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Abstract 9 

This paper provides a process-oriented perspective on the combined effects of ozone (O3), climate 10 

change and/or nitrogen (N) on vegetation. Whereas increasing CO2 in controlled environments or 11 

open-top chambers often ameliorates effects of O3 on leaf physiology, growth and C allocation, this 12 

is less likely in the field. Combined responses to elevated temperature and O3 have rarely been 13 

studied even though some critical growth stages such as seed initiation are sensitive to both. Under 14 

O3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 15 

species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or 16 

increased opening and 44% stomatal closure.  The beneficial effect of N on root development was 17 

lost at higher O3 treatments whilst the effects of increasing O3 on root biomass became more 18 

pronounced as N increased. Both responses to gradual changes in pollutants and climate and those 19 

under extreme weather events require further study.   20 

Capsule 21 

A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen 22 

on vegetation 23 

Highlights 24 

 CO2 amelioration of O3 effects on leaf physiology are less likely in the field25 

 Both extremes of temperature and O3 impact on critical growth stages.26 

 Many species are more sensitive to drought as a result of exposure to O3 pollution.27 

 The beneficial effect of N on root development is lost at higher O3 treatments28 
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 The effects of O3 on root biomass are higher at high than low N. 1 

 2 
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Introduction 7 

Air quality impacts on vegetation are frequently considered as effects of single stressors working in 8 

isolation from other air pollutants, climate and soil modifying factors.  In this review, we bring 9 

together current knowledge on how these other factors impact on the responses of vegetation to 10 

tropospheric ozone (O3), classed by many as the most damaging air pollutant to vegetation 11 

(Ashmore, 2005; Karnosky et al., 2007), and predict from a process-perspective what the impacts 12 

might be for vegetation growing in a future nitrogen (N) polluted and changing climate. Tropospheric 13 

or “ground-level” O3 is a secondary air pollutant formed and destroyed by a series of complex 14 

photochemical reactions involving nitrogen oxides (NOx), methane (CH4), carbon monoxide (CO) and 15 

non-methane volatile organic carbons (NMVOC) (Avnery et al., 2011; Royal Society, 2008).  Ozone 16 

concentrations are usually highest in rural and upland areas downwind of major conurbations, 17 

where many vulnerable ecosystems provide essential services to humankind. Ozone and its 18 

precursors are also transported around the world in air masses, adding to background 19 

concentrations across the continents (Royal Society, 2008). Uptake of O3 by sensitive plant species 20 

alters leaf physiology (increased respiration, reduced photosynthesis, stomatal functioning, 21 

enhanced senescence), reduces growth (both above– and below-ground and altering C allocation), 22 

and alters phenology (e.g. timing and number of flowers) (for further details see review by 23 

Ainsworth et al., 2012). In isolation, these process-effects may be sufficient to impact on key 24 

ecosystem services including crop yield, C sequestration by trees and grasslands, water provision 25 

and biodiversity (e.g. Harmens and Mills, 2012; McLaughlin et al., 2007a; Mills et al., 2013; Sun et al., 26 

2012).  As well as responding to O3, under open field conditions, vegetation is frequently also 27 

exposed to atmospheric N inputs in oxidised (e.g. NO2) or reduced (e.g. NH3) form (see van der Berg 28 

et al., this issue), to climate extremes such as drought, heat stress and/or flooding, and to nutrient 29 

stress. We consider here whether we can reach a consensus on the direction of change of such 30 

impacts and what the implications might be for vegetation. 31 



Ozone uptake is via the stomatal pores in the leaf surface and thus any plant, pollutant, climatic or 1 

soil factor that influences stomatal functioning will modify the amount of O3 taken up by the plant 2 

and subsequent effects.  Models of stomatal uptake or “flux” have been instrumental in improving 3 

our understanding of the areas and vegetation types at greatest risk of damage from the pollutant. 4 

For example, in the last 15 years, European scientists have developed models of O3 flux – the so-5 

called DO3SE model (Emberson et al., 2000; LRTAP, 2014), applied the model to show areas of 6 

greatest risk (e.g.  Simpson et al., 2007) and shown that field evidence provided greater support for 7 

the application of this biologically more meaningful risk assessment method than one based on the 8 

atmospheric concentration of O3 above the canopy (Mills et al., 2011).  Effects of climate change on 9 

stomatal O3 flux can be either direct – e.g. temperature, CO2 and humidity effects on stomatal 10 

conductance or indirect via an influence on soil water potential (SWP) and plant development 11 

(Harmens et al., 2007; Vandermeiren et al., 2009). In addition, O3 itself can, for example, modify the 12 

responses of plants to naturally occurring environmental stresses such as drought (e.g. Mills et al., 13 

2009; Wilkinson and Davies, 2009, 2010) via effects on stomatal control and plant development 14 

(canopy and roots), and can feedback to global warming by reducing the C sink strength (e.g. Sitch et 15 

al., 2007).  We first review current predictions of future O3, N deposition and physical climates and 16 

then consider how these combined effects might occur in the two-factor combinations in which they 17 

are usually studied (e.g. CO2 and O3, drought and O3, N and O3).  We then speculate on how all might 18 

interact together in a future O3, N and CO2-enriched climate, focussing on responses to subtle long-19 

term changes as well as to the extreme climatic and pollutant events predicted to occur with greater 20 

frequency in the coming decades (IPCC, 2013).  21 

Trends and future projections  22 

Over the past 150 years, increasing anthropogenic emissions of O3 precursors and increased 23 

stratospheric mixing of O3 into the lower layers of the atmosphere have led to an increase in the 24 

global average O3 concentration from 20-30 ppb to 30 – 50 ppb, with significant spatial and temporal 25 

variability (IPCC, 2013). With the global population estimated to exceed 9 billion by 2050, associated 26 

increased demand for resources such as fossil fuels, energy production, transport and agriculture is 27 

likely to further increase O3 precursor emissions and reactive nitrogen (Nr, all N compounds 28 

excluding N2, and including NH3, NO3, NOx and N2O) in the environment (Oltmans et al., 2006;  29 

Winiwarter et al., 2011). Future O3 and Nr trends will not only depend on anthropogenic emission 30 

levels of precursors, but also on trends in temperature, humidity and solar radiation. For example, a 31 

multi-model study of impacts of climate change alone on O3 concentrations in Europe predicts 32 

increases in the mean O3 concentration in the range 0.9 to 3.6 ppb for 2040-49 climates compared 33 



to 2000-09 climates, if precursor emissions remain constant (Langner et al., 2012). Despite overall 1 

rises in pollutant levels globally, there have been some (partial) success stories in reducing emissions 2 

in some regions of the world leading to large spatial heterogeneity in predictions of future pollutant 3 

concentrations.  Here, we consider some of the changes that have occurred in recent decades, and 4 

using the latest modelling, speculate on future O3 and Nr concentrations and the feedbacks to 5 

climate of these short-lived climate forcers (SLCFs).  Further details on ozone and reactive nitrogen 6 

chemistry and trends can be found in recent reviews by Monks et al. (2014) and Fowler et al. (2015) 7 

respectively. 8 

Ozone 9 

In assessing all available data from ground-level monitoring stations in the Northern Hemisphere,  10 

Cooper et al. (2014) showed that the ozone concentrations have been rising by 1 – 5 ppbv per 11 

decade since the start of comparable records in the 1950s to 1970s.  Set against these rising 12 

background O3 concentrations, regional controls on precursor emissions have led to reductions in 13 

peak O3 concentrations in North America and Europe over recent decades.  For example, in the once 14 

highly polluted California South Coast Air Basin (SoCAB), the annual 8h mean O3 concentration has 15 

declined between 1973 to 2010, from over 300 ppb to approx. 100 ppb (Pollack et al., 2013) and  16 

declines in peak O3 concentration of ca. 30 ppb from 1990 – 2006 have been reported in many parts 17 

of Europe (Simpson et al., 2014; Tørseth et al., 2012).  Even so, potentially plant-damaging O3 18 

episodes are still occurring in the USA and Europe when climatic conditions conducive to O3 19 

formation (hot, dry and sunny days) coincide with precursor abundance.  For example, in 2006, two 20 

significant O3 episodes occurred in Europe between 17 – 22 July and 25 – 28 July with O3 21 

concentrations in excess of 90 ppb experienced in many countries (EEA, 2007).  Often used as an 22 

example of a future climate year for Europe, these high episodes in 2006 suggest that the immediate 23 

threat caused by O3 episodes will remain under climate change.  24 

In estimating future regionally averaged O3 concentration from 14 global transport models for a 25 

range of Representative Transport Pathways (RCP) emission scenarios without changes in climate, 26 

