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Abstract 

Lough Neagh is the largest lake in the UK and has been extensively monitored since 1974.  It 

has suffered from considerable eutrophication and toxic algal blooms.  The lake continues to 

endure many of the symptoms of nutrient enrichment despite improvements in nutrient 

management throughout the catchment, in particular a permanently dominant crop of the 

cyanobacterium Planktothrix agardhii.  This study examines the historical changes in the 

Lough, and uses the PROTECH lake model to predict how the phytoplankton community 

may adapt in response to potential future changes in air temperature and nutrient load.  

PROTECH was calibrated against 2008 observations, with a restriction on the maximum 

simulated mixed depth to reflect the shallow nature of the lake and the addition of sediment 

released phosphorus throughout the mixed water column between 1 May to 1 October (with 

an equivalent in–lake concentration of 2.0 mg m-3).  The historical analysis showed that 

phytoplankton biomass (total chlorophyll a) experienced a steady decline since the mid-

1990s.  During the same period the key nutrients for phytoplankton growth in the lake have 

shown contrasting trends, with increases in phosphorus concentrations and declines in nitrate 

concentrations.  The modelled future scenarios which simulated a temperature increase of up 

to 3 oC showed a continuation of those trends i.e. total chlorophyll a and nitrate 

concentrations declined in the surface water, while phosphorus concentrations increased and 

P. agardhii dominated.  However, scenarios which simulated a 4 oC increase in air 

temperature showed a switch in dominance to the cyanobacteria, Dolichospermum spp. 

(formerly Anabaena spp.).  This change was caused by a temperature related increase in 

growth driving nutrient consumption to a point where nitrate was limiting, allowing the 

nitrogen-fixing Dolichospermum spp. to gain sufficient advantage.  These results suggest that 

in the long term, one nuisance cyanobacteria bloom may only be replaced by another unless 

the in-lake phosphorus concentration can be greatly reduced.  



1. Introduction 

In the latter half of the twentieth century, anthropogenic nutrient enrichment of freshwater 

lakes has been widespread and often damaging to ecosystems.  The largest lake in the United 

Kingdom (UK), Lough Neagh has been no exception to this trend and forms the focus of this 

study.  This polymictic, naturally mesotrophic lake has become much enriched as a result of 

anthropogenic eutrophication, most of which occurred in the last century (Wood and Smith, 

1993).  Despite the recent changes in nutrient loading the lake is still currently classed as 

hypereutrophic with annual mean chlorophyll a and total phosphorus concentrations of 46 mg 

m-3 and 108 mg m-3 respectively in 2014.   

While many algal taxa are present in the Lough, for example the diatoms Stephanodiscus spp. 

and Aulacoseira spp. which have their peak biomass in spring, the phytoplankton is 

dominated by the cyanobacteria Planktothrix agardhii and Pseudanabaena spp. which form a 

perpetual large crop.  These cyanobacteria have the potential to produce toxins which pose a 

risk to both human and animal health (Briand et al., 2003; Codd et al., 2005).  Cyanobacteria 

may also pose problems in water treatment works with some toxins difficult to remove, 

especially during bloom periods (Hitzfeld et al., 2000).  Furthermore, in a future with a 

warmer climate, cyanobacteria are predicted to become more prevalent (Carey, et al., 2012; 

Elliott, 2012).  As Lough Neagh is the most important drinking water reservoir in Northern 

Ireland, supplying daily drinking water to approximately 1 million people, it is useful to 

understand and predict the behaviour of these cyanobacteria.  

The Water Framework Directive (WFD) (EU, 2000) is the major driver of water quality 

legislation for European States.  It is based on a holistic approach to water management and 

describes target biological elements, one of which is phytoplankton, which must be protected 

and /or improved through a required Programme of Measures.  According to the Directive, 



Lough Neagh is considered a Heavily Modified Water Body due to water level control, 

however, it still must achieve ecological improvement through a management plan.  In order 

to achieve a sustained reduction in cyanobacteria biovolume it is essential to make 

predictions regarding the response of lake phytoplankton to future changes in temperature 

and nutrient loading as temperature in the Lough is increasing and nitrogen loading from the 

catchment is decreasing (McElarney et al., 2015b).  In order to help inform the WFD 

Programme of Measures, we used a computer model called PROTECH (Elliott et al., 2010).  

