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Abstract The Atlantic meridional overturning circulation (AMOC) plays a critical role in7

the climate system and is responsible for much of the meridional heat transported by the8

ocean. In this paper, the potential of using AMOC observations from the 26◦N RAPID array9
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to predict North Atlantic sea surface temperatures is investigated for the first time. Using10

spatial correlations and a composite method, the AMOC anomaly is used as a precursor11

of North Atlantic sea–surface temperature anomalies (SSTAs). The results show that the12

AMOC leads a dipolar SSTA with maximum correlations between two and five months. The13

physical mechanism explaining the link between AMOC and SSTA is described as a seesaw14

mechanism where a strong AMOC anomaly increases the amount of heat advected north of15

26◦N as well as the SSTA, and decreases the heat content and the SSTA south of this section.16

In order to further understand the origins of this SSTA dipole, the respective contributions17

of the heat advected by the AMOC versus the Ekman transport and air–sea fluxes have18

been assessed. We found that at a 5–month lag, the Ekman component mainly contributes19

to the southern part of the dipole and cumulative air–sea fluxes only explain a small fraction20

of the SSTA variability. Given that the southern part of the SSTA dipole encompasses the21

main development region for Atlantic hurricanes, our results therefore suggest the potential22

for AMOC observations from 26◦N to be used to complement existing seasonal hurricane23

forecasts in the Atlantic.24

Keywords Atlantic Meridional Overturning Circulation · RAPID array · Seasonal potential25

predictability · Sea Surface Temperature · Air–sea heat flux26
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1 Introduction27

The Atlantic Meridional Overturning Circulation (AMOC), consists of a net northward flow28

of warm water in the upper ocean (typically in the top 1000m), which is compensated at29

greater depths by a cold southward return flow (e.g. Trenberth and Caron (2001), Ganachaud30

and Wunsch (2002), Wunsch (2005)). The AMOC has long been used in order to investigate31

the origin of interannual to decadal variability in the climate system. Indeed, both observa-32

tional and modelling studies support the idea that the decadal climate variability in the North33

Atlantic has been closely related to the AMOC (e.g. Gordon et al (1992), Winton (2003),34

Latif et al (2004), Herweijer et al (2005)). Consequently, several climate predictability stud-35

ies focused on, first, trying to predict the AMOC (Matei et al (2012), Pohlmann et al36

(2013)) and second, assessing its impact on climate (Collins and Sinha (2003), Keenlyside37

et al (2008), Msadek et al (2010), Robson et al (2012a), Persechino et al (2013), Robson38

et al (2014)).39

Interest in the AMOC has been stimulated by the prospect of its gradual weakening40

during the 21st century as suggested by the climate model scenarios of the 4th and 5th Inter-41

governmental Panel on Climate Change (IPCC) assessment reports (Solomon et al (2007),42

Stocker et al (2013)). Climate model forecasts suggest a decline of the AMOC by 25%43

over the next few decades Bindoff et al (2007). Over the past decade, a decrease in the44

subtropical AMOC has been observed (Smeed et al (2014)) in addition to increased At-45

lantic sea–surface temperatures (SSTs) (Buchan et al (2014)), and an upward trend in46

Atlantic hurricanes has been observed since 1995 (Goldenberg et al (2001), Emanuel47

(2005), Sriver and Huber (2007), Klotzbach and Gray (2008), Strazzo et al (2013)). A48

possible degree of causality exists between these processes and indicates that measuring the49

large scale ocean circulation could be a useful tool in assessing seasonal hurricane formation50



4 Duchez, Courtois et al.

probabilities, in addition to other climate indices. As the AMOC transport results in a net51

northward transport of heat around 1 PW (1015 Watt), it makes a substantial contribution52

to the mild maritime climate of Northwest Europe and any slowdown in the AMOC would53

have profound implications for climate in the North Atlantic region. Investigating the link54

between the AMOC and the SST on decadal timescales, and using coupled climate models,55

Stouffer et al (2005) found that a hypothetical 100–year shut down in the AMOC would lead56

to an increased temperature in the southern hemisphere and a decrease of temperature in the57

northern hemisphere up to 12◦C around Greenland and the Nordic Seas.58

Since the AMOC transports upper–ocean heat across latitudes, it has been proposed59

that it may lead to large–scale climate patterns, through the development of SST anoma-60

lies (SSTAs) (Robson et al (2012a),Robson et al (2012b)). Results from numerical models61

suggest that the intra–annual AMOC variability may be rather local and that there is little62

correlation between the variability found e.g. at 26◦N and locations situated a few degrees63

further north or south (Hirschi et al (2007), Bingham et al (2010)). The implications of a64

limited meridional coherence of the AMOC on subannual timescales means that there can65

be anomalous convergence and divergence of heat in the ocean (Cunningham et al (2013),66

Sonnewald et al (2013), Bryden et al (2014)). An accumulation of heat into a region can re-67

sult in higher SSTs, and therefore, the AMOC could be an indicator for a developing SSTA.68

This simple idea is the motivation for us to test whether the available AMOC observations69

from 26◦N can be used to predict the formation of SSTAs.70

Since April 2004, an observing system for the AMOC has been deployed and maintained71

at 26◦N in the Atlantic in the framework of the UK–US RAPID–MOCHA project (Hirschi72

et al (2003), Cunningham et al (2007)). It provides continuous measurements of the strength73

and vertical structure of the AMOC and its associated heat flux. The decade long time series74

has provided unexpected insights into the behaviour of the AMOC from seasonal to inter-75
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annual timescales. One important finding of the RAPID–MOCHA campaign has been that76

even on intrannual timescales the AMOC exhibits a large temporal variability (Fig. 1). On77

these timescales, the AMOC variations are caused by both fluctuations in the density field78

and in the wind stress (Hirschi et al (2007), Chidichimo et al (2010), Kanzow et al (2010),79

Duchez et al (2014)).80

Large fluctuations in the AMOC have also been found on interannual timescales and81

