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18Large (N~1 km3) submarine landslides can potentially generate very destructive tsunamis and damage expensive
19sea floor infrastructure. It is therefore important to understand their frequency and triggers, and whether their
20frequency is likely to change significantly due to future climatic and sea level change. It is expensive to both
21collect seafloor samples and to date landslides accurately; therefore we need to know how many landslides
22we need to date, and with what precision, to answer whether sea level is a statistically significant control. Previ-
23ous non-statistical analyses have proposed that there is strong correlation between climate driven changes and
24landslide frequency. In contrast, a recent statistical analysis by Urlaub et al. (2013) of a global compilation of
2541 large (N1 km3) submarine landslide ages in the last 30 ka concluded that these ages have a temporally random
26distribution. Thiswould suggest that landslide frequency is not strongly controlled by a single non-randomglobal
27factor, such as eustatic sea level. However, there are considerable uncertainties surrounding the age of almost all
28large landslides, as noted by Urlaub et al. (2013). This contribution answers a key question that Urlaub et al.
29(2013) posed, but could not address— are large submarine landslides in this global record indeed temporally ran-
30dom, or are the uncertainties in landslide ages simply too great to tell? We use simulated age distributions in
31order to determine the significance of available age constraints from real submarine landslides. First, it is
32shown that realistic average uncertainties in landslide ages of±3 kyrmay indeed result in a near-random distri-
33bution of ages, evenwhere there are non-random triggers such as sea level. Second,we showhow combination of
34non-random landslide ages from just 3 different settings, can easily produce an apparently randomdistribution if
35the landslides from different settings are out of phase. Third, if landslide frequency was directly proportional to
36sea level, we show that at least 10 to 53 landslides would need to be dated perfectly globally— to show this cor-
37relation. We conclude that it is prudent to focus on well-dated landslides from one setting with similar triggers,
38rather than having a poorly calibrated understanding of ages in multiple settings.

39 © 2015 Published by Elsevier B.V.
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44 1. Introduction

45 Submarine landslides are one of the volumetrically most important
46 mechanisms throughwhich sediment is transported from the continen-
47 tal slope to the deep ocean (Hühnerbach and Masson, 2004; Masson
48 et al., 2006; Korup, 2012; Talling et al., 2012; Urlaub et al., 2013,
49Q3 2014). Landslide deposits have been mapped on many continental
50 slopes as disparate as southeast Australia (Clarke et al., 2012) and the
51 Grand Banks, Newfoundland (Piper et al., 1999). Submarine landslides
52 can be far larger than any terrestrial landslide, and can involve the
53 movement of hundreds or even several thousands of cubic kilometres
54 of material (Hampton et al., 1996; Hühnerbach and Masson, 2004;
55 Talling et al., 2007). Perhaps the most remarkable aspect of large sub-
56 marine landslides is that they typically can occur on very low gradients

57of just 1–2° (Hühnerbach andMasson, 2004; Talling et al., 2007; Urlaub
58et al., 2012, Q42014). Such low gradients are almost always stable on land.
59Once inmotion, the submarine slidemass can entrain ambient seawater
60and disaggregate to form longer runout sediment flows, known as tur-
61bidity currents. These turbidity currents can themselves travel many
62hundreds of kilometres (Weaver and Kuijpers, 1983), and reach speeds
63of up to ~20 m/s (Piper et al., 1999; Hsu et al., 2008).
64Submarine landslides, debris flows and associated turbidity currents
65may represent significant geohazards. Submarine landslides have the
66potential to generate damaging tsunamis (Ruffman, 2001; Tappin
67et al., 2001; Haflidason et al., 2005; Boe et al., 2007; Hornbach et al.,
682007);whilst both landslides and turbidity currents can damage expen-
69sive sea floor infrastructure, such as that associated with the hydrocar-
70bon industry or seafloor telecommunications (Bruschi et al., 2006;
71Carter et al., 2009; Parker et al., 2009, Q52012). Some authors have argued
72that the occurrence of large submarine landslides can have significant
73climatic impacts through the release of large amounts of methane into
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74 the water column and the atmosphere (Kennett et al., 2000; Maslin
75 et al., 2004; Pecher et al., 2005; Vanneste et al., 2006; Beget and
76 Addison, 2007; Paull et al., 2007). Understanding the frequency and
77 triggers of large submarine landslides is therefore important.

78 1.1. Triggering and preconditioning of submarine landslides

79 A large number of triggers and preconditioning factors have been
80 hypothesised as possible causes for large submarine landslides. Poten-
81 tial preconditioning factors and triggers include earthquakes, rapid sed-
82 imentation that leads to high excess pore pressure and conditions close
83 to failure, and gas hydrate dissociation that reduces sediment strength
84 (Hampton et al., 1996; Maslin et al., 1998; Stigall and Dugan, 2010;
85 Goldfinger, 2011; Masson et al., 2011; Talling et al., 2014). However,
86 not all large (N7 Mw) earthquakes appear to generate major slides
87 (Völker et al., 2011; Sumner et al., 2013), large submarine landslides
88 occur in locations with slow sediment accumulation (Urlaub et al.,
89 2012), and some landslide headwalls occur in water depths that are
90 too deep for gas hydrate dissociation (Hühnerbach and Masson,
91 2004). In general, many of these hypotheses for landslide precondition-
92 ing and triggering are weakly tested, in part because we are yet to di-
93 rectly monitor large slides in action in sufficient detail (Talling et al.,
94 2014).

95 1.2. Submarine landslide frequency and sea level — previous work

96 A series of previous studies explored the potential relationship be-
97 tween landslide frequency and sea level. The first set of studies used
98 compilations of landslide ages, typically from widespread locations.

99 1.2.1. Global databases of landslide ages
100 The initial analyses did not include full uncertainties in landslide
101 ages, or test the certainty of their conclusions through quantitative sta-
102 tisticalmethods. These studies suggest that increased landslide frequen-
103 cy occurred during specific periods in glacial cycles, corresponding to
104 sea level low-stands, high-stands, or rapid rates of sea level change.
105 Brothers et al. (2013) identify a causal relationship between sea level
106 rise and landslide triggering. Paull et al. (1996) identify increased num-
107 bers of landslides during low-stands related to reduced overburden
108 pressure of the water column on gas hydrate bearing sediments.
109 Leynaud et al. (2009), Maslin et al. (1998, 2004), Lee (2009) and
110 Lebreiro et al. (2009) recognised that different margins responded dif-
111 ferently to sea level. For example, low latitude margins experienced
112 more large submarine landslides during low-standswhile high latitudes
113 were more likely to see slope failures during rising sea levels or high-
114 stands.
115 Subsequent analysis has sought to evaluate these qualitative conclu-
116 sions using statistical approaches. Urlaub et al. (2013) considered a col-
117 lection of 68 large (N~1 km3) submarine landslide ages from locations
118 worldwide, which includes the last 120 ka (Fig. 1). This is the largest
119 number of landslide ages yet compiled. It included dates from landslide
120 deposits themselves from open slope failures (but not volcanic island
121 failures) where ages were obtained by radiocarbon AMSmeasurements
122 or by applying a combination of several methods (e.g. biostratigraphy
123 and oxygen isotopes). It also included large (N~1 km3) turbidites in-
124 ferred to be landslide-triggered. Such large volume turbidites are un-
125 likely to be triggered by processes other than slope failure, as their
126 volume far exceeds even the largest historical river flood (Talling
127 et al., 2014). In general, such turbiditeswill tend to record fastermoving
128 landslides that disintegrate to produce turbidity currents. See Urlaub
129 et al. (2013) for a fuller discussion on the consistent selection criteria.
130 The Urlaub et al. (2013) study took a subset of 41 events in the last
131 30 ka to analyse statistically from the compiled global database. This
132 subset was chosen to avoid a strong bias due to undersampling of
133 older events, caused by limits to core penetration below the sea floor;
134 most sediment cores extended back to 30 ka, but few reached 120 ka.

135The analysis by Urlaub et al. (2013) included the often considerable un-
136certainties in landslide ages in this analysis (Fig. 1), unlike most previ-
137ous studies that considered only the calibrated mean ages or most
138probable ages (Ramsey, 1998). The greatest uncertainties in landslide
139age typically result from where samples are taken for dating, above
140and below the landslide or turbidite deposit, rather than the error bars
141in the (typically AMS radiocarbon) dates themselves. This is discussed
142more fully in Urlaub et al. (2013), and illustrated by our Fig. 2.
143Urlaub et al. (2013) analysed these 41 landslide ages. They first
144divided their 30 ka study period into a series of equal time intervals,
145termed bins (e.g. 0–5 kyr, 5–10 kyr, and 10–15 kyr). They then
146counted the number of landslide ages that fell within each bin. This
147allowed them to plot the number of bins with a single landslide
148age, two landslide ages, three landslide ages, and so forth (Urlaub
149et al., 2013; their Fig. 8a, b). A random number generator was then
150used to produce a set of synthetic landslide ages, assuming landslide
151occurrence was temporally random. The same procedure was
152followed to count the number of synthetic landslide ages in each
153bin, and the number of bins with one, two or more landslide ages.
154It was found that there was no statistically significant difference be-
155tween the frequency of bins with 1, 2, 3 or more landslide ages, both
156real and synthetic landslide ages using the χ2 statistic (their Fig. 8c).
157The duration of bins was varied between 1 kyr and 5 kyr, as this af-
158fects the frequency distribution of the landslide ages. Both the ‘best
159guess’ landslide ages, and landslide ages acknowledging age uncer-
160tainty were tested in this way. In each case, landslide ages were de-
161scribed by the χ2 statistic as occurring randomly, such that they
162approximated a Poisson distribution (Urlaub et al., 2013).

1631.2.2. Landslide recurrence intervals on the margins of a single basin
164A second type of study used different types of data and statistical
165methods to consider the recurrence intervals of landslides around the
166margins of a single sedimentary basin (Hunt et al., 2013; Clare et al.,
1672014), as opposed to a global dataset of landslide ages. These studies
168used large volume turbidites as a proxy for large landslides that disinte-
169grate, which are presumably faster moving. Clare et al. (2014) consid-
170ered large (N0.1 km3 in these cases) landslide turbidite recurrence
171intervals in three disparate abyssal plain sequences of variable age,
172whilst Hunt et al. (2013) considered landslide–turbidites in the Agadir
173Basin offshore NW Africa. They compared the frequency distribution
174of landslide turbidite recurrence intervals, with a Poisson frequency dis-
175tribution. It was found that the frequency distribution of the landslide–
176turbidite recurrence intervals did not differ significantly from the
177(Poisson) distribution produced by a temporally random process. Both
178of these studies therefore suggest that large landslides, which disinte-
179grate to form long run-out turbidity currents, are temporally random,
180or near random (Hunt et al., 2013; Clare et al., 2014).

