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Experimental evidence for drought 
induced alternative stable states of 
soil moisture
David. A. Robinson1, Scott B. Jones2, Inma Lebron1, Sabine Reinsch1, María T. Domínguez1,3, 
Andrew R. Smith1,4, Davey L. Jones4, Miles R. Marshall1 & Bridget A. Emmett1

Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling 
and observational data broadly support the theory of ASS, however evidence from manipulation 
experiments supporting this theory is limited. Here, we provide long-term manipulation and 
observation data supporting the existence of drought induced alternative stable soil moisture states 
(irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated 
repeated moderate summer drought, and intense natural summer drought both lowered resilience 
resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter 
soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, 
that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; 
both for the experimental drought manipulation and control plots, impairing the soil from rewetting in 
winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. 
Further independent evidence supports our findings from historical soil moisture monitoring at a long-
term upland hydrological observatory. The results herald the need for a new paradigm regarding our 
understanding of soil structure, hydraulics and climate interaction.

Ecologists ~40 years ago1,2 first proposed that communities or ecosystems can be found in one of several possible 
alternative stable states. The theory of ASS predicts that under the same environmental conditions an ecolog-
ical system can potentially exist in different, but stable states following a perturbation3–5. Mathematical mod-
els have played an important role in demonstrating the implications of the theory, which is only supported by 
limited empirical evidence6. However, much of the evidence is from analysis of historical records and rarely 
from manipulation experiments7, offering only indirect evidence which remains open to alternative explanations. 
Conceptually, ASS can be considered to arise from either a constant environment with shifts in variables, or 
alternatively from a shifting environment and change to underlying parameters. This is proposed to be the case in 
this work; drought eroding the resilience of the soil structure leading to a shift in soil hydraulic parameters lead-
ing to irreversible soil wetting behavior. Hence the data we present is important, offering the first experimental 
evidence of alternative soil moisture states induced by climate extremes, in this case drought, and changing our 
understanding of soil moisture dynamics.

Current predictions of climate change across Europe indicate changes to the periodicity and intensity of rain-
fall patterns8 which may increase the likelihood of extreme winter and summer weather events for Northern 
Europe. A consequence of this is that we are likely to see changes that increase the range of soil moisture highs and 
lows, with important consequences for soil mediated processes in terrestrial ecosystems such as soil respiration, 
net primary productivity and biogeochemical cycling. Moreover, recent research has shown that general circula-
tion models cannot be based on atmospheric circulation alone, but must incorporate the role of land-atmosphere 
coupling, in particular soil moisture – temperature coupling9.

Results
Using a long-term drought experiment in Wales (UK)10 we simulated a modest, sustained reduction of summer 
rainfall (20–26%) over 15 years. Our site has a podzolic organo-mineral soil, with an organic horizon (~10 cm) 

1NERC- Centre for Ecology and Hydrology, Deiniol Road, Bangor, UK LL57 2UW. 2Department of Plants, Soils and 
Climate, Utah State University, 4820 Old Main Hill, Logan Utah, 84321-4820, USA. 3Instituto de Recursos Naturales 
y Agrobiología de Sevilla (IRNAS-CSIC), Spain. 4School of Environment, Natural Resources and Geography, Bangor 
University, UK. Correspondence and requests for materials should be addressed to D.A.R. (email: davi2@ceh.ac.uk)

received: 11 September 2015

accepted: 23 November 2015

Published: 25 January 2016

OPEN

mailto:davi2@ceh.ac.uk


www.nature.com/scientificreports/

2Scientific Reports | 6:20018 | DOI: 10.1038/srep20018

overlying a mineral soil layer (~18 cm) over weathered fractured mudstone of the Denbigh Grits Formation (see 
Supplementary Fig. S1 online). Soil moisture data were collected for 15 years from the upper organic soil horizon 
(~10 cm). Figure 1 presents control and drought treatment averaged soil moisture data measured from within 
plots since 1998; the black line represents modelled soil moisture based on hydraulic properties of the control 
treatment. In an analysis of soil moisture data from the site early on in the experiment, 1999–2003, Sowerby  
et al.11 observed a divergence between the control and drought treatments. This divergence, plotted as the green 
markers in Fig. 1, has remained consistent with those early observations, with as much as a 0.3 m3 m−3 difference 
between drought and control moisture in summer, reducing to a maximum difference of 0.1 m3 m−3 in winter. 
However, at the beginning of 2004 a step change occurred for both the control and drought treatments, such that 
neither treatment rewetted in winter to the levels observed in the early years of the experiment (~0.7 m3 m−3). The 
most significant event at this time was the intense hydrological drought that began in England and Wales in 2003 
and reached its zenith at the site in the summer of 200512.