McCarthy et al (2012) showed a 30% decline in the AMOC for 14 months during 2009–10,82

where the AMOC transport was 6 Sv weaker in the mean compared to the previous years.83

This weak AMOC transport is attributed to an anomalously high southward thermocline84

transport (where the typical seasonal cycle has vanished) and extreme southward Ekman85

transports in the winter period. Roberts et al (2013) found that the amplitude of this ob-86

served slowdown was extraordinary compared to the simulated AMOC variability and such87

a weakening was not represented in the variability of a set of 10 CMIP5 coupled climate88

models. This AMOC event led to a reduced northward ocean heat transport across 26◦N by89

0.4 PW resulting in colder waters north of 26◦N and warmer waters south of 26◦N, a spatial90

pattern that helped push the wintertime atmospheric circulation during both 2009–10 and91

2010–11 into record–low negative North Atlantic Oscillation (NAO) conditions associated92

with severe winter conditions over northwestern Europe (Taws et al (2011), Cunningham93

et al (2013), Sonnewald et al (2013), Bryden et al (2014), Buchan et al (2014)). In 2010, the94

warming south of 26◦N also coincided with the strongest Atlantic hurricane season since95

2005 (Bender et al (2010)).96

The 2009–2010 AMOC event is a good example illustrating the main hypothesis of this97

paper. While the AMOC and Meridional Heat Transport (MHT) reduced at 26◦N during this98

period of time, the MHT did not reduce as much at 41◦N (Johns et al (2011), Hobbs and99

Willis (2013), Bryden et al (2014)). There was thus more heat moving northward through100
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41◦N than coming in at 26◦N resulting in an anomalous divergence of heat between these101

two latitudes. Bryden et al (2014) showed that the SST patterns in winter 2009–2010 con-102

ditions were not primarily due to air–sea interactions. Consequently, since volume transport103

governs heat transport, and the heat transport north of 41◦N did not change much, and the104

surface fluxes did not change enough to explain the cooling, the widespread cooling of the105

North Atlantic was attributed to the changes in the AMOC at 26◦N. The main goal of this106

paper is to generalise the hypothesis that the AMOC has an influence on the North Atlantic107

SSTs and assess the link between these two quantities more generally for the 2004–2014108

period. We use the first decade (2004–2014) of AMOC observations at 26◦N as a precursor109

of the SST over the North Atlantic region, and aim to determine to what extent knowing110

the AMOC allows us to predict SSTs. We thus investigate the link between the observed111

AMOC anomalies at 26◦N and satellite based SSTA data (Reynolds et al (2007)), with the112

AMOC leading the SSTA fluctuations. Section 2 describes the datasets and methods used113

in this paper. In section 3, we assess the correlation pattern between the AMOC and the114

North Atlantic SSTAs when the AMOC leads the SSTAs. A discussion and summary of the115

paper are given in sections 4 and 5, where we further discuss the possible physical mecha-116

nisms behind the correlations between AMOC and SSTA when the SSTA leads, alongside117

hypotheses on the impact of seasonal SST predictions for Atlantic hurricane forecasting and118

extreme weather in Northwestern Europe.119

2 Data and Method120

2.1 Data121

The data used in this paper cover the period April 2004 – March 2014 and comprise the122

AMOC observed by the RAPID array at 26◦N, satellite based SST data and air–sea fluxes123
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from ERA–Interim (Dee et al (2011)). Monthly data are used throughout and the seasonal124

cycle is removed from these three datasets.125

2.1.1 Calculation of the AMOC by the RAPID array126

The AMOC as observed by the RAPID array is defined as the sum of the Gulf Stream127

through the Straits of Florida (the Florida Straits transport, FST), the meridional Ekman128

transport (EKM), and an interior transbasin transport estimated from the mooring array.129

The FST has been monitored using a submarine cable between Florida and the Bahamas130

using the principles of electromagnetic induction (Baringer and Larsen (2001)) with daily131

estimates, and repeated ship sections since 1982. The Florida Current cable and section data132

are made freely available on the Atlantic Oceanographic and Meteorological Laboratory133

web page (www.aoml.noaa.gov/phod/floridacurrent/ ).134

The meridional component of wind–driven Ekman transport is calculated from the zonally–135

integrated meridional ERA–Interim wind stress across 26◦N from the shelf off Abaco (Ba-136

hamas) to the African Coast. This transport is applied in the top 100 m.137

Finally, the transbasin transport includes a directly estimated component, west of 76.75◦W,138

a geostrophic component east of 76.75◦W and a uniform compensation transport, chosen to139

enforce zero net transport across 26◦N (including transbasin, Florida Current and Ekman140

transports) on a 10–day timescale. This compensation term effectively replaces the choice141

of a level of no–motion as typically used for transports estimated from hydrographic sec-142

tions (Roemmich and Wunsch (1985), Bryden et al (2005)). To estimate the geostrophic143

component of the transbasin transport, the principle of the array is to estimate the zonally144

integrated geostrophic profile of northward velocity from measurements of temperature and145

salinity at the eastern and western boundary of the array using the thermal wind relationship.146

Overall, the AMOC strength is computed as:147
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AMOC(t) = FST (t)+EKM(t)+UMO(t), (1)

where UMO (for Upper Mid–Ocean) is the transbasin transport above the depth of max-148

imum overturning. Data are processed and made available through the RAPID website149

(http://www.rapid.ac.uk/rapidmoc) with a temporal resolution of 12 hours. In the follow-150

ing work, the data obtained from April 2004 to March 2014 were monthly averaged and151

deseasoned by removing the 12–month climatology obtained from the monthly data. The152

12–month climatology is a timeseries defined as the mean of all January data, February153

data, and so on, up to December. Then, each component (AMOC, FST, EKM and UMO)154

was de–trended and filtered with a 2–month running mean.155

From April 2004 to March 2014, the mean AMOC strength was 17.0 ± 3.3 Sv (1 Sv=106
156

m3s−1), FST was 31.4 ± 2.3 Sv, EKM was 3.6 ± 2.0 Sv, and the UMO transport was -17.9 ±157

