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ABSTRACT 

Turbidite sandstones of the Miocene Marnoso-arenacea Formation (northern Apennines, 

Italy) display centimetre to decimetre long, straight to gently curved, 0.5 to 2.0 cm regularly 

spaced lineations on depositional (stratification) planes. Sometimes these lineations are the 

planform expression of sheet structures seen as millimetre to centimetre long vertical 

‘pillars’ in profile. Both occur in the middle and upper parts of medium-grained and fine-

grained sandstone beds composed of crude to well-defined stratified facies (including 

corrugated, hummocky-like, convolute, dish-structured and dune stratification) and are 

aligned sub-parallel to palaeoflow direction as determined from sole marks often in the 

same beds. Outcrops lack a tectonic-related fabric and therefore these structures may be 

confidently interpreted to be sedimentary in origin. Lineations resemble primary current 

lineation formed by the action of turbulence during bedload transport under upper stage 

plane bed conditions. However, they typically display a larger spacing and micro-

topography compared to classic primary current lineation and are not associated with 

planar-parallel, finely-laminated sandstones. This type of ‘enhanced lineation’ is interpreted 

to develop by the same process as primary current lineation, but under relatively high near-

bed sediment concentrations and suspended load fallout rates, as supported by laboratory 

experiments and host facies characteristics. Sheets are interpreted to be dewatering 

structures and their alignment to palaeoflow (only noted in several other outcrops 

previously) inferred to be a function of vertical water-escape following the primary 

depositional grain fabric. For the Marnoso-arenacea beds, sheet orientation may be 

genetically linked to the enhanced primary current lineation structures. Current-aligned 

lineation and sheet structures can be used as palaeoflow indicators, although the 

directional significance of sheets needs to be independently confirmed. These indicators 
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also aid the interpretation of dewatered sandstones, suggesting sedimentation under a 

traction-dominated depositional flow – with a discrete interface between the aggrading 

deposit and the flow – as opposed to under higher-concentration grain or hindered settling 

dominated regimes.  

 

INTRODUCTION  

Dewatering structures are a common feature of sandstone beds in deepwater turbidite 

systems (Lowe, 1975; Hurst & Cronin, 2001). These deposits are particularly prone to water 

escape due to the rapid manner in which sediment often deposits from turbidity currents 

and other types of sediment gravity flow (for example, transitional ‘slurry’ flows, cohesive 

and non-cohesive debris flows). Flows with high depositional rates produce 

underconsolidated, highly porous beds with a metastable grain framework. Subsequent 

pore-fluid expulsion occurs as the sediment loses strength, allowing the initial grain fabric 

to reorganise to form a closer packing (Lowe, 1975; 1976; Collinson & Thompson, 1989; 

Sylvester & Lowe, 2003a). This process may operate during or after deposition before 

substantial compaction. Water escape involving liquefaction and fluidisation is responsible 

for deforming and partially or completely destroying primary sedimentary structures and 

grain fabric. It is also responsible for the formation of a diverse range of distinct soft 

sedimentary structures including convolute laminae, consolidation laminae, dish, pillars, 

pipes and load structures, as well as producing beds with swirled or ill-defined fabrics and 

possibly structureless massive beds (Lowe, 1975; Collinson & Thompson, 1989). 

In this paper, several relatively rare potentially genetically related structures, found 

in metre-thick dewatered sandstone beds of the Miocene Marnoso-arenacea turbidite 

system, are discussed: (i) relatively large-scale current-aligned lineations on stratification 
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planes; and (ii) dewatering sheets with a similar expression in plan view and also aligned to 

the palaeoflow of the parental depositional current. These structures have apparently not 

been reported from these deposits previously and rarely from other formations.  

Whilst sheet structures can be common in turbidite sequences, they have only been 

noted to be aligned to palaeoflow in several outcrops, as discussed by Laird (1970): the 

Silurian of Galway in Ireland and the Aberystwyth Grits in Wales. In these locations the 

strike of dewatering sheets have a ‘general parallelism’ to sole marks within the succession. 

For the Galway sandstones, textural analysis showed that sheets are parallel to the 

preferred long axis of grains and have no relationship to tectonic fabric. In the case of the 

Aberystwyth Grits, however, sheets are also parallel to cleavage and hence could be 

inferred to be tectonic in origin. Laird (1970) interpreted the Galway flow-aligned sheets as 

a ‘primary sedimentary fabric’ formed during suspension sedimentation.  

 

The relationship between the primary (depositional) bed structure and grain fabric 

and subsequent patterns of dewatering is in general poorly understood. The current-

aligned dewatering sheets described here and by Laird (1970) are of significant interest 

because they suggest, under certain conditions, an intimate relationship between the 

primary depositional fabric and secondary dewatering processes. The following  describes 

the characteristics of the lineation and sheet structures, the facies types they occur within, 

and discusses models for their formation as related to primary current and secondary 

dewatering processes and the potential use of sheets as current indicators. 
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STUDY AREA 

The sandstones described in this study come from outcrops of the Miocene Marnoso-

arenacea Formation in the Apennine fold and thrust belt of Italy (Fig. 1). This formation 

records deposition by clastic-bearing and less commonly carbonate-bearing sediment 

gravity flows in a deepwater basin-plain environment of a foreland basin (Ricci Lucchi & 

Valmori, 1980; Argnani & Ricci Lucchi, 2001; Amy & Talling, 2006; Muzzi Magalhaes & 

Tinterri, 2010). Flows travelled axially along the elongate basin either towards the south-

east or north-west depending upon their provenance (Ricci Lucchi & Valmori, 1980). Most 

of the outcrops discussed herein are of Serravallian age, positioned immediately above the 

Contessa marker bed (Ricci Lucchi, 1995). This particular stratigraphic interval was 

previously studied in detail by the present authors in order to constrain the geometry and 

lateral facies changes within beds (Amy & Talling, 2006; Talling et al., 2007a; Sumner et al., 

2012). 

