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ABSTRACT  

Aim  

Ecological niche modelling can provide valuable insight into species’ environmental 

preferences, and aid in identification of key habitats for populations of conservation concern.  

Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models 

(EENM) to identify predictable foraging habitats for a globally important population of the 

grey-headed albatross (GHA) Thalassarche chrysostoma. 

 

Location     

Bird Island, South Georgia; Southern Atlantic Ocean 

 

Methods 

GPS and geolocation-immersion loggers were used to track at-sea movements and activity 

patterns of GHA over two breeding seasons (n=55; brood-guard). Immersion frequency 

(landings per 10-minute interval) was used to define foraging events. EENM combining 

Generalised Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression 

Trees (BRT) identified the biophysical conditions characterising the locations of foraging 

events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; 



chlorophyll-a, chl-a; thermal front frequency, TFreq; depth). Model performance was 

assessed through iterative cross-validation, and extrapolative performance through cross-

validation between years. 

 

Results 

Predictable foraging habitats identified by EENM spanned neritic (<500m), shelf-break and 

oceanic waters, coinciding with a set of persistent biophysical conditions characterised by 

particular thermal ranges (3-8°C, 12-13°C), elevated primary productivity (chl-a > 0.5mg m-3) 

and frequent manifestation of mesoscale thermal fronts (TFreq > 25%).  Our results 

confirmed previous suggestions that GHA utilise oceanic fronts, and objectively identified the 

Antarctic Polar Frontal Zone (APFZ) as suitable foraging habitat. 

 

Over the spatial and temporal scales investigated here, performance of EENM was superior to 

that of single-algorithm models. In particular, MaxEnt performed poorly, resulting in highly 

variable predictions and exclusion from final EENM.  Resultant EENM displayed good 

extrapolative performance between years. 

 

Main Conclusions 

EENM techniques are useful for integrating the predictions of several single-algorithm 

models, reducing potential bias. Our analysis highlights the value of EENM for use with 

movement data in identifying at-sea habitats of wide-ranging marine predators, with clear 

implications for conservation and management. 
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(A) Introduction 1	
 2	
Ecological niche modelling (also referred to as species-habitat, predictive habitat, habitat-3	
based and species distribution modelling) provides a framework for understanding species’ 4	
distributions as a function of their environmental preferences, and for identifying priority 5	
areas for conservation. Understanding the mechanisms that underlie environmental preference 6	
is particularly challenging for highly mobile species with complex life histories, especially in 7	
the marine realm where conditions are dynamic.  Recent efforts to integrate animal tracking 8	
(‘biologging’), satellite remote-sensing and ecological niche modelling have generated 9	
valuable insights into the interactions between highly mobile marine species and the oceanic 10	
environment (e.g. Torres et al., 2015; Howell et al., 2015; Raymond et al., 2015). However, 11	
most studies utilise a single modelling framework with its specific biases, reducing the 12	
comparability of results and potentially limiting predictive capacity.  An alternative is to 13	
adopt an ensemble ecological niche modelling approach (EENM; Araújo & New 2007), 14	
which combines the output of multiple model algorithms into one predictive surface and has 15	
been used successfully for identifying key habitats for marine predators, including sea turtles 16	
(Pikesley et al., 2013) and seabirds (Oppel et al., 2012). 17	
 18	
Predicting the locations of suitable foraging habitats for wide-ranging pelagic species such as 19	
procellariiform seabirds (albatrosses, petrels and shearwaters) is non-trivial, given the 20	
complex and scale-dependent interactions between oceanographic processes and prey field 21	
dynamics, and the diverse aspects of bird physiology, energetics, reproductive and other 22	
constraints that govern foraging behaviour.  The spatial ecology of pelagic seabirds appears to 23	
be influenced by processes both extrinsic and intrinsic to each individual.  For example, 24	
habitat preferences of Southern Ocean seabirds vary among species (Commins et al., 2014), 25	
populations (Nel et al., 2001, Louzao et al., 2011, Joiris & Dochy 2013), and individuals 26	
(Phillips et al., 2006; Patrick & Weimerskirch 2014); between sexes (Phillips et al., 2004); 27	
between life history stages (Phillips et al., 2005); through the annual cycle (Phillips et al., 28	
2006, Wakefield et al., 2011); and in response to changes in oceanographic conditions 29	
(Xavier et al., 2013).  Ecological niche modelling must be conducted with an awareness of 30	
the multi-faceted influences on habitat selection if it is to be informative for identifying and 31	
managing priority areas for conservation (Lascelles et al., 2012). 32	
 33	
The energetic demands of reproduction are known to strongly influence habitat selection by 34	
pelagic seabirds during breeding periods. The constraints of incubation and chick 35	
provisioning impose a central-place foraging mode, as trips are restricted to waters within an 36	
accessible range of the colony (Weimerskirch et al., 1993). Individuals face trade-offs 37	