2.7 Sv1 Full details of the 26◦N AMOC calculation can be found in McCarthy et al (2014).158

2.1.2 SST Data159

SST data are collected from the NOAA optimum interpolation dataset (NOAA OI, Reynolds160

et al (2007), http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). This dataset161

has a resolution of 1◦ × 1◦, and is based on global satellite observations. SST data were pro-162

cessed the same way as the RAPID data. The data were deseasoned (and subsequently re-163

ferred to as SST anomalies: SSTAs) using the climatology obtained from the monthly SST164

data from December 1981 to March 2015 (the longest possible period is used to obtain165

a robust seasonal cycle) before being de–trended and filtered. We then extracted the data166

from April 2003 to March 2015 to span the RAPID era (April 2004 – March 2014). These167

1 Positive and negative numbers indicate northward and southward transports, respectively. (the standard
deviations mentioned here are based on monthly data after removal of the mean seasonal cycle and the trend).
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data were extracted one year before and after the RAPID era in order to perform168

lagged correlations between the SST data and the AMOC timeseries and components.169

2.1.3 Air–Sea heat fluxes170

Changes in the local air–sea heat fluxes are a likely contribution to observed SSTA pat-171

terns. The heat flux can be divided into four components, the net shortwave and longwave172

radiation and the sensible and latent heat flux anomalies. Variability in the net shortwave173

radiation will depend on changes in cloudiness and the sea–ice albedo. Changes in the net174

longwave radiation are due to changes in the lower atmospheric temperature, cloudiness,175

or SST. Longwave radiation anomalies tend to damp SSTAs. The sensible and latent heat176

fluxes depend on gradients between the lower atmosphere and the sea surface in temperature177

and water vapor pressure respectively. Both latent and sensible heat fluxes depend strongly178

on the surface wind speed and thus are well correlated.179

The air–sea flux (ASF) anomalies used in this paper are extracted from the ERA–Interim180

reanalysis (Dee et al (2011)) and comprise all four components of the net heat flux (sensible,181

latent, shortwave and longwave radiations). ERA–Interim is a global atmospheric reanalysis182

from 1979, continuously updated in real time. The spatial resolution of the data set is approx-183

imately 80 km on 60 vertical levels from the surface up to 0.1 hPa. The ERA-Interim data184

used in this study were downloaded from http://apps.ecmwf.int/datasets/data/interim-full-185

daily/. Analyses using the ERA–Interim ASFs cover the same period April 2004 – March186

2014, and the ASF anomalies were calculated by removing the seasonal cycle from 1979 to187

2012.188

In section 3.3.1, where the role of ASFs on the development of SSTA patterns is as-189

sessed, the ERA–Interim SST dataset is used in order to avoid any unnecessary regridding190
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of the Reynolds SST data on the ERA–Interim grid. As the ERA–Interim dataset makes use191

of satellite data (Dee et al (2011)), it is likely to be close to Reynolds SSTs.192

2.2 Method193

Unlike previous studies which aimed at predicting the AMOC variability (Hawkins and194

Sutton (2009), Robson et al (2012a), Robson et al (2014), Sévellec and Fedorov (2014)), we195

assume in this paper that we know the AMOC, and want to know what we can predict from196

this starting point.197

For this purpose, the RAPID data (the AMOC and components) and the SSTAs were198

correlated for different time lags. Since our main interest in this paper is to use AMOC199

information to predict SSTAs, we will mainly focus on situations where the AMOC and200

its components lead the SSTA fields. These results will be shown in Section 3, while the201

correlations when SSTAs lead are shown in the discussion section of this paper.202

The significance of these correlations is evaluated with a method based on composites.203

This method consists of generating a thousand random discretised (binary) signals (com-204

posites) with similar statistical properties as the RAPID data. For the random selection of205

months to be statistically comparable to the RAPID AMOC anomaly timeseries we ensure206

that we randomly pick the same number of months with positive and negative anomalies (i.e.207

66 and 54). For example, positive and negative SSTA composites are therefore the averages208

of 66 and 54 selected months during the 2004–2014 period (Eq. 2 and 3):209

SSTA+ =
∑

N+

1 SSTAt+

N+
− ∑

N
1 SSTA

N
, (2)

SSTA− =
∑

N−
1 SSTAt−

N− − ∑
N
1 SSTA

N
, (3)
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where t+ and t− are the timings from the positive and negative anomalies in the AMOC (or210

its components) or from the random sampling mentioned above; N+ and N− are the total211

numbers of positive and negative months and N is the total number of months (N = 120).212

Therefore, by construction we have:213

SSTA+×N++SSTA−×N−

N
= 0. (4)

We ensure that the temporal properties of the random timeseries are comparable to those214

of the AMOC observations. For this, we compute lagged autocorrelations for discretised215

transport timeseries (i.e. -1 for AMOC < 0 and 1 for AMOC ≥ 0) and for the equivalent216

discretised timeseries obtained from the randomly selected timings. For each timeseries the217

lagged autocorrelations are integrated from lag 0 up to the lag where the first zero–crossing218

occurs. We only keep the randomly generated timeseries for which the value of the integral219

is between 0.75 to 1.25 times the value obtained for the RAPID data. We have tested a220

broader envelope of 0.50–1.50 and our results showed a slightly higher significance for the221

AMOC–SST correlation. In contrast, narrowing the envelope leads to slightly decreased222

significance. The range of 0.75–1.25 was found to be a good compromise between allowing223

too many unrealistic random timeseries or being too strict and not allowing enough freedom224

for the random timeseries to have enough variety in their temporal properties.225

Figure 2 illustrates on top the AMOC with the positive (blue) and negative (red) anoma-226

lies, and at the bottom, the SSTA (at a specific location in the North Atlantic) for which227

