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Abstract

Measurement sensors permanently installed on landslides will inevitably change their position over
time due to mass movements. To interpret and correct the recorded data, these movements have to
be determined. This is especially important in the case of geoelectrical monitoring, where incorrect
sensor positions produce strong artefacts in the resulting resistivity models. They may obscure real
changes, which could indicate triggering mechanisms for landslide failure or reactivation. In this
paper we introduce a methodology to interpolate movements from a small set of sparsely
distributed reference points to a larger set of electrode locations. Within this methodology we
compare three interpolation techniques, i.e. a piecewise planar, bi-linear spline, and a kriging based
interpolation scheme. The performance of these techniques is tested on a synthetic and a real-data
example, showing a recovery rate of true movements to about 1% and 10% of the electrode spacing,
respectively. The significance for applying the proposed methodology is demonstrated by inverse
modelling of 4D electrical resistivity tomography data, where it is shown that by correcting for
sensor movements corresponding artefacts can virtually be removed and true resistivity changes be
imaged.
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Introduction

Landslides constitute one of the greatest natural hazards, causing tremendous damage every year
and posing a significant risk to communities and infrastructure. Moreover, there is the potential that
landslide occurrences may increase in the future due to changes in climate (Dijkstra and Dixon
2010), the effects of which are yet to be investigated and understood. A major focus of international
research is therefore to gain an improved understanding of triggering mechanisms and failure
potentials, with the aim of developing landslide forecasting methodologies. Physical or process-
based landslide models offer the best foundation to help in understanding the triggering
mechanism, but also require a set of input parameters that have to be determined accurately to
characterise the hydrological conditions of the slope (Dai et al. 2002; Dijkstra and Dixon 2010).

Those data are obtained using techniques ranging from point sensors measuring, for example,
moisture content or water potential, to volumetric monitoring of moisture movements using time-
lapse electrical resistivity tomography (ERT). The latter is an approach that only very recently has
become applied to studying landslides and unstable slopes in general (e.g., Gunn et al. 2013b;
Chambers et al. 2014; Supper et al. 2014). Due to its high sensitivity to lateral and temporal changes
in moisture content, ERT is the geophysical technique that is most frequently applied to landslide
investigations (Jongmans and Garambois 2007; Jomard et al. 2007; Lebourg et al. 2010; Chambers et
al. 2011).

However, due to the nature of ERT data interpretation, the locations of the individual electrodes
within the ERT imaging array have to be known accurately to robustly interpret the measured data.
In the case of a permanent installation on a landslide, electrode locations would have to be
corrected for movements, which currently is not part of common processing workflows. Yet,
misplacement of electrodes is known to cause severe artefacts in the resulting resistivity models
(Zzhou and Dahlin 2003; Oldenborger et al. 2005; Szalai et al. 2008; Wilkinson et al. 2010), masking
true resistivity variations due to changes in, e.g., moisture content. Changes in the separations of the
electrodes change the measured potentials, which in turn affect the inverted resistivity models.
Figure 1 shows ratios of inverted resistivity models (commonly used to highlight changes in
resistivity) obtained from data acquired on a natural landslide in North Yorkshire, UK (i.e. Hollin Hill),
before (March 2008) and after movement (March 2009). In Figure 1a the electrode locations of 2008
were used for both the 2008 and 2009 resistivity data, while in Figure 1b electrode locations
measured in 2009 we used to invert the 2009 resistivity data. The difference between the two ratios
(Figure 1c) shows the effects of electrode misplacement on the resistivity ratio. In the area of
movement (x < 10 m, 40 m < y < 80 m; shown by surface overlays with orange to black colours
indicating progressively greater movement), the differences in resistivity ratio exhibit large
variability with values ranging from -0.6 to +0.5. The largest differences occur close to the surface.
These are positive (increased ratios) just beneath the northern part of the moving area (55 m <y <
80 m), and negative (decreased ratios) in the southern part. Below these near surface artefacts (> 2
m depth), deeper features of the opposite polarity are found extending to a depth of about 7 m
below ground level (bgl). As resistivity ratios are commonly used to show changes in moisture
conditions (Jomard et al. 2007; Chambers et al. 2014) which, in terms of landslide monitoring, can be
used as proxy to slope stability (Lebourg et al. 2010), methodologies have to be developed to
estimate electrode movements to minimize these artefacts and improve ERT monitoring applied to
landslides.
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Fig. 1 Resistivity ratios between measurements acquired on an active landslide from March 2008 and
March 2009. Between these measurements electrodes in the western part of the model (x < 10 m)
moved by up to 1.6m. a) shows the resistivity ratios for uncorrected electrode positions; in b) RTK-
GPS measurements of the moved electrodes were included. The differences between the resistivity
ratios (indicating the effect of electrode movement) are shown in c); artefacts in the resistivity ratios
align with areas of severe movements.

While 2D ERT monitoring usually employs less than 100 electrodes, 3D ERT monitoring systems
easily exceed this number. Manual monitoring of each electrode position with high spatial and
temporal resolution is generally not practical due to the prohibitive time and number of site visits
this would require. If the electrodes have been buried, re-surveying the electrodes is not possible at
all. Therefore, we propose a methodology for which only a small set of reference points is monitored
with high spatial accuracy (i.e. centimetric), using e.g. real-time kinematic (RTK) GPS surveying, with
only limited temporal resolution. The movements of the reference points are then interpolated to a
larger set of points of interest or to regular grids. In this study we compare the performance of three
different interpolation techniques.