PROTECH (Phytoplankton RespOnses To Environmental CHange) simulates the responses 

of up to 10 species of lake phytoplankton to seasonal changes at a daily time step.  It has been 

applied in over 35 peer reviewed studies and is one of the most cited lake models in the world 

(Trolle et al., 2012). 

The aims of this study were to examine the historical changes in the Lough, with particular 

emphasis on the phytoplankton and, through using the PROTECH model, to predict how the 

phytoplankton community may adapt in response to potential future environmental changes.  

The focus of these future scenarios was to assess the combined impact of increasing air 

temperature (predicted for this region of the UK to be between 1-4 oC over this century 

(Jenkins et al., 2009)) and reducing nutrient load, thus creating a range of potential scenarios 

likely to be seen in the 21st century. 

 

 

 

 

  



2. Material and methods 

2.1 Site description  

Lough Neagh is located in Northern Ireland with a surface area of 383 km2 and volume of 

3.45x109 m3.  Hydraulic residence time is approximately 1.2 years (Foy et al., 2003), mean 

and maximum depth are 8.9 m and 34 m respectively.  Six inflowing rivers drain 88% of the 

4,453 km2 catchment.  As well as being a drinking water reservoir, the lake has several 

conservation designations under the Ramsar convention (Ramsar Bureau, 2000), and the 

Habitats Directive (EU, 1997).  The lake supports a commercial fishery, primarily exploiting 

the European eel (Anguilla anguilla).  It is also part of the UK Environmental Change 

Network (ECN; Sier et al., this issue).  A more in-depth description of the lake and its 

catchment is provided in Wood and Smith (1993).   

2.2 Sampling 

Integrated water samples of 10m were collected by boat at a central lake location 

(approximately N54 35.779, W6 23.1301) either weekly (1980-1993) or fortnightly (1993 to 

present) using a lead-weighted polythene tube.   

2.3 Laboratory analyses 

Water chemistry and biological parameters were determined using standard methodologies 

(Wood and Smith, 1993).  Water chemistry methods for the entire time period were subject to 

internal Quality Control and external quality proficiency testing (Aquachecks) run by the 

Laboratory Government Chemists.  Certified reference materials were used. The laboratory is 

also currently UKAS accredited to ISO17025 and test methods are validated to UKAS 

standards.  Water samples were filtered using 0.45µm pore size GFC filters and analysed for 

soluble reactive phosphorus (SRP), nitrate, silica and chlorophyll a.  Chlorophyll a was 

extracted from the residue on the filter paper by being placed in tubes of 90% methanol in a 



water bath at 55 deg C, the pigment was measured spectrophotometrically after centrifugation 

(Talling and Driver, 1963).  Determination of soluble reactive P concentration followed the 

method of Eisenreich et al. (1975).  Samples were not available for 2009.  Silica 

concentration was determined by spectrometer according to Golterman et al. (1978).  

Analytical methods were consistent across the period with the exception of observations of 

nitrate concentration which, from 1980-2011, was determined by reduction to nitrite 

(Chapman et al., 1967) and from 2012 was determined according to Environmental 

Protection Agency (1993).  Nitrate is reported as nitrate N.  Phytoplankton samples were 

obtained from a composite water sample.  They were counted and their biovolume estimated 

using an inverted microscope (Lund et al., 1958; CEN, 2006; Brierley et al., 2007; Mischke et 

al., 2012).  A phytoplankton sample was counted for each month. 

2.4 Flow and nutrient data for rivers  

Nutrient loadings to the lake were calculated using monitoring results from the inflow of the 

major rivers.  Weekly river water samples were obtained over the time series and analysed for 

SRP, nitrate and silica fractions as for lake water samples.  Flow rates for the rivers were 

available from the Northern Ireland Rivers Agency in daily mean flows (m3 s-1).  Total 

phosphorus, silica and nitrate concentration entering the lake from each of the eight 

monitored inflowing rivers were calculated using nutrient-specific regression equations 

(equation 1): 

log10(Cij) = aj +bjlog10(Qij)         (1) 

 

where Cij is the nutrient concentration (μg l-1) for river j on day i, Qij is the river flow (m3 s-1) 

for river j on day i and aj and bj are regression parameter estimates for river j in 2008. 