SSTA+ and SSTA− are calculated.228

In a last step we use the composite method to determine the statistical significance229

of the correlations between the RAPID timeseries and SSTA. Absolute composite val-230

ues (i.e. abs(SSTA+), abs(SSTA−)) are a measure for the covariance between SST and231
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the AMOC. For each grid cell the 1000 random composites provide a distribution of232

values which we compare to the composite value we obtain when using the observed233

AMOC timeseries. A correlation in a given grid cell is deemed significant if less than234

5% of the absolute values (i.e. abs(SSTA+), abs(SSTA−)) found for the randomly gen-235

erated composites are higher than the values for abs(SSTA+) and abs(SSTA−) obtained236

when using the observed RAPID timeseries.237

3 Results238

The datasets previously described are used in this section in order to test our main hypothe-239

sis: the AMOC timeseries can be used to predict the SSTA over the North Atlantic. In this240

section we therefore concentrate on the case where the AMOC leads SSTAs. The case where241

SSTAs lead the AMOC is discussed in section 4.242

3.1 The North Atlantic SST response to the AMOC variability243

To assess the link between the AMOC at 26◦N and the SSTA over the North Atlantic, lagged244

spatial correlations were calculated for lags from zero to 12 months, where the AMOC leads245

the SSTA. These correlations are shown in Fig. 3 with the AMOC leading the SSTA by 0,246

2, 5, 7, 9 and 12 months. The 95% level of significance in these correlations is obtained247

using the composite method described in Sect. 2.2 and the strongest signal is found when248

the AMOC leads the SSTA by 5 months (Fig. 3c).249

For this specific lag (Fig. 3c), the correlation pattern exhibits a distinct dipole structure250

where positive correlations are found between the AMOC and the SSTA southeast of New-251

foundland between 26 and 45◦N and negative correlations occur in a zonal band reaching252

from the Gulf of Mexico to the African coast between 10 and 26◦N. This occurrence of253
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positive/negative can be explained with a simple conceptual model schematised in Fig. 4.254

As mentioned in the introduction, the meridional coherence of AMOC anomalies on suban-255

nual timescales is likely to be small. Therefore, the correlation/anticorrelation pattern in the256

North Atlantic could be the consequence of a seesaw–like mechanism. A positive AMOC257

anomaly at 26◦N increases the input of oceanic heat into the region north of the RAPID–258

MOCHA section. At the same time a positive AMOC anomaly extracts more heat from the259

region south of the RAPID–MOCHA section. An increased input and extraction of heat260

north and south of the 26◦N section is consistent with positive and negative SSTAs north261

and south of the 26◦N section. Conversely, a negative AMOC anomaly is consistent with262

the development of negative and positive SSTAs north and south of the 26◦N section. In263

order to understand the contribution of each of the AMOC components to the emergence of264

the SSTA dipole, spatial correlations and composites are also calculated between the SSTA265

and EKM (Fig. 5b), the FST (Fig. 5c) and the UMO transport (Fig. 5d), the components266

leading the SSTA. For a lag of 5 months, the EKM component mainly contributes to the267

development of the tropical part of the dipole while the other components seem to equally268

contribute to the formation of this SSTA dipole. While a weakening in EKM is associ-269

ated with a warming of the SSTA off the western European coast (anticorrelation pattern in270

Fig. 5b), a strengthening in the UMO transport also seems to be associated with a warming271

in this same area (correlation pattern in Fig. 5d). The 95% significance contours indicate272

that the FST is the component which contributes the least to the development of this SSTA273

pattern for this specific lag.274
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3.2 Spatial and temporal variability of the SSTA over the North Atlantic275

3.2.1 Spatial pattern of SST variability276

To better characterise the variability of the SST over the North Atlantic, we apply an Empiri-277

cal Orthogonal Function (EOF) analysis to the North Atlantic SST field from 5◦ to 80◦N and278

analyse the spatial structure of the dominant mode of variability of SST during the RAPID279

era (April 2004–March 2014). Details of the EOF methodology can be found in Preisendor-280

fer (1988). Since we do not want our signal to be contaminated by the seasonal warming and281

cooling of the SST, the annual cycle (calculated from the full SST timeseries available from282

December 1981 to March 2015) has been removed from our timeseries and the data are first283

smoothed with a 2–month low pass filter before calculating the EOFs.284

The three first EOFs explain almost 40% of the total variance (Fig. 6). The principal285

component associated with the first EOF shows a large range of variability (up to 2◦C) and286

is characterized by two minima in mid–2005 and mid–2010. The spatial pattern associated287

with this first mode (Fig. 6b), explains 20.4% of the total variance and is characterized by288

a distinct tripole structure (also called the North Atlantic SST tripole) that is reminiscent289

of Atlantic SST patterns discussed in previous studies (e.g. Czaja and Frankignoul (2002),290

Seager et al (2000), Fan and Schneider (2012)). In this tripole, the tropics (5◦ to 20◦N)291

and subpolar gyre (50◦ to 70◦N) vary with an opposite sign compared to the subtropical292

gyre. Buchan et al (2014) and Taws et al (2011) associated this tripole with an exceptionally293

negative phase of NAO, characterising both cold winters in 2009–2010 and 2010–2011.294

Earlier work (Seager et al (2000), Fan and Schneider (2012)) based on the net surface295

heat flux from the NCEP reanalysis, demonstrated that in the latter half of the 20th century296

this SST tripole pattern was consistent with being forced primarily by the atmospheric heat297

flux. Schneider and Fan (2012) examined the role of ocean dynamics and concluded that the298
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influence of the simulated AMOC on the SST tripole was minor. The mechanism explained299

in the previous section of this paper show that the AMOC may partially explain the ori-300

gin of the subtropical and mid–latitude lobes of the tripole (the 2 patterns at mid and low301

latitudes) described by this first mode of variability.302

The principal component associated with the second mode of variability (explaining303