To validate the approach, we apply these techniques to 4D (i.e. 3D timelapse) ERT monitoring
problems, both on a synthetic model and a real installation on an active landslide. Techniques to
estimate landslide movements are especially important for this application, since electrodes are
usually buried underneath the surface. Therefore, repeated surveying of their locations is not
possible. In the examples we interpolate the movements of reference points to a regular grid of
points, where the ratio between known and interpolated points is about 1/5 and 1/4, respectively.
Due to their complexity, including build-up of fissuring and sudden movements, interpolation of
landslide movements can only deliver an estimate of true electrode displacements. However, for
ERT measurements it is crucial to estimate these displacements to limit their effects on the
resistivity data, inversions and subsequent interpretations.

Methodology

Discrete measurements of landslide movement are commonly used to derive velocities or
displacements at the actual measurement points only (e.g. Mora et al. 2003; Corsini et al. 2005;
Gance et al. 2014). However, for applications using a large set of points, e.g. ERT time-lapse imaging,
monitoring of the movement of every single point is not feasible and a need arises to interpolate
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movement information of a sparse set of reference points (RP) onto a larger set of points of interest
(P1) or regular grids, the positions of which are unknown.

Although this problem applies to a range of applications employing point sensors or sensor grids
placed on a landslide, in this paper we will focus on 4D ERT. Note, however, that the methodology
may be applicable for any other type of monitoring system.

A general procedure to monitor and interpolate landslide movement can be outlined as follows:

Install/define points of interest (e.g. electrodes) E; and a set of reference points R;
Survey initial locations Ej(x,y,z) and Rj(x,y,z) at the initial time t,

Repeat survey of Rj(x,y,z) at time t;

Calculate directional movements dx;, dy;, dz; at each Ri-location

Interpolate the set of dx, dy, dz to Ei(x,y,z) using a suitable method

Update E{x,y,z) by adding interpolated movement components dx;, dy;, dz;

Ny ks wnNe

Repeat steps 3 to 6 for subsequent time steps

After a certain time, and if the E; are accessible (e.g. not buried underneath the surface), the system
can be recalibrated by surveying both the locations of E; and R;. To obtain locations of E; for a time t
for which no actual R; data is available, an interpolation of R; to t; between the two adjacent
measurements is proposed. Considering the type of movement observed at translation- or flow-
dominated landslides in the UK (Uhlemann et al. 2015), a linear interpolation in time is usually
sufficient.

A priori information, e.g. direct measurements of E; locations over time or areas where the E; are
known to be static, can be included in the calculation of the updated E;. This can be achieved by
using this direct information instead of estimating the movements at the corresponding locations or
by introduction of known boundaries of differential movement.

In the following we will discuss three different ways to interpolate the movements of the RPs to a
larger set of Pls.

Piecewise Planar Interpolation (PP)

For this type of interpolation we use the mathematical definition that any point in a plane can be
described by three non-collinear points spanning a basis. Here the three adjacent RPs are used to
span the basis describing the location of a certain E; (see Figure 2). The movement of these three
points then describes the deformation of this plane. If we assume that the deformation caused by
the landslide is rather smooth, we can use this relationship to derive a movement at the E..
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Fig. 2 Schematic explanation of the piecewise planar interpolation scheme. The movement of the E;
is defined by the change of the vectors u and v

According to Figure 2 we can define the E; at an initial time t; as:
Ei(to) = Ry(to) + sy "o + Sy~ Vg + Sy * Ty, (1)

with R;(ty;) being the position of a “reference” marker at the initial time, and the last vector
representing the unit normal vector to u and v, defined as:

= Uy X Uy (2)
Ng =7=—>=
[ X Vol
By including the normal vector we are able to describe electrode points which are located above or

below the plane defined by the three reference points. This is a crucial prerequisite to account for
topographic roughness which is typical for landslide morphology.

At time t, both, E; and the vectors between the RPs u and v are known and we can solve this
equation to obtain the weights s,, s,, and s,. These weights describe the contribution of each of the
vectors to E;in relation to the R;. If we assume that these weights also define the contribution that
the movement of each RP will have on the movement of E; then these weights are constant in time
and we can define the movement at E; as:

dE;(x,y,z) =dR, + s, di + s, db + s, - d7, (3)

where dR; describes the movement of R; from t, to t;, and du, dv, and dn the change of the vectors
u, v, and n, respectively. By adding this movement to the initial £; an updated position can be
determined and used for subsequent time steps.

Biharmonic Spline Interpolation (BS)

Biharmonic or multiquadric interpolation methods are specifically designed mathematical functions
to interpolate data from a scattered set of RPs, and for topographical data sets in particular. The
underlying theory is well understood and extensively described in the literature (e.g. Hardy 1971,
Sandwell 1987; Hardy 1990). In brief, this method forms a global-interpolation scheme using linear
combinations of biharmonic Green’s functions (@) centred on each RP (Sandwell 1987), minimizing
the curvature of the interpolator. For N data points the interpolating surface for directional
movements in x-direction (and y- and z-direction equally) is given by:

(4)
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dx(x,y) = z ad(x — x5,y = yj)-

Jj=1

Here a; represent the unknown contribution of each quadric function at the RPs to the interpolating
surface. The biharmonic Green’s function in two dimensions is defined as (Sandwell 1987)

¢(r) = |r|’In(lr| - 1), (5)
with r being a vector described by r = (x —x;, y — ).