 

DESCRIPTION OF STRUCTURES 

The current-aligned lineations and sheets described are observed in medium-grained and 

fine-grained sandstone beds that are 0.4 to 1.5 m thick (Fig. 2). The Marnoso-arenacea 

Formation sections studied typically display a bimodal distribution in sandstone thicknesses 

(Ricci Lucchi & Valmori, 1980; Talling et al., 2007b); these structures occur in the thicker 

sandstone bed population. They usually occur at least a few tens of centimetres above the 

base of sandstone beds, above planar stratified and/or massive sandstone divisions. In the 

majority of cases, lineations are associated with corrugated-stratified sandstones (referred 

to as ‘groove stratified’ or ‘corrugated’ sandstone facies in Amy & Talling, 2006). However, 

they also occur in association with several other stratified sandstone facies including 
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consolidation, hummocky-like, small-scale dune cross-stratified and convolute-stratified 

sands. Intervals with lineations are commonly succeeded by muddy debritic sandstone 

(‘slurried’ interval, sensu Ricci Lucchi & Valmori, 1980), convolute laminated fine sandstone 

or mudstone intervals with the latter invariably capping these ponded basin-plain beds. In 

the following description, the characteristics of these structures are first described and then 

the associated facies in which they occur.  

 

Sedimentary structure characteristics 

Lineations 

Lineations occur on stratification planes within fine-grained sandstones as a series of sub-

parallel bands differentiated primarily by their colour that may appear lighter or darker 

than the ‘host’ sandstone (Fig. 3). These lineations are 2 to 10 mm wide, up to several 

millimetres in relief and extend for tens of centimetres in length being straight or gently 

curved; their spacing is regular to semi-regular, typically being about 1 cm apart with 

thicker lineations sometimes displaying wider spacing. In most cases, textural differences 

are difficult to see with the naked eye (Fig. 3E). In some rare cases, however, a textural 

difference compared to the host sandstone is apparent owing to enhanced cementation 

within the lineations (Fig. 3F); they often form a microtopography of closely spaced, low-

relief, ridges and grooves, which in profile imparts a small (millimetre) scale ‘crenulated’ or 

‘corrugated’ appearance to stratification, with lineations often but not always coinciding 

with the crests of ridges (Fig. 3A and B).  
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Sheets 

In the majority of cases where lineations are observed, they do not extend vertically 

through sandstones. However, in a number of outcrops (for example, the Galeata and 

Taverna measured sections and Cabelli river section: see map in Fig. 1) lineations are 

actually the depositional plane expression of sheets extending through the host sandstone 

and seen as pillars (sensu Lowe 1975) in cross-section (Figs 3D, 4B and 5A to D). Sheets are 

usually normal or steeply dipping to bedding (90 to 80o), 2 to 10 mm wide and millimetres 

to several decimetres in vertical length; they have a simple straight geometry in profile and 

are rarely observed to bifurcate. Sheets in some cases are texturally distinct, being 

apparently cleaner and better cemented than the host sandstones (Figs 3D and 6D). Others 

are only discernible based on colour. Sheets may cross-cut consolidation or convolute 

laminae but also may end abruptly at a particular horizon. In some intervals, distinct sheet 

structures cannot be clearly seen but may be inferred from the vertical stacking of 

‘lineations’ on successive stratification planes (Fig. 3B). 

 

Facies with lineations and sheets 

Corrugated-stratified sandstone 

Lineations are most commonly found within sandstones characterized by crude to well-

developed flat-lying centimetre-thick stratification that possess a distinct superimposed 

corrugation on the upper and lower contacts of individual strata (Fig. 4). The corrugated 

wavy micro-topography is typically semi-regular and can often be directly related to 

lineations on stratification planes with lineations usually forming crests. Stratification may 

also show irregular strata with gentle pinching and swelling similar to consolidation laminae 

(Lowe, 1975; Hurst & Cronin, 2001). Sheets seen in profile as faint texturally indistinct 
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millimetre-scale pillars are sometime observed as well as more distinct centimetre-scale 

pillars (Fig. 4B) and vertically stacked lineations (Fig. 3B). 

 

Hummocky-like stratified sandstone 

Sandstones with a similar scale of stratification to the corrugated-stratified sandstone may 

show more complex ‘hummocky’ geometries with pinching and swelling over decimetre to 

metre scales and decimetre-scale wave heights (Fig. 4C and D). These strata may also show 

a corrugated-type micro-topography related to the lineations on stratification planes 

occasionally with centimetre- long pillars related to sheets. Outcrops of this facies are 

typically highly friable and intensely weathered. Bedding does not show distinct forms of 

hummocky cross-stratification as seen in shallow-marine, storm-wave influenced 

successions, nor similar structures reported from deepwater turbidites (Mulder et al., 

2009). This type of stratification is interpreted to be produced by consolidation with 

significant hydroplastic deformation (Lowe, 1975).  