between the costs of flight and the necessity for reliable acquisition of prey of sufficient 38	
quality to meet the demands of chick provisioning in addition to their own energetic 39	
requirements, including for self-maintenance (Weimerskirch et al., 1997).  These constraints 40	
are particularly pronounced during the brood-guard period, when chicks require continual 41	
attendance by a parent to avoid chilling, are at their most vulnerable to predation, and have a 42	
small stomach volume so require frequent meals (Weimerskirch et al., 1988, Xavier et al., 43	
2003, Wakefield et al., 2011). 44	
 45	
Breeding success is therefore conditional upon the abilities of each bird to predict the 46	
locations of suitable foraging habitats within a commutable distance of the colony. The 47	
oceanic seascapes over which pelagic seabirds search for food are highly heterogeneous, with 48	
prey distributed within a nested patch hierarchy (Fauchald et al., 2000, Weimerskirch 2007).  49	
Suitable foraging habitats that include prey of sufficient number and quality are accessible 50	
within the diving capabilities of the species, are formed by stochastic biophysical processes; 51	
hence, the locations of exploitable prey aggregations are usually unpredictable at small spatial 52	
scales (Hazen et al., 2013). However, there is evidence to suggest that some species, 53	
particularly albatrosses, may target or track regions in which the availability of prey resources 54	
is related to persistent oceanographic conditions and hence predictable over broad- to meso-55	
scales, thus optimising foraging success (Kappes et al., 2010, Louzao et al., 2011, Piatt et al., 56	
2006, Weimerskirch 2007). 57	
 58	
Grey-headed albatrosses (GHA) Thalassarche chrysostoma, in common with many Southern 59	
Ocean predators, have been shown to exploit predictable and profitable foraging opportunities 60	
generated through bio-physical coupling along ocean fronts – physical interfaces between 61	
contrasting water masses (Bost et al., 2009, Belkin et al., 2009).  The Antarctic Polar Frontal 62	
Zone (APFZ), an extensive, dynamic region that marks the northern boundary of the Antarctic 63	
Circumpolar Current (ACC), is known to be an important feature for seabirds and marine 64	
mammals in this sector of the Southern Ocean (Catry et al., 2004, Scheffer et al., 2012, 65	
Wakefield et al., 2011).  Within the broad-scale APFZ, intense oceanographic dynamics lead 66	
to the generation of chaotic eddies and the manifestation of mesoscale (10s -100s of 67	
kilometres) or sub-mesoscale (~1 kilometre) thermohaline fronts.  Aggregations of prey, such 68	
as the mesopelagic fish and cephalopods often targeted by the grey-headed albatross, can be 69	
concentrated within this zone, both through processes of mechanical entrainment and bottom-70	
up forcing of biophysical hotspots (Rodhouse & White 1995, Reid et al., 1996, Catry et al., 71	
2004, Rodhouse & Boyle 2010).  Areas of frequent or persistent frontal activity, such as the 72	
APFZ, may therefore constitute predictable foraging habitats for regional populations of 73	
pelagic seabirds. 74	



 75	
Here, a novel application of EENM is developed, using high-resolution data tracking the 76	
movements and activity patterns of GHA from the largest global colony, to identify persistent 77	
oceanographic conditions that characterise predictable foraging habitats within the area 78	
accessible to breeding birds.  We use a suite of remotely-sensed oceanographic data, 79	
including the first regional application of a thermal front frequency index, in an iterative 80	
presence-availability model framework, with the following aims: i) to identify the biophysical 81	
conditions that characterise the locations of observed foraging events during the brood-guard 82	
phase; ii) to model the spatial distribution of predictable foraging habitats, iii) to explore the 83	
comparative utility of EENM and single-algorithm models in the context of using movement 84	
data to define foraging habitats of wide-ranging species over broad- to meso-scales and iv) to 85	
evaluate the extrapolative performance of EENM through time, and hence its usefulness for 86	
conservation and management applications. 87	
 88	
 89	
(A)  Methods 90	
 91	
(B)  Device deployment 92	
 93	
Birds were tracked from Colony B at Bird Island, South Georgia (54°00'S 38°03'W) over 94	
December-January of two austral breeding seasons, during the brood-guard phase (total n=55 95	
birds; n=25 in 2009/10; n=30 in 2011/12; Fig. 1).  GPS loggers used were i-gotU 96	
(MobileAction Technology; http://www.i-gotu.com; 25g mass), earth & Ocean Technology 97	
(e&O-Tec) MiniGPSlog (25g) or e&O-Tec MicroGPSlog (10g) and were attached using 98	
Tesa® marine cloth tape (total 5g) to mantle feathers.  Devices were programmed to record 99	
fixes at 10 or 15 minute intervals and were recovered after one complete foraging trip. Birds 100	
were also equipped with geolocation-immersion loggers (British Antarctic Survey; Mk 13; 101	
~1.5g mass), attached to a standard British Trust for Ornithology metal or plastic ring. Birds 102	
were restrained on the nest only during device deployment, and handling time during 103	
deployment and retrieval was minimised (5-10 mins). 104	
 105	
(B)  Behavioural classification 106	
 107	
Landing rate (number of landings per 10-minute interval) derived from the immersion data 108	
was used to identify foraging bouts (following Dias et al., 2010).  Take-off from the water 109	
surface is energetically costly for albatrosses, so we assumed that immersion events indicated 110	
prey capture attempts (following Wakefield et al., 2011).  Empirical evidence from previous 111	