We investigated these observed changes in soil moisture retention with a combination of detailed plot meas-
urements and modelling to understand how these changes in soil moisture occurred, with an apparent transition 
to new stable states for both control and drought treatments in spring 2004. The experiment tested the hypothesis 
that repeated summer drought shifts the soil moisture retention, reducing it compared to control. The mechanism 
behind this hypothesis is triggered by our theory that the organic horizon is increasingly oxidized during the 
drought periods, resulting in enhanced organic matter mineralization, which is usually limited by water-excess, 
low oxygen conditions in this wet heathland. This carbon loss would result in a degradation of the organic soil 
structure, lowering resilience, leading to a positive feedback, decreasing soil moisture retention capacity and 
increasing oxygen. If this is the case the water retention in the drought treatment should diverge below that of the 
control. In addition, soil respiration should increase in the drought plots as carbon is lost.

Results in Fig. 2A confirm that the moisture retention curves between control and drought treatments have 
changed, resulting in a 0.29 m3 m−3 reduction in drought treatment moisture retention compared to control near 
saturation (− 1 kPa). Recent work13 at the same site showed an average respiration stimulation of ~20–26% in 
the drought plots suggesting soil carbon degradation, supporting the hypothesis that a change in soil moisture 
retention capacity occurred due to a loss of soil organic matter. Further support is added from observed changes 
in soil bulk density which decreased significantly (t-test, p <  0.01) from 0.137 g cm−3 (SD =  0.069) in the control 
to 0.097 g cm−3 (SD =  0.049) in the drought plots due to carbon loss in the O-horizon (top 0–10 cm). The conse-
quences of soil structural changes mean that after stopping the drought treatment there is unlikely to be a rapid 
return to initial soil moisture levels. This hysteretic response is indicative of a new stable state for soil moisture 
after repeated modest droughts14.

The change in soil water retention capacity accounts for the differences observed between treatments, but it 
doesn’t explain why the control plots stopped rewetting in winter after the 2003–2006 drought period. To fully 
understand the impact of both experimental and natural drought on soil moisture dynamics further hydraulic 
measurements were made. In addition to the measurement of the soil water retention curves, hydraulic conduc-
tivity measurements and additional soil moisture measurements were conducted within the plots from 2011–2013  
to provide more data to better parameterize a 1-D hydrological model15. Saturated hydraulic conductivity was 
determined based on laboratory and field measurements (Ksat control 238 cm day−1; drought 670 cm day−1; min-
eral subsoil 106 cm day−1) (Fig. 2B shows the unsaturated hydraulic conductivity); a list of measurements used to 
parameterize the model are presented in Supplementary Table S1 (online). An independent soil moisture sensor 
was used at the field site to measure moisture content (0–10 cm) in all the plots, and in a 0.5 m2 Calluna free area 

Figure 1.  Soil moisture measurements (0–10 cm) from the climate change manipulation experiment from 
1998 to date (blue dots, mean of the control sensor measurements; red dots, are the mean for drought 
sensor measurements, green crosses show difference in soil moisture between the control and drought 
treatments). The black line is a simulation of soil moisture (0–10 cm) using Hydrus 1-D15, based on soil 
hydraulic parameters determined from the control plots(Table S1), assuming a seepage face lower boundary 
condition (38 cm) inducing a perched water table above the weathered bedrock-soil interface (Control PW). 
The red dashed lines indicate a step change in winter soil moisture levels considered a consequence of the 
intense natural drought between 2003 and 2006.
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outside each plot where vegetation had been removed at the beginning of the experiment (1999), effectively allow-
ing a third treatment to test the model against. Observation of soil close to saturation in winter in these Calluna 
free areas, but unsaturated subsoil/weathered rock below the mineral layer, led to initial model parameterization 
using a seepage face lower boundary condition (Figs 1 and 3A); restricting water flow and resulting in perched 
water in the organic horizon. The simulation worked well for both control and drought prior to the onset of the 
natural drought from late 2003–2006 (see Supplementary Fig S2 online), and for the Calluna free areas (Fig. 3A). 
However, when the same boundary condition was applied to the 2011–2013 control and drought plot data there 
was poor correspondence (Fig. 3A). The plots showed no sign of saturated conditions and so the simulation lower 
boundary condition was altered to free drainage, removing the perched water and improving the performance of 
the model to match measured plot data (Fig. 3B). Fig 3B and the Calluna free area in Fig 3A essentially illustrate 
the coexistence of three alternative stable states where the parameters are altered due to drought and presence or 
absence of vegetation cover.