 

Dish-structured sandstone  

Occasionally beds display discrete dish structures with upturned margins up to several 

decimetres wide. Dish structures are indicative of consolidation and are commonly 

associated with consolidation lamination and pillar structures (Lowe & LoPiccolo, 1974; 

Lowe, 1975; Hurst & Cronin, 2001). 
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Convolute-stratified sandstone 

Sandstones occasionally show distinct convolute lamination and bedding towards the tops 

of beds (Fig. 5C to F). These structures indicate soft sediment folding and loading which 

may be induced by a variety of processes (see discussion in Lowe, 1975). Sheets noted in 

this facies are vertically more extensive than seen elsewhere being decimetres long and 

inclined (Fig. 5D). 

 

Dune cross-stratified sandstone 

In several outcrops sheets occur at the top of beds within dune cross-stratified sandstone 

(Fig. 6). Dunes are relatively small scale, having maximum amplitudes of several decimetres 

and wave lengths of up to several metres. Sheets are most pronounced on the dune crests 

but extend across both lee and stoss sides.  On the lee side they tend to flare in width. 

Sheets are orientated perpendicular to the dune crest and, in some cases, change strike 

locally remaining perpendicular to curved dune crests (Fig. 6C).  

 

Palaeoflow and lineation direction 

Directional data for lineations and other structures are summarised in Fig. 7. Flutes and 

ripples show a south-east directed trend and grooves a south-east/north-west trend; these 

indicate a unimodal palaeoflow direction for siliciclastic-bearing depositional currents 

towards the south-east. Lineations also show a south-east/north-west trend close to that of 

palaeoflow indicators, albeit with a discernible clockwise deviation.  The deviation of 

lineations from sole marks on the same bed is on average less than 10 (Fig. 7E). Lineations 

on stratification planes usually show a consistent directional mode with a relatively small 

(<5o) variance in direction between individual structures. In isolated cases, beds show 
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several differently oriented sets of lineations occurring on the same or successive 

stratification planes (for example, Bed 4 in the Taverna section; Fig. 2).  Those associated 

with curve-crested dunes show a systematic variation in direction around the dune crest 

(Fig. 6C). 

 

THIN-SECTION ANALYSIS 

A sample was taken of sandstone with sheets from cross-stratified sandstone facies in Bed 

3 of the Taverna section (Fig. 2). Thin sections were cut in bedding parallel and 

perpendicular orientations for grain-fabric analysis. In the cut sample, sheets are much 

better defined, seen as regular spaced light-coloured bands that extend across 

consolidation-related stratification (Fig. 8E and F).  

 Sheets are also clearly visible in thin sections being lighter than the surrounding 

sandstone with relatively well-defined boundaries (Figs 9 to11). Colour variations between 

sheet and inter-sheet correspond to differences in matrix clay content, with sheets being 

significantly cleaner and more heavily cemented by calcite (Figs 9 and 11). Compositionally 

the sheet and inter-sheet areas otherwise appear similar. 

Black and brown coloured elongate grains, mostly biotite mineral grains, were 

measured in scanned images of thin sections (using the software application Image J) and 

plotted as rose diagrams (using the application Rozeta) (Fig. 10). These grains display an 

imbricated (upcurrent) flow-aligned fabric: this being the commonest type in turbidite 

sandstones and indicative of rapid sedimentation from suspension (Baas et al., 2007). The 

grain long-axis mean direction is within 10o of sheets (Fig. 10B and C). Grain orientations in 

stratification plane-perpendicular sections are the same for sheet and inter-sheet areas 

(Fig. 10D and E). Elongate grains seen in photomicrographs with lengths greater than ca 100 
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um, were also measured in the thin section taken parallel to bedding (Fig. 11). These mostly 

quartz grains show more variation than black/brown grains in scans, but have a similar 

mean direction which is close to that of the sheet orientation. Grains in sheets also show a 

similar mean orientation to the total grain population of photos (Fig. 11). 

 

DISCUSSION 

Outcrops have been described focussing on the occurrence of several structures: (i) 

lineations on stratification planes with no apparent vertical extent; and rarer (ii) sheets 

seen as similar lineations in planform and pillars in cross-section with millimetre to 

centimetre-scale vertical extent. The orientation of both structures in most cases is similar 

to palaeoflow of the same or adjacent beds, as determined independently from other 

current structures. Both lineations and sheets have similar simple plan-form geometries 

and length scales; they also occur in similar sandstone facies which often display 

dewatering features. In the following discussion, the significance of these structures and 

their likely process of formation are considered. It is important to emphasize that these are 

sedimentary and not structural features. Outcrops generally lack pervasive tectonic rock 

fabric (for example, cleavage in mudstones) being positioned away from faults and fold 

crests, usually in relatively undeformed, albeit tilted stratigraphic sections. Instead, 

lineations and sheets tend to be locally developed, within particular divisions of beds 

supporting a depositional origin.  
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Lineations: comparison to primary current lineations and their interpretation 