1811.2.3. Q6Discrete vs continuous data
182The Urlaub et al. (2013), Hunt et al. (2013) and Clare et al. (2014)
183studies all concluded that the occurrence of submarine landslides
184followed a Poisson distribution. A Poisson distribution implies a lack of
185memory in the system which it is describing, such that the probability
186of a new event occurring is independent of the time since the last. The
187methodology used by the different studies is dependent on the type of
188data. The global nature of the Urlaub et al. (2013) study and the uncer-
189tainty regarding theduration of inter-event timing required the study to
190use ‘discrete’ (count) data that was binned. The number of landslides
191within a given time period was compared to the number that would
192theoretically be produced by a random process. In contrast, the avail-
193ability of landslide–turbidite recurrence intervals (inter-event time)
194allowed Hunt et al. (2013) and Clare et al. (2014) to use ‘continuous’
195data. This study follows the approach of Urlaub et al. (2013) and there-
196fore uses discrete data.
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Fig. 1.Globalmean sea level (black curve,Waelbroeck et al., 2002) plottedwith submarine landslide ages, which includes their uncertainty intervals (fromUrlaub et al., 2013). If available,
the agewith the highest probability is shown by a grey square. The colour of the uncertainty line indicates the sedimentary environment. The grey time line on the upper part of the figure
indicates the sea level pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Different sampling strategies for radiocarbon dating of submarine landslides. The rectangles represent sediment cores with hemipelagic background sedimentation (white) and a
landslide deposit (grey). Open and filled black circles indicate the position of the sample. A minimum age is obtained by taking one (a) or several samples (b) from the hemipelagic unit
above the landslide deposit. A maximum age is obtained when samples are either taken from the hemipelagic unit below (c) or within (d) the failure deposit. A linear average sedimen-
tation rate for the core based on one sample can be significantly different from actual temporary sedimentation rates (e), which can be calculatedwhen several samples between the top of
the core and the top of the failure deposit are available. Samples above thedeposit can give anage too young if located on a local high (f) and bioturbation on the top aswell as erosion at the
base of the failed deposit (g) are possible sources of uncertainty to the estimated ages.
Fig. 1 from Urlaub et al., 2013.
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197 1.3. Rationale for this study — why is it necessary, novel and valuable?

198 This study answers the key outstanding questions that remain from
199 the study of Urlaub et al. (2013), which concluded that large landslide
200 ages were temporally random. They posed, but failed to answer the im-
201 portant question: is this because large submarine landslide ages are tem-
202 porally random, or is it because the uncertainties in the ages are too large
203 to tell? Here we provide a novel answer to that question. It is important
204 to understandwhat this compilation of ages is telling us about landslide
205 frequency, as each landslide age has been costly to acquire. For example,
206 if landslide ages actually correlate perfectly with global sea level, is it
207 likely that uncertainties in measuring their ages could easily produce
208 an apparently random age distribution?
209 We also address two further key questions that have not previously
210 been addressed. First, how easy is it to produce temporally random land-
211 slide ages simply from combining (non-random) landslide ages from mul-
212 tiple settings with different triggers and preconditioning factors? It is
213 important to answer this question because this is indeed the situation
214 for most global datasets of landslide ages, which combine dates from
215 different settings, including that presented by Urlaub et al. (2013). Sec-
216 ond, how many submarine landslides do we need to date, and with what
217 precision, in order to test whether landslide frequency is controlled strongly
218 by global sea level? This is important because it is costly to sample and
219 date submarine landslides. We need to know what the most effective
220 future strategy will be for determining whether landslides and sea
221 level are linked.

222 1.3.1. Why use simulated landslide ages?
223 Our aim is to understand the significance of the available dates, with
224 their uncertainties, from real large submarine landslides (such as com-
225 piled by Urlaub et al., 2013). However, to answer the three key science
226 questions outlined above we first consider series of simulated landslide
227 ages. We do not consider landslide ages from the original Urlaub et al.,
228 2013database. Our approach allows us to determinewhether simulated
229 landslide ages, which are perfectly known and lack any uncertainties,
230 can form temporally random patterns once reasonable age uncer-
231 tainties are added. Such an approach cannot be takenwith real landslide
232 ages, whose ages all have significant uncertainties. Similarly, the
233 simulated ages allow us to investigate the ease with which perfectly
234 known landslide ages from different settings (with variable triggers
235 and preconditioning factors) can be combined to form apparently tem-
236 porally random landslide ages. Finally, these simulated landslide ages
237 allow us to test howmany landslide ages are needed to identify a strong
238 sea level control. It is impossible to do this using real landslide ages that
239 all have different error bars, and for which we do not know there is a
240 perfect association with sea level. So these synthetic landslide ages
241 allow us to fix key parameters (e.g. error bars), to answer key questions
242 about the real field datasets. An additional advantage of such simulated
243 ages is that potential biases are avoided, such as the agesmostly coming
244 from the northeast Atlantic as is the case for Urlaub et al. (2013).

245 2. Methods

246 This section first outlines the statistical method used to test for ran-
247 domness in landslide ages (Section 2.1). It then describes how simulat-
248 ed (artificial) catalogues of landslide ages were created that are non-
249 random, and have perfectly known ages (Section 2.2). Sections 2.2.1
250 and 2.2.2 outline how realistic uncertainties (error bars) were added
251 to these simulated ages and how changes to the 1 kyr bins were inves-
252 tigatedwith regard to how event frequency ismeasured. Section 2.3 de-
253 scribes how simulated landslide ages from multiple settings are
254 combined. Finally, Section 2.4 outlines the methodology used to test
255 how many landslides are needed to identify a strong sea level control
256 whose rationale for choosing rather than other variables is detailed in
257 Section 2.5.

2582.1. χ2 test for a temporally random (Poisson) distribution

259To test for a temporally random distribution, we use the χ2 method-
260ology outlined by Urlaub et al. (2013). The χ2 test assesses the goodness
261of fit of a dataset to a temporally random distribution by analysing
262whether there are statistically significant peaks, clusters or trends with-
263in the dataset (Swan and Sandilands, 1995). As the χ2 test is testing a
264temporal process, the data are split into time intervals of certain lengths
265known as bins. The number of bins containing a certain number of land-
266slides is counted. These are then compared to the number of bins with
267an expected number of events according to a Poisson model generated
268from the same number of events and bins. The distribution of events
269is considered random if the χ2 value is smaller than the χ2 critical
270value. The χ2 critical value is obtained from a look-up table depending
271on the number of classes observed (see Swan and Sandilands (1995)
272for further details). The critical values at the 95% confidence level can
273be seen in Table 1.
274In addition to the χ2 test set out in (Urlaub et al., 2013) we also use
275the likelihood ratio χ2 test (Kendall et al., 1999). The likelihood ratio
276χ2 test is defined as:

G2 ¼ 2
X

Ojlog
Oj

E j

� �
ð1Þ

278278where Oj is the number of bins observed with a given number of events
and Ej is the number of bins expected with a given number of events

279(Kendall et al., 1999). The likelihood ratio test provides a means to ana-
280lyse the likelihood of the landslide ages being randomor non-random. If
281the likelihood ratio exceeds a critical value thenwe have reason to reject
282thedistribution prescribed by theχ2 statistic. The critical value is obtain-
283ed from the χ2 look-up table according to the number of classes
284observed. Using the likelihood ratio in addition to the χ2 statistic
285provides a more rigorous analysis.

2862.2. Creating simulated non-random landslides with perfectly known ages

287This study initially uses a set of artificially generated landslide ages
288that are known perfectly, without any uncertainty, for reasons set out
289in Section 1.3.1. Four types of non-random landslide age patterns
290were investigated. Our aim was to understand how many of these per-
291fectly known landslide ages we would need to measure to show if they
292are random or non-random. Fig. 3 provides a visual explanation of each

t1:1Table 1
t1:2χ2 critical values at the 95% confidence inter-
t1:3val. A critical value is selected according to
t1:4the number of classes being compared, i.e.
t1:5if three classes are being compared such that
t1:6there are bins with 0, 1, and 2 landslides
t1:7then the critical value for 2 degrees of free-
t1:8dom (ν) will be selected. If there are four
t1:9classes being compared such that there are
t1:10bins with 0, 1, 2, and 3 landslides then the
t1:11critical value for 3 ν will be chosen and so
t1:12on. When the calculated χ2 value exceeds
t1:13the appropriate critical value the distribu-
t1:14tion of events is deemed non-random.

t1:15v 95%

t1:161 3.841
t1:172 5.991
t1:183 7.815
t1:194 9.488
t1:205 11.07
t1:216 12.592
t1:227 14.067
t1:238 15.507
t1:249 16.919
t1:2510 18.307
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293 type of non-random age distribution. These four types of landslides ages
294 are perfectly periodic, clustered, with linearly increasing inter-event
295 times, or patterned in time (Fig. 3; Swan and Sandilands, 1995).
296 Examples of functions used to generate perfectly periodic (Eq. (3)),
297 clustered (Eq. (4)) and linearly increasing inter-event times (Eq. (5))
298 are shown below. Events are considered to occur when the value of
299 f(x) is equal to 1.

f xð Þ ¼ sin xð Þ ð3Þ
301301

302

f xð Þ ¼ sin xð Þ þ 1
2
sinxþ 0:1 ð4Þ

304304

305

f xð Þ ¼ sin xxð Þ ð5Þ
307307

Patterned landslide ages were produced by using more than one of
308 these generating functions. These patterned events were manipulated
309 to change their average event frequency (Fig. 3). The number of events
310 within an individual simulated catalogue of landslide ages ranged from
311 5 to 100. This range was chosen because 5 is the minimum number of
312 events required for the χ2 test, and 100 events is about 2.5 times more
313 events than in the Urlaub et al. (2013) global compilation. It thus cap-
314 tures a reasonable minimum and maximum value for the number of
315 available landslide ages. These patterns were used to examine if we
316 could identify whether the occurrence of landslides in these simulated
317 records was indeed non-random.