Thus equation 4 can be rewritten in matrix notation with the unknown g; collated in X, the Green’s
functions in A, and the observed movements dx in B, leading to AX = B with the solution X = A”B.
Hence, an inverse problem needs to be solved to obtain the contributions of each biharmonic
Green’s function centred at every RP. The resulting interpolation fits the data points exactly and
provides a smooth surface with minimized curvature between measurement points for the
estimation of movements at the E;. This interpolation is performed in the same way for the
directional movements along y- and z-axis, and, as outlined in the description of the general
procedure, repeated for each time step t, between t, and a sought time t.,4, with E; being updated
after each iteration.

Kriging (KG)

Kriging is a well-established and widely used technique to find the best estimator of a spatially-
dependent variable by considering the statistical characteristics of a known set of samples
(Matheron 1971). In addition to a spatial estimation of a variable, kriging provides the uncertainty of
this estimation. To obtain a kriging estimate, the variogram of a sample data set has to be calculated
and fitted by a correlation function. This relation is then used to calculate a spatial distribution of the
sought variable (Chilés and Delfiner 2012). The described workflow is shown for the z-component in
Figure 3. The sample data set consists of the directional movements (dx, dy, dz) of each RP between
its initial position and its position at the sought time t,. This data is used to calculate a variogram for
each component which is then fitted by a correlation function. In the case of landslide movement,
the experimental data seems to be fitted best by exponential or cubic correlation functions (data in
Figure 3b has been fitted by a cubic function). The kriging estimates for the directional movements
are sampled to a fine grid and interpolated onto the initial electrode position and the updated
position for a time t; calculated. This procedure is then repeated for all following time steps until t.,q
is reached.
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Fig. 3 A kriging estimate (c) is derived from the interpolation of a sample data set (a) that follows a
given statistical characterization, i.e. the variogram of the data (b). This workflow is shown here for
the z-component of the movement. The same procedure applies also to the x- and y-components.

Synthetic Example

Model Description

To test and compare the performance of these interpolation methods we set up a synthetic
example, employing 190 Pls and 45 RPs. E; and R; are placed on a surface resembling realistic
landslide morphology on a clayey slope, with changes in slope angle, and zones of depletion and
accumulation. The initial E; and R; positions, as well as the surface on which E; and R; are moving are
shown in Figure 4.
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Fig. 4 Initial £; (black crosses) and R; (red squares) positions located on a 3D surface resembling a
realistic shallow clayey landslide morphology; colouring and isolines indicate elevation. E; and R;
movements are defined by the gradient of the surface

This example employs E; arranged in a regular grid, consisting of 5 parallel lines with 38 points per
line. Along those lines their spacing is 2 m, while the spacing between two adjacent lines is 6.25 m.
At each line 9 RPs are located with a spacing of 10 m. This results in a model dimension of 25m-by-
80m. The maximum difference in elevation is about 25 m, giving a mean slope ratio of 3.2,
equivalent to a mean slope angle of about 17°.

Ground movements, and thus E; and R; movements, are modelled using the gradient of the
topographic surface shown in Figure 4. The movement of each point on the surface is defined to be
opposite to the direction of the local gradient and proportional to its magnitude. The topography of
the surface is assumed to remain constant over time. By multiple iterations a time series of E; and R;
positions was created and the previously described interpolation methods were applied to it. Since E;
and R; locations are known for each time step, this synthetic example provides the necessary
information to quantitatively compare the estimated with true E; locations.

Results

Figure 5 shows the non-linear displacement field for the time step at which the E; positions need to
be determined by the use of the three techniques. While the movement in x-direction shows values
ranging from -0.6 m to 0.3 m, thus negative and positive changes along this axis, movements in y-
and z-directions show larger amplitudes of up to -3.0 m. Along the z-direction no positive changes
can be observed (corresponding to up-slope movement, which was not deemed to be reasonable in
this case). Areas towards the top and the bottom of the domain show the largest displacements,
while areas in the middle (y = -10 m to +10 m) show the smallest values.
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Fig. 5 Synthetic displacement field applied to the initial E; positions. The movement at each point is
defined by the direction and magnitude of the local gradient

Figure 6 shows the misfits between the interpolated and the true E; for x-, y-, and z-components, as
well as the absolute misfit. With a maximum misfit of less than 12.5% of the initial E; spacing (i.e. 2
m) all methods are shown to estimate movements reasonably well, but with clear differences in
performance. BS provides the best estimation of electrode movements in all parts of the model. PP
shows larger misfits, especially in the y- and z-components. The worst performance is given by KG,
which clearly underestimates movements along the y- and z-axis.
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Fig. 6 Maps of misfit between true and interpolated electrode positions for x-, y-, z-components, and
absolute misfit.

Throughout the model domain, areas of small movement magnitudes (Figure 5) show also the
smallest misfits for the x-component (< £ 0.05 m). All methods are able to estimate movements with
an accuracy better than 10% of the actual movement rate. Areas characterized by large y-
movements of up to 2.2 m are also characterized by large absolute misfits (<+ 0.10 m). PP shows a
regular pattern of underestimation of movements, with largest misfits in regions between the R;. In
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areas of large displacements (-40 m < y < -20 m, and 20 m < y < 40 m), positions are estimated with
an accuracy better than 3% of the actual movement. This is not the case for areas of small or no
displacements, where the misfit between true and estimated position may overwhelm the actual
displacement. BS provides a comparable accuracy in areas of large displacement, but also better
position estimation where only small displacements occur. It slightly underestimates movements in
areas where the R; are move closertogether, while movements in areas where R; move apart are
slightly overestimated. KG shows an alternation of over- and underestimation, where in areas of
change in slope angle (-30 m <y <-20 m, and 20 m < y < 30 m) movements are overestimated, and in
areas of large displacements (-40 m < y < -30 m, and 30 m < y < 40 m) movements are
underestimated.