Wild et al. (2012) predicted very small decreases in global surface O3 in 2050 relative to 2000 of 2 ± 27 

0.5 ppb for RCP2.6, 0.8 ± 0.54 ppb for RCP4.5 and 0.4 ± 0.2 ppb for RCP6.0 and an increase of 1.5 ± 28 

0.5 ppb for the most pessimistic scenario, RCP8.5.  Predictions to 2050 are similar for North America 29 

and Europe with a decrease of 2 – 4 ppb for RCPs 4.5 and 6.0, whilst in Asia, O3 concentrations for 30 

these RCPs range from little net change (RCP6.0) to a 3 ppb increase and 2.5 ppb decrease for 31 

RCP4.5 in south and east Asia, respectively (Wild et al., 2012, reproduced in Figure 1).  Over 75% of 32 



these predicted changes in O3 can be attributed to changes in methane abundance – a clear target 1 

for international pollutant emission control negotiations (HTAP, 2010).   2 

Having a dual role as both a pollutant and an SLCF, increasing O3 concentrations have been, and will 3 

in the future continue to be, influential in global warming. As well as directly influencing radiative 4 

forcing as a greenhouse gas (Shindell et al., 2013), O3 also suppresses the global land carbon sink by 5 

reducing photosynthesis and carbon sequestration thereby increasing the CO2 concentration in the 6 

atmosphere and indirectly increasing radiative forcing  (Collins et al., 2010; Sitch et al., 2007).  Global 7 

warming alone would lead to increases in O3 production (Langner et al., 2012; Rasmussen et al., 8 

2013), potentially negating beneficial effects of controls of precursor emissions. This so-called 9 

“climate penalty” arises from increased BVOC emissions (contributing, for example, to 8% of 10 

predicted increases in O3 in China by 2050 (Wang et al., 2013)), accelerated photochemical reactions 11 

leading to more O3 formation and increased stagnation of air masses (for further information, see 12 

Rasmussen et al., 2013).  The climate effect of ozone is higher in NOx-saturated areas such as the 13 

SoCAB than in NOx-limited regions of California such as the San Joaquim valley (Rasmussen et al., 14 

2013).  Similar differences in magnitude and direction of the O3 -climate penalty are predicted at the 15 

regional scale, for example, modelling by Wang et al. (2013), suggested a climate-change benefit 16 

under present day emissions for 2050 of a 5 ppb reduction in O3 in the less populated west and a 17 

climate penalty of a 3 ppb increase in the more densely populated eastern provinces of China for the 18 

IPCC A1B scenario.  Adding domestic and hemispheric emission projections as well as climate change 19 

for 2050, Wang et al. (2013) predicted similar increases overall in O3 concentration of 9 and 10.3 ppb 20 

for east and west China respectively. Their modelling suggests large differences in attribution, with 21 

domestic and global emissions contributing 45 and 47% respectively of increases in Eastern China, 22 

but 17 and 87% in Western China.   23 

Reactive nitrogen  24 

Over the 100 years since the introduction of the Haber-Bosch process for synthetic fertilizer 25 

production and exacerbated by increased industrialisation and population, global anthropogenic 26 

sources of Nr species have increased five-fold to 120 Tg N y-1 in 2005 (Erisman et al., 2011).  Despite 27 

this, in some regions of the world, emission control measures in recent decades have been 28 

successful in reducing Nr release into the environment.  For example, UK emissions of NOx fell by 29 

58% between 1970 and 2010 (RoTAP, 2012), with the largest decreases due to reductions in coal-30 

based energy production and the introduction of three-way catalysts into petrol cars in 1992. 31 

However, over the same time period there has been only a small fall (15%) in emissions of ammonia, 32 

with agricultural sources including livestock and fertilizer application responsible for about 90% of 33 



emissions. Averaged between 2000 and 2008, the annual total deposition of N in the UK was 363 Gg-1 

N y-1 and was roughly evenly split between oxidised (178) and reduced (175) forms (RoTAP, 2012).  2 

In contrast, in China, NOx and NH3 emissions increased by 2 – 3 fold over the period 1980 to 2010, 3 

with a decrease in the ratio of NH3-N to NOx-N in emissions from about 4 to 2.5 (Figure 2, 4 

reproduced from Liu et al., 2013).  Future projections for Nr in the environment suggest that in 5 

Europe, NOx emissions are likely to continue to fall as legislation for controls continues to be 6 

implemented (Engardt and Langner, 2013; Simpson et al., 2014).  Controls on ammonia are much 7 

harder to achieve, with European emissions predicted to stabilise at current levels in the 2020s and 8 

2030s (Winiwarter et al., 2011).   Globally, the highest rises in fertilizer use are predicted for Latin 9 

America and South Asia between 2006 and 2050 (Sutton and Bleeker, 2013), with large regional 10 

increases in Nr in the environment predicted in these regions by 2100 under most RCP scenarios, 11 

including more than a two-fold increase in South Asia for RCP2.6 (Lamarque et al., 2013).   12 

Carbon dioxide 13 

Future increases in CO2 concentration could potentially significantly modify plant responses to O3 via 14 

effects on stomatal conductance, photosynthesis and carbon allocation (see later).  The rapid 15 

increase in ambient CO2 concentration from ca. 300 ppm in 1950 to > 390 ppm by 2011 is predicted 16 

to continue for the pessimistic RCP8.5 scenario, reaching 936 ppm by the year 2100 (IPCC, 2013).  17 

Even with the most ambitious RCP2.6 scenario, CO2 concentrations are predicted to continue to rise 18 

to 421 ppm by the end of the century, with intermediate concentrations of 630 and 800 ppm 19 

predicted for RCP4.5 and RCP6.0 respectively.   20 

Climate 21 

The mean global surface temperature is predicted to increase by 0.3 to 0.7 °C by 2016 – 2035 22 

relative to 1986 – 2005 (IPCC, 2013).  By the end of the century, there is high confidence that the 23 

temperature rise is likely to exceed 1.5 °C for all RCPs and 2 °C for RCP6.0 and RCP8.5.  Extremes of 24 

temperature, including more frequent hot and fewer cold temperatures are “virtually certain” and a 25 

higher frequency and longer duration of heat waves is “highly likely”.  Rainfall is predicted to 26 

decrease in the drier mid-latitude and sub-tropical regions and increase, especially under the more 27 

extreme RCP8.5 scenario, in the wetter mid-latitude regions.  As with temperature, the frequency 28 

and duration of extreme rainfall events and droughts are very likely to increase.  Thus, to understand 29 

the potential implications for effects of O3 in a future climate, we need to consider both effects of 30 

gradual underlying trends such as increasing temperature together with effects under the extreme 31 

climatic conditions that are likely to occur more frequently in coming decades.  32 



Implications of climate change for effects of ozone on vegetation 1 

The interactive effects of O3 with CO2, temperature, air and soil moisture and light on vegetation, are 2 

important but not well understood, particularly not under field conditions (Ainsworth et al., 2012).  3 

Although recently discussed in the 5th Assessment Report of the IPCC (2014), major current 4 

projections of global food production under atmospheric change scenarios do not always account for 5 

the damaging effect of rising O3. Similarly, many coupled climate-carbon models have currently 6 

neglected the impacts of changing ground-level O3 concentrations on carbon cycling (Sitch et al., 7 

2007). We consider here, from a process perspective, the potential direction of interactions. 8 