318 2.2.1. Addition of uncertainties in ages
319 Age uncertaintieswere subsequently applied to the patterns of land-
320 slides outlined in Section 2.2 in a number of differentways. First, age un-
321 certainties of up to ±0.75 kyr were applied uniformly to all landslide
322 ages. This was done because ±0.75 kyr represented an age uncertainty
323 large enough for any event to be moved by at least one bin (each bin is
324 1 kyr). The choice of limiting uniform error results from the χ2 test
325 assessing the distribution through the use of bins. The use of bins com-
326 bined with uniform age uncertainty means that the χ2 test is not sensi-
327 tive to the temporal order of events. Thus, with uniform age uncertainty
328 of ±0.75 kyr, events are able to reverse their temporal order, although
329 the χ2 test will not recognise this.
330 Second, age uncertainties of a random duration between 0 kyr and
331 3 kyr were applied to events. Both the size of age uncertainty and the
332 event to which it was appliedwere selected using randomnumber gen-
333 erators. Our choice of a range between 0 and 3 kyr was informed by the
334 uncertainties in age of river fan systems in the Urlaub et al. (2013)
335 study, which have a mean error of 2.34 kyr (Rothwell et al., 1998;
336 Reeder et al., 2000, 2002; Lastras et al., 2004; Maslin et al., 2005;
337 Garziglia et al., 2008; Gracia et al., 2010; Bourget et al., 2011; Masson
338 et al., 2011,Q7 2013). This is the smallest mean uncertainty for any of the
339 settings considered by Urlaub et al. (2013).

340Third, ever increasing age uncertainties were applied to events. Age
341uncertainties increased progressively in accordance with the age of the
342event that it was being applied to, i.e. the youngest event did not have
343an age uncertainty whilst the age uncertainty of the oldest event was
344the largest (see Fig. 4). The largest age uncertainty applied was 20 kyr
345(±10 kyr) reflecting the global record used by the Urlaub et al.
346(2013) study as the greatest age uncertainty present in this record
347was 19.98 kyr (±9.99 kyr) (Reeder et al., 2002).

3482.2.2. Moving the positions of the 1 kyr bins
349Landslide ages were assigned to 1 kyr duration bins (0–1 ka, 1–2 ka,
3502–3 ka, etc.) in order to produce a histogram of landslide frequency.
351Urlaub et al. (2013) noted that the position and duration of these bins
352could affect the analysis.We chose bin durations of 1 kyr for the follow-
353ing reason; that linking landslide frequency to changing environmental
354factors, such as sea level variations, necessitates that the bin size is suf-
355ficiently small to capture the environmental change under consider-
356ation. In the case of sea level change, 1 kyr bin size is reasonably
357appropriate (Waelbroeck et al., 2002). The position of the 1 kyr bins
358was varied during the analysis outlined in Sections 2.2 and 2.2.1 to
359test the extent to which bin position affects our ability to recognise
360whether landslides are non-random.

3612.3. Landslides from multiple settings

362We also simulate different landslides coming frommultiple settings.
363Each setting was defined to have a perfectly periodic (non-random) se-
364quence (Fig. 3a), but with a different return period. For example, one
365setting was given a uniform recurrence interval of 1.5 kyr, another
3662 kyr, and the third 3.5 kyr. Landslide ages from these multiple settings
367were then combined into one overall catalogue and tested for a tempo-
368rally random sequence as a single dataset. Thiswas done to simulate the
369generation of a global record of landslides combining different margin
370types, including glaciated, fluvial and sediment starved, as was seen in
371Urlaub et al. (2013) or different geographical margins around one
372basin (Clare et al., 2014) (Fig. 5). The datasets were then manipulated
373individually and as a single catalogue, by introducing different size
374error bars to the landslide ages and changing the position of the 1 kyr
375bins. This methodology was then carried out for the other pattern
376types seen in Fig. 3. It is important to test the role of multiple settings
377as global datasets of events will include landslides frommultiple differ-
378ent margin types, whilst basin records will include turbidites derived
379from landslides which may have different environmental settings.

3802.4. Simulated landslide ages whose frequency is dependent on sea level

381A third series of landslide ageswere generated to analyse the number
382of events needed to establish with reasonable certainty that global land-
383slide frequency is controlled strongly by sea level. The frequency of the
384landslides in this catalogue was defined to be directly proportional to

Fig. 3. Plot showing examples of the ordered distributions used to analyse the impact of age uncertainties. Landslideswith a) perfectly periodic patterns, b) clustered patterns, c) increasing
inter-event time patterns, d) patterned patterns.
Swan and Sandilands, 1995.
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385 sea level, using a global eustatic sea level curve for the last 30 ka
386 (Waelbroeck et al., 2002). Event frequency was simulated to be highest
387 during the last 1 ka in accordance with the highest sea level, whilst the
388 lowest frequency occurred around the last glacial maximum ~20 ka. A
389 directly proportional relationship was chosen in order for there to be
390 the strongest possible relationship between sea level and event frequen-
391 cy; thus it serves to enable us to identify the fewest number of events
392 needed as part of a best case scenario to link the two processes. It
393 also acts as a starting point for linking other processes to landslide
394 occurrence.
395 This artificial catalogue of landslide ages contained 67 entries, which
396 were numbered from 0 to 66.We then explored howmany events were
397 needed to identify sea level control. Beginning with one event from the
398 catalogue, events were added randomly to our analysis until all 67were
399 included. This mimics the discovery and dating of submarine landslides
400 through continued field investigations. Bins with durations of 1 kyr are
401 used to order to replicate the precision needed to link event frequency
402 to sea level. The catalogue was chosen to contain 67 events as this is
403 greater than the current global catalogue of well dated landslides for
404 the last 30 ka (i.e. 41 events; Urlaub et al., 2013), whilst being within

405the same order of magnitude thus acting as a useful comparison to the
406global landslide record.

4072.5. Why choose to investigate landslide frequency proportional to sea
408level?

409We specifically investigate sea level due to its link to current anthro-
410pogenic climate change and concerns regarding the consequence of fu-
411ture sea level rise on landslide frequency (Maslin et al., 2004, 2005;
412Owen et al., 2007; Lee, 2009). Using the global sea level curve for the
413last 30 ka provides us with the simplest test of how many landslide
414we would need to date to identify a non-random temporal distribution
415of events. This 30 kyr time period, used in theUrlaub et al. (2013) study,
416represents just over half a glacial cycle. Sea level begins the period dur-
417ing a low stand and rises to the end of the period.When the relationship
418between sea level and landslide frequency is linearly proportional over
419the last 30 ka, the distribution of landslide ages is a close approximation
420to a trend distribution (Fig. 3c). If the χ2 test is unable to identify this re-
421lationship we are unlikely to be able to identify a relationship between
422another variable and landslide frequency.

Fig. 4. Plot showing a schematic of the application of ever increasing age uncertainties. Black and blue diamonds represent two different patterns of landslides. Black arrows represent age
uncertainties which increase as the landslide get older within each pattern.

Fig. 5. Three separate sedimentary systems feeding into one ocean basin. Each system is likely to have different characteristic landslide recurrence intervals due to different local environ-
mental factors. River fan systems experience the highest sediment input during deglaciation or lowstands, depending on latitude, as rivers efficiently transport terrestrial sediment
(Covault and Graham, 2010; Urlaub et al., 2013). Glaciated margins are strongly influenced by climatic cycles due to the direct influence of growing and shrinking ice sheets and the po-
sition of ice streams (Lee, 2009) in terms of both local sea level and the location and timing of sediment delivery (Dowdeswell et al., 1996). Sediment starvedmargins are characterised by
lower sediment deposition rates as they have not been affected by glaciation and are located away from major river fan systems. Labels (a) landslide headscarp, (b) landslide deposits,
(c) trough mouth fan, (d) river fan delta, (e) interbedded sequence of background hemipelagic and sediment density flow deposits.
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423 Importantly, whilst we analyse sea level, this analysis is also able to
424 represent a proportionally linear response of landslide frequency to rate
425 of sea level change over the same period. In a catalogue of 67 landslides
426 where landslide frequency was linearly proportional to rate of sea level
427 change, the frequency distribution using 1 kyr bins would be the same
428 as the sea level controlled example. The only difference between the
429 catalogues would be that they are temporally offset from each other.
430 Crucially, the χ2 methodology outlined using bins does not recognise
431 the temporal order of events (see Section 2.2.1.) merely the frequency
432 of events in different bins. The χ2 test used would therefore not recog-
433 nise any difference between a landslide dataset linearly proportional
434 to sea level and a landslide dataset linearly proportional to sea level
435 change if half or a full sea level cycle is included within the period of
436 study.

437 3. Results

438 We now address the threemain questions that form the aims of this
439 study.

440 3.1. Are large landslides temporally random, or are age uncertainties too
441 large to tell?

442 3.1.1. Howmany perfectly known landslide ages are necessary to show they
443 are non-random?
444 Simulated landslide ages were generated for the last 30 ka that were
445 perfectly non-random and whose ages were known perfectly. It was
446 found thatwhen therewere over 40 dated landslides in the distribution,
447 we could always correctly determine that landslide occurrence was
448 non-random.Where samples of N40 ages were taken from the distribu-
449 tion types, the χ2 statistic allowed us to reject the hypothesis of tempo-
450 ral randomness for all the pattern types.
451 When samples of b40 ages were analysed, the results were more
452 variable. Table 2 contains the results for the iteration of each landslide
453 dataset pattern containing the largest number of events that appeared
454 temporally random according to the χ2 statistic. Each of these patterns
455 is also displayed in Fig. 6. Here, we show how the χ2 statistic varies as
456 the number of landslides in each pattern changes. The apparent cyclical
457 nature of the χ2 statistic value is a consequence of the methodology
458 using discrete data and the relative numbers of bins with events in
459 them. For example, in Fig. 6a the χ2 statistic is sensitive to the relative
460 numbers of events in each bin, i.e. how many bins contain 2 landslides
461 and how many contain 3. The χ2 statistic therefore peaks when all of
462 the bins have the same number of events in before declining until 50%
463 of the bins contain one number of landslides while the other 50% con-
464 tain a different number of landslides. The χ2 statistic subsequently
465 rises as the percentage of bins with the same number within them
466 increases.
467 Perfectly periodic distributions were only considered randomwhen
468 the event dataset contained 14 events or fewer (Fig. 6a). At 14 ages the
469 event dataset returned a critical value of 3.814 which was below the
470 critical χ2 value of 3.841 at the 95% confidence interval. The likelihood
471 ratio statistic supports identification of this distribution as random;
472 0.663 is well below the critical value of 3.841. Non-random landslide
473 datasets with linearly increasing inter-event times were considered
474 random when they contained 17 ages or fewer (Fig. 6c). Considering
475 17 ages the dataset returned a critical value of 3.212 which was below
476 the critical χ2 value of 3.841 at the 95% confidence interval. The