The same pattern can be observed for the KG misfit of the z-component, but with even higher
amplitudes. BS, as for the other components, shows the smallest misfits (< 0.1 m) in the z-
component. PP shows a similar misfit pattern in the z-component as for the y-component, with
largest misfit between R; locations. For the model domain, the largest overall misfit of the z-
component coincides with areas of largest displacements. This also propagates in the absolute
misfit, which in these regions (<40 m <y <-20 m, and 20 m < y < 40 m) is up to 0.14 m (Table 1),
equal to about 7% of the actual displacement. Better overall performance is achieved by BS, with a
maximum total misfit of 0.09 m (better than 5% of the actual displacement). KG produces the worst
fit, with misfits exceeding 0.20 m.

Table 1 shows some statistical values for the linear offset between estimated and true PI locations.
Although PP and KG show the smallest offset, the mean offset of BS is at 0.017 m (= 0.85% of the
initial electrode spacing) the smallest of the three techniques. KG includes the strongest over- or
underestimations of the true movements and therefore exhibits the largest offset. PP and BS show
comparable accuracy for the x- and y-components, but the BS estimation of z-displacements is
superior. That BS is performing best on this example is also shown by the root-mean-square offset
values (considering offset along all three axes), where this method has the smallest value at RMSgs =
0.026 m compared to PP and KG at RMSpp = 0.059 m and RMSys = 0.072 m, respectively.

Table 1 Statistical comparison of the three different approaches. The discrepancy between true and
estimated locations is given in metres.

Offset

[m]

PP 0.000018 0.137 0.047 0.059
BS 0.000056 0.089 0.017 0.026
KG 0.000018 0.243 0.043 0.072

Note that the KG results depend strongly on the accuracy of the correlation function with which the
experimental variogram is fitted. Choosing a wrong type of function or parameters will inevitably
lead to poor estimations of the Pl movements. In addition, to calculate a meaningful variogram the
sample data set has to have sufficient data points, which may limit the applicability of this method
for field applications. We found that for the given dimensions and movement rates a set of at least
30 points is necessary to obtain a meaningful variogram and correlation function in turn.
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In addition to these smooth interpolators, also nearest and natural neighbour type interpolators
have been tested. The results (although not shown here) indicate a worse performance of these
interpolation types. This can be attributed to the smooth nature of the synthetic example.

Effect on 3D Inverse Modelling

Movement of sensors deployed on a landslide will inevitably influence the interpretation of their
measured data. Especially for ERT, accurate electrode positions have to be known to avoid artefacts
in the data. This is shown best by the effects of wrong electrode positions on inverse modelling of
the measured resistivity distribution (Wilkinson et al. 2010). Here, the electrode positions derived in
the synthetic example will be used. Using COMSOL® Multiphysics we simulated the response of a
homogeneous halfspace of p = 100 Om for the true electrode locations, i.e. after movement. The
modelled data set comprised 4285 standard dipole-dipole measurements oriented along the y-axis
and 4212 equatorial dipole-dipole measurements. Data including the different electrode positions
were inverted using a smoothness-constrained least-squares inversion method, employing a L1-
norm for both the data misfit and model roughness (Loke and Barker 1996). The forward problem
was solved using a finite-element method, allowing the topography to be integrated into the model.
Figure 7 shows the inverted resistivity models and cross sections through these models. The model
using the true positions indicates the accuracy of the inversion, with resistivity values ranging
between 85 and 115 Qm. The inverted model employing the initial electrode positions, i.e. without
movement correction, highlights the necessity to correct electrode positions for movement. This
model shows strong artefacts in the areas of movement, especially at top and bottom, but also
throughout the model domain. The model resistivities range from 65 to 180 Qm, showing resistivity
changes which are larger than commonly observed by changes in, e.g., moisture content or salinity.
The correlation coefficient between the two models of R = 0.471 highlights the strong disturbance of
the resistivity distribution by using wrong electrode positions. Using the interpolation techniques
these artefacts can be virtually removed. The resistivity model obtained using the PP estimated
electrode positions shows a resistivity distribution that is very similar to the model using the true
positions, proven by a correlation coefficient of R = 0.997.
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Fig. 7 3D Block models of inverted resistivity data employing (left) true, (middle) initial and (right)
PP-interpolated electrode positions.
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Figure 8 shows the resistivity ratios of models using uncorrected and interpolated electrode
locations to the model employing true positions, highlighting the artefacts caused by electrode
misplacement. Red colours (i.e. values greater than 1) indicate resistive anomalies, while blue
colours (i.e. values lower than 1) indicate conductive anomalies. In the uncorrected case (Figure 8a)
electrode movements resulted in near-surface artefacts overestimating the resistivity at the top of
the model (y = 10 to 35 m) and underestimation between y = -25 m and -5 m. These are the regions
with the largest amplitude electrode displacements where spacing have been decreased or
increased, respectively, due to different movement rates. Small deviations in electrode positioning
are known to cause near-surface artefacts (Szalai et al. 2008). Here, where movements lead to
electrode displacements of more than the initial electrode spacing, resistivity artefacts are also
severe in deeper parts of the model. These deep artefacts are of different polarity than the
corresponding near-surface features. The resistive anomaly in the upper part of the model, where
electrodes move together, is underlain by a conductive anomaly. The conductive near-surface
anomaly of the lower part of the model, where electrodes move apart, is underlain by a resistive
anomaly. The amplitudes and depth of the near-surface artefacts correlate with the electrode
displacement. At greater depths, artefacts are not necessarily constrained to movement areas, but
can also be found away from these regions.