work on this population shows that birds frequently catch prey in rapid directed flight without 112	
any obvious area-restricted search (ARS) behaviour (Catry et al., 2004), so we used landing 113	
rate as an indicator of foraging behaviour in preference to identifying ARS.   114	
 115	
Locations of immersion events were derived through temporal matching of GPS and 116	
immersion data.  As birds rest on the water surface overnight (Catry et al., 2004), and night-117	
time foraging could not be differentiated from resting, only those locations recorded in 118	
daylight hours were used (bounded by civil dawn and dusk; solar zenith angle of -6°).  All 119	
locations within a 50km radius of the colony were excluded from analysis to remove rafting 120	
behaviour.  All GPS tracks were interpolated to regular 10 minute intervals.  Landing rate was 121	
derived using a sliding window that summed the number of immersion events and total time 122	
spent immersed in the 10 minute track section preceding each GPS point location.  123	
Interpolated point locations along each track were then classified as either foraging – 124	
associated with at least one immersion event within ten minutes – or transit – not associated 125	
with immersion.  126	
 127	
The study area was defined as the area enclosing a radius corresponding to the absolute 128	
maximum displacement from the colony by any tracked bird (1185km).  To obtain an 129	
indication of the spatial distribution of foraging events over the tracking period, a 2-130	
dimensional regular grid of the study area (71°S to 32°S; 55°W to 21°W) was created at 0.5° 131	
resolution.  A binary classification index of grid cell usage was used to identify foraging areas 132	
- grid cells in which foraging events were recorded over the course of the tracking period 133	
were designated as 1, and grid cells that contained transit locations, or no bird presence, were 134	
designated as 0.  All analyses were conducted in R version 3.1. 135	
 136	
(B)  Oceanographic data 137	
 138	
Remotely-sensed oceanographic data were obtained for a matching timespan (late December 139	
– end January) for each tracking period (2009/10; 2011/12). Daily NASA Multi-Sensor 140	
Merged Ultra-High Resolution (MUR) Sea Surface Temperature (SST) imagery was 141	
downloaded via OpenDAP, and daily chlorophyll-a (chl-a) imagery was processed from 142	
MODIS-Aqua data; both were mapped to the study area in geographic projection at 1.2km 143	
resolution.  Daily images were used to generate monthly median SST and chl-a (log-scaling) 144	
composites.  Bathymetric data were obtained for a matching spatial extent from the General 145	
Bathymetric Chart of the Oceans (GEBCO_08 grid; http://www/gebco.net), and used to 146	
derive depth at 30 arc-second resolution. 147	
 148	



Thermal composite front maps (Miller 2009) were generated from MUR SST data, over 149	
rolling 7-day periods spanning the tracking period.  Thermal fronts were detected in each 150	
MUR SST scene using Single-Image Edge Detection (SIED; Cayula & Cornillon 1992; front 151	
detection threshold = 0.4°C).  Successive 7-day composites were used to prepare monthly 152	
front frequency (TFreq) layers, which quantify the frequency in which a front is detected in 153	
each pixel as a ratio of the number of positive detections to the number of cloud-free 154	
observations. All environmental data layers were standardised at 0.5 degree resolution 155	
through bilinear interpolation ('raster' package for R; Hijmans & van Etten 2012; Fig. 2).  156	
Oceanographic data layers were selected on the basis of availability, coverage and previously 157	
demonstrated influence on habitat selection by GHA and sympatric seabird species (e.g. 158	
Xavier et al., 2003, Phillips et al., 2006, Wakefield et al., 2011, Ballard et al., 2012).   159	
 160	
(B) Ensemble Ecological Niche Modelling (EENM) 161	
 162	
Previous work comparing the efficacy of various modelling algorithms for predicting habitat 163	
preferences in seabirds concluded that an ensemble approach can be preferable to the use of a 164	
single-algorithm models (Oppel et al., 2012).  However, the technique has not to our 165	
knowledge been used previously to identify predictable foraging habitats for seabirds using 166	
movement data.  We used EENM to identifying the biophysical conditions characterising the 167	
locations of observed albatross foraging events.  Ecological niche models (ENM) were fitted 168	
using the Generalised Additive Modelling (GAM), Maximum Entropy (MaxEnt), Random 169	
Forest (RF) and Boosted Regression Tree (BRT) algorithms within the biomod2 package for 170	
R (Thuiller et al., 2009, 2014).   171	
 172	
The package ‘biomod2’ uses a presence-availability framework to model preferred conditions. 173	
As grid cells in which no foraging events were detected cannot be classified as true absences, 174	
control locations (‘pseudo-absences’) were iteratively resampled from within the accessible 175	
radius of the breeding colony.  Five iterations of 1000 randomly-selected control locations 176	
were used over successive model runs (Barbet-Massin et al., 2012).  Each model run involved 177	
10-fold cross-validation, with data randomly apportioned to a 75% / 25% split for model 178	
calibration and testing phases.    179	
 180	
Relative importance of environmental variables was determined using the built-in method in 181	
biomod2, which overcomes difficulties associated with comparing model-specific outcomes 182	
through a randomisation procedure (Thuiller et al., 2009, 2014), which fits a Pearson 183	
correlation between the fitted values and predictions, where each variable has been randomly 184	
permutated.  If the two predictions are similar, i.e. highly correlated, the variable is 185	



