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A B S T R A C T

The Chalk is a major aquifer, source of raw material for cement and agricultural lime, and a host

geological unit for major civil engineering projects. Detailed understanding of its development and

lateral variation is significant for our prosperity and for understanding the potential risks of pollution

and groundwater flooding, and in this aspect palaeontology plays a central part. Historically, the

distribution of macrofossils offered important refinement to the simple three-fold subdivision of the

Chalk based on lithological criteria. In recent decades, the advent of a more sophisticated

lithostratigraphy for the Chalk, more closely linked to variations in its physical properties, provided

an impetus for the British Geological Survey to depict this on its geological maps. Tracing Chalk

stratigraphical units away from the well-exposed successions on which the new stratigraphy is based

requires subtle interpretation of landscape features, and raises the need for methods of ensuring that the

interpretations are correct. New and archived palaeontological data from the vast BGS collections,

interpreted as a component of a broad-based holostratigraphical scheme for the Chalk, and spatially

analysed using modern Geographical Information Systems (GIS) and landscape visualisation technology,

helps fulfil this need. The value of palaeontological data in the Chalk has been boosted by the work that

underpins the new lithostratigraphy; it has revealed broad patterns of biofacies based on a range of taxa

that is far more diverse than those traditionally used for biostratigraphy, and has provided a detailed

reference framework of marker-beds so that fossil ranges can be better understood.

In the subsurface, biofacies data in conjunction with lithological and geophysical data, has been used

to interpret and extrapolate the distribution of Chalk formations in boreholes across southern England,

allowing development of sophisticated three-dimensional models of the Chalk; revealing the influence

of ancient structures on Chalk depositional architecture, and pointing to palaeoenvironmental factors

that locally affected productivity of Chalk in Late Cretaceous oceans.

� 2015 The Geologists’ Association. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Geology is now widely recognised as vital to our economic
prosperity. It provides us with raw materials for manufacturing,
sources of water and energy, and provides foundations for our
infrastructure. The Chalk has a wide outcrop across the densely
populated area of south-east England, and is peppered with
boreholes for water supply; quarried for cement and agricultural
lime, and hosts many large scale civil engineering structures, such
as the Channel Tunnel. Understanding variation in the thickness
and distribution of the Chalk, and how its physical properties vary,
are vital requirements for future economic and population
development across southern England, and fossils play an
important part in delivering this understanding.

Historically, fossils have always had an important role in Chalk
geology. The substantial thickness and apparent physical unifor-
mity of the Chalk presented early workers with the problem of
how to subdivide it on geological maps. The simple three-fold
classification into Lower, Middle and Upper Chalk that became the
traditional classification, defined at feature-forming beds of hard
chalk, persisted into the latter part of the twentieth century, but
presented problems for detailed understanding of internal
variation. In contrast, macrofossils appeared to provide a basis
for detailed subdivision of outcropping Chalk successions that
could better describe its spatial distribution and age relationships,
and regional biozonal maps were published for the Chalk by
Brydone (1912), Gaster (1924, 1929, 1932, 1937, 1941, 1944),
Young (1905, 1908), Hewitt (1924, 1935) and Peake and Hancock
(1970). Some historical accounts even described units containing
particular fossil assemblages as if they were distinct lithological
entities; for example, use of the term ‘Marsupites Chalk’ by Dines
and Edmunds (1929) in the Geological Survey Memoir for
Aldershot and Guildford. As outlined by Gale and Cleevely
(1989), this fixation on palaeontology by early Chalk workers
stemmed largely from the highly influential publications of
Arthur Rowe. In his description of coastal sections (Rowe, 1900,
1901, 1903, 1904, 1908), Rowe emphasised the value of fossils for
subdividing the Chalk and often criticised the use of lithological
criteria. The position of fossils at the heart of Chalk geology was
Fig. 1. Examples of data types and
further bolstered by confusion of some of the marker-beds used to
recognise the traditional units, and observed inconsistencies in
the stratigraphical horizons of these markers (Jukes-Browne,
1880; Rowe, 1901, 1908).