10.1% of the total variance) does not show any particular extreme SSTA value compared304

to the first mode. The corresponding spatial pattern (Fig. 6c) is also characterised by a305

tripole pattern which is shifted southward by about 10–15◦ compared to the first mode,306

with stronger intensities toward the Nordic Seas and the Atlantic coast of Western Europe307

as well as an intensified pattern east of Newfoundland.308

Finally the principal component associated with the third mode of variability (explain-309

ing 8.1% of the variance) shows three maxima, during late 2009, beginning of 2011 and310

beginning of 2013. The spatial structure associated with this third mode is characterised by311

a dipole structure north and south of about 30◦N but does not resemble the dipole found by312

relating the AMOC to SSTAs.313

3.2.2 Temporal relationship between the AMOC and SSTAs314

To further relate the AMOC to the main mode of variability of SSTA over the North At-315

lantic, we perform cross correlations between the AMOC, its components, and the principal316

component associated with the first mode of variability of SSTA (Fig. 7). We are interested317

here in negative lags when the AMOC leads the SSTA. Some discussion about possible318

physical mechanisms consistent with the correlations for positive lags will be provided319

in the discussion section of this paper (section 4). The strongest correlations between the320

AMOC and SSTA (the AMOC leading) are reached for lags from 2 to 5 months for which321

the correlations reach a plateau with values above 0.3, which is in good agreement with the322
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results obtained in Sect. 3.1. For a lag of 3–months for example, the corresponding lagged323

correlation coefficient is 0.37 (compared to 0.16 without lag) and 0.43 if a 3–month low pass324

filter is applied to both timeseries. In the following we concentrate on the lag of 5 months325

as this is the longest lead time that is part of the plateau with increased correlations between326

AMOC and SSTAs shown in Fig. 7.327

Since the observed AMOC is calculated as the sum of EKM, FST and UMO transport,328

all components contribute to the SSTA anomaly patterns associated with the AMOC (Fig. 5).329

However, we do not expect the AMOC’s components to all contribute at the same time due330

to the different timescales that govern the physical processes underlying each component331

(Fig. 7). Between EKM and SSTAs the highest correlation occurs for a lag of 1-2 months.332

Between FST/UMO and SSTAs the highest correlations are found for lags of 3 and 7 months,333

respectively.334

In summary, during the period 2004–2014, the main mode of SSTA variability is char-335

acterised by a tripole pattern over the North Atlantic. Following the ideas behind the sug-336

gested physical mechanism (described in Sect. 3.1) associated with the 2 to 5–month337

lagged SSTA response to AMOC fluctuations, the AMOC’s contribution seems to be338

limited to the two southern lobes of the SSTA tripole.339

3.3 Is this SSTA dipole a direct response to atmospheric forcing?340

Given the small meridional coherence across the 40◦N boundary in the AMOC on suban-341

nual timescales (Bingham et al (2010), Josey et al (2009)), the main hypothesis in this paper342

is that the variations in the heat advected by the AMOC at 26◦N is not likely to be the same343

further north resulting in a divergence or convergence of heat between the two latitudes con-344

sidered and the development of SSTAs. Although the link between the volume transport and345
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heat transport has been established (Sonnewald et al (2013)), as well as the link between the346

heat transport and heat content in the ocean, a change in the heat content is not necessarily347

accompanied by a change in the SST. Ocean heat content changes may remain confined to348

the subsurface and SSTAs can directly result from air-sea fluxes.349

Changes in ocean temperatures are partly due to radiative and turbulent heat exchanges350

at the air–sea interface, and due to advective heat transport divergence resulting from varying351

ocean currents (Bjerknes (1964)). To make sure that the heat advected by the AMOC is352

responsible for the SSTA dipole structure previously described, we need to make sure that353

these SSTA fluctuations are not just the response to atmospheric heat fluxes.354

3.3.1 Air–Sea fluxes355

To determine the areas where the SSTA variance is more likely to be explained by air–sea356

exchanges, spatial correlations between the cumulated air–sea flux (ASF) anomalies and357

SSTAs are calculated over the North Atlantic (Fig. 8), where ASFs lead SSTAs.358

A positive correlation indicates that both the ASF anomalies and SSTAs vary with the359

same sign. This can occur if positive ASF anomalies (which imply either that more heat360

is gained by the ocean or less heat is lost) tend to be co-located with positive SSTAs (or361

vice versa i.e. negative heat flux anomalies with negative SSTAs). In each case, the SSTA is362

consistent with an ocean response to atmospheric forcing e.g. more heat gain by the ocean363

leads to surface warming. Positive correlations thus indicate the areas where the SSTAs can364

be seen to be a response to the ASF anomalies as opposed to being their source. In the365

latter case a negative correlation would be expected as for example positive SSTAs are now366

associated with negative air–sea heat flux anomalies i.e. increased ocean heat loss or less367

heat gain.368
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In order to compute these correlations, the SSTA timeseries has been correlated to the369

ASF anomaly timeseries cumulated over an increasing number of months from 2 months370

(Fig. 8b) to 12 months (Fig. 8l). If we focus on the area where the AMOC–SSTA dipole was371

located (shown in Fig. 5a), positive correlations mainly occur in a band reaching from 12◦N372

to 26◦N, the strength of this correlation increasing with increasing accumulation of months373

in the ASF data. In this band of latitudes, maximum correlations occur around 6–7 months374

and explain up to 25% of the SSTA variance. This means that for shorter periods of time375

between 2 and 5 months when we showed highest correlations between the AMOC and the376

SSTA in the dipole previously described, the SSTA is not mainly responding to a forcing377

from atmospheric heat fluxes and ASFs contribute to a lesser extent to the development of378

this SSTA dipole (explaining less than 16% of the variance around the lower lobe of the379

dipole).380

In summary, the strongest correlations between the cumulative ASFs and SSTAs are381

found at lags from 6 to 7 months and over most of the North Atlantic, these correlations382

are lower than 0.3 (e.g. the region coinciding with the northern lobe of the SSTA dipole383

of Fig. 5). For lags between 2 and 5 months when the AMOC/SSTA correlations are the384

strongest, the ASF/SSTA correlations are even lower.385

3.3.2 Ekman transport386

Second to the surface heat flux, the most effective driver of SST variations is the wind–387

induced Ekman heat transport, especially along oceanic thermal fronts, such as the Gulf388