The lineations considered in this study, which are not demonstrably sheets, bear a 

resemblance to parting or primary current lineations (PCL). These lineations, however, are 

characteristically different to PCL being developed at a larger scale, and hence herein are 

referred to as ‘enhanced lineations’. Primary current lineations (PCL) is a type of bedding 

plane ‘microtopography’ composed of a system of quasi-parallel offset ridges and hollows 

with very low relief (Allen, 1964; 1965; 1982). These lineations are characteristic of the 

upper stage plane bed of unidirectional flows, but also occur in association with wave 

deposits, hummocky cross-stratified sands and foreshore deposits (Allen, 1964; Cheel 

2003). In detail, PCL comprise linear mounds, a few grain diameters high, centimetres to 

decimetres long and spaced several millimetres to over 1 cm apart (Cheel, 2003). These 

mounds extend parallel to the depositional current direction. In contrast, enhanced 

lineations are significantly larger, with reliefs of up to several millimetres and semi-regular 

spacing rarely less than a centimetre.  

Based on laboratory experiments, PCL is understood to be a product of the burst 

and sweep microturbulence in the turbulent boundary layer that has the effect of 

transporting bedload sediment within flow-parallel lanes [‘sand streaks’, sensu Weedman & 

Slingerland (1985)]. The typical mean spacing of sand streaks in fine and medium sand is 3 

to 7 mm with a dependency on grain size (see tables 2 and 3 in Weedman & Slingerland, 

1985). Sand streaks with a wider spacing of ca 15 mm, however, can occur in flows with 

relatively high shear velocities or grain concentrations (Weedman & Slingerland, 1985).  In 

other experiments by Best (1992), visualisation of the near-bed turbulence consisting of 

high-speed sweeps and low-speed streaks, showed that sweep structures may be grouped 

such that patches of sediment entrainment may be wider than individual streak/sweep 
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impacts. Longitudinal ridges generated by sweeps can also stabilize the position of 

subsequent low-speed streaks and sweeps. These aspects of flow character (velocity and 

near-bed sediment concentration) and boundary layer turbulence over a mobile sand bed 

may provide a basis for explaining the larger scale of enhanced lineations. 

 Enhanced lineations are not preserved within flat finely planar-parallel laminated 

sandstone typically associated with PCL (for example, Bouma Tb division in turbidites). 

Parting-step lineation that often accompanies PCL in upper stage planar beds (Cheel, 2003) 

is also absent. Instead as described above, lineations tend to be associated within crudely 

centimetre-stratified facies. The scale and poor development of the stratification in these 

facies in conjunction with dewatering processes probably reflect deposition under relatively 

high (near-bed) sediment concentrations and depositional rates. Experiments show that 

under these conditions, relatively thick centimetre-scale stratification can develop by a 

process of episodic collapse of near-bed ‘layers’ with locally high-sediment concentration 

(Arnott & Hand, 1989; Vrolijk, 1997; Sumner et al., 2008). This manner of forming 

stratification is fundamentally different to that which produces finer-scale planar 

laminations of the upper stage plane bed by the migration of low-relief ‘bed waves’ (Best & 

Bridge, 1992; Paola et al., 1989). Dewatering is evident in many beds with lineations, as also 

suggested by consolidation-like stratification. This is also indicative of relatively high 

sedimentation rates and near-bed sediment concentrations during deposition.  

In summary, enhanced lineations are considered here to be distinct from classic PCL 

on account of their scale. They are likely to be formed by similar near-bed turbulent 

processes but under higher near-bed sediment concentrations and depositional rates 

compared to those under which PCL typically forms. Sediment concentrations and 

depositional rates, however, were not high enough to limit the existence of a bed (i.e. a 
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sharp rheological interface between the flow and the substrate) on which bedload 

transport could occur: as can be the case for turbidity currents with very high depositional 

rates (Kneller & Branney, 1995). It should be noted that the effects of fluid expulsion from a 

dewatering bed on the turbulent boundary layer, sediment transport and bedform 

development is largely unknown. This could also have played a role, given the association of 

enhanced lineations with dewatering structures. In some cases, as discussed below, they 

may also be interpreted as incipient dewatering sheets. 

 

Flow-aligned dewatering sheets 

The sheets described in this study are interpreted as dewatering structures produced by 

water escape (Sylvester & Lowe, 2003b). This interpretation appears relatively straight-

forward where sheets are well-developed (centimetres long vertically), cross-cut 

stratification and are associated with other dewatering features (for example, Figs 4 and 5), 

but less so where they are poorly developed (millimetres long) and unambiguous 

dewatering structures are absent in the same interval. Many studies report dewatering 

pillars in deepwater sandstones, usually in association with dishes and, as discussed by 

Lowe (1975), there are a wide variety of recognisable types. A small number of studies 

interpret these as dewatering sheets (e.g. Lowe & Guy, 2000; Stow & Johansson, 2000; 

Sylvester & Lowe, 2003b; Sylvester & Lowe, 2004; Barker et al. 2008; Jackson et al., 2009; 

Mather et al., 2009; Eggenhuisen et al., 2010) and only a few studies discuss the orientation 

of sheets relative to palaeoflow (Wood & Smith, 1958; Laird, 1970; Haughton, 1994). 