Daily loads (kg), Lij, were derived by multiplying the daily concentrations (equation 1) by 

daily flow for river j on day i for 2008.  The load, Lij, was corrected for bias using Ferguson 

(1987) yielding Lcij, that is Lcij= Lij × exp(2.651sj
2) where sj is the estimated standard error of 

equation (1) for river j. The daily, Ferguson corrected, total loading to the lake from all of the 

rivers was derived by equation 2: 

𝐿𝑐𝑖 = ∑ 𝐿𝑐𝑖𝑗
𝑟
𝑗=1           (2) 

Where r is the number of rivers, Lci is the Ferguson corrected total loading of a nutrient to the 

lake and Lcij is the Ferguson corrected daily load for river j. 

 

2.5 Statistical analysis 

Mann-Kendall tests were used to detect monotonic trends in water chemistry.   This 

nonparametric test is based entirely on ranks and is robust against non-normality and 

censoring.  Missing values are taken into account and the method can be extended to account 

for seasonality (Hirsch et al., 1982 and 1991). 

 

2.6 The PROTECH model 

PROTECH simulates the responses of between 8-10 species of lake phytoplankton 

throughout a 1D vertical water column at daily time steps.  A full description of the model’s 

equations and concepts has been already published (Reynolds et al., 2001; Elliott et al., 2010) 

but the main biological component of the model can be summarised through the daily change 

in the chlorophyll a concentration (X/t) attributable to each phytoplankton taxon: 

X/t = (r’ – S – G –D) X           (3) 

where r’ is the growth rate defined as a proportional increase over 24 h, S is the loss due to 

settling out from the water column, G is the loss due to Daphnia grazing (it is assumed 



phytoplankton > 50 μm diameter are not grazed) and D is the loss due to dilution caused by 

hydraulic exchange. The growth rate (r’) is further defined by: 

r’ = min {r’(,I), r’P, r’N, r’Si}  (4) 

where r’( ,I) is the growth rate at a given temperature and daily photoperiod and r’P, r’N, r’Si 

are the growth rates determined by phosphorus, nitrogen and silicon concentrations below 

these respective threshold concentrations: < 3, 80 and 500 mg m-3 (Reynolds, 2006). The r’ 

values are phytoplankton-dependent (e.g. non-diatom taxa are not limited by silica 

concentrations below 500 mg m-3 and nitrogen-fixing cyanobacteria are not limited by 

nitrogen) and also relate to the morphology of the taxon. Temperature and light are varied at 

each time-step throughout the simulated water-column.  The value of X/t (Equation 3) is 

modified on a daily time-step for each algal taxon in each layer of the water column (layers 

are 0.1 m deep).  

The PROTECH model was set up to simulate the phytoplankton observed in 2008 in Lough 

Neagh.  This year was selected because it provided the most complete range of driving 

variables for the model and its assessment.  This included the flow and nutrient data 

calculated in section 2.4 and daily meteorological drivers (air temperature, wind speed, cloud 

cover) from Hillsborough.  The latter allowed PROTECH to calculate the lake water 

temperature and structure.  The eight phytoplankton genera selected to be simulated were 

Planktothrix (formerly Oscillatoria), Pseudanabaena, Aulacoseira (formerly Melosira), 

Aphanocapsa, Gymnodinium, Dolichospermum (formerly Anabaena), Chlorella and 

Plagioselmus (formerly Rhodomonas) and reflected the most abundant observed species. 

  Comparisons were made between the modelled and observed data and the coefficient of 

determination calculated. 

 

2.6 Future scenarios   



The 2008 simulation was taken as a baseline and then re-run through a combination of 

progressive changes to air temperature and nutrient load.  Each scenario was run for 10 years 

using the 2008 driving data repeatedly and the last year only was used for the analysis to 

allow the simulation time to stabilise under the new driving conditions.  The different 

scenarios were created by increasing the original air temperature incrementally by 1 oC 

(finishing with a 4 oC increase) and decreasing simultaneously the 2008 daily nutrient loads 

of SRP and nitrate by a factor of 0.8, 0.6, and 0.4.  This produced 20 scenario combinations 

(i.e. five different temperature and four different nutrient changes), including the baseline, 

and also covered a realistic range of predicted UK air temperature increases for the 21st 

century (Jenkins et al., 2009).Finally, the decision to alter air temperature alone, rather than 

in combination with other weather related variables, was made so that any simulated effects 

upon the modelled phytoplankton community could be easily proscribed to just this driver i.e. 

temperature. 