considered of little importance.  This procedure was repeated 10 times for each variable 186	
within each model run.  The relative importance of each environmental variable (Relative 187	
Importance of the Contribution to the model Coefficients, RICC) was then scaled by 188	
subtracting the mean correlation coefficient from 1.  The overall explanatory power of the 189	
environmental variables was derived using the mean-of-means of standardised variable 190	
importance over all iterations per algorithm (Table S1).  191	
 192	
The EENM combines predictions from single-algorithm model runs.  Outputs of each single-193	
algorithm model were evaluated over both model calibration and testing datasets for each 194	
model iteration.  A triad of model performance metrics (AUC, TSS, Boyce Index) was 195	
generated for each iteration per algorithm, and the mean of each of these metrics over each 196	
iteration of control locations was calculated. The mean of each performance metric over all 197	
models fit per algorithm was then calculated (n=50; 10-fold cross-validation for each of 5 198	
iterations of control locations; Tables S3, S4). Only those with a True Skill Statistic (TSS) 199	
equal to or greater than 0.7 were included in the final ensemble, to minimise inclusion of 200	
poorly-performing models. The ensemble projections were created using a weighted average 201	
across all included single-algorithm models, based on TSS, and accounting for differences in 202	
algorithm performance.  EENM projections were based on a habitat suitability index (HSI), 203	
scaled between 0 and 1, where 1 represents greatest suitability.   204	
 205	
Resultant EENMs were then evaluated, using AUC, TSS and Boyce Index (Boyce et al., 206	
2002; Hirzel et al., 2006). We calculated all performance metrics for each EENM fitted to the 207	
full dataset from each year.  AUC and TSS were calculated using in-built biomod2 208	
functionality.  Boyce Index was calculated through projection of each model on to the full 209	
dataset for each year (‘ecospat’ package for R; Broenniman et al., 2014) to obtain a value 210	
comparing model predictions of HSI with the input presence dataset in each case.  211	
 212	
In preference to specifying a threshold of HSI to calculate the extent of suitable foraging 213	
habitat within the area accessible to the population during this breeding phase, we derived a 214	
measure of the proportion of this accessible area in which suitable foraging conditions were 215	
predicted over a continuum of HSI from 0 to 1.   216	
 217	
(B) EENM Extrapolative Performance 218	
 219	
EENM extrapolative performance was assessed through cross-validation between the two 220	
years for which we had data.  We projected each model on to the combined synoptic 221	
environmental data surfaces for the years following (2009/10 model onto 2011/12 222	