Interactions between elevated CO2 and O3 9 

Recent field studies using Free Air CO2 Enrichment (FACE) systems indicate that the positive effect of 10 

elevated CO2 on plant growth and C sequestration might have been overestimated in previous 11 

studies using more controlled environments, smaller scale and/or shorter time periods (Ainsworth, 12 

2008; Bernacchi et al., 2006; Long et al., 2005). The actual increase in plant biomass, and its capacity 13 

to act as a C sink under elevated CO2 were smaller than predicted, partly due to accompanying O3 14 

pollution, and partly due to accompanying increases in global temperature and drought frequency.  15 

Given that elevated O3 and CO2 often affect plant physiology, community responses and soil 16 

processes in opposite directions (Ainsworth et al., 2012; Fuhrer, 2009), the direction of combined 17 

responses to both gases is thus finely balanced dependent on their relative concentrations and 18 

limiting effects of other stressors such as elevated temperature.  19 

Ozone generally reduces photosynthesis per unit leaf area (Ainsworth, 2008; Ainsworth et al., 2012; 20 

Wittig et al., 2007), either directly via effects on the photosynthetic machinery such as a reduction in 21 

Rubisco and chlorophyll content (Dizengremel, 2001; Fiscus et al., 2005; Kobayakawa and Imai, 2011; 22 

Wittig et al., 2009), and/or indirectly by reducing the aperture of the stomatal leaf pores (Evans et 23 

al., 2005; Overmyer et al., 2008; Wittig et al., 2009), resulting in a reduction in whole plant 24 

photosynthesis. Despite the often reported decline in stomatal conductance at elevated O3, 25 

stimulation of stomatal opening (Mills et al., 2009) and the induction of stomatal sluggishness  26 

(Paoletti and Grulke, 2010) have also been observed (discussed later). On the other hand, elevated 27 

CO2 reduces stomatal conductance (Curtis and Wang, 1998; Drake et al., 1997; Kim et al., 2010; 28 

Morgan, 2003) and therefore the uptake of O3 and its damaging impacts on plants (Fiscus et al., 29 

1997; Harmens et al., 2007; McKee et al., 1997). Indeed, meta-analysis provided supportive evidence 30 

that elevated CO2 counteracts the impacts of O3 on stomatal conductance and light-saturated 31 

photosynthesis in boreal and temperate forests (Wittig et al., 2007). Taking this effect into account, 32 



Klingberg et al. (2011) concluded that despite substantially increased future O3 concentrations in 1 

central and southern Europe, the flux-based risk of O3 damage to vegetation was unchanged or 2 

decreased at sites across Europe under rising CO2 concentrations. However, more complex 3 

interactions have been reported between elevated CO2 and O3 in field-exposed northern hardwood 4 

forests: both gases stimulated leaf-level stomatal conductance whereas the combined gases did not 5 

affect leaf-level stomatal conductance differently to the control (Uddling et al., 2010).  6 

In addition to stomatal responses, compensatory interactions between O3 and CO2 have been 7 

demonstrated directly at the level of the photosynthetic machinery (e.g. Kobayakawa and Imai, 8 

2011), such that O3 and CO2 effectively compensate for one another’s effects on C fixation at the 9 

level of leaf physiology (e.g. Gray et al., 2010; Wittig et al., 2007, 2009). Once inside the leaf, O3 10 

induces oxidative stress through the production of reactive oxygen species (ROS) such as hydrogen 11 

peroxide, superoxide, and hydroxyl radicals (reviewed in Fiscus et al., 2005). Plants have a limited 12 

ability to detoxify ROS by “mopping up” or scavenging them via antioxidants such as ascorbic acid, 13 

flavonoids and phenolics or enzymes such as superoxide dismutase, catalase or peroxidases 14 

(Blokhina et al., 2003). Unscavenged ROS induce cell death, accelerated senescence and abscission, 15 

and evidence is growing that these processes are in part mediated by the plant hormones ethylene, 16 

jasmonic acid and salicylic acid (see Fiscus et al., 2005; Kangasjarvi et al., 2005 for reviews). 17 

Accelerated senescence will lead to a reduction in stomatal conductance (Emberson et al., 2000) and 18 

a down-regulation of photosynthetic genes and an up-regulation of genes involved in programmed 19 

cell death. As a consequence, whole plant photosynthesis will be reduced due to leaf damage, early 20 

senescence and abscission, and total green leaf area and leaf area index are reduced by ozone 21 

(Ainsworth, 2008; Morgan et al., 2003; Wittig et al., 2009). Elevated atmospheric CO2 and increased 22 

C supply per se can either accelerate leaf development and senescence (Ludewig and Sonnewald, 23 

2000; Pourtau et al., 2004) or delay senescence induced by O3 by acting directly at the level of gene 24 

expression associated with senescence (e.g. Gray et al. (2010) and Kontunen-Soppela et al. 25 

(2010a,b)).   26 

As more C is required for secondary plant metabolism to detoxify O3 and/or repair O3 -induced cell 27 

damage in leaves (Betzelberger et al., 2010), less C will be available for plant growth (Dizengremel, 28 

2001), and allocation to roots and soil. Indeed, a significant decline in the root to shoot ratio has 29 

been observed at elevated compared to either current ambient or pre-industrial O3 levels (Wittig et 30 

al., 2009). Hence, root biomass appears to be more sensitive to adverse effects of O3 than shoot 31 

biomass. In addition, increased ethylene formation, a common response to O3 pollution, tends to 32 

reduce root growth directly (Wilkinson and Davies, 2010). As a consequence, total C allocation to the 33 



soil is likely to be reduced. Contrasting responses have been reported for the impact of elevated CO2 1 

on C allocation to roots, as increases, decreases and no changes in root-shoot ratio have been found 2 

(e.g. Kimball et al., 2007; Maroco et al., 2002). Competition between species is likely to affect the 3 

response of individual species (Kozovits et al., 2005). Although high CO2 alleviates the effect of O3 in 4 

reducing below ground root biomass in woody species, this seems not to be the case in herbaceous 5 

species (Wang and Taub, 2010).  The latter authors concluded that elevated CO2 has less pronounced 6 

effects on the root mass fraction than other environmental factors such as soil nutrient and water 7 

status.  Dieleman et al. (2010) showed that elevated CO2 induces a C allocation shift towards below-8 

ground biomass compartments. However, the increased soil C inputs were offset by increased 9 

heterotrophic respiration, such that soil C content was not affected by elevated CO2. Indeed, 10 

elevated CO2-induced increases in the amount of soil organic matter in less stable pools such as 11 

microbial biomass, seem to reduce the capacity of the soil as a sink for C by making less C available 12 

to the more stable pools (Carney et al., 2007; Cheng et al., 2011; Hofmockel et al., 2011). Ozone 13 

increased the amount of C entering more stable pools in the study by Hofmockel et al. (2011) in a 14 

northern European hardwood forest, but not in other studies with a crop ecosystem (Cheng et al., 15 

2011) or beech (Esperschutz et al., 2009).  Nikolova et al. (2010) showed that the impact of O3 on soil 16 

respiration might be dependent on soil water availability. In addition, Dieleman et al. (2010) showed 17 

that the effect of elevated CO2 on fine root biomass and -production and on microbial activity 18 

increased with increasing soil nitrogen concentration, while the effect on soil C content decreased 19 

with increasing soil nitrogen concentration. 20 

In summary, whereas increasing O3 and CO2 are frequently reported from controlled environment 21 

experiments as having opposite effects on leaf physiology, growth and C allocation, the evidence 22 

from field-based experiments does not fully support that they have compensatory effects when co-23 

occurring.   24 

Ozone impacts in a warmer climate 25 

The combined effects of ozone and increases in temperature have attracted little study.  In one of 26 

the very few field experiments investigating combined effects of ozone and global warming, 27 

Kasurinen et al., (2012) used infrared heaters to raise the temperature by 0.6 to 1 °C for three 28 

growing seasons and raised the seasonal mean ozone concentration by 5 ppb over young silver birch 29 

trees.  Elevated temperature increased above- and below-ground growth and soil respiration rates in 30 

silver birch.  These effects were modified by atmospheric O3 concentration, with variation in 31 

response amongst genotypes. For example, soil respiration was increased in elevated temperature 32 