Stream (Frankignoul (1985)). Lagged correlations and composites between EKM and the389

SSTA are shown in Fig. 9 at zero lag (Fig. 9a), for a lag of 2 months (Fig. 9b), 5 months390

(Fig. 9c), 7 months (Fig. 9d), 9 months (Fig. 9e) and 12 months (Fig. 9f), EKM leading the391

SSTA. The strong correlations found south of about 40◦N for lags of up to 2 months392
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indicate that EKM plays a significant role in setting the SSTA response pattern up to393

this latitude, but can only partly explain the dipole structure shown in Fig. 5a. At a lag394

of 5 months, EKM explains the tropical lobe of the dipole but for the northern lobe, signif-395

icant correlations are only found in the eastern part of the basin. Generally, the correlation396

between EKM and the SSTA decreases as the lag increases beyond lags of two months.397

To further assess the contribution of EKM to the link previously made between the398

AMOC and the SSTA, the EKM component has been subtracted from the AMOC (called399

“AMOC–EKM”, Fig. 10b and d, Mielke et al (2013)) before calculating the correlations400

between the AMOC and the SSTA. At zero lag (Fig. 10a and b), the correlations between the401

AMOC and SSTA and AMOC–EKM and SSTA show different spatial patterns, highlighting402

the role previously demonstrated of EKM in the characterisation of this pattern. For a lag of403

5 months (Fig. 10c and d), these spatial correlations show a very similar spatial structure; the404

main difference between these figures being the intensity of the negative correlation between405

0 and 20◦N. This indicates that for these longer periods of time, EKM is predominantly406

contributing to the development of the southern part of the SSTA tripole.407

4 Discussion408

That the Atlantic has a large impact on the climate of northwestern Europe is an old con-409

cept (e.g. Maury (1855)). The prominent mode of Atlantic variability, the Atlantic Mul-410

tidecadal Oscillation (AMO: the averaged SST over the whole North Atlantic) has been411

linked with rainfall in the Sahel, India and northwest Brazil, hurricane formation in the At-412

lantic and northern hemisphere mean temperature fluctuations (Knight et al (2006), Zhang413

and Delworth (2006)). In terms of the impact on northwestern Europe, positive AMO leads414

to warmer temperatures and wetter summers (e.g. Sutton and Dong (2012)). Several mod-415
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elling studies have shown a relationship between the AMOC and the AMO at decadal and416

longer timescales (Griffies and Bryan (1992), Latif et al (2004), Knight et al (2006)). Still417

at decadal timescales, the AMO has recently been shown to be preceded by changes in the418

North Atlantic ocean circulation (McCarthy et al (2015)). In this study, we show for the first419

time the potential of the AMOC timeseries at 26◦N to be used to predict the Atlantic SST at420

seasonal timescales.421

We show in this paper that the SSTA response to the AMOC variability at a maxi-422

mum lag of 5 months is characterised by a dipole with a tropical and a subtropical lobe423

(Fig. 3). The tropical pattern covers the latitudes from 5 to 26◦N and thus includes the Main424

Development Region (MDR) for hurricane formation: 10–20◦N, 30–60◦W. The benefit of425

having estimates of Atlantic SST patterns half a year in advance is that SSTAs could then426

be linked to an increased or decreased probability of storm formation. Due to its potential427

for widespread destruction, hurricane activity is a noteworthy feature of interannual climate428

variability, deserving of further investigation into the contributing large–scale processes and429

associated predictability. Statistical analyses have shown that Atlantic basin hurricane counts430

depend on Atlantic SST on interannual and longer timescales and that tropical Atlantic SST431

accounts for a third of interannual hurricane count variability (Elsner et al (2008), Saunders432

and Lea (2008)). It is also not understood exactly how warm SSTs influence tropical cy-433

clone formation, though it is likely through sustained vertical motion, convective processes434

and cloudiness.435

The MDR for hurricanes, 10–20◦N, 30–60◦W, has been anomalously warm since 1995436

and tropical cyclone activity has also been above average since then. 2005 and 2010 had437

record high SSTs in the MDR (which is well illustrated in the principal component of the438

first mode of SSTA over the North Atlantic: Fig. 6a), and correspondingly significant dev-439

astating major hurricane landfall activity (Trenberth and Shea (2006)).440
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The link established in this paper between the AMOC and the SSTA over the North441

Atlantic region suggests that estimating the AMOC transport could provide some additional442

information for statistical and dynamical tropical cyclone forecast models by improving SST443

forecasts for the following season (e.g., LaRow et al (2010), Vecchi et al (2011), Davis et al444

(2015), Camp et al (2015)). Indeed, conditions may be more conducive than usual to tropical445

cyclone development when subtropical AMOC transport is anomalously low and heat builds446

up south of 26◦N. The lead time of 5 months between the AMOC and the SSTA would be447

important for forecasting climate conditions in advance in order to make preparations.448

449

In addition to the relationship demonstrated in this paper, showing that the AMOC (and450

components) leads an SSTA dipole by up to 5 months, Fig. 7 also suggests an interesting451

link between SSTAs and the AMOC and components when the SSTA leads. Focusing on452

lags when the SSTA leads, a correlation of -0.32 is found between the AMOC and SSTA453

when a lag of 7 months is applied to the SSTA (the SSTA leading), this correlation in-454

creasing to -0.43 when a 3–month low–pass filter is applied to the data (Fig. 7). The lagged455

correlations between the first mode of SSTA variability and the AMOC components (Fig. 7)456

show that UMO is the main contributor to the correlation pattern between the AMOC and457