   



3. Results 

3.1 Historic observations 

Whilst the Lough’s key mean variables have varied considerably between years, there have 

been notable trends over the last 30 years.  Total chlorophyll a, a measure of phytoplankton 

biomass, has declined (Mann Kendall z score = -2.56, p < 0.05) over the entire period (Fig. 

1a).  The key nutrients for phytoplankton growth showed varying trends with SRP increasing 

highly significantly (Mann Kendall z score = 3.77, p < 0.001; Fig. 1b), silica remained 

unchanged (Fig1c) and nitrate concentrations declined (Mann Kendall z score = -2.22, p < 

0.05; Fig. 1d).  One of the key phytoplankton species over the study period has been the 

cyanobacterium Planktothrix agardhii (Fig. 2).  The species, which forms a large perpetual 

crop, has been decreasing in biovolume since the mid-1990s and closely follows trends in 

chlorophyll a, to which it contributes approximately 50% in the lake at present (McElarney et 

al., 2015a) and has been > 75% in the past (Gibson et al., 2000). 

 

3.2 Calibration and validation of PROTECH 

The only major calibrations to the model were to restrict the maximum simulated mixed 

depth to no deeper than 14 m from the bottom to reflect the shallow nature of the lake and to 

include sediment released SRP throughout the mixed water column between 1 May to 1 

October (with an equivalent in–lake concentration of 2.0 mg m-3); other coefficients were left 

at their standard values.  The resulting comparisons between observed and simulated 

variables for the year 2008 proved to be good for total chlorophyll a (R2 = 0.71, P<0.001) and 

that attributed to Planktothrix (R2 = 0.70, P<0.001) (Fig. 3).  The goodness-of-fit for other 

key modelled variables were also good, e.g. surface water temperature (R2 = 0.95, P<0.001), 

phosphorus (R2 = 0.87, P<0.001) and nitrate (R2 = 0.88, P<0.001) concentrations. 



 

3.3 Future scenarios 

The scenarios testing the sensitivity of the lake to future environmental change examined the 

interaction between changing air temperature and nutrient inputs.  The former had, of course, 

an effect on lake water temperature (Table 1) but it is interesting to note that the increase in 

water temperature was not as great as the corresponding air temperature, e.g. a 4 oC increase 

in air temperature only increased the mean annual water temperature by about 3 oC. 

Annual mean in-lake nutrient concentrations showed little change with increasing 

temperature except for the +4 oC scenarios (Fig. 4).  The largest changes occurred in 

scenarios where the nutrient loads had been reduced, although the direction of the response 

trend was dependent on the nutrient i.e. mean annual nitrate concentration decreased with 

decreasing loads whereas SRP increased. 

In terms of the simulated phytoplankton at the annual and seasonal scale, the mean total 

chlorophyll a showed little change below +4 oC except in response to declining nutrient load 

(i.e. SRP and nitrate) where it also showed a slight decline (Fig. 5).  Again, for the +4 oC 

scenarios there were large changes throughout most of the year (the spring period recorded 

the least change), with an increase in total chlorophyll a that became greater with declining 

nutrient load (Fig. 5). 

The main phytoplankton behind these predicted changes were the two cyanobacteria genera 

Planktothrix and Dolichospermum (Fig. 6).  The annual mean Planktothrix chlorophyll a 

followed closely the pattern of change seen for total chlorophyll a, with a large decline for 

the +4 oC scenarios and a marked effect of reduced nutrient load lowering the annual mean 

chlorophyll a concentration (Fig. 6a).  Conversely, Dolichospermum chlorophyll a only 

reached significant numbers at +4 oC and produced the highest values under the lowest 



loading scenarios (Fig. 6b).  This general response in the annual means of the two 

phytoplankton genera was reflected in their spring, summer and autumn chlorophyll a means 

(Fig. 6), although there were notable differences.  For example, the spring means showed the 

smallest decline in Planktothrix and increase in Dolichospermum (Fig. 6c, d).  Furthermore, 

the greatest increase in Dolichospermum was in the summer period (Fig. 6f) whereas the 

largest declines in mean Planktothrix chlorophyll a occurred in autumn (Fig. 6g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Discussion 