Interestingly, the sheets seen in the sandstones discussed here show a clear parallel 

alignment with palaeoflow direction as determined independently from sole marks and 

ripples (Fig. 7) and the preferred grain orientation fabric of sandstones in thin section (Figs 
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10 and 11). Also, in cross-stratified beds the orientation of sheets changes locally (Fig. 6C), 

such that they remain quasi-perpendicular to dune crest orientation; this, in addition, 

suggests alignment of sheets to localised flow patterns over these bedforms.  

 

Comparison with other current-aligned sheets 

Current-aligned sheets have only been noted in a few other outcrops as discussed by Laird 

(1970): these are summarised and compared to those of the present study in Table 1. The 

simple physical form of the Galway sheets is comparable to those of the Marnoso-arenacea 

Formation examples. Those shown by Laird (1970, fig. 1) are similar, albeit more pervasively 

developed, to the vertically more extensive (centimetre-scale) sheets described here (for 

example, Fig. 5C and D). The Galway sheets occur in coarse-grained massive sandstones 

greater than medium grade, but are absent from laminated/stratified intervals and 

commonly display branching patterns. The Marnoso-arenacea sheets, in comparison, occur 

within finer (fine-grained) sandstones, often with discernible stratification and rarely 

display branching patterns in outcrop (although this may be seen in slabbed sections, for 

example Fig. 8E). Texturally the Galway and Marnoso-arenacea sandstones both show an 

imbricated flow-parallel preferred grain orientation fabrics (a(p)a(i), sensu Baas et al., 2007) 

being also parallel to sheets. In both examples, sheets are lighter with comparatively low 

matrix (mud) content. Laird (1970) notes that sheets may be coarser grained than the 

surrounding rock. Sheets in sandstones of the Aberystwyth Grits in Wales show alignment 

with grooves in associated beds and are texturally distinct with a larger grain size and ‘less 

matrix’ (Wood & Smith, 1958).  Those of the Marnoso-arenacea typically only display subtle 

variations in grain size between sheet and surrounding rock in outcrop or the thin sections 
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examined. Uniquely in the examples described here, the alignment of sheets with sole 

marks can be demonstrated within the same bed. 

 

Formation of current-aligned sheets  

Laird (1970) interpreted flow-aligned sheets to be produced by suspension sedimentation 

from sediment gravity flows. In this model, convention cells are proposed to develop during 

differential settling of grains with mud being preferentially elutriated in upwelling zones. 

This idea was developed with reference to settling tube experiments by Kuenen (1968), 

who observed the formation of tube-like water escape routes and ‘veins’ of cleaner sand in 

the deposits. Laird (1970) proposed sheets developed by tubes coalescing into continuous 

water-escape structures, encouraged by the primary flow-aligned grain fabric. However, it 

is difficult to envisage how a strong primary grain fabric, as seen in the Marnoso-arenacea 

and Galway turbidites, could have formed or been preserved if such features were 

produced by convention cells during settling of grains within a fluidised or hindered-settling 

dominated depositional-boundary layer, sensu Branney & Kokelaar (2002). 

 Based on the Marnoso-arenacea sandstones, a modified model is proposed to 

explain the formation of current-aligned sheets (Fig. 12). Here sheets are considered to be a 

product of gentle dewatering soon after deposition as opposed to at the time of deposition 

as in the Laird (1970) model. First, deposition occurs from a suspension flow, followed by a 

period of bedload transport under upper stage plane bed probably with high near-bed 

concentration conditions, forming a deposit with a strong preferred current-aligned grain 

fabric and enhanced lineations. Water escape subsequently occurs preferentially along 

higher permeability zones, as controlled by subtle textural and permeability variations 

within the primary depositional fabric. In this manner enhanced lineations probably 
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controlled the development of sheets. With dewatering focussed along current-aligned 

heterogeneities, sheet-like water expulsion channels propagated upward forming texturally 

distinct sheets by the elutriation of clay, a process that subsequently controlled local 

cementation patterns.  

The basal parts of beds usually show no dewatering structures, including an absence 

of sheets as do those examples from Galway and Aberystwyth; this suggests that a critical 

thickness of sand was required to initiate significant water escape. Dewatering (and 

liquefaction) within sheet-bearing sands was non-catastrophic, preserving the primary 

fabric and hence probably occurred by slow percolation of water through a grain-supported 

framework (i.e. seepage, sensu Lowe 1975). More vigorous water escape with localised 

fluidisation may have occurred in the case of the Galway and Aberystwyth Grits sheets 

causing stronger textural differences. The timing of dewatering and sheet formation was 

probably before deposition of the whole event bed, as suggested by undisturbed capping 

mudstones that lack sandstone/siltstone injections. Sheets terminate at horizons within 

sand beds, as for example can be clearly seen in the Cabelli River section example (Fig. 5). 

These sheets may therefore be interpreted to have formed during deposition of the 

aggrading sand bed. 