environmental data) or preceding (2011/12 model onto 2009/10 environmental data) that upon 223	
which the model was constructed.  Performance metrics (AUC, TSS, Boyce Index) were 224	
calculated for each of these projected models, following methods described above.  Spatial 225	
concordance between predictions of models extrapolated across time and year-specific 226	
models was quantitatively compared using Mantel tests (ade4 package for R; Dray & Dufour, 227	
2004). 228	
 229	
(A)  Results 230	
 231	
(B)  Foraging Trips 232	
Maximum displacement from the colony ranged between 153km and 1185km, with a mean ± 233	
SD of 744 ± 249km. Trip duration ranged between 0.6 and 6.1 days, with a mean of 2.9 ± 1.3 234	
days.  All trips involved at least one foraging event (based on landing rate derived from the 235	
immersion data), with a mean of 6.1 ± 3.7 foraging events per trip (range 2 – 17).  236	
Sex was available for a small sub-sample of tracked birds (n=8, 2009/10; n=5, 2011/12), in 237	
which no differences in foraging trips between sexes were detected (Fig. 1).  Given the small 238	
sample of known sex, sex effects were not included in further population-level analyses. 239	
 240	
(B) Predictable foraging habitats 241	
Median SST and chl-a concentration were important contributory variables to EENMs 242	
constructed for both years of the study, suggesting these biophysical variables strongly 243	
influence albatross foraging over the scales investigated by our models (Table 1). However, 244	
the overall explanatory contribution of chl-a to the 2011/12 EENM (RICC=0.150) was lower 245	
than its contribution to the 2009/10 EENM (RICC=0.585), and the inverse was observed for 246	
the contribution of SST to each EENM (RICC, 2009/10=0.577; RICC, 2011/12=0.744). The 247	
relative contributions of water depth and the frequency of mesoscale thermal front 248	
manifestation (Tfreq) to the explanatory capabilities of the EENM were lower than that of 249	
SST and chl-a across both years, although TFreq and depth were more important to the 250	
2011/12 model set (RICC, TFreq=0.155, RICC, depth=0.100) than for 2009/10 (RICC, 251	
TFreq=0.037; RICC depth=0.086).   252	
 253	
Spatial predictions of EENMs identified suitable foraging conditions across neritic (<500m 254	
depth), shelf-break and oceanic regions, reflecting the variety of foraging locations used by 255	
birds tracked in both the 2009/10 and 2011/12 breeding seasons (Fig. 3). EENM-derived 256	
spatial predictions of habitat suitability across the accessible area were very similar in extent 257	
and direction among years (Fig. 3a,b). Regions of high habitat suitability were associated with 258	
particular SST ranges (3-8°C, 12-13°C) and productive regions (median chl-a >0.5 mg m-3) of 259	



the area accessible to foraging birds. The APFZ (Fig. 2e,f) was also identified as an area 260	
highly suitable for foraging in both years (Fig. 3), although this zone lies at the extremes of 261	
the area accessible to birds during this breeding stage (Fig. 1).  262	
 263	
(B) EENM vs. single-algorithm models 264	
 265	
(C) Model Predictions 266	
The ranking of the environmental variables in terms of explanatory contribution (mean over 267	
50 runs per algorithm) was broadly comparable among single-algorithm models, although we 268	
observed some variability (Table 1).  For example, ranking of environmental variable 269	
importance was similar among GAM, RF and BRT models in both years. EENM variable 270	
rankings smoothed out the variability evident in estimated variable importance among model 271	
sets. However, explanatory contributions of environmental variables were ranked differently 272	
by year-specific EENMs (Table 1). 273	
 274	
Model response curves for each environmental variable were comparable among algorithms. 275	
GAM, RF and BRT in particular generated model sets with very similar response curves for 276	
SST (Fig. 4), TFreq and depth, although less consistency among algorithms is evident in chl-a 277	
response curves. MaxEnt models were subject to greater inconsistency in predicted responses 278	
(Figs. S1 – S3).  279	
 280	
Similarly, spatial predictions of models fitted using the GAM, RF and BRT algorithms were 281	
comparable in the extent and location of suitable habitats identified, and in the scaling of the 282	
habitat suitability index (HSI) in these regions (Fig. 5).  MaxEnt models, however, generated 283	
more spatially restricted predictions with overall lower HSI predicted throughout the 284	
accessible area. For these reasons, we did not include MaxEnt in the final EENMs per year. 285	
The location and extent of suitable habitats identifed and the scaling of HSI in EENM 286	
predictions integrated the predictions of the GAM, RF and BRT algorithms, smoothing over 287	
variation between model frameworks (Fig. 3).  Spatial predictions of all single-algorithm 288	
models were similar in extent, location and HSI scaling among years (Fig. 5).  EENM 289	
predictions showed a strong spatial concordance in the location and extent of suitable habitats 290	
identified in each year (Fig. 3; HSI, Mantel r=0.9599). 291	
 292	
(C) Model Performance 293	
EENMs were highlighted by AUC and Boyce Index as the best performing models in 294	
comparison with all single-algorithm models for both years.  However, the True Skill Statistic 295	
(TSS) selected Random Forest (RF) as the best performing in both years (Table 2). 296	