477likelihood ratio (0.553 does not exceed the critical value of 3.841),
478which supports this evaluation.
479The relationship between number of events and the ability of the χ2

480statistic to recognise non-random recurrence of events was found to be
481more complicated for clustered and patterned datasets and showed an
482important influence of bin position. For clustered landslide patterns,
483theχ2 statistic considered datasetswith 14 events or fewer to be tempo-
484rally random. For a dataset containing 14 ages, the χ2 critical value was
4853.525whichwas below the critical value of 3.841 required to shownon-
486randomness. The maximum number of ages as part of a clustered
487dataset of landslide ages which was considered random was 37
488(Fig. 6b). The χ2 statistic returned for the clustered dataset containing
48937 ageswas 2.798 compared to the critical value of 3.841. The likelihood
490ratio supports this interpretation although its value (3.423) is almost at
491parity with the critical value (3.841). This suggests that small changes
492could alter the interpretation of the distribution which supports the
493range of distributions interpreted for patterns containing between 14
494and 37 ages. Datasets containing between 14 and 37 ages were also
495often considered random. However, movement of the 1 kyr bins result-
496ed in many of these datasets being shown to be temporally non-
497random.
498The range of patterned (Fig. 3d) landslide age datasets considered
499temporally random exceeded that demonstrated by the clustered
500datasets. No patterned dataset with 14 ages or fewer could be discerned
501from a random distribution. However, a dataset with 39 patterned ages
502could not be accepted as different to a random distribution according to
503the χ2 statistic (Fig. 6d). It had a χ2 critical value of 4.94 which was less
504than the 5.991 critical value required to be considered non-random at
505the 95% confidence interval (the likelihood ratio value was 2.829 com-
506pared to a critical value of 5.991). The χ2 statistic considered different
507patterned landslide age datasets containing between 14 and 39 events,
508which were both temporally random and non-random. For many
509datasets the position of the bins was crucial. It was found that move-
510ment of the bins often alteredwhether the dataset was considered tem-
511porally random at the 95% confidence interval.

5123.1.2. Introduction of more realistic uncertainties (error bars) in landslide
513ages
514We first introduced uniform age uncertainties of up to ±0.5 kyr to
515the four different non-random landslide age patterns. In each case we
516considered more than 40 landslide events. This did not produce any
517submarine landslide age distributions that appeared temporally ran-
518dom according to the χ2 statistic. Similarly, the introduction of error
519bars in landslide ages between ±0.25 kyr and ±0.75 kyr produced,
520with the exception of a number of patterned landslide age datasets, no
521distributions which appeared temporally random with N40 landslides.
522In some cases it was found thatmovement of the bins resulted in the
523patterned landslide age datasets appearing to be non-random, which
524had previously been determined as random. For example, movement
525of the 1 kyr bins resulted in the same dataset, with 55 ages, having χ2

526values of between 12.121 and 7.533 with the χ2 critical value being
5279.488 (the likelihood-ratio test for these examples being 4.535 and
5283.427 respectively). This implies that as age uncertainties increase the
529χ2 test becomes increasingly sensitive to bin position due to its inability
530to recognise temporal order.
531The impact of age uncertainties of ±0.75 kyr on landslide patterns is
532shown in Fig. 7. Here, we show the impact of ±0.75 kyr on the χ2 value
533to the landslide patterns shown in Fig. 6. Fig. 7a–d all show that age

t2:1 Table 2
t2:2 χ2 and likelihood ratio results for landslide age patterns containing the greatest number of events with no age uncertainties which appear to be random according to the χ2 test.

t2:3 Perfectly periodic 14 16 (17.60) 14 (9.39) 0 (2.50) 0 (0.444) 3.841 2.9063 0.663
t2:4 Clustered 37 10 (8.74) 8 (10.78) 7 (6.65) 5 (12.73) 3.841 2.7982 3.423
t2:5 Linearly increasing inter-event times 17 15 (17.02) 14 (9.65) 0 (2.73) 1 (0.516) 3.841 3.212 3.744
t2:6 Patterned 39 6 (8.16) 15 (10.63) 5 (6.91) 4 (2.99) 5.991 4.94 2.829
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534 uncertainty can reduce the χ2 statistic value of non-random patterns.
535 However, Fig. 7a, b and d all show thatwhere patterns of landslides con-
536 tain relatively few events, the response to the age uncertainty can be for
537 the pattern to increase the χ2 statistic value and thus appear much less
538 random than when the pattern had no age uncertainty associated with
539 it. Fig. 7c implies that where patterns of landslides have linearly increas-
540 ing inter-event times the impact of introducing age uncertainties is pri-
541 marily to reduce the χ2 statistic value.
542 Further analysis of larger error bars in landslide ages involved two
543 approaches. First, randomly generated age uncertainties of between
544 0 kyr and 3 kyrwere assigned to events randomly using a randomnum-
545 ber generator. This allowed us to define the threshold number of land-
546 slide events, which have a certain age uncertainty, that are needed to
547 make non-random landslides appear temporally random. This thresh-
548 old number of landslides with age uncertainties varied depending on
549 the original pattern (periodic, clustered, etc.) and the number of events
550 within the pattern. Second, it was assumed that age uncertainties in-
551 creased linearly for progressively older landslides up to 20 kyr. This ap-
552 proach resulted in almost all of the datasets we considered, appearing
553 temporally random. The apparent randomness was caused predomi-
554 nately by the larger age uncertainties (up to 20 kyr) on the older land-
555 slides in each distribution.
556 Urlaub et al. (2013) considered 41 landslide ages in the last 30 kyr
557 from a series of different settings. The 24 examples from river fed

558systems have the smallest average error bars (2.34 kyr). Their landslide
559ages from other settings have even larger error bars. Our analysis there-
560fore shows that the inclusion of realistic error bars, even those from the
561better dated river fed systems, can cause non-random landslide ages to
562appear random.

5633.1.3. Can combination of multiple non-random sets of landslide ages lead
564to temporal randomness?
565We now address our second aim; how easy is it to produce random
566landslide ages by combining non-random ages from multiple settings?
567Three different, artificially generated, perfectly periodic non-random
568distributed (Fig. 3a) landslide datasets were combined and analysed
569by the χ2 statistics. The combined dataset often appeared to be tempo-
570rally random. The occurrence of an apparently temporally random dis-
571tribution is the result of the three sources being out of phase with one
572another. Phase is defined here as the timing of events within a time se-
573ries. For two perfectly periodic distributions (see Fig. 3a) with recur-
574rence intervals of 1 kyr for both distributions, the distributions would
575be considered in phase if events in both distributions occurred at the
576same time (i.e., 1st event at 0.5 ka, 2nd event at 1.5 ka, etc.). They
577would be considered out of phase if they occurred at different times
578(i.e., for the first distribution events occurred at 0.5 ka, 1.5 ka, 2.5 ka,
579etc.; for the second distribution event occurred at 0.3 ka, 1.3 ka, 2.3 ka,
580etc.). The overlaying of ordered patterns appears to generate

Fig. 6. Plot showing how the χ2 statistic value changes with increasing numbers of events in each pattern type when ages are perfectly known. a) The impact of increasing numbers of
landslides on the χ2 statistic where the pattern is perfectly periodic. b) The impact of increasing numbers of landslides on the χ2 statistic where the pattern is clustered. The black line
represents the pattern which contained the largest number of landslides before the χ2 statistic recognised it as non-random. The blue line represents the pattern which contained the
smallest number of landslides before the χ2 statistic recognised it as non-random. c) The impact of increasing numbers of landslides on the χ2 statistic where the pattern has increasing
inter-event times. d) The impact of increasing numbers of landslides on the χ2 statistic where the pattern of is patterned. The black line represents the patternwhich contained the largest
number of landslides before the χ2 statistic recognised it as non-random. The blue line represents the pattern which contained the smallest number of landslides before the χ2 statistic
recognised it as non-random. In a–d the red line represents the χ2 critical value; one the χ2 statistic is above the critical value the pattern of landslides is no longer considered random.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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581 randomness. Conversely, when perfectly periodic landslide ageswere in
582 phase, the distribution of the combined dataset was not perceived to be
583 random.
584 Age uncertainties were applied, both uniformly across three perfect-
585 ly periodic landslide datasets and to individual datasets. The latter was
586 intended to replicate the different sized age uncertainties associated
587 with the various margin types seen in Urlaub et al. (2013). Addition of
588 age uncertainty to any or all of the records acted to make the distribu-
589 tion of events appear more temporally random.
590 Thismethodologywas also applied to the other patterns of landslide
591 ages seen in Fig. 3, in addition to combining datasets with different
592 patterns of landslide ages. The same results were found when three
593 landslide age patterns of the same type were combined. The same was
594 also true when multiple landslide age pattern types were combined.
595 However, assessment of whether one age patternwas in phasewith an-
596 other was problematic.

597 3.2. Howmany landslide ages are needed to test for a strong dependency on
598 sea level?

599 To determine the power of the test we performed a series of model
600 iterations. Random introduction of landslides resulted in the distribu-
601 tion of landslide ages appearing temporally random and non-random
602 depending on the order that event were introduced. An example run
603 presented in Table 3. After 23 events are introduced in the example
604 run, the distribution appears to be non-random. However, addition of

605another (24th) event then causes the distribution to appear to be ran-
606dom. Only after 28 events does the distribution remain non-random
607with the additional of further events. We thus recorded the number of
608events required before the distribution that did not revert to being ran-
609dom following the addition of further events.
610Our results showed that the number of landslides needed to indicate
611a non-random distribution at the 95% confidence interval was highly
612variable. The mean number required was 38. However, the range of
613landslides needed was from 10 to 53, with the variability between dif-
614ferent iterations being shown by a standard deviation of 8.34; a large
615figure when compared to the size of the dataset.
616These results show that 10 to 53 landslide ages are needed with a
617mean of 38 ages, when the landslide age is known perfectly to show a
618strong dependency on sea level. 95% of landslide age distributions
619were correctly identified as non-randomwhen they had 48 ages. How-
620ever, the ages from real submarine landslides have are not perfectly
621dated and have associated error bars (Urlaub et al., 2013). When these
622uncertainties are added the number of landslides required to identify
623a strong sea level dependency will be greater than the number shown
624here.