The last 30 years, spurred on by economic imperatives requiring
a better understanding of variation in the Chalk’s physical
properties, has seen a revolution in the geology of the Chalk,
including the advent of a detailed national lithostratigraphical
scheme (Rawson et al., 2001; Hopson, 2005) recognised across
southern England on recent British Geological Survey (BGS) maps.
Whilst this new Chalk classification emphasises differences in
physical character that are of particular value to engineers and
hydrogeologists, the exhaustive work on outcrop sections that has
been required to produce it has revealed important relationships
between macrofossils and lithostratigraphy. With a robust scheme
of Chalk formations, defined by surfaces or marker-beds that in
many cases are the products of basin-wide events, it has become
easier to understand broad patterns of macrofossil occurrences.
This new understanding of the palaeontology of the Chalk, and the
adoption of a holostratigraphical approach which integrates
different kinds of geological data to arrive at best-fit interpreta-
tions, has proved invaluable for helping to understand the surface
distribution of different units of Chalk in poorly exposed terrain,
and in tracing the distribution of these units in the subsurface for
geological modelling.

This work shows how macrofossil palaeontology remains a
valuable tool in our understanding of the distribution, correlation
and basin structure of the Chalk Group, not in spite of
lithostratigraphy, but because of it.

2. Biostratigraphy in the context of Chalk Group
holostratigraphy

Between 1999 and 2006, the BGS released digital reports
describing the holostratigraphy of the Upper Silurian Ludlow
Series (Molyneux, 1999; http://www.bgs.ac.uk/reference/
holostrat/ludlow.html) and the Lower Cretaceous Albian Stage
(Wilkinson, 2006; http://www.bgs.ac.uk/reference/holostrat/
albian.html), and a manuscript was prepared for the Chalk Group,
 their use in Holostratigraphy.

http://www.bgs.ac.uk/reference/holostrat/ludlow.html
http://www.bgs.ac.uk/reference/holostrat/ludlow.html
http://www.bgs.ac.uk/reference/holostrat/albian.html
http://www.bgs.ac.uk/reference/holostrat/albian.html
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but remains unpublished. As applied in these reports, and outlined
by Rawson et al. (2002), Holostratigraphy refers to the ‘total
stratigraphy’ of a given interval. Its aim is to understand the inter-
relationships between all the different stratigraphical events that
can potentially occur in a succession, and summarise these in a
conceptual stratigraphical log. These events can be defined by any
number of features including, for example, lithostratigraphy,
Fig. 2. Stratigraphy of the Chalk Group with description of macrofossil biofacies units. Sch

BGS field data and published records relating to the Chalk of southern England. Lithostra

and lithology. Taxa listed as characteristic of biofacies units not implied to be coextensiv

units. Excludes high Campanian and Lower Maastrichtian chalks that occur in East Anglia

the type horizon of Inoceramus lamarcki is within the Inoceramus cuvieri Biofacies, but 
biostratigraphy, chronostratigraphy, cyclostratigraphy, and geo-
chemistry. The Holostratigraphy scheme can include all competing
views on how a succession might be sub-divided, the only
important aspect in compiling the conceptual Holostratigraphy is
to understand the relative positions of these events (Fig. 1). More
recently, Hampton et al. (2010) adopted a holostratigraphical
approach to understand the Chalk of the North Sea Eldfisk Field
eme and nomenclature for biofacies units is informal, and based on a compilation of

tigraphy is generalised and not intended to illustrate detailed relationships of fauna

e with these units or the only taxa that form holostratigraphical events within these

. Not to scale. P. Marls, Plenus Marls; M. Rock, Melbourn Rock; C. Rock, Chalk Rock; *

it is not the dominant inoceramid at this horizon.
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(Norway), and Surlyk et al. (2013) presented a holostratigraphical
scheme for the Upper Campanian – Maastrichtian Chalk of eastern
Denmark.

Holostratigraphy is particularly useful approach in the Chalk
Group where the aim is to use biota to make predictions about
lithostratigraphy; the dominance of benthonic macrofossil taxa
(for example, brachiopods, bivalves, echinoids and crinoids) means
that faunal distributions are more likely to be connected to primary
variations of the host sediment. Holostratigraphy provides a
framework of stratigraphical data against which to compare fossil
occurrences and relative abundances, and allows a more robust
and wide-ranging critical assessment of the extent to which
Fig. 3. Display of palaeontological data in a Geographical Information Sysytem (GIS). 1: th

map window (for example, digital map data, satellite and aerial photograph data, localit

map and biozonal data, with different coloured dots representing different biozones); 
components of the biota are likely to be consistently associated
with particular formational units. Patterns of broad-scale variabil-
ity in lithofacies (e.g. flint and marl distribution), combined with a
framework of named marker-beds (prominent flint units, marls,
sponge beds, hardgrounds) that are a component of Chalk
formations, are critical for assessing lateral variability in the
ranges of macrofossils, and for providing confidence in biofacies –
lithofacies relationships. Following on from this, whole formations,
or parts of formations, can be more easily characterised by
associations of faunas or relative abundance patterns of faunas that
are not otherwise formally recognised as biostratigraphical units,
and which may comprise parts of different biostratigraphical
eme window, showing list of information types that can be selected for display in the

y data, biozonal data); 2: map window, showing data layers (in this case geological

3: information window, showing detailed data for individual layers and points.