 297	
Evaluation metrics indicated similar performance of single-algorithm models across model 298	
sets, (variance, AUC=0.0002; TSS=0.001; Boyce Index=0.002; Table 2), and for each of 299	
these single-algorithm models among years (correlation, AUC r=0.999; TSS=0.935; Boyce 300	
Index=0.884; Table 2). There was little concordance between the rankings of model 301	
performance for single-algorithm models among the three model performance metrics used 302	
(AUC, TSS, Boyce Index), although AUC and TSS ranked single-algorithm models in a 303	
similar order in both years (e.g. AUC = RF, BRT, GAM, MaxEnt; Table 2). 304	
 305	
The exclusion of MaxEnt models from the final EENMs per year had little effect on model 306	
performance metrics, although a slight improvement was evident in AUC, TSS and Boyce 307	
Index in both years (Table 2).  The weighted mean EENM including predictions of GAM, RF 308	
and BRT models was retained as the final model for each year. 309	
 310	
(B) EENM Extrapolative Performance 311	
 312	
EENMs extrapolated across years to predict suitable foraging habitats over differing 313	
mesoscale oceanographic conditions performed well according to AUC and Boyce Index 314	
scores of projected models. All model performance metrics (AUC, TSS, Boyce Index) reveal 315	
the extrapolative performance of the 2011/12 EENM to be superior to that of the 2009/10 316	
EENM.  However, the TSS scores of both models dropped below the 0.7 threshold used to 317	
select best performing models for EENM creation. 318	
 319	
Spatial predictions of EENMs extrapolated across years were broadly comparable to the 320	
predictions of each year-specific EENM, highlighting the suitable foraging habitats located to 321	
the north and west of the colony.  Extrapolation of the 2011/12 EENM to the 2009/10 322	
combined environmental data surface exhibited strong similarity with the 2009/10 EENM 323	
(HSI, Mantel r=0.9437), but extrapolation of the 2009/10 EENM on to 2011/12 conditions 324	
predicted more spatially restricted regions of high habitat suitability than those predicted by 325	
the year-specific model (HSI, Mantel r=0.8740; Fig. 3).  The proportion of the area accessible 326	
to the population during this breeding phase in which suitable foraging habitats were 327	
predicted to occur was also comparable among years (Fig. 6). 328	
 329	
(A) Discussion 330	
Predictable foraging habitats for the grey-headed albatross population breeding at Bird Island, 331	
South Georgia appear to coincide with a set of persistent biophysical conditions characterised 332	
by particular thermal ranges and elevated primary productivity.  Over the spatial and temporal 333	



scales investigated by our models, EENM performed better than single-algorithm models in 334	
predicting the locations of suitable foraging habitats.  These insights highlight the potential of 335	
EENM as a tool for use with movement data for identifying at-sea habitats of wide-ranging 336	
marine predators, with clear implications for conservation and management. 337	
 338	
(B) Predictable foraging habitats 339	
 340	
Our ensemble ecological niche models (EENMs) highlight sea surface temperature (SST) and 341	
median surface chlorophyll-a (chl-a) concentration (monthly synoptic fields) as important 342	
determinants of habitat suitability for foraging grey-headed albatrosses during the brood-343	
guard phase.  SST has been found to be a useful predictor of habitat preference for other 344	
albatross species at South Georgia, and elsewhere (Wakefield et al., 2011; Deppe et al., 2014, 345	
Kappes et al., 2010; Awkerman et al., 2005). GHA also appeared to respond to the frequency 346	
of mesoscale thermal front manifestation (Tfreq), which characterised the APFZ, and to water 347	
depth, although these predictors had less influence in models. 348	
 349	
SST is a proxy for the spatial structuring of biophysical conditions over the vast ranges 350	
utilised by these ocean-wandering seabirds, and so often proves useful in identifying 351	
predictable habitats.  Different foraging guilds of pelagic predators exploit prey types that 352	
associate with particular temperature regimes (Commins et al., 2014). GHA are known to 353	
seize prey from the ocean surface (<2-3m depth; Huin & Prince 1997), and to feed 354	
predominantly on ommastrephid squid, including Martialia hyadesi, crustaceans, including 355	
Antarctic krill Euphausia superba, and, less commonly, lamprey Geotria australis, 356	
mesopelagic fish and gelatinous zooplankton (Rodhouse et al., 1990, Reid et al., 1996, Xavier 357	
et al., 2003, Catry et al., 2004). Although the diet of the tracked birds was not determined in 358	
the current study, their distribution was broadly comparable with previous years when all 359	
these prey types were recorded (Catry et al., 2004, Xavier et al., 2003). This suggests that the 360	
environmental conditions identified through this modelling procedure reflect the key habitats 361	
and main prey that are targeted by grey-headed albatrosses at South Georgia, which represent 362	
c. 50% of the global breeding population (ACAP 2009). 363	
 364	
Chl-a was also identified as a predictor of the spatial distribution of foraging events. Overall, 365	
foraging activity was more likely in productive regions. Chl-a concentrations (monthly 366	
median) were highest on-shelf, with peak values recorded to the south-west of the colony.  367	
The APFZ was not characterised by elevated productivity over the spatial and temporal scales 368	
investigated in this model.  Birds foraging in productive shelf waters around South Georgia 369	
are likely to be targeting Antarctic krill and icefish Champsocephalus gunnari, which are 370	



