower: upper and lower EMIC wave frequencies,

PSD: EMIC wave power spectral density, N: cold electron density, f,: electron plasma frequency, and fc.: electron gyrofrequency.
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Figure 2. EMFISIS ELF/VLF magnetic field observations for the same time period shown in Figure 1. (top) Spectrogram of the summed magnetic field components
with units of nT2/Hz. (bottom) Wave normal angle with units of degrees, determined from Figure 2 (top) waveforms.

and cause precipitation [e.g., Thorne, 2010], whereas magnetosonic waves are up to 2 orders of magnitude
less effective at driving precipitation [Shprits et al., 2013].

4, Precipitation Observations
4.1. AARDDVARK

At 16:42 UT the Northern Hemisphere footprint of the RBSP-A spacecraft was located near Iceland. We have
examined AARDDVARK data at this time, concentrating on Atlantic longitude observations in the region of
the RBSP-A observations. Figure 3 (top row) shows examples of the AARDDVARK observations made from
St. John's, Canada (STJ, red line), and Reykjavik, Iceland (REK, blue line). The amplitude and phase perturbations
for two transmitters are plotted, with call sign NRK (red line in the figure, located in Iceland) and NDK (blue line,
located in North Dakota, USA). Figure 3 presents the change in amplitude and phase relative to undisturbed
conditions, i.e,, the change relative to the quiet day curve. There are clear amplitude perturbations starting at
16:42 UT (marked by the dashed vertical line). We observe consistent evidence of subionospheric perturbations
beginning at the start time of the RBSP-observed EMIC wave seen in Figure 1. As there is no significant whistler
mode wave activity occurring at this time (as shown in Figure 2), the EMIC wave is the most likely candidate for
driving the electron precipitation causing the observed AARDDVARK precipitation.

Figure 3 (bottom) shows a geographic map of the AARDDVARK paths analyzed in this study. Note that there is
both an AARDDVARK receiver and a VLF transmitter in Iceland, with the NRK transmitter symbol largely
obscured. In this plot AARDDVARK paths which were seen to respond to precipitation at the EMIC wave start
time are shown in green, while the unresponsive paths are shown as dashed light blue lines.

The AARDDVARK observations are clearly consistent with precipitation occurring near Iceland around the L
shells of the RBSP footprint. The size of the precipitation patch is sufficiently wide enough that transmitter
receiver paths to the immediate east and west of Iceland are affected but not so wide to affect those paths
from western European transmitters to Finland or from NPM to the Antarctic station, Halley. The observed
region of the EMIC-driven precipitation covers ~13-17 magnetic local time (MLT).

4.2. POES Observations

Near the start of the period during which the EMIC wave was observed by RBSP-A, there was a serendipitous
conjunction with NOAA 15, one of the POES that have been extensively used to investigate radiation belt
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plot AARDDVARK paths which were seen to respond to precipitation at the EMIC wave start time are shown in green, while
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the unresponsive paths are shown as dashed light blue lines.
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precipitation. The orbital track of NOAA 15 passed from south to north at the eastern edge of Iceland. At
16:41:55 UT the MEPED instrument on board this satellite observed a burst of proton and electron precipita-
tion with the signature expected from EMIC waves [Sandanger et al., 2009], detected by an automatic algo-
rithm [Carson et al.,, 2013]. The NOAA 15 precipitating proton and electron and the automatically detected
trigger event (marked by the arrow) are shown in Figure 3 (top row). The location of this algorithm trigger
event is shown as the blue star in Figure 3 (bottom), very close to the eastern end of the RBSP-A atmospheric
footprint. As this observation was made at essentially the same location and time as the start of the RBSP-A
EMIC wave observation, the precipitation includes both protons and a strong relativistic component as
expected for effective EMIC wave scattering, and RBSP-A reports no significant ELF/VLF wave activity; we
assume that the POES precipitation event was produced by the observed EMIC wave.

The precipitation spike has been analyzed as described in section 3.2 of Clilverd et al. [2015]. By using the
proton and electron precipitation measurements and a detailed understanding of the instrument response
[Yando et al.,, 2011], one can determine an energy spectrum, flux magnitude, and energy cutoff estimations
for the observed precipitation. This precipitation event is best fit with a power law, with spectral gradient
values from —2.7 to —1.7, lower energy precipitation cutoffs of 140-230keV, upper cutoff estimates of

1.6-8 MeV, and precipitation magnitudes of ~1.25x10*cm™2sr™'s™".

4.3. AARDDVARK Modeling

The location of the POES triggers event, and the RBSP-A footprints provide useful constraints on the likely
longitudinal range of the precipitation affecting the paths from GQD and DHO to Iceland, i.e., the transmitters
to the east of the Reykjavik receiver. We undertake modeling of the subionospheric perturbations predicted
from precipitation defined by the POES energy and power law gradient, using approaches previously
described [e.g., Rodger et al., 2012; Clilverd et al., 2015].

We find that the modeling is sensitive to the initial conditions, for example, comparatively small changes in
the starting location of the energetic electron precipitation change along the path (i.e., changes of tens of
kilometers). This is likely due to the relatively short, all sea path from the transmitter to receiver, such that
there is a high number of significant modes present in the Earth ionosphere waveguide and also the small
ionospheric region affected. Our modeling of the perturbations observed on the transmissions from DHO
(AAmplitude =+1.8 dB, APhase=—3°) and GQD (AAmplitude =+0.6 dB, APhase = —3°), at the EMIC wave
onset time, indicates that these changes are consistent with the effect caused by imposing the POES
precipitation observations, i.e, flux magnitudes of ~0.6-5x 10*cm™2sr~'s~". The modeling reproduces
the observations for power law gradients which have low-energy cutoffs, i.e., ~200 keV. It was not possible
to successfully model the subionospheric VLF perturbations using low-energy cutoffs of ~1 MeV. Such cutoffs
produce much larger amplitude and phase perturbations than observed.