(T), elevated O3 and combined O3 and T in the gt14 genotype, but O3 either partly (gt12) or totally 33 



(gt25) alleviated temperature effects on soil respiration, or had a synergistic interaction with 1 

temperature (gt15).   2 

 3 

The complexity of the potential interactions between global warming and ozone impacts on 4 

vegetation is illustrated by effects on the canopy uptake of O3. When considered as a single factor, 5 

increased temperature in temperate climates is likely to increase stomatal uptake of O3 providing the 6 

optimum temperature for stomatal conductance has not been reached (Figure 3, reproduced from 7 

Pleijel et al., 2007). However, the response to warming will also be affected by the following indirect 8 

effects of increased warming: greater tropospheric O3 formation increasing the atmospheric 9 

concentration, an increase in vapour pressure deficit, a decrease in soil water potential (soils will dry 10 

out faster due to enhanced soil evaporation and enhanced canopy transpiration), changes in 11 

seasonal patterns in the occurrence of peak episodes of O3 and earlier and enhanced plant 12 

development, resulting in a forward shift of the period within the year when plants are absorbing O3.  13 

In addition, a reduction in stomatal conductance due to O3 will lead to an increase in leaf 14 

temperature, therefore exaggerating the impact of global warming on leaf processes (e.g. Bernacchi 15 

et al., 2011). Global warming will also affect photosynthesis and plant and soil respiration.  16 

It is also surprising that few studies have explicitly studied combined effects of ozone and extreme 17 

heat events, even though these frequently coincide and may do so even more often in a future more 18 

variable climate.  Their combined effects potentially could be particularly detrimental for many crops 19 

if they coincide with critical developmental stages of vegetation, e.g. spikelet development and grain 20 

filling stages in cereal crops which are both heat- (Asseng et al., 2015) and ozone- (e.g. Soja et al., 21 

2000) sensitive.   22 

 23 

Interactions between ozone and drought 24 

Since O3 episodes frequently co-occur with climatic conditions associated with drought and an 25 

increased frequency of drought is predicted for the future particularly in drier areas of the world 26 

(IPCC, 2013), it is important to understand how vegetation will respond to their combined effects. It 27 

has been widely reported that drought-induced stomatal closure will limit O3 uptake and damage 28 

(e.g. Fagnano et al., 2009; Fuhrer, 2009). However, several studies have shown that drought does 29 

not always reduce O3 -induced damage to plants in sensitive species (e.g. Mills et al., 2009; 30 

McLaughlin et al., 2007a; Robinson et al., 1998; Wagg et al., 2012; Wilkinson and Davies, 2009, 31 

2010), and that the genetic variability in O3 sensitivity may be related to the extent to which O3 32 



reduces the sensitivity of stomatal closure to soil drying.  Such effects have been attributed to 1 

reduced response to drought signals such as abscisic acid in the presence of ozone-induced stress 2 

ethylene emission (Mills et al., 2009; Wilkinson and Davies 2009, 2010).  This reduced stomatal 3 

closing response to O3 will directly increase plant water loss, and therefore increase vulnerability to 4 

the drought episode, particularly when combined with a reduced root biomass, often seen as a 5 

response to O3 (e.g. Grantz et al., 2006; Hayes et al., 2012; Wyness et al., 2011). This might 6 

eventually cause secondary reductions in C sequestration (Wilkinson and Davies, 2009, 2010), 7 

particularly if the vulnerable plants begin to experience additional/subsequent stresses such as wind, 8 

biotic attack, high light/VPD or flood/storm conditions (Wilkinson and Davies, 2010). As indicated 9 

below, a growing number of species exhibit O3 -induced stomatal opening either in the presence or 10 

absence of soil drying, that is genotype-dependent (Wagg et al., 2013; Wilkinson and Davies, 2010).  11 

Such effects, leading initially to enhanced nutrient flow and increases in leaf surface area are not 12 

sustainable as leaf tissue eventually becomes water-stressed, resulting in a reduction in 13 

photosynthesis and premature senescence (Wilkinson and Davies, 2010). 14 

Mills et al. (2013) conducted a comprehensive review of the published literature on O3 effects on 15 

stomatal functioning to determine if generalisations can be made based on species, genotype, 16 

duration and intensity of O3 exposure, climatic conditions and soil water availability. The results are 17 

summarised in Table 1 and reproduced in full in the Supplementary Information.  Of the 68 species 18 

examined (including trees, crops and (semi-)natural grassland species), 22% showed no change in 19 

stomatal conductance, 10% showed a slowed (sluggish) stomatal response to elevated O3, 23.5% 20 

showed an increased stomatal opening under elevated O3 and 44% displayed stomatal closure in 21 

response to O3.  Tree species were the most adversely affected with 73% of species showing an 22 

altered stomatal response, with 13 species showing stomatal opening and 15 showing stomatal 23 

closure in response to O3. Crops tended to respond to O3 stress with stomatal closure (occurring in 24 

75% of the species), whilst increased, or “sluggish” stomatal response was only reported in 19% of 25 

the species. For the 8 grassland species included, responses were more or less evenly spread across 26 

the four categories of stomatal response. However, the proportions of species showing different 27 

responses should be interpreted with some caution as there were large variations in exposure 28 

methods, the magnitude and duration of O3 exposure, climatic conditions (i.e. differences in light, 29 

temperature, soil moisture etc.), as well as inherent differences in response of species/genotypes to 30 

elevated O3. No clear patterns emerged for the O3 concentration range for the different responses, 31 

except perhaps the tendency for stomatal opening to occur at lower concentrations.  Further 32 

analysis is needed to understand the complexities of O3 exposure duration, concentration and 33 

climate effects in the stomatal responses to O3.    34 



Extensive measurements of a Southern Appalachian forest in the USA by McLaughlin et al. (2007a, b) 1 

provide field evidence to support the concept of O3 -induced increases in transpiration. These 2 

authors document an almost linear increase in average daily sap flows and enhancement of the 3 

amplitude of daily water–loss from native trees with increasing O3 exposure, suggesting an O3 -4 

induced disruption to the whole-tree water balance, not only as a result of increased day-time 5 

transpiration but also due to increased night-time stomatal conductance. In a more recent study of 6 

the same Appalachian region, Sun et al. (2012) report reduced late season stream-flow from six 7 

forested watersheds in the South Eastern United States by as much as 23% based on analysis of 18-8 

26 year data records. These effects were attributed to increased transpiration inferred by an O3 -9 

induced loss of stomatal control and increased sap flow (Figure 4) alongside O3-induced secondary 10 

changes in root biomass and associated altered moisture holding capacity of soils. Sun et al. (2012) 11 

suggest that loss of stomatal sensitivity will not only increase drought severity in the region, thus 12 

affecting ecosystem hydrology and productivity, but it will also have negative implications for flow-13 

dependent aquatic biota.   14 

Modifying effect of reactive nitrogen (Nr) on the responses of vegetation to ozone 15 

Wet and dry deposition of Nr bring added nutrients to plants and soils which can be growth 16 

promoting or inhibiting depending on current soil nutrient and pH status, climatic conditions, 17 

species-sensitivity, form, extent and duration of Nr (Dise et al., 2011). Deposition rates to forests are 18 

significantly higher than to shorter vegetation such as shrubs and grassland, with forest canopies 19 

being efficient at capturing gaseous and particulate input whilst wet deposition dominates for 20 

shorter canopies.  In Europe, deposition to forests and shorter vegetation can be as high as 60 kg N 21 

and 30 kg N ha-1 y-1 respectively in central and western regions, but is much lower at 5 and 3 kg N ha-22 

1 y-1 respectively in more remote northern areas (Butterbach Bahl et al., 2011).  A recent meta-23 

analysis of effects of N addition experiments provided some insight into the implications for roots 24 

for vegetation growing in a range of ecosystems: for the 74 available datasets, a mean of 110 kg N 25 

ha-1N (range 10 to 250) resulted in a 20% increase in root biomass.  For application rates of < 100 kg 26 