 

Use of sheets as palaeocurrent indicators 

The Marnoso-arenacea and Galway dewatering sheet examples demonstrate that such 

structures could be useful palaeoflow indicators. However, their use without other current 

structures to confirm their palaeoflow significance is problematic. Assuming that sheets 

form by water escape following the primary grain orientation fabric, they could have a 

variety of orientations relative to current direction given that parallel, transverse and 
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oblique grain-orientation fabrics can occur in sandstones (as shown for turbidites by Baas et 

al., 2007). Moreover, sheets are noted with no obvious orientation relative to palaeoflow 

(e.g. Haughton 1994). In the case for sandstones with no preferred grain orientation fabric 

or undergoing hydroplastic shear their orientation may be expected to be random or locally 

highly variable. This feature may be obvious in outcrops with good ‘bedding’ plane 

exposures but more difficult to identify in core. This makes the use of sheets as ‘stand-

alone’ current indicators at present challenging.  

An alternative method for determining palaeoflow from dewatering sheets is by 

using the vergence of inclined sheets, where their inclination can be related to shearing of 

an overpassing flow (e.g. Haughton, 1994). Shearing must be in a direction normal or at a 

relatively high angle to sheets to generate significant inclination. A current-aligned 

dewatering sheet would not be expected to show significant inclination, assuming that the 

current maintains a consistent flow direction, because shear will be in the same direction as 

the sheet strike. Dewatering sheets developed transverse or oblique to current direction, 

however, should show inclination. Current direction, however, can change direction during 

a flow event and in this case current-aligned sheets could become inclined. A deflected flow 

model, for example, is proposed for beds of the Sorbas Basin, to explain the difference in 

vergence of inclined sheets and overturned soft-sediment folds to that of sole marks within 

the same bed (Haughton, 1994). The Galway sheets also show significant inclination in 

some beds despite being current-aligned (for example, fig. 2 in Laird, 1970). Their 

inclination could potentially be related to shear imposed by an overpassing flow moving in a 

different direction to the initial current. 
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Implications for hydrocarbon reservoirs 

Dewatering sheets of various types are noted to be common in a number of deepwater 

sandstone reservoirs, for example, Palaeocene, Heimdal Formation, North Sea (Hurst & 

Buller, 1984) and the Late Cretaceous, Britannia Formation, North Sea (Lowe & Guy, 2000; 

Barker et al., 2008; Eggenhuisen et al., 2010). Their presence may enhance overall reservoir 

quality (porosity and permeability) if sheets are relatively clean (mud and carbonaceous 

poor) or have the converse effect if they are more heavily cemented (as is the case for the 

Marnoso-arenacea outcrop examples and Britannia Formation core; Barker et al., 2008). 

Studies from cores do not provide details of sheet orientation or their relation to 

palaeoflow probably because this is difficult to ascertain. For reservoirs where sheets are 

petrophysically distinct and are pervasively developed within key flow units, determining 

their orientation may be important given this could have implications for permeability 

anisotropy and hydrocarbon recovery. 

 

CONCLUSIONS 

Lineations and dewatering sheet structures have been described that show alignment to 

the palaeoflow direction of the depositional currents, as ascertained independently from 

palaeoflow indicators within beds. Such structures occur within sandstones often displaying 

dewatering fabrics but also within dune cross-stratified sandstones.  

Lineations on depositional planes are inferred to be an enhanced type of primary 

current lineation produced by turbulence on the bed during bedload transport under upper 

stage flow conditions. Their larger physical scale compared to ‘classic’ primary current 

lineation is taken to reflect formation under certain flow conditions, notably relatively high 

near-bed sediment concentrations (as supported by laboratory studies on sediment 
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transport, e.g. Weedman & Slingerland, 1985). This interpretation can also explain the 

presence of dewatering structures within beds and the lack of typical upper stage plane bed 

facies (i.e. sandstones with well-defined planar-parallel lamination).   

Current-aligned dewatering sheets are inferred to be a product of gentle dewatering 

(seepage or localised fluidisation) where pathways of water escape were controlled by the 

initial bed permeability heterogeneity, dictated by enhanced lineation structures and the 

flow-parallel grain orientation fabric developed during deposition. Such structures are 

known from only a few other outcrop examples (Laird, 1970). Uniquely in the Marnoso-

arenacea examples, the alignment of sheets with sole marks can be demonstrated within 

the same bed providing additional proof of their relationship to depositional flow.  

Current-aligned sheets can provide an additional measure of palaeoflow direction in 

certain systems such as the Marnoso-arenacea. However, using these structures more 

widely is problematic given that current-aligned dewatering sheets are at present 

indistinguishable from those that lack a relationship with palaeoflow. Furthermore, if their 

direction is controlled by the primary grain fabric they may also be expected to have 

transverse and oblique modes relative to palaeoflow, as occurs in the primary grain fabric 

of turbidite sandstones. Other flow indicators are hence required to verify the directional 

significance of dewatering sheets. Whilst current-aligned sheet structures are a relatively 

rare sedimentary structure, they are important because they demonstrate the intimate 

relationship between the primary sedimentary fabric and subsequent dewatering 

processes.  
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FIGURE CAPTIONS 

Fig. 1.  Location map of the Marnoso-arenacea Formation in northern Italy showing 

measured sections of the Contessa stratigraphic-level: those with lineations/sheet 

structures are numbered. Photographs of current-aligned lineations and sheets in 

subsequent figures come mostly from the Taverna section (43) and a river section close to 

the Cabelli-1 section (29). Further details of measured sections including grid references can 

be found in Table S1 of Amy & Talling (2006). 