5. Trapped Electron Flux Observations

Figure 4 shows the RBSP-A MagEIS pitch angle resolved trapped fluxes with 1 MeV (top) and 225 keV energies
(bottom). At the time of the geomagnetic field change and the start of the EMIC wave the fluxes change to a
butterfly distribution, with a 50% decrease in the 90° pitch angle fluxes from 16:41 to 16:44 UT. A similar
signature is seen in the MagEIS fluxes at energies >143 keV and in REPT fluxes <2.6 MeV. The REPT fluxes
>2.6 MeV are at noise levels. There is no evidence of significantly different behavior between the 2.6 MeV
fluxes and those at lower energies, in apparent contradiction to the conclusions of Usanova et al. [2014],
although this could be obscured by the changes leading to the butterfly distribution.

Such butterfly distributions can be produced by magnetopause shadowing or by field line stretching and
drift shell splitting [e.g., Roederer, 1970; Sibeck et al, 1987] or by chorus and magnetosonic waves [Xiao
et al, 2015]. However, this does not explain the observations in our case, due to the small time dispersion
between the energies. The source of the distribution should be only ~0.6 MLT away to be consistent with
the energy dispersion observed (i.e., located at ~16 MLT). While we note that the butterfly distribution is unli-
kely to be caused by magnetopause shadowing as the location is far from magnetic noon, there has not been
evidence suggesting that such pitch angle distributions can be produced by EMIC waves. Nonetheless, the
change to this distribution makes it essentially impossible to see evidence of the pitch angle scattering
driving the observed precipitation.

RODGER ET AL.

EMIC WAVES DRIVING PRECIPITATION 9638



@AG U Geophysical Research Letters 10.1002/2015GL066581

Pitch Angle (degrees)

Pitch Angle (degrees)

6. 8

3

40. ;

I Ll | [ H
lﬁm L | | o 3
SR
| \ :

(R MR ] =
6000. §

5000. E

n

c

4000. E

=

5-'.

3000.

@

o)

5

2000.

16:30
R, 4773
MLat 8.774
MLT 16.430
L 4886

16:40 16:50 17:00 17:10 17:20 17:30
4.927 5.067 5.193 5.306 5.406 5.494
8.425 8111 7.827 7.568 7.330 7110
16.590 16.740 16.890 17.020 17.150 17.280
5.035 5.170 5.201 5.400 5.496 5.580

2013-09-24 (267) 16:30 to 17:30

Figure 4. Butterfly pitch angle distributions seen in the MagEIS (top) 1 MeV flux distributions and the (bottom) 225 keV distributions. The dashed red line marks the
start of the EMIC wave seen in Figure 1.

6. Additional Events

In our examination of RBSP-A EMIC wave data and comparison with precipitation data we found four other
events in which RBSP-A observed an EMIC wave, there was little evidence of confounding ELF/VLF whistler
mode wave activity, and AARDDVARK sites at Churchill (Canada), Fairbanks (Alaska), and Sodankyld
(Finland) confirmed the presence of energetic electron precipitation. The RBSP-A in situ measurements of
EMIC wave and plasma parameters for these four additional events, along with those for 24 September
2013, are given in Table 1. All of these five events have butterfly distributions in the MagEIS trapped electron
fluxes which begin near the wave start time. To the best of our knowledge such distributions have not been
observed in other published studies describing near-equatorial particle distributions associated with
EMIC waves.

In the current study we have chosen to concentrate on the analysis of the 24 September 2013 event, due to
the serendipitous conjunctions between RBSP-A, NOAA 15, and AARDDVARK network observations. None of
the other events listed in Table 1 have such close conjunctions. We note that there are multiple POES triggers
on 27 August 2013 and that the events on this day may deserve more attention in a future study.

7. Summary

For the first time we have combined satellite-based observations of the characteristics of EMIC waves, with
satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study,
supplemented by an additional four examples, we are able to identify the location of the EMIC-induced
electron precipitation inferred from coincident POES/AARDDVARK data and relate them to the EMIC wave
frequency, PSD wave power, and ion band as measured by the Van Allen Probes. We have also constrained
the size and energy range of the electron precipitation.

We find the following:

1. The precipitation-causing EMIC waves typically occur over the MLT range 16-00UT and at L ~5.4+0.4,
somewhat inside the plasmapause. The frequency of the EMIC waves is typically 0.3-0.5 Hz and is mostly
found within the helium band. The typical wave power spectral density is ~1 nT*/Hz, with peak powers
~10 times higher.
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2. The EMIC-induced electron precipitation was detected by the ground-based AARDDVARK network, with
one coincident measurement made by one of the NOAA POES. The region of electron precipitation

was small in geomagnetic latitude, i.e, <50 km (AL =0.15), but high in flux, i.e, ~10*cm™2sr™' s, with

a power law energy spectrum beginning at ~200keV. Radio wave propagation modeling of the
AARDDVARK observations is supportive of the POES detection of a narrow latitudinal precipitation patch,
as well as extended in longitude through several hours of MLT, and occurring at the time of the EMIC wave
observed by RBSP.
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