N ha-1 y-1 there was ca. an 18% decrease in the C: N ratio and a 10% increase in the respiration of fine 27 

roots, with fungal colonization effects only becoming significant at higher deposition rates (Li et al., 28 

2015).  If at high enough concentrations, effects of short-term gaseous exposures can be directly 29 

toxic to plant foliage, with lichens and bryophytes being particularly sensitive to dry-deposited N in 30 

the form of NH3 (Dise et al., 2011).  More usually, effects of Nr are considered as a long-term threat 31 

to vegetation.  Over the first few years, enhanced N deposition increases availability of inorganic N in 32 

the upper layers of the soil leading to increased plant growth in N limited soils and invasion of more 33 



productive species (Dise et al., 2011).  Over the longer term, litter production increases and N cycling 1 

in the ecosystem is accelerated, leading to a decline in species diversity as N-exploiters dominate 2 

(e.g. Henrys et al., 2011; Phoenix et al., 2012).   3 

This longer-term effect of Nr deposition leads to practical difficulties when investigating 4 

experimentally how a future N enriched climate might modify O3 effects.  Most research funding 5 

cycles are relatively short, often over a maximum of three years, and thus combined O3 and N 6 

experiments are usually short-term and frequently involve relatively high N deposition rates in order 7 

to induce an effect over a time period that is often only one growing season or less.   A recent meta-8 

analysis by Yendrek et al. (2013) comparing responses to O3 under limiting N with those under 9 

sufficient N, indicated that negative effects of O3 on leaf area, above ground and root biomass were 10 

partially mitigated by the presence of sufficient N, although many of these effects were not 11 

significant.  We attempted to conduct a different analysis for this review, looking specifically at 12 

effects of enhanced N deposition consistent with current and projected future deposition rates, on 13 

the growth responses to O3.  Unfortunately we were hampered by many factors: a lack of 14 

consistency of methodology; inconsistency in reporting of key information on treatment conditions; 15 

use of very short experimental periods (frequently < 9 weeks); use of treatments outside the 16 

projected ambient range (O3 24h mean > 100 ppb, > 80 kg N ha-1 y-1); use of controlled environments 17 

that are inconsistent with the field conditions we were most interested in; and use of N treatments 18 

that were negatively influenced by shortages of other nutrients. After an extensive search for 19 

papers, of the 93 selected as potentially useful from a Web of Science search conducted in August 20 

2014, only four contained sufficiently comparable data with roughly similar in-study variances for 21 

analysis of combined data.  These are outlined in Table 2 and provided a total of 51 data points for 22 

analysis, including data for three tree and two grassland species.  Details on data preparation and 23 

statistical analysis using general linear mixed effect models within R are provided in the 24 

Supplementary Information.  Ozone treatments were split to represent implementation of precursor 25 

emissions controls (24h mean <35 ppb, “low”); business as usual legislation (24h mean of 40-55ppb, 26 

“medium”) and worse-case scenario without further controls (24h mean of 60 – 90 ppb, “high”).   27 

Statistical analysis of the combined data from the four papers revealed that O3 concentration did not 28 

modify the root biomass response to N for the “low” and “medium” treatment ranges (i.e. treatment 29 

effects were additive, Figure 5); these datasets were combined for subsequent analysis. Under the 30 

“high” O3 treatment range, the root response to added N evident under low/medium O3 was lost 31 

resulting in a significant O3 x N interaction for the combined dataset (p= 0.025, Figure 5(a)).  It was 32 

also evident that proportionately, the negative effect of O3 on root biomass was more pronounced at 33 



higher added N than low added N. For example, there was a greater difference in relative biomass 1 

between the 60 – 90 ppb and < 30 ppb ozone categories of 0.46 for an N treatment rate currently 2 

experienced in central European forests of 60 kg N ha-1 y-1 than that an N application rate 3 

representative of pristine environments (0.29 for 10 kg N ha-1 y-1).   Effects on above ground biomass 4 

were dominated by the N treatment rate, with no significant O3 effect or O3 x N interaction (Figure 5 

5(b)). Four important messages emerged from this analysis: (i) the beneficial effect of N fertilisation 6 

on root development expected for this realistic N addition range is lost at higher O3 treatments; (ii) 7 

the proportionate effects of increasing O3 on root biomass become more pronounced at higher N 8 

treatments; (iii) interactions are apparent in roots rather than shoots and (iv) generalisations on 9 

responses need to take into account the relative concentrations/deposition rates and deposition 10 

history of both pollutants.  11 

Measurements conducted by Yamaguchi et al., (2007), one of the contributory studies to the above 12 

analysis, provided some insight into the dynamics of the relative contributions of each pollutant over 13 

the growing season.  In May and July of the second exposure season, increasing N treatment (0, 20 14 

and 50 kg of added N ha-1 y-1) increased photosynthesis (A) in Fagus crenata, with increasing activity 15 

and concentration of RuBisCo measured in July, thereby increasing N content per unit leaf area 16 

(Narea). In late season (September), Narea continued to increase with increasing N, but with no effects 17 

on Pn, the photosynthetic N use efficiency (PNUE) declined. In contrast, increasing O3 (1.5 x and 2 x 18 

ambient O3) had no significant effects on all five parameters early in the season but decreased A and 19 

PNUE in July and September. Interactions between O3 and N were dynamic – changing throughout 20 

the growing season. Initially in May, the only interaction present was a loss of the beneficial effect of 21 

increasing N on Narea with increasing O3.  By July, this interaction was evident in the photosynthetic 22 

rate and activity and content of RuBisCo, with negative effects of increasing O3 being more 23 

pronounced at the highest N treatment resulting in a decreased PNUE. By September, the negative 24 

effects of O3 on A and PNUE, and the positive effects on Narea and stomatal conductance (g) were 25 

evident in all three N treatments, indicating that the O3 effect was over-riding the N effect by the 26 

end of the growing season.  These results illustrate a potential shift occurring during the season, 27 

possibly due to the cumulative effects of both pollutants.   28 

Many studies have shown that increasing N fertilization increases stomatal conductance as 29 

photosynthesis and leaf growth are enhanced (e.g. Azuchi et al., 2014; Yamaguchi et al., 2007).  The 30 

net effects of such an enhancement could be to steadily increase O3 uptake until a tipping point is 31 

reached whereby O3 detoxification and respiration repair processes are no longer sufficient to 32 



provide protection against this powerful oxidant, leading to a shift in C allocation in favour of shoots 1 

and away from roots as illustrated in Figure 5(a).  2 

Only one experiment has studied the long-term effects of combinations of O3 and Nr on biodiversity 3 

and plant processes under field conditions.  The Alp Flix experiment (Volk et al., 2003) in Switzerland 4 

exposed Geo-Montani-Nardetum pasture monoliths for seven years to three O3 levels and five N 5 

deposition rates at an alpine site 2000m a.s.l. with high annual precipitation of 1200mm, low mean 6 

temperature of +2.8 °C, low background N deposition of ca. 4 kg N ha-1 y-1 and growing season mean 7 

O3 concentration of 45 – 47 ppb (Bassin et al., 2013).  Under these high O3 /low N and climatically 8 

challenging conditions, added N caused large changes in the community composition, with sedges 9 

becoming particularly dominant, whilst added O3 at 1.2 and 1.6 x ambient had no effect on 10 

functional group composition and few effects on productivity; there were no significant O3 x N 11 

interactions (Bassin et al., 2013 and references therein).  The lack of sensitivity to O3 was attributed 12 

to enhanced levels of anti-oxidants for tolerance of UV radiation at high altitude, continual exposure 13 

to high background rather than peak O3 and enhanced natural resilience in this long-lived, slow-14 

growing community.  In contrast, addition of Nr to this nutrient-limited vegetation had a much larger 15 

effect than O3, with Nr being the dominant pollutant in this instance, thereby emphasising the 16 

importance of previous pollution history in interpretation of interactions.  17 

Analysis of national species distribution data in relation to drivers of change provide field evidence 18 

of long-term effects of pollutants. For example, species shifts in favour of those with high Ellenberg 19 