While the resistivity ratios range from 0.57 to 1.49 for the uncorrected model, correcting for
electrode movements reduces this range considerably to values spanning from 0.95 to 1.04 for PP,
and 0.94 to 1.03 for BS. For BS artefacts are virtually removed. In the case of PP and KG, the
remaining artefacts correlate with the misfits between estimated and true electrode positions. For
PP, these artefacts are constrained to the near-surface. Artefacts in KG still propagate into deeper
layers, but amplitudes are significantly reduced, with resistivity ratios ranging from 0.85 to 1.08. This
slightly worse result is highlighted by a lower correlation coefficient of R = 0.984, compared to R =
0.997 for both PP and BS. However, all interpolation methods are able to provide electrode positions
with sufficient accuracy to remove artefacts in the inverted resistivity models, thus providing a
methodology for robust ERT data processing and interpretation.
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Fig. 8 Resistivity ratios between resistivity models using a) initial (i.e. uncorrected), b) PP, c) BS, and
d) KG interpolated electrode positions and the resistivity model employing true locations; the
overlay in a) shows the absolute electrode movement. Isosurfaces show resistivity ratios of 1.02
(red) and 0.98 (blue), respectively. Note in the uncorrected case, areas where electrodes are pushed
together show resistive anomalies, while areas of electrodes sliding apart are characterized by
reduced resistivities. For each section the correlation coefficient between the corresponding
resistivity model and the true model is given

Real Data Example

Although the synthetic example helps to highlight the capabilities of the introduced methodology, it
is a simplified and smoothed model of electrode movements compared to a real, natural landslide.
Therefore, we have to test and judge the methodology applied to a real landslide problem.

To develop a better understanding of the precursors leading to first-time failure and reactivation of
landslides, the British Geological Survey is operating an observatory on an active landslide in North



353
354
355
356
357
358
359
360
361
362
363

364
365
366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381

Yorkshire, UK, acting as a representative example for landslides in Lias Group mudrocks. This group,
the Whitby Mudstone Formation (WMF) in particular, shows one of the highest landslide densities in
the UK (Chambers et al. 2011; Hobbs et al. 2012; Gunn et al. 2013a). The observatory comprises 4D
geoelectrical (i.e., ERT and self-potential monitoring), geotechnical (i.e., acoustic emission and
inclinometer) and hydrological/environmental monitoring (i.e., weather station, soil moisture, soil
temperature) (Dixon et al. 2010; Wilkinson et al. 2010; Merritt et al. 2013). ERT monitoring at site is
undertaken using a grid of electrodes attached to a BGS-designed ALERT system (Ogilvy et al. 2009;
Wilkinson et al. 2010) for bi-daily observation of the 3D resistivity distribution of the landslide. Due
to its location on an active, moving landslide, and the fact that misplaced electrodes can cause
severe artefacts in resistivity imaging (Zhou & Dahlin, 2003; Wilkinson et al. 2010), the grid of
electrodes will form a set of Pls in the following.

Site Location and Geological Characterisation

The landslide observatory is located at Hollin Hill near the village of Terrington, North Yorkshire, UK.
It is a south-facing hill slope used as pasture land for sheep with a mean slope angle of 12°.
Geologically, the site comprises four formations of Lower and Middle Jurassic age. The hill is capped
by the Dogger Formation (DGF), consisting of calcareous sandstone and ferruginous limestone,
representing a potential aquifer overlying the WMF, which is the failing formation at site (Figure 9).
The WMF contains grey to dark grey mudstone and siltstone with scattered bands of calcareous and
sideritic concretions (Chambers et al. 2011). It is underlain by the Staithes Sandstone Formation
(SSF) consisting of ferruginous, micaceous siltstone with fine-grained sandstone and thin mudstone
partings. This formation is highly bioturbated (Gaunt et al. 1980) and forms a well-drained loam soil,
characteristic for the middle-part of the escarpment. At site, the WMF and SSF are highly weathered,
showing low stiffness between 1 — 5 MPa (Gunn et al. 2013a). The SSF overlies the Redcar Mudstone
Formation (RMF). A spring line exists at the boundary of these two formations.

Merritt et al. (2013) present a thorough geomorphological characterisation of the slope (see Figure
9a). In brief, the top, northern part of the slope is characterised by the main scarp of the landslide
showing rotational failure, with active shallow, and less-active, deeper-seated slumps. Further down
the slope earth-flows have developed, where the WMF has slipped over the SSF, forming several
lobes.
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Fig. 9 a) Geomorphological map showing the main landslide features and the outline of the ERT
monitoring area (adapted from Merritt et al. (2013)). b) Interpreted 3D resistivity model (resistivity
and position data of March 2012); boundaries between WMF and SSF (postulated as being the
sliding surface), and between SSF and RMF are highlighted

The main geological formations have successfully been imaged using 3D ERT (Figure 9b). While the
WMF and RMF are characterised by resistivities lower than 30 Om (governed by their high clay
content), the SSF shows higher resistivities ranging between 30 Om and 70 Om. Thus, the sliding
surface, which is postulated to be the interface between SSF and WMF, can be extracted on the
basis of the formation resistivities. The resistivity model outlines the extent of the earth flow lobes,
both in the lateral and vertical dimensions. The benefit of applying resistivity tomography to
landslide monitoring is its sensitivity to moisture content, which is, along with porosity and pore
water resistivity, one of the main factors determining the formation resistivity (Archie 1942). Since
moisture content changes more rapidly than porosity and pore water resistivity, volumetric imaging
of resistivity changes can provide useful proxy information to understand moisture content changes,
thereby (1) helping to characterise the hydrological regime of the landslide, e.g. imaging of
preferential flow-paths or zones of moisture discharge and accumulation, and (2) understanding the
triggering mechanisms for landslide reactivation or first-time failure.