Fig. 4. Use of GeovisionaryTM software to display topographical and geological data for part of the North Downs. View looking westwards from Leatherhead towards Guildford

and the narrow ridge of steeply dipping Chalk that forms the ‘Hog’s Back’. In this view, all Chalk biofacies data points are represented by the same colour-code. Some of these

biofacies data points, representing a narrow range of stratigraphy, coincide closely with distinct topographical changes, and permit formation boundaries (blue line) to be

inferred. These interpretations can be tested through field survey. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 5. Using biofacies and lithological data to characterise geophysical logs. (a) relationship of key fossil taxa and marker-beds to the geophysical log in the cored Netheravon

Borehole; (b) extrapolating stratigraphical interpretations using geophysical logs from cored boreholes into uncored successions (NB: the thin New Pit Chalk in the

Netheravon Borehole, and poor log quality, makes identification of inflection feature ‘X’ problematic in 5a); (c) location of key cored and geophysically logged boreholes

mentioned in the text and figures. See Woods and Aldiss (2004, fig. 5) for explanation of log correlations shown in Fig. 5b.

M.A. Woods / Proceedings of the Geologists’ Association 126 (2015) 777–787 781



Fig. 6. Image of the BGS London Basin LithoFrame 50 Model, showing three-dimensional perspective view of bedrock and superficial deposits (Burke et al., 2014).
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schemes. By considering fossil information in the context of other
types of stratigraphical data (for example, contrasting lithofacies
features), repeated patterns of particular biofacies, long-ranging
biofacies, or incomplete fossil data might usefully be interpreted.
In recent decades there has been great progress in understanding
the taxonomy of macrofossil groups less widely used in the past for
biostratigraphical work in the Chalk, including biozonal schemes
for belemnites and inoceramid bivalves, and abundance data for
longer-ranging or sporadically occurring faunal groups, such as
oysters, bryozoans and certain types of trace fossils (particularly
Zoophycos). Once amalgamated into a holostratigraphy scheme,
these data become collectively more valuable. Fig. 2 shows an
informal biofacies scheme that in the course of the BGS work has
Fig. 7. Combining lithological, biofacies, geophysical log and gravity data to understan

geophysical logs showing influence of the Glinton Thrust on the thickness of the success

gravity data for East Anglia showing the linear feature produced by the Glinton Thrust and

log. See Woods and Chacksfield (2012) for detailed explanation of basis for geophysica
generally proved useful for predicting lithostratigraphical subdiv-
sions in the Chalk Group. This scheme is not definitive, and the
biofacies associations shown in Fig. 2 should be viewed as an
iteration of holostratigraphy events derived from macrofossil data
for the Chalk Group; other iterations, based on different
combinations of fauna, are valid as additional holostratigraphy
events.

3. Calibrating landscape features for mapping

The foundations of modern Chalk Group stratigraphy are built
on detailed study of coastal cliffs, large inland (quarry) sections,
and cored boreholes, where variations in physical characteristics
d patterns of sedimentation in the Chalk Group of East Anglia. (a) Correlation of

ion in East Anglia below the Mount Ephraim Marl (1) and above it (2); (b) Regional

 borehole locations. Log values increase from left to right; g, gamma log; r, resistivity

l log correlation.
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and fossil content are easily observed (Mortimore, 1986; Robinson,
1986; Jarvis and Woodroof, 1984; Mortimore et al., 2001). Mapping
this stratigraphy across broad, poorly exposed, inland areas is less
straightforward, and requires a subtle appreciation of the
relationship of landscape features to the underlying bedrock.
The methodology used by the BGS has been described by Bristow
et al. (1997) and Aldiss et al. (2012), who demonstrated that
characteristic breaks of slope coincide with the boundaries of Chalk
Group formations. The robustness of this technique relies on
ground-truth data where exposure allows, so that the geological
interpretations of geomorphological features can be checked
against geological reality. The most important sources of
ground-truth data in geological surveying are: observations of
chalk bedrock in soil (‘brash’); locations where chalk is being
actively excavated or where outcrop survives in old chalk pits, and
archived collections of material from chalk exposures. It is in this
last area that palaeontology, viewed in the context of a broader
Chalk Group holostratigraphy and coupled with modern comput-
ing technology, continues to make a valuable contribution to our
understanding of the Chalk. The BGS palaeontology collection,
comprising more than 3 million specimens amassed over the last
180 years of survey work, contains a vast amount of material from
the Chalk, providing data with the potential for refined strati-
graphical interpretation at hundreds of sites, including areas
where current outcrop data are sparse. Efficient exploitation of
this archive has been optimised in recent years by the development
of Geographical Information Systems (GIS), 3D visualisation
Fig. 8. The Chalk in the Banterwick Barn Borehole in the Berkshire Downs, where fossil da