N together with reductions in low N species have been correlated with increasing N deposition 20 

(Henrys et al., 2011) and changes in species richness and habitat species composition have been 21 

found along N gradients in the UK (Field et al., 2014, Southon et al., 2014).  In one such study, O3 was 22 

included for the first time as a modifying factor influencing plant communities in UK acid grasslands 23 

(Payne et al., 2011). Redundancy analysis identified current total inorganic N deposition, mean 24 

annual potential evapotranspiration and O3 exposure as the top three most important 25 

environmental variables explaining species cover. Further analysis revealed that whereas N is a key 26 

driver of species richness, O3 was a key driver of species compositional change but not species 27 

richness.  In a biodiversity context, the two pollutants appear to be working in distinct but different 28 

ways. 29 

 30 

As with CO2, one would expect that increasing Nr would at least in part ameliorate the effects of O3 31 

as the two pollutants affect plants in opposing ways. This may well be the case under nutrient-poor 32 

conditions where N-induced additional growth offers some protection. Where high Nr inputs 33 



combine with high O3, the O3 effect is more likely to dominate, with effects being especially 1 

pronounced in the roots.  Such an interaction is particularly relevant close to point sources for Nr.  2 

 3 

 4 

Conclusions 5 

From the review and analyses presented here it is apparent that it is not always straight forward to 6 

predict the direction of O3 effect once one or more interacting factors are included.  There is 7 

evidence of tipping points occurring where there is a shift from one factor being dominant to 8 

another.  This shift can be dynamic, changing during the growing season, for example, for the tree 9 

species Fagus crenata where initially the N effect was dominant and then the O3 effect became 10 

dominant later in the season (Yamaguchi et al., 2007). It is also dependant on the relative 11 

concentrations/values and exposure duration of the combining stresses as well as the relative 12 

sensitivity of the species studied. For example, the ameliorating effects of elevated CO2 on the 13 

negative impacts of ozone are less pronounced for rice under field conditions than expected from 14 

shorter-term controlled environment studies (Ainsworth, 2008). 15 

This study has also shown that there are two types of interactions that need to be considered 16 

differently for assessing current and future effects of combined stressors: (i) Responses to gradual 17 

long-term changes in climate, background O3 and Nr typically included in regional or global 18 

modelling. Here, the evidence base is growing for inclusion of multiple factors but more 19 

experimental work is needed to fully understand the dynamics of interactions. (ii) Responses to 20 

extreme climatic and pollutant conditions, likely to become more frequent in the coming decades.  21 

Here, effects on vegetation appear to depend on previous exposure history, with, for example 22 

chronic exposure to O3 prior to drought likely to reduce the ability of plants to control water loss 23 

thereby exacerbating the effects of drought, whilst exposure to a relative high O3 episode with no 24 

prior exposure might induce stomatal closure offering some protection against drought.  Although 25 

heat, drought and O3 stress frequently occur together, there has been surprisingly little study so far 26 

of their combined effects, nor has the added effect of Nr been studied under these conditions.    27 

This partially quantitative study has been hampered by a lack of consistency in reporting of 28 

experimental conditions and results across studies.  There is merit in establishing a quality assurance 29 

code for data from air quality exposure experiments, with a minimum set and form of parameters 30 

for reporting.  It is clear from this study that new sources of effects data are needed for the 31 



development, parameterisation and testing of multi-factor models capable of predicting future 1 

multi-stress impacts at a range of geographical- and time-scales.   2 
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Table 1 Summary of effects of O3 on stomatal conductance in trees, crops and grassland 1 

species (data obtained from 49 peer reviewed publications, for details, see 2 

Supplementary Information). Reproduced from (Mills et al., 2013). 3 

 4 

 5 

 Total  

number 

No effect Increase

d 

opening 

Sluggish 

control 

Stomatal 

Closing 

Crops (no. of species) 16 1 1 2 12 

Crops (no. of experiments) 22 2 1 2 17 

Trees (no. of species) 44 12 13 4 15 

Trees (no. of experiments) 60 12 17 10 21 

Grasslands (no. of species) 8 2 2 1 3 

Grasslands (no. of expts.) 11 2 5 1 3 

Total (no. of species) 68 15 16 7 30 

Total (no. of experiments) 93 16 23 13 41 

Ozone range (25th to 75th  

percentile), ppb 

 35 – 80  50 – 90 

 

70 – 120  59 – 100  

Mean ozone concentration, ppb  59  67  91  89  

 6 

  7 



Table 2: Brief description of data sources for ozone and nitrogen interaction studies included in 1 

Figure 5. 2 

Publication Species Brief description 

Watanabe et al., 2008  Evergreen broadleaf 

(Castanopsis siebaldii) 

Two year old seedlings monitored over two 

growing seasons (2004 and 2005) in open 

top chambers; 3 x O3 (max double 

ambient), 3 x N (max 50 kg N ha-1 y-1). 

Yamaguchi et al., 2007  Decidous broadleaf  

(Fagus crenata) 

Two year old seedlings monitored over two 

growing seasons (2004 and 2005) in open 

top chambers; 3 x O3 (max double 

ambient), 3 x N (max 50 kg N ha-1 y-1). 

Wyness et al., 2011  Forb (Ranunculus acris) and 

grass (Dactylis glomerata) 

8 x O3 treatments (max ambient +72 ppb), 

2 x N (max 75 kg N ha-1 y-1), solardomes 

Thomas et al., 2005  Evergreen needle (Picea 

abies) 

 two-year old seedlings, 2 x O3 (max ca 40 

ppb), 4 x N (max 80 kg N ha-1 y-1); outdoor 

exposure 

 3 
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Figure legends 1 

 2 

Figure 1: Model ensemble annual regional mean surface O3 changes over the four HTAP regions 3 

from the parameterization following (a) the different RCP precursor emission pathways and (b) the 4 

SRES scenarios. The y-axis spans an O3 change of 14 ppb in each case to allow direct comparison of 5 

the magnitude of O3 changes. Reproduced from Wild et al., 2012.  6 

 7 

Figure 2: Trends in (a), NH3 and NOx emissions and ratios of NH3-N to NOx-N emission in China; (b) 8 

number of domestic animals (expressed as livestock units) and N fertilizer consumption; (c) number 9 

of motor vehicles and coal consumption. Reproduced from Liu et al., 2013. 10 

 11 

Figure 3: Parameterisation for the effects of temperature on stomatal conductance (g) of wheat and 12 

potato for the stomatal flux algorithm used by the LRTAP Convention (2014).  Data represent the 13 

short-term response of stomatal conductance to temperature and are expressed relative to a 14 

maximum stomatal conductance of 450 mmol O3 m−2 PLA s−1 for wheat and 750 mmol O3 m−2 PLA 15 

s−1 for potato.  Reproduced from Pleijel et al., 2007. 16 

Figure 4 Empirical models of annual variations in later season streamflow were significantly 17 

improved for the 94ha Walker Branch catchment, Tennessee USA when climate and ozone were 18 

included (R2 = 0.78) compared to a climate only model (R2 = 0.51).  Re-drawn from Sun et al. (2012).  19 

 20 

Figure 5: The modifying effects of N addition on the response of (a) shoot and (b) root biomass to 21 

ozone, categorised by 24h mean as:  −●− < 35 ppb, - ○ - 40 – 55 ppb, and ∙∙◊∙∙ 60 – 90 ppb. The 22 

combined datasets are from the papers listed in Table 2, and further details on statistical analysis 23 

can be found in the Supplementary Information. Relative effect was calculated as the treatment 24 

biomass/control biomass. 25 

 26 
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Figure 3: Parameterisation for effects of temperature on stomatal conductance of wheat and potato 2 

for the stomatal flux algorithm used by the LRTAP Convention (2014).  Data represent the short-term 3 

response of stomatal conductance to temperature and are expressed relative to a maximum 4 

stomatal conductance of 450 mmol O3 m−2 PLA s−1 for wheat and 750 mmol O3 m−2 PLA s−1 for potato.  5 

Reproduced from Pleijel et al., 2007. 6 
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Figure 4 Empirical models of annual variations in later season streamflow were significantly 3 

improved for the 94ha Walker Branch catchment, Tennessee USA when climate and 4 

ozone were included (R2 = 0.78) compared to a climate only model (R2 = 0.51).  Re-5 

drawn from Sun et al. (2012).  6 
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Figure 5: The modifying effects of N addition on the response of (a) shoot and (b) root biomass to 5 

ozone, categorised by 24h mean as:  −●− < 35 ppb, - ○ - 40 – 55 ppb, and ∙∙◊∙∙ 60 – 90 ppb. The 6 

combined datasets are from the papers listed in Table 2, and further details on statistical analysis 7 

can be found in the Supplementary Information. Relative effect was calculated as the treatment 8 

biomass/control biomass. 9 
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Ozone impacts on vegetation in a nitrogen enriched and changing climate 

Mills et al. 