Discussion
These results indicate two distinct processes operating as a consequence of drought, firstly a gradual erosion of 
organic matter due to the sustained moderate drought, restructuring the organic layer and reducing the moisture 

Figure 2.  (A) Soil water retention curves measured in the three control and three drought plots (0–5 cm) 
and subsoil (10–15 cm). The data shows lower water retention in the drought treatment, considered to result 
from degradation of soil carbon, which substantially reduces the soils ability to retain water at a given suction 
compared to the control. The data are modelled using the bimodal Mualem-Durner dual porosity model24 
and the parameters obtained were used in the Hydrus 1-D simulation model. B) The corresponding hydraulic 
conductivity data modelled using the Peters and Durner hydraulic conductivity model25.

Figure 3.  This figure indicates the existence of three stable soil moisture states possibly induced by rainfall-
vegetation interaction. Independent measurements of soil moisture (0–10 cm) with fifteen measurements per 
treatment averaged. (A) Comparison of the measurements for both Calluna free area and plots with the Hydrus 
1-D soil hydraulic model simulation, assuming a seepage face lower boundary. (B) The same data for the plots 
only but with the simulation bottom boundary condition changed to free drainage (black line of the control 
with seepage face shown for comparison).
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retention characteristics in the drought treatment compared to control; this accounts for soil moisture differences 
observed in Sowerby et al.11. Secondly, a step change in soil moisture retention affecting both control and drought 
treatments following the intense natural drought period (2003–06), after which soil moisture levels never reached 
saturation again. The combination of measurements and modelling indicate that the bottom boundary behavior 
was modified during this period, changing from seepage face behavior before 2004, to free drainage after. The soil 
under the Calluna free areas did not shift, and still retained water, indicating that the presence of Calluna may be 
key to the change in boundary condition behavior. Data on root distribution supports a migration of roots down 
into the soil profile (see Supplementary Fig. S3 online) but not deep into the mineral layer. Though desiccation of 
the mineral soil by water uptake suggested by the simulation could have caused cracking. Similar structural mod-
ification of soil by C. vulgaris leading to soil pipe development has been observed in peat, resulting in increased 
drainage16.

Whilst alternative stable soil moisture states have been proposed to exist in savannahs17, this is the first manip-
ulation experiment evidence for soils in any system. No major shift in the above ground vegetation has occurred, 
but the C. vulgaris in the drought treatment has transitioned to a degraded state with the canopy structure open-
ing up and a decrease in the amount of C-fixing biomass observed during the experiment. Though no above 
ground change in vegetation species richness or abundance has occurred, the change in soil water release charac-
teristic below ground shows that the soil has been degraded lowering the soil moisture storage capacity.

Trawling through historic data from similar sites enabled us to find comparable response patterns following 
drought on similar soils18 (see Supplementary Fig. S4 online). The data indicate that organic peat has a greater 
ability to buffer drought, presumably because of its greater moisture storage capacity than thinner, more vulner-
able, organo-mineral soils. Though our evidence is restricted to organo-mineral soils, it has called us to question 
if the hydraulic modification of a lower impeding soil horizon is a more widespread phenomenon and an integral 
part of soil formation in young soils? Part of soil formation is often the development of a B-horizon where finer 
mineral materials accumulate reducing hydraulic conductivity. Could drought therefore cause an oscillation in 
soil moisture states as drought fractures a B-horizon over a more conductive C-horizon creating a hydraulic 
breach which may reseal between droughts? In time, one would assume that the thickness of the B-horizon would 
become such that it would overcome any vulnerability, no longer being susceptible to breach due to desiccation 
and so any oscillation would cease.