Lake management plans traditionally focus on nutrient management in order to reduce 

chlorophyll concentrations and improve phytoplankton diversity.  Due to the resources 

required to further reduce catchment export of nutrients, it is useful to understand how the 

future trajectory of phytoplankton change may develop in the lake.  Diffuse pollution from 

agriculture in the Neagh catchment has been difficult to ameliorate mainly due to agricultural 

intensification and a high proportion of land in the catchment used for farming (Bunting et 

al., 2007; Foy et al., 2003).  Sixty-six percent of the catchment is currently under agricultural 

use, the majority for grassland grazing.  Nitrogen loading to the lake has decreased between 

2003 and 2010 by 935 t N yr while phosphorus loading has remained more stable with a 

loading of 485 tonnes for both years (McElarney et al., 2015b).  Over the time series, SRP 

concentration in the Lough has continued to rise after a brief improvement due to the point 

source reduction (Foy, 1995).  Sources of nutrients such as diffuse sources and internal 

loading from lake sediments are more difficult to reduce; the former is regarded as the major 

cause of pollution to water bodies in Europe (Smith, 2003).   

As a result of the marked changes observed in the Lough and its catchment in the last few 

decades it is vital to predict the behaviour of phytoplankton under reduced nutrient 

concentrations and increased temperature.  In order to investigate the potential trends in 

phytoplankton as a result of changing nutrients and water temperature we tested the 

sensitivity of the Lough to changes in the combined drivers of air temperature and nutrient 

load using the PROTECH model. 

All models by their very nature are simplification and PROTECH is no exception.  Caution 

must, therefore, be taken in interpreting model predictions, particularly when simulations are 

based on limited driving data such as in this study i.e. one year.  However, conversely, some 



confidence in the model can be justified if it has been applied successfully in other 

applications, has been shown to model observed data well and if its predictions are intuitive 

given what is known about lake ecology from studies of the lake or other similar lakes.  We 

make the case that this study fits these criteria: PROTECH has been applied to many lakes 

(e.g. see Elliott et al., 2010) and it was able to simulate, with limited calibration, the key 

variables in the lake as demonstrated by the high coefficients of determination calculated for 

them (e.g. Fig. 3).  Thus, this allows some confidence to be expressed regarding the model’s 

predictions. 

It was clear from the future scenarios investigated that two different phytoplankton 

community states could potentially exist and that the trigger for this change was air 

temperatures 4 oC warmer than observed in 2008.   

However, before focussing on this point of state change, it is worth discussing the changes 

observed in the other scenarios where the temperature increase was below 4 oC.  In these 

simulations, the main axis of change for in-lake nutrients and phytoplankton chlorophyll a 

was not with temperature change but with decreasing nutrient load (SRP and nitrate).  When 

the temperature increase was less than 4 oC the decline in nutrient load to the lake caused a 

decrease in algal biomass production because the nutrient-based carrying capacity for the 

phytoplankton was reduced.  Whilst the in-lake concentration of nitrate decreased in line with 

the decline in external load, the in-lake SRP concentration increased due to the continued 

internal sediment release of SRP.  This simulated effect mimics the recent observed trends in 

these two nutrients and shows that the in-lake legacy of phosphorus pollution in the 

sediments could continue to be an obstacle to ecological improvement in the Lough, 

especially considering its hydraulic residence time is more than 1 year.  Furthermore, whilst 

not directly simulated in this study, it is known that water temperature and nitrate 

concentration are key variables in determining the sediment release of phosphorus (Jensen 



and Andersen, 1992) and their direction of change in Lough Neagh could lead to increased 

internal loading of phosphorus which may offset any reductions from the catchment.   

The historical dominance of the Lough Neagh phytoplankton community by Planktothrix has 

already been discussed, but it is noteworthy that this dominance prevailed through all but the 

+4 oC scenarios.  This is concerning because it suggests that even a 60% reduction of the 

2008 phosphorus and nitrate loads is not enough to break its dominance in the lake.  This is a 

phenomenon often seen in shallow, turbid, poorly flushed and nutrient rich lakes (Reynolds, 

1994), where a positive feedback is established for this low-light tolerant cyanobacteria.  The 

PROTECH model also reflects this low-light specialization in its modelling of Planktothrix, 

hence its continued dominance in most of the scenarios.  Thus, whilst it has been speculated 

that its rise to dominance may have been greatly enhanced by nitrogen pollution to the lake 

(Bunting et al., 2007), a reduction in this nutrient does not guarantee a marked improvement 

in the lake.  Such an effect is not uncommon in the recovery of shallow, nutrient-rich lakes 

(i.e. the hysteresis effect, Scheffer et al. (1997)). 