Supplementary Information  

(1) Data sources on ozone effects on stomatal conductance provided in Table 1 

 

 

Trees and woody species

Author Species Length of exposure Ozone concentration Environment Stomatal response Additional

treatment

Freer-Smith & Dobson 1989 Sikka spruce 2 days 80 ppb chambers increased gs N/A

Gregg et al. 2006 Populus  deltoides 11 weeks 98 ppb open top chamber increased gs N/A

Mclaughlin et al. 2007 forest trees 23 yrs natural flunctuating natural increased gs N/A

Onandia et al. 2011 Betula papyrifera 10 years 1.5 x ambient Aspen FACE increased gs CO2

Paakkonen et al. 1998 Betula pendula 11 weeks 1.5 x ambient open field increased gs well-watered 

Pearson & Mansfield 1993 Fagus sylvaticum L 18.2 weeks 60 - 120 ppb Solardomes increased gs red.-watered

Pearson & Mansfield 1993 Fagus sylvaticum L 18.2 weeks 60 - 120 ppb Solardomes increased gs well-watered 

Roberts et al. 1990 Liriodendron tulipifers 14 weeks 50 ppb chambers increased gs N/A

Sun et al. 2012 Betula papyrifera March. 12.8 weeks 80 ppb Aspen FACE increased gs N/A

Sun et al. 2012 forest trees 18-24yr natural flunctuating natural increased gs N/A

Sun et al. 2012 Populus tremuloides Michx. 12.8 weeks 80 ppb Aspen FACE increased gs N/A

Uddling et al. 2009 Betula papyrifers 2 growing seasons ambient + 35% Aspen FACE increased gs N/A

Uddling et al. 2009 Populus tremuloides 2 growing seasons ambient + 35% Aspen FACE increased gs N/A

Zhang et al. 2013 Elaeocarpus balansae 3 weeks ambient open-air increased gs N/A

Zhang et al. 2013 Ficus microcarpa 3 weeks ambient open-air increased gs N/A

Zhang et al. 2013 Manglietia glauca 3 weeks ambient open-air increased gs N/A

Tjoelker et al. 1995 Acer saccharum Marsh. 9.7 weeks ambient x2 (approx 95 ppb) free air exposure system initial increase N/A

Hoshika et al. 2012a Betula ermanii 12 weeks 60 ppb open top chamber no change N/A

Hoshika et al. 2012a Betula maximowicziana 12 weeks 60 ppb open top chamber no change N/A

Hoshika et al. 2012a Betula platyphylla var. japonica 12 weeks 60 ppb open top chamber no change N/A

Samuelson 1994 Acer rubrum 20 weeks ambient x2 (60 - 120 ppb) open-top chambers no change N/A

samuelson 1994 Prunus serotina 20 weeks ambient x2 (60 - 120 ppb) open-top chambers no change N/A

Zhang et al. 2013 Aporusa dioica 3 weeks ambient open-air no change N/A

Zhang et al. 2013 Cinnamomum camphora 3 weeks ambient open-air no change N/A

Zhang et al. 2013 Litsea glutinosa 3 weeks ambient open-air no change N/A

Zhang et al. 2013 Sapium discolor 3 weeks ambient open-air no change N/A

Zhang et al. 2013 Schmima superba 3 weeks ambient open-air no change N/A

Zhang et al. 2013 Toxicodendron succedaneum 3 weeks ambient open-air no change N/A

Hanson et al. 1994 Quercus rubra L 2 growing seasons 2x ambient large open-top chambers reduced gs N/A

Hartikainen et al. 2012 Betula pendula  Roth 2 growing seasons ambient x 1.4 open field reduced gs incr. temp.

Hoshika et al. 2012b Fagus crenata 12 weeks 56.7 ±10.5 ppb free air exposure system reduced gs N/A

Lombardozzi et al. 2012 Liriodendron tulipifers 12 weeks ambient + 70 ppb (100ppb approx)open-top chambers reduced gs N/A

Matyssek et al. 1991 Betula pendula 5 weeks 100 ppb field chambers reduced gs N/A

Minnocci et al. 1999 Olea europaea  L. cv Frantoio 17.1 weeks 100 ppb chambers reduced gs N/A

Minnocci et al. 1999 Olea europaea  L. cv Moraiolo 17.1 weeks 100 ppb chambers reduced gs N/A

Novak et al. 2005 Fraxinus excelsior 20 weeks 40.6 ppb chambers reduced gs N/A

Novak et al. 2005 Populus nigra L 20 weeks 40.6 ppb chambers reduced gs N/A

Novak et al. 2005 Viburnum lantana 20 weeks 40.6 ppb chambers reduced gs N/A

Paakkonen et al. 1998 Betula pendula 11 weeks 1.5 x ambient open field reduced gs red.-watered

Pollastrini et al. 2010 Fagus sylvatiucm L. 24 weeks 150 ppb open-top chambers reduced gs red.-watered

Pollastrini et al. 2010 Populus maximowiczii 24 weeks 150 ppb open-top chambers reduced gs red.-watered

Pollastrini et al. 2010 Quercus robur L 24 weeks 150 ppb open-top chambers reduced gs red.-watered

Roberts. 1990 Liriodendron tulipifers 14 weeks 200 ppb chambers reduced gs N/A

Shan et al. 1996 Pinus armandi Franch 14 weeks 300 ppb field chamber reduced gs N/A

Tjoelker et al. 1991 Liriodendron tulipifers  L. 18 weeks ambient + 60 ppb (approx 108 ppb)open-top field chambers reduced gs N/A

Tjoelker et al. 1991 Pinus taeda  L. 18 weeks ambient + 60 ppb (approx 108 ppb)open-top field chambers reduced gs N/A

Vandermeiren et al. 2002 Solanum tuberosun cv. Bintje I growing season ambient x 2 open-top chambers reduced gs N/A

Wullschleger et al. 1996 Quercus rubra L I growing season ambient x2 single tree chamber reduced gs nitrogen 

Zhang et al. 2013 Schefflera octophylla 3 weeks ambient open-air reduced gs N/A

Dumont et al. 2013 Populus deltoides x Populus nigra 3 weeks 120 ppb growth chambers slowed response blue light

Dumont et al. 2013 Populus deltoides x Populus nigra 3 weeks 120 ppb growth chambers slowed response red light

Dumont et al. 2013 Populus deltoides x Populus nigra 3 weeks 120 ppb growth chambers slowed response CO2

Dumont et al. 2013 Populus deltoides x Populus nigra 3 weeks 120 ppb growth chambers slowed response VPD

Grulke et al. 2007b Quercus douglasii 4 weeks 70 ppb open top chamber slowed response light 

Grulke et al. 2007b Quercus kelloggii 4 weeks 70 ppb open top chamber slowed response light 

Paoletti & Grulke 2010 Quercus douglasii 8 weeks 70 ppb open top chamber slowed response light 

Paoletti & Grulke 2010 Quercus kelloggii 8 weeks 70 ppb open top chamber slowed response light 

Paoletti 2005 Arbutus unedo 13 weeks 110 ppb greenhouse slowed response red.-watered