Wet organo-mineral soils contain considerable organic carbon stocks and have a particular vulnerability to the 
predicted changes of temperature and rainfall9. The increased oxygenation in these soils due to changing rainfall 
patterns could lead to the release of substantial amounts of soil organic carbon as soil respiration is enhanced 
under drier soil conditions, this response having potential broad implications for a positive feedback between 
terrestrial ecosystems and climate change17. Our results clearly show that both repeated modest, and intense 
drought eroded the resilience of these organo-mineral soils through changes in key hydraulic parameters, result-
ing in new stable states of soil moisture that persist after drought cessation. Failure to predict the existence of these 
ASS might lead to inaccuracies in the projections of carbon emissions from terrestrial ecosystems to different 
climate change scenarios. These projections need to be able to simulate changes in the range of soil moisture 
due to increasingly frequent drought events, considering the resilience of soil physical parameters as a dynamic 
property of the ecosystem.

Methods
Field site.  The study was conducted at the Clocaenog climate change field site in NE Wales, UK, which has 
been described elsewhere11,13. The ecosystem is an upland Atlantic heathland dominated by Calluna vulgaris (L.) 
Hull. Whole-ecosystem simulation of drought and control was started in 1999 and has been running to date. 
Drought and control blocks were established at the site, each one with three experimental plots (4 ×  5 m) ran-
domly allocated. Fully automated retractable curtains were placed over the plots to exclude the rain from the plots 
from June to September annually. These produced on average a 20–26% reduction in rainfall input during the 
time the roofs were active over the summer. The site has podzolic organo-mineral soils, these soils have an organic 
rich horizon (organic matter content 89%) ~10 cm deep overlying a mineral soil layer (organic matter content of 
37%) ~28 cm thick. They are classified as Ferric stagnopodzols in the Hafren Series in the Soil Survey of England 
and Wales19, and as Endoskeletic Histic Stagnic Albic Podzols in the IUSS Working Group WRB20 classification. 
The field site has intensive monitoring equipment including a meteorological station, the data from which were 
used as drivers in the modelling. Data for the Climoor experiment is available through the EIDC (http://eidc.ceh.
ac.uk/).

Soil moisture.  This was measured at the site between 1998 and 2008 using a handheld soil moisture sensor 
(ThetaProbe ML2, Delta-T Devices Ltd, Cambridge), and in later years, 2008 to present, using embedded mois-
ture sensors (TDR, Campbell Scientific Ltd, Shepshed). Additional independent measurements made between 
2011 and 2013 were collected using a handheld dielectric sensor21 (TDR, Soil Moisture Equipment Corps, Santa 
Barbara, CA). Calibration of sensors was checked by comparing sensor measurements with volumetric soil mois-
ture measurements using field soil, dried in the oven at 105 °C.

Hydraulic measurements.  Soil water release curves were measured on 250 cm3 soil cores, 0–5 cm deep, 
extracted from each plot under heather. Water release curves typically took one month to determine using the 
laboratory evaporation method using a hyprop22 (UMS, Munchen, Germany). The very dry end of the water 
retention curve (Fig. 2) was measured on samples using a WP4 (Decagon devices, Pullman, Washington, 
USA)23. Hydraulic conductivity was determined at low suctions (1–6 cm) with the hyprop and at high suctions  
(30–800 cm) in the field using a mini-disk infiltrometer (Decagon devices, Pullman, Washington, USA). Moisture 
release curve data was modelled using HYPRO-FIT software (UMS, Munchen, Germany) to determine hydraulic 
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parameters using the Mualem-Durner bimodal soil water retention curve24 and the Peters and Durner hydraulic 
conductivity model25.

Soil moisture model.  A numerical model (Hydrus 1-D)15 was used to simulate soil moisture for the entire 
soil, from which moisture values presented for the 0–10 cm layer were extracted. The hydraulic, soil and plant 
parameters were measured from the field site and the driving meteorological data was measured at the field site, 
and where required infilled with data from a nearby weather station at Alwen26. The simulation was run from 
01/01/1998 with initial conditions set to field capacity. The potential ET was determined from available daily 
precipitation, and max/min temperature data using the Hargreaves formula27 and the upper boundary condition 
was set to atmospheric with surface runoff.
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