Of course, this simulated Planktothrix dominance was broken dramatically for the +4 oC 

scenarios where another cyanobacterium, Dolichospermum, emerged to dominate.  Although 

the trigger for this change was the increase in temperature, the mechanism behind it was 

nutrient based.  Firstly, it is important to consider that the scenario means presented are of the 

final year of a continual ten year run.  Thus, under the +4 oC conditions, algal growth 

generally increased enough to cause nitrate growth limitation to persist long enough for the 

nitrogen-fixing Dolichospermum to gradually establish dominance by the end of the ten year 

period.  This switch in dominance created another positive feedback where phosphorus was 

in ample supply but nitrate was not, leading to reduced growth of non-nitrogen-fixing species 

like Planktothrix particularly in the latter half of the year.  As was evident from Figure 6, this 

effect was enhanced even more when the reduction in nutrient loads was greater, and 



therefore nitrate became more scarce.  Nitrate limitation appears to be more frequent in the 

Lough in recent years (McElarney et al., 2015a) and this nutrient has had more of an effect on 

the phytoplankton than phosphorus (Bunting et al., 2007).  Our results suggest that even with 

decreased nitrogen and phosphorus loading from the catchment, nutrient dynamics will still 

play a dominant role in deciding phytoplankton species composition in the Lough.  

Phosphorus from the sediments may continue to be released, potentially negating any 

reductions from diffuse pollution in the catchment.  If the observed trend in the reduction of 

catchment derived nitrogen, combined with increasing temperatures continues then it is likely 

to favour the rise of Dolichospermum spp., another toxic cyanobacterial genus.  Indeed, 

previous PROTECH studies have shown similar increases in nitrogen-fixing species with 

increasing temperature (Elliott & May, 2008) or reduced flow (Elliott, 2010), all caused by 

changes in the availability of nitrate. 

Sadly for the Lough and its water managers, these results suggests that, in the long term, one 

nuisance cyanobacterial bloom may only be replaced by another one, a phenomenon which is 

predicted to be more common in the future (Carey et al., 2012).  Nitrogen fixing 

phytoplankton such as Dolichospermum or Aphanizomenon have been prevalent in the past 

(e.g. pre-1980, Bunting et al. (2007)) in the Lough and their presence in the community is 

still observed, so such a prediction should be regarded as a real possibility.  Without a way to 

manage and reduce the phosphorus availability and increasing temperatures in the lake, it 

might therefore be assumed that we are a long way from observing any notable improvement 

in its ecological status.  This must be taken into account when setting WFD water quality 

objectives in future River Basin Management Plans.   
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Table 1. The change in annual mean water temperature (oC) in response to changing air 

temperature (oC). 

 Change in air temperature (oC) 

 0 1 2 3 4 

Mean annual water 

temperature (oC) 
11.37 12.05 12.79 13.55 14.34 

 

 

 

 

 

 

 

 

 

  



Figure Legends 

Fig. 1 Lough Neagh annual mean time series concentrations (mg m-3) for a) chlorophyll a, b) 

soluble reactive phosphorus (SRP), c) silica (SiO2) and d) nitrate (NO3-N) 

  

Fig. 2.  Time series comparison between annual mean total chlorophyll a concentration (mg 

m-3) and annual mean Planktothrix biovolume (µm3 ml-1) 

 

Fig. 3.  Comparison between observed (solid circles) and modelled (black line) chlorophyll a 

concentration (mg m-3) in Lough Neagh 2008 for a) total chlorophyll a and b) estimated 

Planktothrix agardhii chlorophyll a. 

 

Fig. 4.  Predicted in-lake annual mean concentration (mg m-3) in response to changing air 

temperature (oC) and 2008 nutrient loads: a) phosphorus and b) nitrate. 

 

Fig. 5.  Predicted mean total chlorophyll a (mg m-3) in response to changing air temperature 

(oC) and 2008 nutrient loads: a) annual, b) spring, c) summer and d) autumn. 

 

Fig. 6.  Predicted mean chlorophyll a (mg m-3) in response to changing air temperature (oC) 

and 2008 nutrient loads: a) annual Planktothrix, b) annual Dolichospermum, c) spring 

Planktothrix, d) spring Dolichospermum, e) summer Planktothrix, f) summer 

Dolichospermum, g) autumn Planktothrix, h) autumn Dolichospermum.          
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