Paoletti 2005 Arbutus unedo 13 weeks 110 ppb greenhouse slowed response reduced light



  

Grasslands 

Hayes et al. 2012 Dactylis glomerata 20 weeks 70 -90 ppb Solardomes increased gs red.-watered

Mills et al. 2009 Dactylis glomerata 20 weeks 101.3 ppb Solardomes increased gs N/A

Mills et al. 2009 Leontodon huspidus 20 weeks 101.3 ppb Solardomes increased gs N/A

Wagg et al. 2012 Dactylis glomerata 20 weeks 70-90 ppb Solardomes increased gs red.-watered

Wilkinson & Davies 2009 Leontodon huspidus 5 weeks 70 ppb growth cabinets increased gs red.-watered

Jaggi et al. 2005 Trifolium prantense 2 growing seasons ambient x 1.5 (2002) ambient x1.8 (2003)free- air fumigation system No change red.-watered

Wagg et al. 2012 Ranulculus acris 20 weeks 70-90 ppb Solardomes No change red.-watered

Zhang et al. 2012 Chionanthus retusus Lindl. & Paxt. 9.3 weeks 70 ppb open top chambers No change N/A

Jaggi et al. 2005 Holcus lanatus L. 2 growing seasons ambient x 1.5 (2002) ambient x1.8 (2003)free- air fumigation system reduced gs red.-watered

Jaggi et al. 2005 Plantago lanceolata  L. 2 growing seasons ambient x 1.5 (2002) ambient x1.8 (2003)free- air fumigation system reduced gs red.-watered

Neufeld et al. 1012 Rudbeckia laciniata  L 16 weeks natural fluctating open field reduced gs N/A

Reiling and Davison 1995 Plantago major L. (28 populations) 3 weeks 70 ppb small chambers reduced gs N/A

Zhang et al. 2012 Cornus alba L 9.3 weeks 70 ppb open top chambers reduced gs N/A

Zhang et al. 2012 Euonymus bungeanus  Maxim 9.3 weeks 70 ppb open top chambers reduced gs N/A

Zhang et al. 2012 Photinia x fraseri 9.3 weeks 70 ppb open top chambers reduced gs N/A

Zouzoulas et al. 2009 Gossypium allegria 23 weeks 100 ppb closed chambers reduced gs N/A

Zouzoulas et al. 2009 Gossypium romanos 23 weeks 100 ppb closed chambers reduced gs N/A

Grulke et al. 2007a Rudbeckia laciniata var. digitata 7 days fluctuating ambient (25-80 ppb) open air slowed respsone dynamic light

Crops

Author Species Length of exposure Ozone concentration Environment Stomatal response Additional

treatment

Hassan et al. 1994 Raphanus sativus L. cv Baladey 8 days 80 ppb chambers increased gs N/A

Bernacchi et al. 2006 Glycine max L 3 years 1.23x ambient SoyFACE no change N/A

Betzelberger et al. 2012 Glycine max 2 growing seasons 38-120 ppb open- field no change N/A

Biswas et al. 2011 Triticum aestivum  L cv. Xiaoyan 22 3 weeks 83 ppb open top chambers no change red.-watered

Flowers et al. 2007 Phaseolus vulgaris L 9 weeks 60 ppb field chambers no change N/A

Biswas et al. 2011 Triticum aestivum  L cv. Xiaoyan 22 3 weeks 83 ppb open top chambers reduced gs well-watered

Biswas et al. 2011 Triticum turgidum ssp. durum 3 weeks 83 ppb open top chambers reduced gs well-watered

Fernandez-bayon et al. 1993 Citrullus lanatus 3 weeks 70 ppb chambers reduced gs N/A

Fernandez-bayon et al. 1993 Cucumis melo 3 weeks 70 ppb chambers reduced gs N/A

Grantz et al. 2003 Cucumis melo  cv. Ambrosia Hybrid 5 weeks 90ppb open top chambers reduced gs N/A

Grantz et al. 2003 Cucumis melo  cv. Ambrosia Hybrid 5 weeks 143 ppb open top chambers reduced gs N/A

Grantz et al. 2003 Gossypium barbadense  L 6 weeks 90ppb open top chambers reduced gs N/A

Grantz et al. 2003 Gossypium barbadense  L 6 weeks 143 ppb open top chambers  reduced gs N/A

Grulke et al. 2007 Phaseolus vulgaris L I hr 120-250 ppb curvette reduced gs N/A

Hassan et al. 1994 Brassica rapa L. cv. Sultani 8 days 80 ppb chambers reduced gs N/A

Tiwari & Agrawal. 2011 Raphanus sativus L. 12 weeks 40.8 ppb open- top chmabers reduced gs N/A

Tiwari & Agrawal. 2011 Solanum melongena 12 weeks 40.8 ppb open- top chmabers reduced gs N/A

VanLoocke et al. 2012 Glycine max  L 1 season 70.8 ppb SoyFACE reduced gs N/A

Biswas et al. 2011 Triticum turgidum ssp. durum 3 weeks 83 ppb open top chambers slowed response red.-watered

Paoletti & Grulke 2010 Phaseolus vulgaris L 4 weeks 70 ppb open top chambers slowed response light 
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(2) Analysis of data on O3 * N interactions (Figure 6 and Table 2) 

Data collection 

Data on the combined effects of ozone and nitrogen on tree biomass (roots, shoots and total) were 

gathered by searching the peer-reviewed literature using the Web of Science (Thomson-ISI, 

Philadelphia, PA, USA). From a total of 904 articles containing the chosen keywords, 93 were 

potentially relevant. Journal articles were excluded if: (1) Nitrogen treatments were applied only 

once; (2) Nitrogen treatments exceeded 80 kg ha-1 yr-1; (3) Mean 24 hour ozone exposure was 

>100ppb; (4) Ozone exposure period was <9 weeks. After applying these exclusion criteria, a total of 

four peer-reviewed articles published between 2005 and 2011 were included in the analysis (Table 2, 

main paper). Experiments were carried out in either Open Top Chambers (OTCs) or free air systems. 

A database was created, including the mean 24 hour ozone concentration (ppb) for each study, 

nitrogen treatment, species, experimental parameter (root biomass, shoot biomass, total biomass) 

and mean values per treatment. If the 24 hour mean ozone concentration was not reported, this was 

calculated from the 7 hour daylight mean ozone, using an equation derived from the ICP Vegetation 

bio-monitoring dataset, which took into account the daily profile of the hourly ozone concentrations 

in Europe.  

Data was extracted from graphs using the GetData Graph Digitiser, version 2.26 (http://getdata-

graph-digitizer.com). For each study, the relative treatment effect was calculated (treatment 

biomass/control biomass). Across all studies, control treatments had a mean 24 hour mean ozone 

concentration of 19.4 ppb and a mean nitrogen addition of 2.75 kg ha-1 yr-1. Ozone treatments were 

split into three categories for the 24h mean : low (<35ppb), medium (40-55ppb) and high (60-

95ppb). 

Statistical methodology 

A series of general linear mixed effect models were run using the package ‘lme4’ in the statistical 

program R (R Core Team, 2014), containing relative effect as the response variable and an 

interaction between the nitrogen (continuous) and ozone (factor) predictor variables. Response 

variables were transformed (square root) where necessary to ensure normality of residuals. A 

random effect of species was included to account for any variation in the data due to species specific 

responses to the treatments. A fifth data set from Jones et al. (2010) was removed prior to analysis 

as the variance in biomass was much smaller than for all other included species. A set of models was 

run for each parameter of interest (above ground biomass; below ground biomass; total biomass). 

Model selection was carried out by examining the change in Akaike’s Information Criterion (AIC) on 



removal of terms from the global model, following Burnham and Anderson (2002). For each biomass 

parameter, p-values were then provided for the variables in the top model using the R package 

‘lmerTest’ (Table 2).  As model results indicated there was no difference in the slope for the 

interaction between nitrogen and ozone at <35ppb and 40-55ppb for relative root biomass, these 

ozone categories were combined in the final model set.  
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