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3091.2007.00858.x
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3091.2007.00858.x
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Fig. 2. Sedimentary logs of beds with current-aligned lineations and sheets from the Cabelli 

river and Taverna section (numbered 29 and 43 in Fig. 1, respectively). Beds typically show 

an upwards succession from: (i) erosional based traction structured or structureless 

sandstones into; (ii) corrugated, hummocky-like, dish-structured and convolute millimetre 

to centimetre-scale stratification with lineations and/or sheets passing finally into; (iii) 

capping mudstone. Some beds contain an additional muddy sandstone ‘slurried’ debritic 

interval (grey shading) between (ii) and (iii). In each bed palaeoflow derived from sole 

marks have a similar orientation to the strike of lineations and sheets within the bed.  

 

Fig. 3. Stratification planes displaying current-aligned lineations from the Taverna and 

Cabelli river sections. (A) Subtle lineations with no apparent vertical continuity defined by a 

small-scale wavy microtopography. (B) Light-coloured lineations with a well-developed 

ridge and trough type microtopography. Pillars cannot be seen in cross-section but the 

vertical stacking of some lineations (arrowed) suggests these are vertical sheet structures. 

(C) Sheet-related, dark-coloured lineations in an interval expressed as centimetre to 

decimetre-scale pillars in cross-section (see Fig. 5A to D). (D) Very distinct centimetre-scale 

sheets that cross crude stratification (arrowed). (E) Close-up of lineations shown in (B) 

illustrating the lighter coloured texturally indistinct (at this scale) nature of ridges. (F) Close-

up of lineations shown in (D) showing the more heavily cemented lineations (arrowed). 

Bottom left scale bar in each photo is 1 cm.   

 

Fig. 4. Examples of facies containing lineations and current-aligned sheets. (A) Corrugated 

stratification displaying pinching and swelling and a distinct smaller-scale microtopography 

on bedding surfaces. (B) Similar type of facies albeit with less clear stratification and with 

sheets seen as pillar structures in cross-section (hammer handle for scale). (C) Corrugated 

stratification and hummocky-like sandstones with lineations on depositional planes (A4 

notebook for scale). (D) Hummocky-like stratified sandstone showing typical friable 

weathering pattern (compass for scale circled). Photographs (C) and (D) are from the 

Taverna section. 

 

Fig. 5. Photographs of a bed in the Cabelli river section that displays well-developed 

current-aligned sheets (see Fig. 2A for graphic log). (A) and (B) Exposure showing flat-lying 
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dish structures in the lower part of the bed overlain by a zone of sheets (arrowed).  (C) and 

(D) A nearby less weathered exposure showing several sets at different levels within the 

bed (marked ‘1’ and ‘2’) of weakly inclined sheets. Convolute lamination occurs towards the 

top of the bed and is cross-cut by sheets that stop at the boundary with the overlying slurry 

unit. (E) Stratification plane exposure showing corrugated-type stratification and (F) 

undulating-convolute stratified sandstone with current-aligned fold axes above which 

sheet-related lineations are seen with the same orientation (Fig. 3C).  

 

Fig. 6. Small-scale, dune cross-stratified sandstones with sheet structures seen in Bed 3 of 

the Taverna section (see Fig. 2D for graphic log). (A) Lineations on the lee-side of a curved 

crested dune. (B) Foreset cross-strata. (C) Sandstone bedding plane showing the local 

variation in lineation trend locally around the curvature of the dune crest. (D) Close-up of 

lineations on the dune crest which are relatively distinct, thick and vertically continuous.  

 

Fig. 7. Directional data for (A) flutes, (B) grooves, (C) ripples, (D) lineations including five 

sheet structures and (E) the deviation of lineations from sole marks in the same bed. The 

number of measurements (n), mean resultant direction (α) and circular standard deviation 

(β) are shown in the inset table. Data recorded from measured sections of the post-

Contessa Bed stratigraphic interval reported in Amy & Talling (2006).  

 

Fig. 8. Photographs of sheeted sandstone sample from Bed 3 in the Taverna section (see 

Fig. 2 for measured section) taken for thin sectioning. (A) Top weathered surface showing 

faint lineations. (B) Underside showing more distinct lineations on fresh surface. (C) 

Upcurrent side view normal to bedding showing corrugated-type stratification and faint 

sheets. (D) Current-parallel view normal to bedding showing cross stratification. (E) and (F) 

Internal surfaces of the cut section (bed normal and perpendicular to sheet strike) showing 

more clearly sheets in cross-section. Thin sections with various orientations relative to 

sheets were taken from this sample. Scale: the sample is 14 cm long and 4 cm thick. 

 

Fig. 9. Photomicrographs of a thin section (B1) cut in a bed normal and transverse to sheet 

orientation. The sandstone is a calcite cemented quartz arenite with subordinate feldspar, 

biotite and lithic grains. (A) View of lighter coloured sheet and (B) magnified view of sheet 
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showing heavily calcite cemented grains and limited clay matrix. (C) View of intra-sheet 

area and (D) magnified view showing common interstitial clays between grains. 