more closely tied to bottom-up forcing mechanisms than the squid and mesopelagic fish 371	
found in the APFZ (Wakefield, Phillips & Belchier 2012).   372	
 373	
High Tfreq values and narrow SST contours characterise the APFZ, which was identified by 374	
the EENM as a region of high habitat suitability for GHA. Plunge-diving GHA have been 375	
observed in association with large aggregations of M. hyadesi at the ocean surface within the 376	
APFZ (Rodhouse & Boyle 2010).  Although few foraging events were observed in the APFZ 377	
during the tracking period, it is likely that those birds foraging in the APFZ region were 378	
targeting ommastrephid squid.  The APFZ lies at the northernmost extreme of the observed 379	
foraging range during brood-guard, which might suggest that reproductive constraints 380	
influenced the strength of the association with this region.  Regardless, the high spatial 381	
overlap between the APFZ and the distribution of GHA during other breeding stages and in 382	
the non-breeding period (Phillips et al. 2004, Croxall et al. 2005) suggest it is a key foraging 383	
area for this species, year-round.  384	
 385	
In previous studies in the region, the spatial extent of the APFZ has been estimated using 386	
historical or averaged data, which did not match the temporal resolution of animal movement 387	
data.  For example, Xavier et al. (2003) used the position of the Polar Front (PF) derived from 388	
survey data in 1997 to investigate habitat preference of birds tracked in 2000. However, the 389	
APFZ is a highly dynamic feature, characterised by intense mesoscale variability, and the PF 390	
can vary in position by as much as 100km in 10 days (Trathan et al., 1997).  Detecting fronts 391	
in a temporally-averaged SST composite can also mask the dynamic nature of these features.  392	
The Tfreq index, used here for the first time in the Southern Ocean, is an objective, synoptic 393	
product that enables incorporation of mesoscale oceanographic dynamics in broad-scale 394	
ecological niche models (Scales et al., 2014).   395	
 396	
In addition to the selection of environmental data layers, analytical scale is a key aspect of the 397	
construction of ecological niche models.  Matching the spatial resolution of remotely-sensed 398	
datasets with the scales over which animals locate key foraging areas remains a major 399	
challenge in habitat modelling (Storch 2002, Luoto et al., 2007), particularly in the marine 400	
realm (Araújo & Guisan 2006, Hirzel et al., 2006).  In our study, environmental data layers 401	
were interpolated to a standard 0.5 degree grid resolution, which was deemed appropriate 402	
given the extent of the area over which tracked birds roamed.  In order to ensure scale match 403	
of the research question, response and environmental datasets, we also restricted temporal 404	
averaging of environmental data layers to one month, matching the duration of the brood-405	
guard phase for the focal population. 406	
 407	



(B) EENM vs single-algorithm models 408	
 409	
(C) Model Predictions 410	
Single-algorithm ecological niche models fitted on the same dataset can perform differently 411	
and generate contrasting predictions (Guisan & Zimmerman 2000, Thibaud et al., 2014).  412	
Choosing a set of algorithms to fit an EENM is, therefore, central to its predictive capability.  413	
Here, several algorithms that are used widely in habitat models for wide-ranging marine 414	
vertebrates were combined in an ensemble.   415	
 416	
Single-algorithm models used here ranked the relative importance of environmental variables 417	
differently in both years, yet overall concordance was observed in estimated variable 418	
importance between algorithms. Relative variable importance in final EENMs for each year 419	
broadly echo the consensus in variable ranking among GAM, RF and BRT model sets.  Year-420	
specific EENMs conflicted in the ranking of environmental variable importance.  SST, TFreq 421	
and Depth were ascribed greater importance in the 2011/12 ensemble, whereas the importance 422	
of chl-a dropped from 2009/10 to 2011/12.  This could be attributable to non-stationary 423	
processes that govern the foraging responses of grey-headed albatrosses to oceanographic 424	
conditions over the scales at which our analysis was focused (Jenouvrier et al., 2005), or 425	
indicative of the need for additional environmental data to enhance the capacity of our models 426	
to sufficiently capture the foraging seascape experienced by this population. 427	
 428	
Concordance in model response curves per environmental variable from single-algorithm 429	
models increases confidence in the capacity of these models to detect true responses to 430	
environmental conditions. We observed strong concordance between model response curves 431	
resulting from GAM, RF and BRT across all environmental variables in both years, and so 432	
included these model sets in final EENMs. EENM predictions integrating outputs of several 433	
single-algorithm models predicting broadly similar responses could be regarded as preferable 434	
to any single-model output in terms of confidence in predictions.  Similarly, broadly matching 435	
spatial predictions, such as those predicted by GAM, RF and BRT in our analysis, increase 436	
confidence in these single-algorithm model outputs, and in the spatial predictions of the final 437	
EENMs.  This is a key aspect of the utility of the EENM process in enabling the construction 438	
of more reliable predictive habitat-based models. 439	
 440	
(C) Model Performance 441	
Differences in model performance rankings using alternative metrics (i.e. AUC, TSS, Boyce 442	
Index) highlight the potential effect of choice of performance metric on model selection for 443	
EENM construction.  There is, to our knowledge, no current consensus on which performance 444	