6254. Discussion

626We first discuss the implications of the answers to our three aims
627(Sections 4.1, 4.2 and 4.3), and then outline the main sources of uncer-
628tainty in linking landslide ages and sea level (Section 4.4). Section 4.5

Fig. 7. Plot showing the effect of uncertainties up to ±0.75 kyr on the different patterns of landslides shown in Fig. 6. The black line represents the χ2 statistic value when the ages are
knownperfectly. The grey areas represent the possible range of χ2 statistic valueswhen an uncertainty of±0.75 kyr has been applied. a) χ2 statistic values for increasing numbers of land-
slides in a perfectly periodic pattern. b) χ2 statistic values for increasing numbers of landslides in a clustered pattern. c) χ2 statistic values for increasing numbers of landslides in a pattern
with increasing inter-event times. d) χ2 statistic values for increasing numbers of landslides in a patterned patterns. In a–d the red line represents the χ2 critical value; one the χ2 statistic is
above the critical value the pattern of landslides is no longer considered random. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb ver-
sion of this article.)
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629 outlines the most effective strategy for dating landslides, and thus the
630 best way forward.

631 4.1. Do available dates show that large landslides are random, or are error
632 bars too large?

633 Asmight be expected, our results indicated that itwas extremely dif-
634 ficult tomakenon-randompatterns of perfectly dated landslides appear
635 temporally random. However, the smallest error bars in theUrlaub et al.
636 (2013) dataset were for 24 river fed systems, with other settings
637 tending to have much larger error bars in landslide ages. We show
638 that such realistic (±3 kyr) error bars resulted in the appearance of ran-
639 dom ages, evenwhen landslides were non-random. Thus, the error bars
640 in Urlaub et al. (2013) are too great to tell if these 41 events represent
641 truly random landslides.

642 4.1.1. The additional impact of bins inmaking landslides appear temporally
643 random
644 Additional important errors were introduced into the assessment
645 of whether the events were temporally random by the position of the
646 bins. Bin choice in terms of both width and position is subjective.
647 Therefore it is necessary to vary the position of the bins, up to the
648 bin width in order to assess links between landslides and sea level.
649 Bin width should be chosen depending on the rate of variation in
650 the environmental record (e.g. sea level) with which event frequen-
651 cy is being compared. Bin use, however, remains unavoidable when
652 assessing the statistical distribution of events in a global record (dis-
653 crete data). Unlike outcrop or single core records, there is no control
654 on the temporal order of events in the global record as deposits do
655 not lie on top of one another. This is compounded by large age uncer-
656 tainties making the exact temporal order of events unknown. We are
657 therefore unable to use recurrence intervals (continuous data) as the
658 exact relationship between events cannot be specified meaning we

659are forced to use statistical tests on the frequency of events within
660certain specified periods of time, i.e. bins.

6614.2. Effects of combining landslide ages from different settings

662We demonstrate that three non-random collections of landslide
663ages could, once combined, appear to be temporally random (Figs. 5
664and 8). More formally, a time-independent, memoryless (Poisson) dis-
665tribution can result from non-uniform additive influences, as docu-
666mented by van Rooij et al. (2013). This is likely to be the case for
667global landslide databases (Urlaub et al., 2013), and it may be the case
668for studies based on large-volume turbidites in a single basin centre
669(Clare et al., 2014). This conclusion is important as it suggests that a
670combination of landslide ages from a small number (≥3) of settings
671can easily produce a single set of apparently random ages.

6724.2.1. Implications for global databases of landslide ages
673The global record arguably includes landslides from at least three
674fundamentally different settings; river-fed systems, ice-stream-fed
675trough mouth fans and sediment starved margins (Fig. 5). It is very
676likely that the relationship between sediment supply and sea level,
677and hence landslide preconditioning, will vary significantly in these
678three settings (Fig. 5; Laberg et al., 2000, 2003; Covault and
679Graham, 2010; Llopart et al., 2014). Therefore when combined into
680one record, if the events are out of phase, a temporally random distri-
681bution of events is likely. Large age uncertainties will only act to
682increase the likelihood of such a random distribution in global
683datasets that consider multiple settings. This suggests that global
684compilations, or even regional compilations with multiple settings,
685may not be very useful in determining links between sea level and
686landside frequency.

t3:1 Table 3
t3:2 Example of the output froma single iteration using an artificial set of landslide ageswhose frequency is linearly proportional to sea level. Thenumber of events column refers to thenumber
t3:3 of randomly selected ages from theoverall distributionwhich are being analysed by theχ2 test. Each row represents the addition of an extra randomly selected age and the output from the
t3:4 χ2 test. In this examplewe can see thatwhen 8 ages are analysed through theχ2 test the distribution appears to benon-random.However, addition of further ages causes thedistribution to
t3:5 revert to appearing temporally random. Only after 28 ages are added does the distribution appear to be non-randomand remain non-random. From this iterationwe take 28 ages to be the
t3:6 number of ages required for the χ2 test to recognise the distribution is in fact non-random. Oj = 0….4 is the number of bins observed with n ages.

t3:7 Number of events How the chi-square test views the landslide
ages at the 95% confidence interval

Chi-squared value Critical
value

Oj = 0 Oj = 1 Oj = 2 Oj = 3 Oj = 4 Likelihood-ratio

t3:8 5 Random 0.136 3.841 26 5 0.036
t3:9 6 Random 0.237 3.841 25 6 0.452
t3:10 7 Random 0.38 3.841 24 7 0.497
t3:11 8 Non-random 13.449 7.815 24 6 1 0.183
t3:12 9 Non-random 9.658 7.815 23 7 1 5.112
t3:13 10 Random 7.343 7.815 22 8 1 16.409
t3:14 11 Random 4.508 7.815 22 7 1 1 2.301
t3:15 12 Random 3.332 7.815 21 8 1 1 1.961
t3:16 13 Random 2.565 7.815 21 7 2 1 1.711
t3:17 14 Random 1.701 7.815 20 8 2 1 1.179
t3:18 15 Random 1.165 7.815 19 9 2 1 0.867
t3:19 16 Random 0.905 7.815 18 10 2 1 0.760
t3:20 17 Random 0.628 7.815 19 9 3 1 2.575
t3:21 18 Random 1.18 7.815 18 8 4 1 1.184
t3:22 19 Random 2.416 7.815 18 7 5 1 2.444
t3:23 20 Random 3.683 7.815 18 7 4 2 2.892
t3:24 21 Random 4.616 7.815 18 6 5 2 4.229
t3:25 22 Random 6.156 7.815 18 5 6 2 6.212
t3:26 23 Non-random 8.123 7.815 18 5 5 3 6.964
t3:27 24 Random 6.199 7.815 17 6 5 3 5.058
t3:28 25 Non-random 9.599 7.815 17 6 4 4 6.677
t3:29 26 Random 7.762 9.488 17 6 4 3 1 6.572
t3:30 27 Random 7.582 9.488 17 5 5 3 1 6.359
t3:31 28 Non-random 10.925 9.488 17 5 5 2 2 4.011
t3:32 29 Non-random 11.697 9.488 17 4 6 2 2 6.447
t3:33 30 Non-random 12.081 9.488 17 4 5 3 2 6.932
t3:34 31 Non-random 17.166 9.488 17 4 5 2 3 5.378
t3:35 32 Non-random 17.325 9.488 17 4 4 3 3 6.254
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687 4.2.2. Implications for landslide–turbidite records from a single basin
688 An alternative approach is to use large turbidites in a single basin, as
689 a proxy for large submarine landslide around the basin margin (Clare
690 et al., 2014;Q8 Hunt et al., 2013). However, our study emphasises the im-
691 portance of understanding the different sources of landslide triggered
692 turbidity currents, if they are out of phase (Rothwell et al., 1998, 2006;
693 Talling et al., 2007; Hunt et al., 2013). Additional effort will also have
694 to be made to clearly identify the difference between landslide and
695 flood triggered turbidites but also to identify where large turbidity cur-
696 rents have been generated by the coalescence of multiple small failures.
697 Inclusion of turbidites in the database that have not been generated by
698 large (N1 km3) events will likely weaken any statistical relationship
699 within a database.

700 4.3. Howmany landslides are needed to identify a strong sea level control?

701 If landslide frequency is linearly proportional to sea level, our study
702 shows that 10 to 53 perfectly dated landslides are needed to statistically
703 identify that direct correlation. It follows that considerably more than
704 10 to 53 landslides (mean 38) will be needed once age uncertainties
705 are included. However, two other issues are relevant to this discussion.

706 4.3.1. Controlling factors with more distinctive patterns than sea level
707 First, further work is needed to determine how many landslides
708 should be dated, if landslide frequency is proportional to rate of sea

709level change, and not absolute sea level. More generally, a smaller num-
710ber of landslides may need to be dated if the controlling factor has a
711more distinctive pattern through time. Some types of controlling factors
712may have a more distinctive pattern of variation than near sinusoidal
713sea level, or occur infrequently. In such cases, a smaller number of land-
714slide agesmay be needed to test for statistically significant relationships
715with landslide frequency. For instance, the Storegga Slide is near syn-
716chronous with the last major very abrupt climate change, the 8.2 ka cli-
717mate event (Haflidason et al., 2005; Dawson et al., 2011). Landslide
718frequency has also been linked to infrequent periods of very rapid sea
719level rise (Brothers et al., 2013; Smith et al., 2013). Events of this type
720are relatively rare and short-lived. A different approach may be needed
721to determine how many landslides should be dated to see if there is a
722link to such events.

7234.3.2. Stronger proportionality between landslide frequency and sea level
724A second issue is that we assume that landslide frequency is directly
725proportional to sea level, such that the constant proportionality is unity.
726It is possible that a much stronger association exists, such that the
727constant proportionality is far greater than unity. In such a situation, a
728smaller number of landslides may be needed to test for a significant
729association with sea level.