Movement Monitoring and Estimation

The 3D ERT monitoring set-up at Hollin Hill consists of a grid of 160 electrodes, arranged in 5 parallel
lines with 32 electrodes spaced at 4.75 m intervals each, and inter-line spacing of 9.5 m. The line
spacing being twice the electrode spacing forms a practical limit for maintaining resolution when
combining linear array measurements for 3D ERT data inversion (Gharibi and Bentley 2005). With
this layout the ERT monitoring array covers an area of approximately 145 m x 38 m, equal to about
0.5 hectares. The electrodes are buried about 10 cm beneath the surface to prevent damage from
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other activities or by animals at site. The initial electrode positions have been recorded in March
2008 when the monitoring setup was installed. Measurements are scheduled, conducted, and stored
using the ALERT system. The measurement sequence employs conventional, cross-line and
equatorial dipole-dipole measurements, including a full set of reciprocal measurements for data
quality assessment.

Since the electrodes have no expression at the surface, a set of marker pegs has been installed to
track the electrodes movements. Nine markers are installed along each of the five lines, with a
spacing of about 17.5 m (see Figure 10a). Every 1 — 2 months these markers are surveyed using a
real-time kinematic GPS system with centrimetric accuracy, providing a time-series of measurements
building the basis for employing the introduced movement estimation procedure.

In spring 2013, the lower (y = 0 m to 80 m) and the uppermost (y = 135 m to 155 m) part of the
eastern-most line were excavated and the electrode positions surveyed. Electrode positions of the
western-most line that were subject to movement in 2008-2009 were re-surveyed during each site
visit after the installation. Thus offering a data set of true positions against which the estimated
positions can be compared, about 5 years after their installation and various periods of active
movement. Note that movements of the eastern lobe only commenced at the end of 2012,
therefore true electrode locations were known until then. Figure 10 shows the misfit between true
and estimated electrode displacements of the eastern-most ERT line, interpolated from the marker
movement using the three different schemes. Along this line, two regions with large soil movements
exist. One is located at the upper, northern end of the slope (between y = 135 m and 150 m),
another one further south between y = 35 m and 60 m. While the northern area shows mainly
negative movement along the y-axis (i.e. downslope), the displacement in the southern part
additionally shows negative movement along the x-axis, caused by the lobe progressing into a gully
structure. The survey of the electrode positions indicated a maximum movement of 3.5 m, with a
mean of 1.65 m at this line.
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Fig. 10 a) Map showing initial and RTK-GPS measured electrode positions (i.e. true locations) from
spring 2013 (annotated numbers indicate the electrode number as plotted in b-d). b)-d) show misfit
between interpolated and true electrode positions for x, y, and z-components.

With all interpolators electrode positions could be estimated with an accuracy better than 1.3 m for
each component, thus the general trend and scale are interpolated well. As for the synthetic
example, movement rates in the x-direction are smaller than in the y- and z-direction, and therefore
misfits are smaller along this direction as well; for all interpolators and throughout the slope the x-
misfit stays below 0.5 m (< 5.5% of the line spacing). Within the flow-dominant domain (electrode
numbers 1-11) movement patterns are comparably complex, with markers showing contrasting
movement directions and scales, i.e. eastward followed by westward movement, and strong
movements of up to 3.5 m adjacent to regions of no movement. The soil movement on this lobe is
characterized by several shallow flowing regimes (Uhlemann et al. 2015), thus increasing the
complexity of the movement. This is shown by misfits of the y- and z-component of up to 1.0 m, i.e.
at electrode number 7, situated in a region where movement changes from negative to positive x-
wards movement. The comparably larger misfits along the z-axis can be attributed to the rough and
discontinuous surface deformation along the lobes. The misfits of electrodes 12 and 13 in the
rotation-dominated part of the landslide can be attributed to a change in movement type between
the adjacent markers; the upper marker was placed in the slipped part, while the lower marker was
set in the zone of material accumulation. None of the methods, however, were able to recover a
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strong contrast in movement between electrodes located at y = 33 m and 34.75 m. While the latter
is located at the tip of the lobe of the earth flow, the first is placed on the non-moving SSF and
eventually became covered with flow material. As the non-moving zones are known, they have been
included in the estimation and electrodes within those zones stay constant (highlighted areas in
Figure 11). This highlights that the estimation quality of the presented interpolation techniques
depends on the sampling density (spatially and temporal) and relation to the degree of complexity of
the soil movements at a research site. While highly heterogeneous movement will require higher
sampling densities, rather homogeneous movement will require significantly fewer sampling points.

Although the non-moving zones have been used as a priori information, due to the highly
heterogeneous movements between markers at y = 35 m and 56.5 m the maximum offsets between
estimated and true positions remain high, with values of 0.88 m, 0.98 m, and 1.30 m for PP, BS, and
KG, respectively (see Table 2). Also in terms of a root-mean-square offset, KG shows the largest
value (RMSys = 0.64 m), thus highlighting that a purely statistical approach fails to provide a good
estimate of the complex deformations on landslide, which are recovered to a better degree by
methods which are based on a more physical approach of deformations of planes or splines caused
by “forces” acting on them.

Table 2 Statistical comparison of the remaining offsets between true and estimated electrode
locations.