an unusual, poorly cemented texture, possibly showing that deposition at this site (

coccolithophores. Inflection A in the trend of the resistivity log marks the boundary betw

(above). The top of the grey-shaded interval represents a level equivalent to the base of th

discussion of the relationship between lithofacies, biofacies and geophysics.
technology, and the adoption of computer-based survey methods
by the BGS. Holostratigraphy criteria are used to interpret the
macrofossil archive, considering both the broad biofacies, the
significance of any individual faunal elements that may be
stratigraphically restricted, lithological data from matrix sediment,
and information from nearby outcrops and boreholes. The
conclusions for each locality are compiled into databases, with
accurate National Grid Reference (NGR) assignment of localities
based on cross-matching locality information in BGS Fossil
Registers with a digital archive of historical Ordnance Survey
maps. These data can be represented as themes within a GIS
(Fig. 3), and displayed as points on modern digital base maps with
links to the primary data and stratigraphical inferences. Using
GeovisionaryTM software, the positions of macrofossil data points
can be plotted in the context of a 3D visualisation of the landscape
features, allowing pre-survey assessment of their potential
geological significance (Fig. 4). In the field, the data can be
digitally imported onto the base map used by the survey geologist,
and considered in the context of other data to understand and
geologically calibrate Chalk landscapes.

4. Calibrating the subsurface for modelling

In recent years, the need for better understanding of subsurface
Chalk geology has arisen because of the Chalk’s important role in
water supply, vulnerability to pollution, susceptibility to ground
water flooding, and extensive excavation and tunnelling in major
ta show that strata coeval with the upper Lewes Nodular Chalk (grey shading) have

across an inferred shallow marine shelf) was influenced by high productivity of

een nodular, well-cemented chalk (below) and non-nodular, poorly cemented chalk

e stratotype Seaford Chalk in Sussex. See Woods and Aldiss (2004) for more detailed
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civil engineering projects. Many written descriptions of boreholes
are too poor to allow accurate interpretation of modern Chalk
lithostratigraphy, but extensive archives of borehole geophysical
logs can be used (Mortimore, 1986; Mortimore and Pomerol, 1987;
Woods, 2006) provided that the signatures can be confidently
interpreted. For this to be achieved, cored boreholes are required so
that the lithology and biofacies that are used to recognise Chalk
formations in core can be depth-matched to geophysical logs for
these boreholes. Good examples are the Netheravon, North Farm,
Winterbourne and Banterwick Barn boreholes in the Berkshire
Downs, Leatherhead Borehole in Surrey, and Stowlangtoft Bore-
hole in Suffolk (Fig. 5). Biofacies data has been particularly helpful
in geophysically characterising the junction between the West
Melbury Marly Chalk and Zig Zag Chalk formations, a boundary
interval associated with distinctive lithological units characterised
by particular fossil associations (Woods and Aldiss, 2004). These
boreholes provide a network of control points from which
correlations can be made using boreholes for which geophysical
logs provide the only stratigraphical data. The results of this work
show that there are regular patterns to certain types of geophysical
logs (especially electrical resistivity logs) that are widely repeated
across southern England, which can be confidently related to the
formational stratigraphy mapped by the BGS. Correlations based on
geophysical log inflections form a fundamental component of 3D
models of the Chalk (Fig. 6), linking landform profile information
Fig. 9. Lateral variation in the extent of erosion/winnowing associated with the lowermos

grey-shaded area is inferred to be within the Inoceramus cuvieri Biofacies based on the

Hardground at Fognam Farm, and based on geophysical log correlation with the cored Ban

shows that strata coeval with the higher part of the New Pit Chalk in Sussex are variably

unlikely to have been completely removed. See Woods and Aldiss (2004) for detail of 
with surface geological data from mapping and subsurface
geological interpretations from boreholes and seismic data.