7304.3.3. Local sea level variations and delays in response to sea level
731Sea level itself presents challenges for finding a statistical relation-
732ship with landslide frequency at a global scale. Local sea level change

Fig. 8. Illustration of how non-random landslides in three settings can be combined to produce random series of landslide ages. Abacus plots showing the combination of landslide ages
from three different settings (white, green and pink circles). The lower time series in each panel shows the combined landslide age record. Each setting has landslide ages that are perfectly
periodic, but with different recurrence intervals. The setting with the most frequent landslides is shown by the white circles, the setting with the most infrequent events is shown by the
pink dots. The grey vertical lines are the edges of 1 kyr bins, whichwould be used to calculate the histogramof landslide frequencies through time. Parts a, b and c are used to illustrate the
importance of differences in phase, as defined by the initial slide event in each series. For example, all three records start in phase in part c, such that they all start with a landslide at the
same instant. Part a shows the least in phase landslides, and generates themost strongly temporally random sequence. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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733 can be very different from global eustatic sea level change due to glacio-
734 isostasy and local tectonic influences (Lambeck et al., 1998; Murray‐
735 Wallace, 2002). Additional uncertainty arises because of our limited
736 ability to reconstruct accurate local sea level curves. Combined with
737 delayed responses, either to changes in sea level or other identified trig-
738 gering factors, this reduces the likelihood of linking event to cause.
739 Modelling studies have indicated that continental slopes may have
740 site-specific delayed responses to earthquake triggers (L'Heureux
741 et al., 2013). Delayed and variable response to slow forcingmechanisms
742 such as sea level rise is therefore likely to be even more inconsistent
743 geographically. Submarine landslides from the global catalogue of
744 Urlaub et al. (2013) with relatively well constrained dates are confined
745 to one glacial sea level cycle. Dating of additional eventswhich occurred
746 during other glacial cycles may improve our ability to link events to
747 changes in sea level.

748 4.4. Implications for studying landslides older than 30 ka

749 Several reasons may make it problematic to study landslides older
750 than ~30 ka. First, as noted by Urlaub et al. (2013), cores from the
751 modern seafloormay not penetrate deeply enough to reach older events.
752 Second, the error bars in landslide ages tend to increase significantly
753 with time (Fig. 1), especially once landslides become too old to date via
754 radiocarbon (N~43 ka). However, a third reason may also be important.

755 4.4.1. Non-stationary random triggers whose average recurrence rate
756 varies over time
757 We have presented a statistical analysis of perfectly non-random
758 landslides and tested the number of landslides that would be required
759 in order to identify non-randomness. However, the testing of these
760 landslide patterns represents an idealised non-randomcase for two rea-
761 sons. First, the triggering mechanisms for these events will likely add a
762 random component to these regular patterns. The addition of a degree
763 of randomness, combined with age uncertainties will likely lead to the
764 non-random nature of these events being harder to discern.
765 Second, landslides may be occurring according to a non-stationary
766 Poisson process. The time period considered within this study is rela-
767 tively short at geological timescales. The shortness of the time period
768 in questionmeans that the distribution of some random events appears
769 stationary, such that the mean recurrence rate of landslides does not
770 change over time. However, over longer time periods, although remain-
771 ing inherently random, themean recurrence ratemay change. Suchpro-
772 cesses are considered to be occurring according to a non-stationary
773 Poisson process, i.e. occurring in clusters (Fig. 3b). Earthquakes repre-
774 sent an example of a non-stationary Poisson process. Over short time
775 periods they have a near-random distribution. Over longer time periods
776 the mean recurrence rate may change as fault systems more or tectonic
777 settings evolve. For submarine landslides, triggering processes are likely
778 to be affected by large-scale environmental change associated with cli-
779 mate change leading to fluctuations in triggering (Geist and Parsons,
780 2009).
781 Inherent randomness caused by specific triggers and non-
782 stationarity of Poisson processes mean that the results of this study
783 are somewhat idealised. These results thus represent a best case scenar-
784 io for recognising non-randomness using the statistical methodology
785 that has been outlined. Detection of a non-stationary Poisson process
786 is not attempted here, and it would be more challenging, and could re-
787 quire many more events than are in Urlaub et al.'s (2013) database.
788 Evaluation of a non-stationary Poisson process for large submarine
789 landslides is difficult, but should be the subject of future work.

790 4.5. Future strategies for dating submarine landslides — what is the best
791 way forward?

792 Wehave shown that realistic error bars in landslide dating, and com-
793 bination of ages from as few as three different settings, make it difficult

794to test for links between sea level and landslide frequency. The most
795complete global compilation of 41 large landslide ages in the last
79630 ka appears temporally random (Urlaub et al., 2013), but could plau-
797sibly result from non-random processes such as sea level. We currently
798have too few well-dated landslides to test for a linear dependence be-
799tween landslide frequency and sea level, even using better constrained
800sub-sets of those landslide ages from river fed systems (Urlaub et al.,
8012013). Although we would be able to test for a stronger (i.e. non-
802linear) dependence on sea level, or indeed links to events with more
803distinctive time series, such as abrupt climate warming or sea level
804rise events. However, these negative conclusions raise the issue; what
805is the most constructive way forward?

8064.5.1. Testing scientific hypotheses — are negative results useful?
807We first note that it is useful to know the answer to scientific ques-
808tions, even when they are negative answers. This helps us to narrow
809down avenues of future research, and avoid misleading conclusions,
810such as that currently available landslide ages show a significant corre-
811lation with sea level. Indeed, a broad comparison might be made to
812medical trials, in which there is a detrimental bias towards publications
813of positive tests (Goldacre, 2010).

8144.5.2. Importance of using quantitative and robust statistical methods
815Previous workers have proposed a number of different relationships
816between sea level and landslide frequency, based on qualitative analy-
817ses. They include a relationship between landslides and low sea level
818(Paull et al., 1996), rising or low sea level (Lee, 2009), or indeed no rela-
819tionship with sea level (Urlaub et al., 2013). This study illustrates the
820importance of quantitative statistical techniques to understand what
821is significant in such datasets.
822More sophisticated statistical methodologies can be used. For exam-
823ple treating submarine landslide hazards in a similar evidence-based
824manner to large magnitude volcanic and earthquake hazards (Aspinall
825et al., 2003; Baxter et al., 2008; Daub et al., 2012). Evidence-based refers
826to a methodology where the examination of evidence from specific
827studies and the systematic collection of this evidence are highlyweight-
828ed in decision making; intuition and unsystematic experience are de-
829emphasised (Sackett et al., 1996). Evidence based hazard analysis, first
830used inmedicine (Aspinall et al., 2003) and subsequently used onMont-
831serrat from 1997 (Baxter et al., 2008), incorporates all available theoret-
832ical and observational information and applies probabilistic procedures
833using Bayesian statistics. This allows decisionmaking that is open to re-
834vision with partial or imperfect information as the degree of evidence
835uncertainty isweighted accordingly (Baxter et al., 2008). Hazard assess-
836ment should therefore attempt to incorporate well dated landslides, in-
837cluding those whose ages are near abrupt climatic events whilst also
838including extreme value theory statistics (Sornette, 2009; Dawson
839et al., 2011; Bondevik et al., 2012).

8404.5.3. Should there be a wider spread of dated landslides to avoid spatially
841biased compilations?
842The current global compilation of landslides ages is spatially biased
843(Urlaub et al., 2013). Large submarine landslides have predominantly
844been catalogued in certain areas, such as the North Atlantic, Iberian
845Margin, and Mediterranean (Fig. 9) (Urlaub et al., 2013). International
846efforts could therefore attempt to broaden the area where events are
847dated, and avoid such strong geographical biases. However, this might
848not be the most productive strategy as it will result in the combination
849of landslide ages from an evenwider range of settings. Aswe showhere,
850a greater number of settings may be very likely to generate apparently
851random age sequences from non-random triggers (Figs. 5 and 9).

8524.5.4. Concentration of dating efforts at a small number of similar settings
853with long records
854Our study suggests that efforts may need to be concentrated, such
855that statistically significant numbers of well-dated landslides are
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856 obtained from individual types of setting. To achieve this, controlling
857 variables need to be isolated; something the use of disparate records
858 may prevent (McAdoo and Watts, 2004; Brothers et al., 2013). Per-
859 haps the simplest means of advancing knowledge is to focus specifi-
860 cally on river fed systems (Covault and Graham, 2010). River fed
861 systems have both the greatest number of catalogued events, as
862 well as the smallest age uncertainties (Urlaub et al., 2013). They
863 are also the margin type where glacial cycles have been suggested
864 to play a particularly important role, via sediment supply (Covault
865 and Graham, 2010). Identification of additional events at these mar-
866 gins therefore provides the greatest likelihood of asserting, with
867 some degree of confidence, the effects of sea level on landslide fre-
868 quency (Geist et al., 2013). This could be achieved through either
869 IODP sites or long basin core records where the input sources to
870 the basin are well constrained. Focusing on one of these record
871 types and isolating local environmental factors such as local sea
872 level change would allow for a more useful comparison of landslide
873 frequency and sea level change. However, care will still be needed
874 to be taken to distinguish the effects of glacio-eustatic sea level on
875 slope stability, and factors that co-vary with glacial cycles, such as
876 the rate of sediment supply from rivers (Covault and Graham, 2010).

8774.5.5. Should we date fewer landslides, but with greater precision?
878This question is important because finite resources can be directed
879towards obtaining a greater number of (lower precision) landslide
880ages, or a small number of very well-dated examples. This study does
881not provide a full statistical analysis of such a logistical trade-off. How-
882ever, it is important that marginally increasing the number of poorly
883dated landslides in global compilations, with uncertainties that are
884well in excess of ~±3 kyr, may not be a constructive way forward.
885For instance, our work suggest that around 40 well-dated (±0.75 kyr)
886landslides from a single setting would be necessary to allow robust sta-
887tistical analysis of links between sea level and landslide frequency. Long
888records from specific locations with multiple events are therefore the
889most appropriate for isolating triggering mechanisms.

8905. Conclusions

891Previous work found that the most complete compilation of 41
892(N~1 km3) submarine landslide ages in the last 30 ka suggests that
893these hazardous events are temporally random (Urlaub et al., 2013).
894However, it was unclear whether the landslides were temporally

Fig. 9.A simplified schematic of the existing issues associated at different spatial scales linking submarine landslide frequency to changing environmental factors. Problems associatedwith
each of the different records have emerged as introducing significant error during different parts of this study.
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895 random, or whether the considerable uncertainties on most landslide
896 ages made it impossible to tell. The primary conclusion of this study is
897 that there are currently too few, sufficiently well-dated large landslides,
898 to know whether these large submarine landslides are temporally ran-
899 dom. The addition of realistic error bars to the ages of landslides that are
900 non-random, can produce ages that appear temporally random.
901 Second, we show that it is likely that combination of landslide ages
902 from different settings, eachwith different preconditioning and trigger-
903 ing factors that are offset in time, can easily produce a combined dataset
904 that appears random in time. We show that just three distinct settings
905 may be combined to produce apparently temporally random dates.
906 This is important because most global databases of landslide ages prob-
907 ably include at least three distinct types of setting.
908 Third, we constrain the number of landslides, needed to test wheth-
909 er there is significant correlation between landslide frequency and glob-
910 al sea level. This was done simulating landslide ages that are correlated
911 perfectly with sea level. The number of such landslide ages needed to
912 test for a significant correlation with sea level ranged from 10 to 53,
913 with a mean of 38, even when landslide ages were known perfectly.
914 Finally, we provide some suggestions for the best future strategy for
915 assessing the submarine landslide hazard.We suggest focussing on spe-
916 cific environment settings, and on a smaller number of well-dated land-
917 slides (~40) to test for links with sea level.
918 The results of this study indicate the issues inherent with using the
919 global record of submarine landslide occurrence in its current form.
920 Our results indicate that both realistic age uncertainties and combina-
921 tion of data frommultiple settings maymake it hard to test for links be-
922 tween sea level and landslide frequency. However, it may be easier to
923 test links between landslide frequency and more episodic and shorter
924 duration events, such as the 8.2 kyr climate event or meltwater pulse
925 1, which have more distinctive time-series than sea level. Finally, the
926 best means to understand links between sea level and landslide fre-
927 quency may come from local studies with more numerous recurrence
928 intervals (e.g. Clare et al., 2014, 2015), perhaps in conjunction with de-
929 tailed records of localised environmental change.