PP 0.063 0.883 0.416 0.487
BS 0.045 0.980 0.328 0.431
KG 0.045 1.296 0.531 0.643

KG exhibits not only the largest mean (uxs = 0.53 m) but also the highest standard deviation (oys =
0.38 m), indicating the broadest distribution of offset values. While the standard deviation for PP
and BS are comparable (0.26 m and 0.28 m, respectively), the mean and RMS offset are considerably
smaller for BS. As for the synthetic example, BS provides the best estimation of electrode
movements. With a RMS offset of 0.43 m, using this technique true electrode positions can be
recovered with an accuracy better than 10% of the initial electrode spacing, despite very complex
landslide movements. This is in the same order of magnitude than resistivity data based approaches
to track electrode movements, as introduced in Wilkinson et al. 2008, 2014. We have to note
however, that this offset might still introduce slight artefacts in the resulting resistivity models, e.g.
10% electrode misplacement may cause 10% to 20% error in the apparent resistivity (Zhou and
Dahlin 2003; Szalai et al. 2008; Wilkinson et al. 2010).

The weak performance of KG may be explained by the small number of reference points (45
markers) forming the sample data set for defining the experimental variogram to fit the data.
Although studies on the synthetic example showed that a minimum of 30 points was necessary to
obtain a coherent variogram, the higher complexity of a real landslide would require more sample
points to obtain a better estimation of the landslide movements.
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Also for the real example non-smooth interpolators, such as natural and nearest neighbour, have
been tested, but showed poorer performance. This can be attributed to the features, which would
cause a step-like change in movement pattern (e.g. fissures), being of smaller scale than the marker
separation. Hence, their effect on the movement dynamics is negligible and a smooth interpolator
superior, as it represents the slope scale landslide dynamics.

Effect on 3D Inverse Modelling

As shown in the inverse modelling of the synthetic data, wrong electrode positions inevitably result
in artefacts in the resistivity models, which are likely to mask true resistivity changes caused by, e.g.,
varying moisture content. Here we will show the changes caused by electrode movement and true
resistivity changes from a baseline data set in February 2012 to a measurement in February 2013,
covering a period over which large movements occurred. For the latter comparison we assume that
the climatic circumstances, e.g. temperatures, are similar and therefore that the resistivity
distributions are comparable. The data quality of the two data sets is similar and reasonably good,
with 92.07% and 91.99% of the data, respectively, having reciprocal errors smaller than 5%
(Wilkinson et al., 2010). Data with reciprocal errors above 5% were removed from the data set
before inversion.

The data were inverted using a smoothness-constrained least-squares inversion method, employing
a L2-norm on the model and an L1-norm on the data (Loke and Barker 1996). The forward problem
was solved using a finite-element method, allowing the topography to be integrated into the model.
The model comprises 4320 cells, with 9 cells in the x-, 32 in y-, and 15 cells in z-directions. Figure 10b
shows the inverted resistivity model for the 2012 data set. In the following comparison of the
performance of the different movement interpolation techniques on inverse modelling of ERT data,
we will focus on a vertical section through this 3D model. The location of the section is shown as
blue line in Figure 10a.

Figure 11 presents cross-sections through the 3D models (the location of the section is shown as
blue line in Figure 9a) for February 2012 and February 2013, employing the set of known electrode
positions, and data from February 2013, which have been inverted using the electrode positions
from 2012 and estimated positions for 2013 using BS (Figure 11c and d, respectively). The profile of
2013 gives a clear indication of the WMF sliding over the SSF, and shows the boundary between SSF
and RMF. The effects of using misplaced electrodes in the data inversion can be seen in Figure 11c,
where the SSF shows a clearly disturbed resistivity distribution compared to the resistivity model
obtained from the true positions (Figure 11b). The strongest artefacts caused by misplaced
electrodes can be found in the zone of strong movements (y = 35 m to 85 m) where the resistivity is
shown to increase in the near-surface of up to 35%. By using the locations estimated by the PP
(Figure 11d), the strongest distortions have been significantly reduced to an increase of only about
15%. This improved agreement with the resistivity model employing the true positions can also be
seen by a higher correlation coefficient of R = 0.924 for the inversion using the PP positions
compared to the one using the initial positions with R = 0.712, which also indicates that the
corrected data shows significantly less artefacts. These results highlight that employing estimated
electrode positions in the inversion of resistivity data can significantly reduce the effects of artefacts
caused by landslide movement, with a reduction of up to 15% in the zone of strong movement and
2% to 5% in the remaining regions.



529

530
531
532
533
534

535
536
537
538
539
540
541
542

543
544
545
546
547
548
549
550
551
552

553
554
555
556
557
558

()
—

o
~

2012 2013
true locations true locations
80 - 80
E 70
N 60 - 60
‘EM45
401 RMS = 2.19% 40 RMS=3.92% | &
20 40 60 80 100 120 140 20 40 60 80 100 120 140 228
>
c) _d) =
data 2013 | data 2013 S w18
locations 2012 BS Q
80 - i 80 ) - o
e - & :
N 60 601 o T4 7
40 ’ RMS =4.29% 40 — RMS = 3.62%
20 40 60 80 100 120 140 20 40 60 80 100 120 140
y [m] y [m]

Fig. 11 Cross-sections through the 3D resistivity models (location as shown in Figure 9b) for different
years and employing different electrode locations. a) - b) resistivity model of February 2012 and
2013, respectively, employing correct electrode positions. c) - d) resistivity models of data from
February 2013; c) employing electrode locations of 2012; d) employing electrode positions
estimated for 2013 using BS

Using misplaced electrodes in the processing of ERT data, and of monitoring data in particular, will
inevitably lead to misinterpretation of resistivity data. This is shown in Figure 12, where resistivity
ratios for data from 2013 to 2012, and the differences caused by misplaced electrodes are shown.
Figure 12a shows the “true” resistivity ratio, indicating the area of the slip surface of the eastern
lobe (x >30 m, 40 m < y < 80 m), the area just downslope of a rotational failure (x >25m, 100 m<y
< 130 m), and the near-surface area of the toe of the slope as having a lower resistivities than the
previous year, thus higher moisture content. These observations are in agreement with other site
observations.