5. Revealing new understanding of the Chalk Group

At a detailed level, palaeontological data has challenged our
understanding of the Chalk, and forced us to think more deeply
about the environmental processes influencing its deposition.
Understanding the nature of these processes, and how they may
have varied across the depositional basin with respect to
postulated water depth or geological structure, has an important
role in predicting patterns of regional variation in the Chalk where
this might not otherwise be easily observed. Below are selected
examples of how palaeontology has provided insights into our
understanding of patterns of Late Cretaceous sedimentation and
the factors that influenced it.

5.1. The Chalk of East Anglia

In East Anglia, work by Mortimore and Wood (1986) showed
how the abundances of certain fossils could be used to identify
marl seams (thin, mud-rich chalk units) with their named
equivalents in southern England. Woods and Chacksfield (2012)
used these results, combined with data from the cored Stow-
langtoft Borehole, to trace these marl seams on geophysical logs
t hardground (Ogbourne Hardground) of the Chalk Rock in the Berkshire Downs. The

 record of this facies further north/west below the strongly developed Ogbourne

terwick Barn Borehole further east, where the Ogbourne Hardground is absent. This

 affected by erosion/winnowing associated with the Ogbourne Hardground, but are

geophysical log correlations.
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across East Anglia. The correlation revealed the likely influence of
deep basement faults on the depositional development of the
Chalk; faults that are imaged on regional gravity data and that
originally formed during the early Palaeozoic history of East Anglia
(Fig. 7). The work also identified the development of a thick (c.
30 m) interval of poorly cemented chalk, corresponding with much
thinner, highly cemented successions across Southern England. It
seems that whilst much of Southern England experienced
erosional winnowing of chalk associated with variable patterns
of sea level fall and transgression (Gale, 1996), marine circulation
across East Anglia may have favoured unusually high productivity
of chalk. This work serves as a reminder that Chalk itself is a
biogenic deposit, composed of the skeletons of countless billions of
Fig. 10. Unusual development of massive-bedded, poorly rhythmic lower West Melbury

Schloenbachia Biofacies. The geophysical logs show that the Grey Chalk Subgroup (= com

lowest 20 m of Chalk in the Beckhampton log (below ‘x’) displaying a lower amplitude, les

sediment rhythmicity. There are also strong contrasts in the resistivity logs of the higher

onset of (anomalous) strongly rhythmic sedimentation in the higher part of the Beckh
calcareous planktonic algae (coccolithophores), and that the
distribution of the Chalk is not just a response to available
accommodation space within the depositional basin, but also to
the ecological factors that affected the near surface waters that
these photosynthesising plankton inhabited.

5.2. The Berkshire Downs

In the Berkshire Downs, fossil (particularly the inoceramid
bivalve Cremnoceramus crassus (Petrascheck, 1903)), lithological
and geophysical data from the Banterwick Barn Borehole shows
that strata equivalent to the Lewes Nodular Chalk are unusually
thick and poorly cemented across parts of the Chilterns (Fig. 8);
 Marly Chalk in the Marlborough district, with well-developed Inoceramus crippsi -

bined West Melbury Marly Chalk & Zig Zag Chalk) is very thick (+90 m), with the

s serrated gamma signature, consistent with outcrop evidence for weakly developed

 parts of the Beckhampton and North Farm boreholes. This may be evidence for the

ampton Grey Chalk succession, although this is speculative.



M.A. Woods / Proceedings of the Geologists’ Association 126 (2015) 777–787786
thicknesses are comparable to the stratotype in Sussex where this
part of the succession is more strongly nodular in texture (Woods
and Aldiss, 2004). This conclusion is perplexing, because the
Berkshire Downs – Chilterns region has widely been interpreted as
a relatively shallower part of the depositional basin across which
hardgrounds (Chalk Rock, Top Rock) developed in the lower part of
the Lewes Nodular Chalk (Late Turonian and earliest Coniacian).
Either a radical change of basin architecture is indicated, or, like
East Anglia, it may reflect ecological conditions that favoured
coccolithophore productivity. Unusual environmental conditions
are also hinted at in historical accounts of the Chalk of this region,
which refer to macrofossils being especially sparse in the biozonal
equivalent (Micraster cortestudinarium Zone) of the upper Lewes
Nodular Chalk, and the succession closely resembling that which
typifies the younger Micraster coranguinum Zone (White, 1907).