930 6.Q9 Uncited reference

931 Carter et al., 2012

932 Acknowledgements

933 We would like to thank three anonymous reviewers. Their com-
934 ments and suggestions greatly improved the manuscript. E. Pope was
935 supported by the NERC Arctic Research Programme under project on
936 whether climate change increases the landslide-tsunami risk to the
937 UK (NE/K00008X/1). This research was completed as part of the EU
938 FP7Q10 -funded ASTARTE (Assessment, Strategy and Risk Reduction for Tsu-
939 namis in Europe) Project.

940 References

941 Aspinall, W.P., Woo, G., Voight, B., Baxter, P.J., 2003. Evidence-based volcanology: applica-
942 tion to eruption crises. J. Volcanol. Geotherm. Res. 128, 273–285.
943 Baxter, P.J., Aspinall, W.P., Neri, A., Zuccaro, G., Spence, R.J.S., Cioni, R., Woo, G., 2008.
944 Emergency planning and mitigation at Vesuvius: a new evidence-based approach.
945 J. Volcanol. Geotherm. Res. 178, 454–473.
946 Beget, J.E., Addison, J.A., 2007. Methane gas release from the Storegga submarine landslide
947 linked to early-Holocene climate change: a speculative hypothesis. The Holocene 17,
948 291–295.
949 Boe, R., Prosch-Danielsen, L., Lepland, A., Harbitz, C.B., Gauer, P., Lovholt, F., Hogestol, M.,
950 2007. An early Holocene submarine slide in Boknafjorden and the effect of a slide-
951 triggered tsunami on Stone Age settlements at Rennesoy, SW Norway. Mar. Geol.
952 243, 157–168.
953 Bondevik, S., Stormo, S.K., Skjerdal, G., 2012. Green mosses date the Storegga tsunami to
954 the chilliest decades of the 8.2 ka cold event. Quat. Sci. Rev. 45, 1–6.
955 Bourget, J., Zaragosi, S., Ellouz-Zimmermann, N., Mouchot, N., Garlan, T., Schneider, J.L.,
956 Lanfumey, V., Lallemant, S., 2011. Turbidite system architecture and sedimentary pro-
957 cesses along topographically complex slopes: the Makran convergent margin. Sedi-
958 mentology 58, 376–406.

959Brothers, D.S., Luttrell, K.M., Chaytor, J.D., 2013. Sea-level-induced seismicity and subma-
960rine landslide occurrence. Geology 41, 979–982.
961Bruschi, R., Bughi, S., Spinazzè, M., Torselletti, E., Vitali, L., 2006. Impact of debris flows and
962turbidily currents on seafloor structures. Norsk Geologisk Tidsskrift 86, 317.
963Carter, L., Burnett, D., Drew, S., Hagadorn, L., Marle, G., Bertlett-McNeil, D., Irvine, N., 2009.
964Submarine Cables and the Oceans— Connecting theWorld: UNEP-WCMC Biodiversi-
965ty Series 31ICPC/UNEP/UNEP-WCMC, p. 64.
966Carter, L., Milliman, J.D., Talling, P.J., Gavey, R., Wynn, R.B., 2012. Near-synchronous and
967delayed initiation of long run-out submarine sediment flows from a record-
968breaking river flood, offshore Taiwan. Geophys. Res. Lett. 39.
969Clare, M.A., Talling, P.J., Challenor, P., Malgesini, G., Hunt, J.E., 2014. Distal turbidites reveal
970a common distribution for large (N0.1 km3) submarine landslide recurrence. Geology
97142, 263–266.
972Clare, M.A., Talling, P.J., Hunt, J.E., 2015. Implications of reduced turbidity current and
973landslide activity for the Initial Eocene ThermalMaximum—evidence from two distal,
974deep-water sites. Earth Planet. Sci. Lett. 420, 102–115.
975Clarke, S., Hubble, T., Airey, D., Yu, P., Boyd, R., Keene, J., Exon, N., Gardner, J., 2012. Subma-
976rine Landslides on the Upper Southeast Australian Passive Continental
977Margin—preliminary Findings, SubmarineMass Movements and Their Consequences.
978Springer, pp. 55–66.
979Covault, J.A., Graham, S.A., 2010. Submarine fans at all sea-level stands: tectono-
980morphologic and climatic controls on terrigenous sediment delivery to the deep
981sea. Geology 38, 939–942.
982Daub, E.G., Ben-Naim, E., Guyer, R.A., Johnson, P.A., 2012. Are megaquakes clustered?
983Geophys. Res. Lett. 39.
984Dawson, A., Bondevik, S., Teller, J., 2011. Relative timing of the Storegga submarine slide,
985methane release, and climate change during the 8.2 ka cold event. The Holocene 21,
9861167–1171.
987Dowdeswell, J.A., Kenyon, N.H., Elverhøi, A., Laberg, J.S., Hollender, F.J., Mienert, J., Siegert,
988M.J., 1996. Large‐scale sedimentation on the glacier‐influenced polar North Atlantic
989Margins: long‐range side‐scan sonar evidence. Geophys. Res. Lett. 23, 3535–3538.
990Garziglia, S., Migeon, S., Ducassou, E., Loncke, L., Mascle, J., 2008. Mass-transport deposits
991on the Rosetta province (NWNile deep-sea turbidite system, Egyptianmargin): char-
992acteristics, distribution, and potential causal processes. Mar. Geol. 250, 180–198.
993Geist, E.L., Parsons, T., 2009. Assessment of source probabilities for potential tsunamis af-
994fecting the US Atlantic coast. Mar. Geol. 264, 98–108.
995Geist, E.L., Chaytor, J.D., Parsons, T., ten Brink, U., 2013. Estimation of submarine mass fail-
996ure probability from a sequence of deposits with age dates. Geosphere 9, 287–298.
997Goldacre, B., 2010. Bad Science: Quacks, Hacks, and Big Pharma Flacks. McClelland &
998Stewart.
999Goldfinger, C., 2011. Submarine paleoseismology based on turbidite records. Ann. Rev.
1000Mar. Sci. 3 (3), 35–66.
1001Gracia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodes, A., Pallas, R., Garcia-Orellana, J.,
1002Lebreiro, S.M., Goldfinger, C., 2010. Holocene earthquake record offshore Portugal
1003(SW Iberia): testing turbidite paleoseismology in a slow-convergence margin. Quat.
1004Sci. Rev. 29, 1156–1172.
1005Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F., Bryn, P., 2005. The dating and mor-
1006phometry of the Storegga Slide. Mar. Pet. Geol. 22, 123–136.
1007Hampton, M.A., Lee, H.J., Locat, J., 1996. Submarine landslides. Rev. Geophys. 34, 33–59.
1008Hornbach, M.J., Lavier, L.L., Ruppel, C.D., 2007. Triggering mechanism and tsunamogenic
1009potential of the Cape Fear Slide complex, US Atlantic margin. Geochem. Geophys.
1010Geosyst. 8.
1011Hsu, S.K., Kuo, J., Lo, C.L., Tsai, C.H., Doo, W.B., Ku, C.Y., Sibuet, J.C., 2008. Turbidity currents,
1012submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terr. Atmos.
1013Ocean. Sci. 19, 767–772.
1014Hühnerbach, V., Masson, D.G., 2004. Landslides in the North Atlantic and its adjacent
1015seas: an analysis of their morphology, setting and behaviour. Mar. Geol. 213,
1016343–362.
1017Hunt, J.E., Wynn, R.B., Talling, P.J., Masson, D.G., 2013. Frequency and timing of landslide-
1018triggered turbidity currents within the Agadir Basin, offshore NWAfrica: are there as-
1019sociations with climate change, sea level change and slope sedimentation rates? Mar.
1020Geol. 346, 274–291.
1021Kendall, M., Stuart, A., Ord, J., Arnold, S., 1999. Vol. 2A: Classical Inference and the Linear
1022Model. Arnold [etc.], London [etc.].
1023Kennett, J.P., Cannariato, K.G., Hendy, I.L., Behl, R.J., 2000. Carbon isotopic evidence for
1024methane hydrate instability during quaternary interstadials. Science 288, 128–133.
1025Korup, O., 2012. Earth's portfolio of extreme sediment transport events. Earth Sci. Rev.
1026112, 115–125.
1027Laberg, J.S., Vorren, T.O., Dowdeswell, J.A., Kenyon, N.H., Taylor, J., 2000. The Andoya Slide
1028and the Andoya Canyon, north-eastern Norwegian-Greenland Sea. Mar. Geol. 162,
1029259–275.
1030Laberg, J.S., Vorren, T.O., Mienert, J., Haflidason, H., Bryn, P., Lien, R., 2003. Preconditions
1031leading to the Holocene Trænadjupet Slide offshore Norway. In: Locat, J., Mienert, J.,
1032Boisvert, L. (Eds.), Submarine Mass Movements and Their Consequences. Springer,
1033Netherlands, pp. 247–254.
1034Lambeck, K., Smither, C., Johnston, P., 1998. Sea‐level change, glacial rebound and mantle
1035viscosity fornorthern Europe. Geophys. J. Int. 134, 102–144.
1036Lastras, G., Canals, M., Urgeles, R., De Batist, M., Calafat, A., Casamor, J., 2004. Characterisa-
1037tion of the recent BIG'95 debris flow deposit on the Ebro margin, Western Mediterra-
1038nean Sea, after a variety of seismic reflection data. Mar. Geol. 213, 235–255.
1039Lebreiro, S.M., Voelker, A.H.L., Vizcaino, A., Abrantes, F.G., Alt-Epping, U., Jung, S.,
1040Thouveny, N., Gracia, E., 2009. Sediment instability on the Portuguese continental
1041margin under abrupt glacial climate changes (last 60 kyr). Quat. Sci. Rev. 28,
10423211–3223.
1043Lee, H.J., 2009. Timing of occurrence of large submarine landslides on the Atlantic Ocean
1044margin. Mar. Geol. 264, 53–64.