Figures 12 b) — e) show the difference in resistivity ratio between the ratios employing uncorrected
or estimated electrode locations and the true ratio. These differences should be representative for
the artefacts caused by misplaced electrodes only. In the uncorrected case, locations of large
differences correlate with areas of large movements. Similarly to the synthetic example, in areas
where electrodes move apart (45 m < y < 80 m, and y > 140 m) near-surface ratios increase; in areas
where electrodes move together (35 < y <45 m, and 130 < y < 140 m) near-surface ratios decrease,
with the extent and amplitude of these features being determined by the amount of electrode
movement. These near-surface artefacts (< 2 m) are underlain by deeper features of opposite
polarity and smaller amplitude, reaching depths of up to 7 m. Near to the model boundaries, where
ERT sensitivities are decreasing, these deeper artefacts may reach depths of up to 15m.

Using estimated electrode locations reduces the amplitudes of these artefacts considerably. In case
of PP and BS all deep artefacts are removed and amplitudes and spatial extent of the near-surface
artefacts are reduced to an extent that they are virtually removed. The performance of these two
techniques is highly comparable, with only small remaining ratio differences in areas of strongest
movements, coinciding with locations of limited electrode movement recovery. As KG showed the
worst performance of the three interpolators, larger ratio differences remain, which are not only



559
560

561
562
563
564

565

566
567
568
569

570
571
572
573
574
575
576
577
578
579
580

restricted to the near-surface, but also appear in regions of low sensitivity at the lowermost part of
the model.

The better agreement between true ratio and the one using the interpolated electrode positions can
also be seen by a high correlation factor of Rzs = 0.90, in contrast to R = 0.11 for the uncorrected
case. This shows that by correcting for electrode movement misinterpretation of ERT in particular,

but all kind of spatial data in general, can be minimised.
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Fig. 12 a) Resistivity ratios between 2013 and 2012 employing “true” electrode locations. b) — e)
show ratio differences between true ratio and ratios employing (b) uncorrected electrode locations,
(c) PP — corrected, (d) BS — corrected, and (e) KG — corrected electrode locations. Note that using PP
and BS artefacts are considerably reduced.

Conclusions

Soil movements will affect the interpretation of any sensor whose reading is location dependent
deployed on an active, moving landslide as long as those movements are not recognized and
corrected for. We have introduced a methodology to estimate movements for a large set of points
or grids, for which direct movement monitoring is not feasible or possible, from a smaller, sparsely
distributed set of reference points, both in space and time, and have compared three different
interpolation techniques. The first interpolation technique is a piecewise planar interpolation, which
is based upon planar transformations and calculates the electrode position by the changing vectors
spanned between three neighbouring markers. The biharmonic spline or multiquadric interpolation
scheme is a global-interpolation method using linear combinations of biharmonic Green’s functions
centred on each reference point, minimizing the curvature of the interpolator. The third approach
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uses the widely-employed geostatistical interpolation technique of kriging. Applied to a synthetic
example resembling realistic landslide movements, we showed that the three techniques were able
of recovering non-linear movements to about 3% of the initial electrode spacing. It was also
highlighted that the KG, due to its statistical nature, requires a sufficient number of sample points
(i.e. more than 30) to correctly estimate movements. The smallest offset between true and
estimated positions were obtained using the BS in the synthetic example, negligible larger values
were found for PP. Both methods showed slightly larger discrepancies between true and estimated
positions near the upper and lower model boundaries. The importance of correcting data for
landslide movement was shown with a synthetic ERT example, which showed strong artefacts (+
80% of the initial model resistivity) when using uncorrected positions. These artefacts were virtually
removed when using corrected electrode positions. The significance of this problem for a real data
example has been shown in the case of a 3D ERT monitoring setup on an active landslide. Here, the
sample data set was formed by a time series of real-time kinematic GPS measurements of marker
points representing the soil movements, which were then interpolated to a grid of electrode
locations. Applying the three techniques to this data set highlighted again the superior performance
of PP and BS, which obtained comparable results, with BS showing the smallest mean and RMS
offsets. On this landslide with highly heterogeneous movement characteristics, it was possible to
recover true electrode positions to about 10% of the initial electrode spacing. It was also shown that
the spatial and temporal sampling of the soil movements by repeated measurements of marker
positions will affect the results. Inverse modelling of resistivity data employing non-corrected and
corrected electrode locations, using the introduced interpolation techniques, highlighted the
importance of adjusting sensor positions on landslides for movements. While important features
(i.e. zones of high moisture content indicating areas of movement) were masked by artefacts in the
uncorrected case, artefacts in these regions were virtually removed using the estimated electrode
positions. Although the results showed that electrode positions can only be recovered to a certain
degree of accuracy using the methods introduced in this paper, we were able to show that this
degree is sufficient to reduce artefacts and misinterpretation of resistivity data by using a simple
approach of monitoring small sets of reference points. The proposed methodology for correcting
electrode positions for landslide movements should therefore form an important part in the data
processing scheme of ERT monitoring data. These methods are time and cost-effective and allow for
robust interpretation of data obtained from any sensors that are subjected to movements and offer
the opportunity to interpolate movements to a landslide scale rather than interpreting movements
on a point scale only.
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