SSTAs. EKM and FST only provide a minor contribution. The spatial correlation patterns458

between SSTAs and the AMOC (Fig. 11) confirm that the maximum correlation is reached459

for a lag around 7 months, characterised by a tripole SSTA pattern with significant positive460

correlations between 0 and about 25◦N and 45 to 60◦N and a band of significant negative461

correlations in between. This correlation pattern gradually increases up to 7 months and de-462

creases afterwards. Fig. 12 confirms the weak link found between the SSTA and EKM when463

the SSTA leads the correlation. Maximum correlations are also found for a lag of 7 months464
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with significant correlation patterns constrained to the central part of the basin between 25465

and 45◦N.466

The lagged correlations between SSTAs and the UMO transport (Fig. 13) show the467

tripole pattern described for the SSTA/AMOC correlations with significant correlations from468

lag 1 up to lag 7 when it reaches its maximum. A positive UMO (AMOC) anomaly is then469

preceded by positive SSTAs at low latitudes (with a 7–month lag). The high correlations470

originate 7 months in advance in the lower lobe of the tripole south of about 30◦N when the471

correlation is maximal (Fig. 13d).472

Focusing on the eastern part of the basin (African coast) the area of positive corre-473

lations then propagates northward along the coast up to the Spanish coast at a lag of 1474

month. For lags from 3 to 1 month (Fig. 13a–b)) a narrow area of significant correla-475

tions extends northwards past the Canaries and covers the latitudes around the 26◦N476

section where the RAPID moorings used to compute the UMO transport are located.477

This band of positive correlation could possibly be associated with Kelvin (or more478

generally boundary trapped) waves.479

In order to better understand the physical mechanisms explaining the link between the480

SSTA and UMO transport when the SSTA leads, a closer look to the thermal wind relation-481

ship is needed (Eq. 5):482

vgeo(z) =− g
ρ f L

∫ z

bottom
(ρe −ρw) dz. (5)

This equation computes the mid–ocean geostrophic velocities used to estimate the UMO483

transport, and L is the basin width, f is the Coriolis parameter, g is the acceleration of grav-484

ity, ρ is the density of sea water and ρw and ρe are the densities at the western and eastern485

boundary of the 26◦N section respectively. From Eq. 5, we can see that if the eastern bound-486



Predictability of Atlantic sea surface temperatures 23

ary of 26◦N is warmer than usual (around 26◦N: Fig. 13a–b), assuming a constant salinity,487

we expect a smaller density at the eastern boundary and a smaller difference between the488

density at the eastern and western boundary of the array, which would lead to a weaker489

(southward) UMO transport (i.e. vgeo becomes less negative). For example, a SSTA of +1◦C490

(warmer at the eastern boundary, and if we assume a vertical extent of this anomaly of491

200m) would correspond to a density anomaly of approximately 0.25 kg/m3, leading to an492

anomaly in the UMO transport of 1.5 Sv, which is of similar magnitude compared to the493

standard deviation of 2.7 Sv previously mentioned.494

Consequently, the propagating correlation pattern seen in Fig. 13a–b around 26◦N495

suggests the development of a positive temperature anomaly that leads to a decrease496

of the UMO transport and to an increase of the AMOC. This is consistent with a pos-497

itive correlation between SSTAs and the UMO transport (Fig. 13) and SSTAs and the498

AMOC (Fig. 11), in the lower lobe of the tripole.499

Of course SSTA patterns can be deceptive and we would need to know the vertical500

density structure to be sure that the SSTAs are indeed consistent with a strengthening of501

the geostrophic transport. The analyses presented in this paper are based on a joint use of502

observation–based products, which allowed us to test our hypotheses on 10 years of data.503

Using a 1/4◦ NEMO simulation, Grist et al (2010) partitioned annual-timescale ocean heat504

content anomalies between surface fluxes and ocean heat transport, finding that ocean heat505

transport (divergence) dominates interannual variability of ocean heat content (and probably506

SST) in extratropics, while both contribute in similar measure in the tropics/sub–tropics.507

Future work will consist in reproducing the analyses performed in this paper using high–508

resolution coupled climate model output (not yet available) in order to check the validity of509

our results using longer timeseries. Using high–resolution coupled models will be crucial in510
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order to test the impact of the coupling (and hence the representation of air–sea interactions)511

on our results.512

5 Summary and Conclusions513

We have tested the potential of the AMOC observations from 26◦N between April 2004 and514

March 2014 to be used to predict SSTs. Our results suggest that:515

• There is a significant link between AMOC anomalies and SSTAs where the AMOC leads516

SSTAs by lags between 2 and 5 months. For positive (negative) AMOC anomalies the517

SSTA pattern consists of a dipole with negative (positive) SSTAs in the tropical Atlantic518

and positive (negative) SSTAs to the southeast of Newfoundland.519

• All AMOC components contribute to the SSTA pattern found at a 5–month lag. The520

southern part of the dipole can mainly be linked to the Ekman component, whereas521

UMO, Ekman and to a lesser extent FST contribute to the northern part of the dipole.522

• The SSTA dipole found at a lag of 5 months cannot be attributed to the action of instan-523

taneous air–sea fluxes. Cumulative air–sea fluxes mainly explain the SSTA fluctuations524

for lags longer than 6–7 months and only explain a small fraction of the SSTA variability525

for lags from 2 to 5 months when the AMOC/SSTA correlations are the strongest.526

• The southern part of the SSTA dipole found at a lag of 5 months encompasses the MDR527

for Atlantic hurricanes. Our results therefore suggest a potential use of AMOC observa-528

tions from 26◦N to be used to complement existing seasonal hurricane forecasts in the529

Atlantic.530

• Investigating the link between the SSTA and AMOC and its components when the SSTA531

leads the transport anomalies, a significant relationship was found between the SSTA532

and the AMOC for a lag of 7 months. This correlation is mainly attributed to the UMO533
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transport where anomalously high temperatures at the eastern boundary of 26◦N for lags534

between 0 and 3 months are consistent with a reduced southward UMO transport and an535

increased AMOC.536
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Fig. 1 Timeseries of the AMOC anomaly and the anomaly of its components (the seasonal cycle is removed
in coloured plots) measured by the RAPID array at 26◦N from April 2004 to March 2014 (monthly mean
data). The Florida Straits transport (FST) is derived from electromagnetic cable measurements in the Florida
Straits and is represented in blue. The Ekman transport (EKM) is derived from ERA–Interim wind estimates
and is represented in green. The Upper Mid–Ocean (UMO) transport is derived from geostrophic velocity
profiles from moored instruments across the Atlantic Ocean and is represented in pink. The AMOC transport
is the sum of the FST, EKM and UMO transports and is shown in red. Grey curves show the same timeseries
with the monthly seasonal cycle included.
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Fig. 2 Bar plot of the AMOC anomaly timeseries with 66 positive values in blue and 54 negative ones in red
(top panel). The bottom figure shows the SST anomaly (SSTA) at a specific location (9.5◦N, 80.5◦W) where
the SSTAs in red and blue correspond to the AMOC negative and positive values, respectively.