5.3. Thickness variation of the New Pit Chalk Formation

Across southern England, Gale (1996) showed that the New Pit
Chalk displays pronounced lateral changes in thickness, largely
due to variable erosion at the base of a hardground (Ogbourne
Hardground), which in some areas approximately marks the base
of the overlying Lewes Nodular Chalk Formation. The Ogbourne
Hardground varies in its geographical development; as it fades
eastwards Gale (1996, fig. 5) showed that the New Pit Chalk
thickens into Sussex, and this is demonstrated by resistivity log
correlations in the Berkshire Downs (Fig. 9). The higher part of the
New Pit Chalk typically contains an inoceramid biofacies
dominated by Inoceramus cuvieri J Sowerby, 1814, which continues
upwards into the lower part of the overlying Lewes Nodular Chalk.
There has been some debate about the extent of erosion associated
with the formation of the Ogbourne Hardground, which may be
very extensive (Gale, 1996), and remove sediment that typically
preserves the I.cuvieri Biofacies. However, the record of this
biofacies below the Ogbourne Hardground at Fognam Farm [SU
296 800], in Berkshire (Woods and Aldiss, 2004), suggests that the
pattern of erosion is more variable and may be responding to local
patterns of structurally controlled basin architecture. In northern
East Anglia, the I. cuvieri Biofacies seen in a borehole near Bircham,
Norfolk, sits directly on top of the shell-rich Mytiloides Biofacies I
characterising the Holywell Nodular Chalk, and points to elimina-
tion of strata equivalent to the lower part of the New Pit Chalk, a
conclusion supported by structurally-induced thinning of the
lower New Pit Chalk in central East Anglia (Woods and Chacksfield,
2012; Fig. 7).

5.4. The Marlborough Downs

Finally, at the edge of the Marlborough Downs, the Grey Chalk
Subgroup shows unusual patterns of facies in its lower part. The
typically strong marl/limestone rhythmicity that has been widely
described across the UK and Europe (Gale, 1995) is much less clear
(Fig. 10). Although in appearance the succession seems more
typical of the Upper Cenomanian, the macrofossil fauna unequiv-
ocally belongs to the Inoceramus crippsi – Schloenbachia Biofacies of
Fig. 2, proving the strata equate with the Lower Cenomanian West
Melbury Marly Chalk Formation. Geophysical logs from the North
Farm Borehole in the Berkshire Downs, where the junction of the
West Melbury Marly Chalk and Zig Zag Chalk was geophysically
characterised (Woods and Aldiss, 2004), can be matched with
geophysical logs in the Marlborough Downs, showing an unusually
thick (+90 m, compared to c. 70 m at North Farm) Grey Chalk
Subgroup (Fig. 10). Gamma logs from the succession (Fig. 10)
suggest that the marl rhythms in the lower part of the succession
might have been diluted by high coccolithophore productivity,
perhaps across a zone showing a relatively rapid change in basin
bathymetry. Archive borehole records for the Marlborough Downs
describe thick ‘Lower Chalk’, and historical annotations to these
logs state that this must be a mistake – not so say the fossils!

In many of the examples given above, a conventional
biostratigraphical approach to the Chalk, identifying named zones
and subzones, would not have been sufficiently nuanced to reveal
any lateral contrasts in sedimentary development. Historical
biostratigraphical work on the equivalent of the New Pit Chalk
would have relied on accurate identification of a few key fossils to
identify the T. lata Zone, an interval that spans the whole formation
and in many places also extends into the lower part of the
overlying Lewes Nodular Chalk.

6. Conclusion

Palaeontology became important in the historical development
of Chalk stratigraphy because of an over-simplified lithological
subdivision that offered limited scope for description of its relative
age and distribution. Despite this, historical use of Chalk
palaeontological data was rather simplistic relying on a relatively
small number of key taxa to identify units that are in some cases
quite broad. The development of a more refined lithostratigraphi-
cal scheme, with a detailed marker-bed framework, has allowed a
rigorous assessment of the stratigraphical distribution of a large
number of different fossil groups in the Chalk, and identification of
biofacies units. As a component of a Chalk holostratigraphy
framework, these biofacies provide valuable supporting data for
Chalk mapping, and allow characterisation of subsurface Chalk
formations expressed in borehole geophysical logs used to build
3D geological models. Palaeontological data from outcrops and
boreholes can be used to understand lateral changes in the
geometry of discrete packages of chalk sediment, showing that in
some areas deposition was influenced by long-lived basement
structures, or patterns of ocean circulation and fertility affecting
the near-surface waters inhabited by chalk-forming phytoplank-
ton.
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