 

Fig. 10. Scanned images of thin sections and rose plots of the long-axis orientations of 

elongate black and brown grains. Thin sections are cut: (A) normal to both bedding and 

sheets; (B) and (C) parallel to bedding; (D) normal to bedding and parallel to sheets within a 

sheet and; (E) normal to bedding and parallel to sheets between sheets. Lightered coloured 

sheets are clearly visible in (A), (B) and (C). Plotted long axis directions are normalised to 

vertical (as indicated by way-up arrow) in (A), (D) and (E) and to the average sheet direction 

in thin section for (B) and (C) (i.e. 0/360o = vertical or sheet direction).  

  

Fig. 11. (A) and (B) Photographs of two sheets in thin section B2 (cut parallel to bedding) 

with sheet margins indicated by dotted lines. Rose diagrams showing the orientation of (C) 

and (D) all elongate grains larger than ca 100 um in each photograph, (E) all grains for both 

photographs and (F) and (G) those grains only within sheets as indicated by dotted lines. 

Note that grain directions are normalised to photograph orientations.  

 

Fig. 12. Model for the formation of current-aligned dewatering sheets. (A) Deposition under 

upper stage plane bed conditions with high near-bed sediment concentrations forming a 

sand interval with a current-aligned grain fabric and enhanced primary current lineation 

structures. (B) Gentle dewatering of sand soon after deposition possibly before cessation of 

the sandy current. Water escape follows the primary current fabric locally elutriating 

detrital clay forming cleaner vertical sheets and modifying the stratification.  

 

Table 1. Summary of the characteristics of current-aligned sheets in the Marnoso-arenacea 

Formation (this study) and from other outcrops. 
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Characteristics Marnoso-arenacea, Italy  
(this study) 

County Galway, Ireland  
(Laird, 1970) 

Aberystwyth, Wales  
(Wood & Smith, 1958) 

Sheet morphology  Cross-section: Usually straight, vertical normal to 
bedding, millimetres to several centimetres long, subtle 
lighter coloured pillars sometimes harder and texturally 
distinct. Often terminate at internal stratification but can 
pass through. Rarely branch downwards (for example, 
Fig. 7E). Single example of longer (tens of centimetres), 
steeply dipping sheared forms (Fig. 4E).  
 
Plan view: Straight to gently curved, 1 to 5 mm in width, 
up to 0.5 m long and 1 to 3 cm apart usually regularly 
spaced. Usually ubiquitous across bedding plane. 
 

Cross-section: Slightly sinuous, sub-parallel, mainly 
vertical – normal to bedding – streaks, lighter coloured 
and more resistant than host rock, 1 to 50 cm in height. 
Occasionally branch downwards, steeply dipping and/or 
highly sinuous wave-like form (sheared).  
 
 
 
Plan view: Straight or slightly wavy pattern of sub-parallel 
lines, 1 to 2mm in width and spaced 1 cm apart occurring 
in swarms.  
 

Thin, light-coloured, semi-parallel sheets with lower 
matrix content and larger grain size. Developed normal 
to bedding, planar in form with occasional branching. Do 
not occur within the base of beds.   

Grain fabric  
(from thin section) 

Subtle difference between sheets and interstitial 
material. Light-coloured sheets have less matrix mud 
content and enhanced calcite cement. No discernible 
grain size difference. Strong long axis grain fabric aligned 
to palaeo-flow direction and with an up-current 
imbrication.  
 

Subtle difference between sheet and interstitial material. 
Light-coloured sheets have slightly less matrix and larger 
grains of quartz and feldspar. Strong long-axis grain 
alignment – parallel to as the sheet direction – and 
preferred long axis imbrication. 
 

N/A 

Host facies  Usually occurs within the middle to upper parts of 
sandstones beds (not in basal divisions) and within 
fine/fine-to-medium, relatively clean, sand. Sheets with 
limited vertical extent occur in sandstones exhibiting 
crude to well-developed planar, wavy, hummocky 
stratification often with a distinct superimposed 
corrugated form (interpreted as consolidation 
stratification). Rarer longer sheets occur in consolidation 
and dish-structured, convolute and dune-cross stratified 
sandstones. 
 

Limited to lower coarser and massive unlaminated 
portion in Bouma-type beds. May start anywhere in this 
interval and terminates abruptly upwards at the top of 
the massive interval or at an internal erosion surface. No 
sheets penetrate laminated intervals. Few start at the 
base of beds. None observed in beds with maximum 
grain sizes less than coarse sand. 
 

N/A 

Orientation to 
palaeoflow  

Sub-parallel, usually within 10o, to sole marks in the same 
of other beds (Fig. 6). Local deviation around dune crests. 
Parallel to primary current grain fabric: clear relationship 
with larger elongate mica grains (Fig. 9); identifiable but 
less clear for quartz and feldspar grains (Fig. 10). 
 

Generally parallel to sole marks in other beds (not 
observed in the same bed). Very clear parallel 
relationship with primary current grain fabric. 
 

Sheet strike parallel to grooves on the base of associated 
beds but also nearly parallel to the strike of cleavage. 

 

Table 1. Summary and comparison of the characteristics of current-aligned sheets in the Marnoso Arenacea Formation reported in this study 
to those of other outcrops. 
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