28 Duchez, Courtois et al.

  72 o
W 

  54 o
W 

  36
o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 12)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

  72 o
W 

  54 o
W   36

o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 7)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

AMOC−SST lagged correlations (AMOC leads)

  72 o
W 

  54 o
W   36

o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 2)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

  72 o
W 

  54 o
W   36

o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 0)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

  72 o
W 

  54 o
W 

  36
o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 5)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

  72 o
W 

  54 o
W   36

o
W   18

oW 

   0
o   

  15 o
N 

  30 o
N 

  45 o
N 

  60 o
N 

  75 o
N 

 

 

AMOC − SST Correlation (lag 9)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5−month lag

f

b0 lag

e

d

12−month lag

7−month lag

a 2−month lag

c

0.2

0

0

−0.2

−0.2

−0.4

−0.4

−0.6

−0.6

−0.8

−0.8

−1

−1

9−month lag

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

0

−0.4

−0.6

−0.8

−1

1

0.6

0.4

0.2

0.8

−0.2

0.4

11

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

−0.2

−0.2

−0.4

−0.4

−0.6

−0.6

−0.8

−0.8

−1

−1

1

0.8

0.8

0.6

0.6

0.4

0.2

Fig. 3 Lagged correlations between the SSTA over the North Atlantic and the AMOC at 26◦N. In these
correlations, the AMOC leads the SSTA. Panel (a) shows zero lag, panel (b) shows a lag of 2 months, panel
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significance levels and were obtained using the composite method.
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Fig. 4 Schematics representing a seesaw mechanism relating the AMOC fluctuations (upper red and lower
blue arrows) to the SSTA pattern (red and blue patches at the surface) in the North Atlantic. The 26◦N section
is represented by a yellow wall on this figure. A stronger AMOC advects more heat north of 26◦N and leads
to warmer subtropics and colder tropics as more heat is extracted from this region.
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Fig. 5 Correlation between the SSTA over the North Atlantic and the AMOC (panel a, same as Fig. 3c), the
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For these figures, the AMOC and components lead the SSTA.
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Fig. 6 Conventional Empirical Orthogonal Function (EOF) analysis of SSTA over the North Atlantic. Panel
(a) shows the principal components associated with the 3 first EOFs, panel (b) shows the spatial pattern
associated with the first mode of variability, panel (c) with the second mode and panel (d) with the third
mode.
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SSTA over the North Atlantic and the AMOC (red), the Ekman transport (black), the Upper Mid–Ocean
transport (pink) and the Florida Straits transport (blue). Negative lags show correlations when the AMOC and
components lead the SSTA. When the AMOC and components lead, the maximum correlations are obtained
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Mid–Ocean transport and 3 months for the Florida Straits transport. When the SSTA leads, the maximum
correlation between the AMOC and SSTA is reached for a lag of 7 months, similar to the UMO transport.
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Fig. 8 Correlations between the cumulative air–sea flux anomalies and the SSTAs. For each panel of this
figure, we test the time-related impact of the air–sea fluxes on the SSTA. For panel a, instantaneous air–sea
fluxes are correlated to the SSTA. For panel b, 2–month accumulated air–sea fluxes are correlated to the SSTA
and so on for an accumulation between 2 months (panel) and 12 months (panel l). Thick black lines show the
95% significance level.
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Fig. 9 Lagged correlations between the SSTA over the North Atlantic and the Ekman transport at 26◦N. In
these correlations, the Ekman transport leads the SSTA. Panel (a) shows zero lag, panel (b) shows a lag of 2
months, panel (c) 5 months (same as Fig. 5b), panel (d) 7 months, panel (e) 9 months and panel (f) 12 months.
Black contours indicate 95% significance levels and were obtained using the composite method.
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Fig. 10 Spatial correlation between the AMOC at 26◦N and the SSTA over the RAPID period (April 2004
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(a) and (c) are similar to panels (a) and (c) in Figure 3.
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Fig. 11 Lagged correlations between the SSTA over the North Atlantic and the AMOC at 26◦N. In these
correlations, the SSTA leads the AMOC. Panel (a) shows zero lag, panel (b) shows a lag of 2 months, panel
(c) 5 months, panel (d) 7 months, panel (e) 9 months and panel (f) 12 months. Black contours indicate 95%
significance levels and were obtained using the composite method.
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Fig. 12 Lagged correlations between the SSTA over the North Atlantic and the Ekman transport at 26◦N. In
these correlations, the SSTA transport leads the Ekman transport. Panel (a) shows zero lag, panel (b) shows
a lag of 2 months, panel (c) 5 months (same as Fig. 5b), panel (d) 7 months, panel (e) 9 months and panel (f)
12 months. Black contours indicate 95% significance levels and were obtained using the composite method.
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Fig. 13 Lagged correlations between the SSTA over the North Atlantic and the UMO transport at 26◦N. In
these correlations, the SSTA leads the UMO transport. Panel (a) shows zero lag, panel (b) shows a lag of 2
months, panel (c) 5 months (same as Fig. 5b), panel (d) 7 months, panel (e) 9 months and panel (f) 12 months.
Black contours indicate 95% significance levels and were obtained using the composite method.
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