14 E. Pope et al. / Marine Geology xxx (2015) xxx–xxx

Please cite this article as: Pope, E., et al., Are large submarine landslides temporally randomor do uncertainties in available age constraintsmake it
impossible to tell?, Marine Geology (2015), http://dx.doi.org/10.1016/j.margeo.2015.07.002

http://dx.doi.org/10.1016/j.margeo.2015.07.002


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

1045 Leynaud, D., Mienert, J., Vanneste, M., 2009. Submarinemass movements on glaciated and
1046 non-glaciated European continental margins: a review of triggering mechanisms and
1047 preconditions to failure. Mar. Pet. Geol. 26, 618–632.
1048 L'Heureux, J.S., Vanneste, M., Rise, L., Brendryen, J., Forsberg, C.F., Nadim, F., Longva, O.,
1049 Chand, S., Kvalstad, T.J., Haflidason, H., 2013. Stability, mobility and failure mecha-
1050 nism for landslides at the upper continental slope off Vesterålen, Norway. Mar.
1051 Geol. 346, 192–207.
1052 Llopart, J., Urgeles, R., Camerlenghi, A., Lucchi, R.G., Mol, B., Rebesco, M., Pedrosa,
1053 M.T., 2014. Slope instability of glaciated continental margins: constraints
1054 from permeability–compressibility tests and hydrogeological modeling off
1055 Storfjorden, NW Barents Sea. In: Krastel, S., Behrmann, J.-H., Völker, D., Stipp,
1056 M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C.B. (Eds.),
1057 Submarine Mass Movements and Their Consequences. Springer International
1058 Publishing, pp. 95–104.
1059 Maslin, M., Mikkelsen, N., Vilela, C., Haq, B., 1998. Sea-level- and gas-hydrate-controlled
1060 catastrophic sediment failures of the Amazon Fan. Geology 26, 1107–1110.
1061 Maslin, M., Owen, M., Day, S., Long, D., 2004. Linking continental-slope failures and
1062 climate change: testing the clathrate gun hypothesis. Geology 32, 53–56.
1063 Maslin, M., Vilela, C., Mikkelsen, N., Grootes, P., 2005. Causes of catastrophic sediment
1064 failures of the Amazon Fan. Quat. Sci. Rev. 24, 2180–2193.
1065 Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Lovholt, F., 2006. Submarine land-
1066 slides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. A Math. Phys.
1067 Eng. Sci. 364, 2009–2039.
1068 Masson, D.G., Arzola, R.G.,Wynn, R.B., Hunt, J.E., Weaver, P.P.E., 2011. Seismic triggering of
1069 landslides and turbidity currents offshore Portugal. Geochem. Geophys. Geosyst. 12.
1070 McAdoo, B.G., Watts, P., 2004. Tsunami hazard from submarine landslides on the Oregon
1071 continental slope. Mar. Geol. 203, 235–245.
1072 Murray‐Wallace, C.V., 2002. Pleistocene coastal stratigraphy, sea‐level highstands and
1073 neotectonism of the southern Australian passive continental margin—a review.
1074 J. Quat. Sci. 17, 469–489.
1075 Owen, M., Day, S., Maslin, M., 2007. Late Pleistocene submarine mass movements: occur-
1076 rence and causes. Quat. Sci. Rev. 26, 958–978.
1077 Parker, E.J., Traverso, C.M., Giudice, T.D., Evans, T., Moore, R., 2009. Geohazard Risk Assess-
1078 ment — Vulnerability of Subsea Structures to Geohazards — Risk Implications.
1079 Paull, C.K., Buelow, W.J., Ussler, W., Borowski, W.S., 1996. Increased continental-margin
1080 slumping frequency during sea-level lowstands above gas hydrate-bearing sedi-
1081 ments. Geology 24, 143–146.
1082 Paull, C.K., Ussler, W., Holbrook, W.S., 2007. Assessing methane release from the colossal
1083 Storegga submarine landslide. Geophys. Res. Lett. 34.
1084 Pecher, I.A., Henrys, S.A., Ellis, S., Chiswell, S.M., Kukowski, N., 2005. Erosion of the seafloor
1085 at the top of the gas hydrate stability zone on the Hikurangi Margin, New Zealand.
1086 Geophys. Res. Lett. 32.
1087 Piper, D.J.W., Cochonat, P., Morrison, M.L., 1999. The sequence of events around the
1088 epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbid-
1089 ity current inferred from sidescan sonar. Sedimentology 46, 79–97.
1090 Ramsey, C.B., 1998. Probability and dating. Radiocarbon 40, 461–474.
1091 Reeder, M.S., Rothwell, R.G., Stow, D.A.V., 2000. Influence of sea level and basin physiog-
1092 raphy on emplacement of the late Pleistocene Herodotus Basin Megaturbidite, SE
1093 Mediterranean Sea. Mar. Pet. Geol. 17, 199–218.
1094 Reeder, M.S., Stow, D.A.V., Rothwell, R.G., 2002. Late Quaternary turbidite input into the
1095 east Mediterranean basin: new radiocarbon constraints on climate and sea-level con-
1096 trol. Geol. Soc. Lond. Spec. Publ. 191, 267–278.

1097Rothwell, R.G., Thomson, J., Kähler, G., 1998. Low-sea-level emplacement of a very large
1098Late Pleistocene ‘megaturbidite’ in the western Mediterranean Sea. Nature 392,
1099377–380.
1100Rothwell, R.G., Hoogakker, B., Thomson, J., Croudace, I.W., Frenz, M., 2006. Turbidite em-
1101placement on the southern Balearic Abyssal Plain (western Mediterranean Sea) dur-
1102ing Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment
1103cores to lithostratigraphic analysis. Geol. Soc. Lond. Spec. Publ. 267, 79–98.
1104Q11Ruffman, A., 2001. Potential for large-scale submarine slope failure and tsunami genera-
1105tion along the US mid-Atlantic coast: Comment. Geology 29, 967-967.
1106Sackett, D.L., Rosenberg, W., Gray, J.A., Haynes, R.B., Richardson, W.S., 1996. Evidence
1107based medicine: what it is and what it isn't. BMJ 312, 71–72.
1108Smith, D.E., Harrison, S., Jordan, J.T., 2013. Sea level rise and submarine mass failures on
1109open continental margins. Quat. Sci. Rev. 82, 93–103.
1110Sornette, D., 2009. Dragon-kings, black swans and the prediction of crises. arXiv, preprint
1111arXiv:0907.4290.
1112Stigall, J., Dugan, B., 2010. Overpressure and earthquake initiated slope failure in the Ursa
1113region, northern Gulf of Mexico. J. Geophys. Res. Solid Earth 115.
1114Sumner, E.J., Siti, M.I., McNeill, L.C., Talling, P.J., Henstock, T.J., Wynn, R.B., Djajadihardja,
1115Y.S., Permana, H., 2013. Can turbidites be used to reconstruct a paleoearthquake re-
1116cord for the central Sumatran margin? Geology 41, 763–766.
1117Swan, A.R.H., Sandilands, M., 1995. Introduction to Geological Data Analysis. Blackwell
1118Science, Oxford; Cambridge, Mass, USA.
1119Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov,
1120A.M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zuhlsdorff,
1121C., Amy, L.A., 2007. Onset of submarine debris flow deposition far from original
1122giant landslide. Nature 450, 541–544.
1123Talling, P.J., Masson, D.G., Sumner, E.J., Malgesini, G., 2012. Subaqueous sediment density
1124flows: depositional processes and deposit types. Sedimentology 59, 1937–2003.
1125Talling, P.J., Clare, M.A., Urlaub, M., Pope, E., Hunt, J.E., Watt, S.F.L., 2014. Large submarine
1126landslides on continental slopes. Oceanography 27, 32.
1127Tappin, D.R., Watts, P., McMurtry, G.M., Lafoy, Y., Matsumoto, T., 2001. The Sissano, Papua
1128New Guinea tsunami of July 1998 — offshore evidence on the source mechanism.
1129Mar. Geol. 175, 1–23.
1130Urlaub, M., Zervos, A., Talling, P.J., Masson, D.G., Clayton, C.I., 2012. How do ∼2° slopes fail
1131in areas of slow sedimentation? A sensitivity study on the influence of accumulation
1132rate and permeability on submarine slope stability. In: Yamada, Y., Kawamura, K.,
1133Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M. (Eds.), Subma-
1134rine Mass Movements and Their Consequences. Springer, Netherlands, pp. 277–287.
1135Urlaub, M., Talling, P.J., Masson, D.G., 2013. Timing and frequency of large submarine
1136landslides: implications for understanding triggers and future geohazard. Quat. Sci.
1137Rev. 72, 63–82.
1138van Rooij, M.J.W., Nash, B.A., Rajaraman, S., Holden, J.G., 2013. A fractal approach to dy-
1139namic inference and distribution analysis. Front. Physiol. 4.
1140Vanneste, M., Mienert, J., Bünz, S., 2006. The Hinlopen Slide: a giant, submarine slope failure
1141on the northern Svalbard margin, Arctic Ocean. Earth Planet. Sci. Lett. 245, 373–388.
1142Völker, D., Scholz, F., Geersen, J., 2011. Analysis of submarine landsliding in the rupture
1143area of the 27 February 2010 Maule earthquake, Central Chile. Mar. Geol. 288, 79–89.
1144Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon,
1145E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived

from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305.
Weaver, P.P.E., Kuijpers, A., 1983. Climatic control of turbidite deposition on the Madeira

Abyssal Plain. Nature 306, 360–363.

15E. Pope et al. / Marine Geology xxx (2015) xxx–xxx

Please cite this article as: Pope, E., et al., Are large submarine landslides temporally randomor do uncertainties in available age constraintsmake it
impossible to tell?, Marine Geology (2015), http://dx.doi.org/10.1016/j.margeo.2015.07.002

http://dx.doi.org/10.1016/j.margeo.2015.07.002