metric would be preferable in this context, although the reliability of AUC has been heavily 445	
criticised (Boyce et al., 2022; Lobo et al., 2008).  The TSS is robust and independent of 446	
sample size (prevalence), unlike the commonly used kappa statistic (Allouche et al., 2006). 447	
As TSS is implemented in the R Package ‘biomod2’ framework, we chose this metric over 448	
AUC for model selection for EENM. We also implemented the Boyce Index as a comparative 449	
measure of model performance (Boyce et al., 2002; Hirzel et al., 2006).  As with all 450	
movement datasets, our response variable is strictly presence-only, and so a presence-only 451	
model evaluation metric is likely more appropriate than a presence-absence metric such as 452	
AUC or TSS.  However, we note that the use of multiple performance metrics in EENM 453	
construction and evaluation, and comparison between these metrics, is clearly preferable to 454	

any single metric (Allouche et al., 2006, Jiménez-Valverde 2012, Thibaud et al., 2014).  455	

EENMs were selected as the best performing models in both years using the Boyce Index and 456	
AUC methods, indicating that averaging the outputs of several single-algorithm models into 457	
an ensemble has improved predictive capacity in our test case.  458	
 459	
Our exploration of the utility of EENM in this context highlights the capacity of the technique 460	
for comparing among the predictions of single-algorithm models and selecting the best 461	
performing models for a particular dataset or application.  A final model can be selected from 462	
among the candidate EENMs and single-algorithm outputs.  For example, taking a 463	
conservative approach, we excluded MaxEnt from final EENMs, improving performance and 464	
increasing confidence in predictions.  EENM is useful for excluding strong bias and 465	
smoothing over weaker biases in different model predictions.  Our results exemplify the 466	
potential of EENM for use with movement data in identifying predictable foraging habitats 467	
for wide-ranging marine vertebrates over broad scales. 468	
 469	
(B) EENM Extrapolative Performance 470	
 471	
Ecological niche models constructed and validated over the same spatial and temporal extent 472	
can show limited transferability in space and time (Randin et al., 2006, Torres et al., 2015).  473	
While we did not have sufficient movement data to investigate transferability through space, 474	
the  extrapolative performance of our EENMs across the two years of this study was generally 475	
good, although the 2011/12 ensemble performed better than that built for 2009/10 (2009/10, 476	
AUC=0.9107, TSS=0.5194, Boyce Index=0.8536; 2011/12, AUC=0.9281, TSS=0.6630, 477	
Boyce Index=0.9348). Changes in the performance of ensembles extrapolated across years are 478	
indicative of poor transferability through time, because of variation in animal-environment 479	



interactions or, more probably, the failure of models to fully capture the drivers of these 480	
interactions. 481	
 482	
Further tests of EENM extrapolative performance through space and time, for example to 483	
other populations of the same species (e.g. Torres et al., 2015), or through multiple years in 484	
the same region, are necessary to ascertain true extrapolative capabilities.  Moreover, the 485	
multi-scale periodicity of oceanographic variability in the region (e.g. decadal-scale Southern 486	
Ocean Oscillation Index) is likely to influence extrapolative capabilities (e.g. Jenouvrier et al., 487	
2005).  Some key questions remain: for example, after how many years is the extrapolative 488	
performance of a year-specific model likely to fade?  How do predictable habitats over 489	
decadal timescales align with predictable habitats on inter-annual timescales?  Future work 490	
should investigate the degree of variability within and between years in prevailing 491	
oceanographic conditions and preferred foraging areas if these techniques are to prove 492	
valuable for predicting population-level responses to climate-driven ecosystem change.  493	
 494	
Nevertheless, ensemble ecological niche models (EENMs) can incorporate differing 495	
predictions from species-habitat models fitted using alternative algorithms, where they are 496	
implemented with awareness of technical limitations (Marmion et al., 2009, Oppel et al., 497	
2012). By better incorporating uncertainty, the output of EENMs provide a robust basis for 498	
recommendations relating to the conservation and management of marine vertebrate 499	
populations, particularly those of conservation concern  500	
 501	
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Figure	1		GPS	tracking	of	grey-headed	albatrosses	(GHA)	from	Bird	Island,	South	

Georgia.		Trips	used	to	identify	the	spatial	distribution	of	foraging	events	during	the	

(a)	2009/10	(n=25)	and	(b)	2011/12	(n=30)	breeding	seasons	(brood-guard	phase).		

Birds	for	which	sexes	are	known	are	highlighted	in	orange	for	female	(n=3,	2009/10,	

n=2,	2011/12)	and	green	for	male	(n=5,	2009/10;	n=3,	2011/12).		
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Figure	2		Environmental	data	layers	for	brood-guard	period	(end	December	–	end	

January).		Dynamic	variables,	(a)	Sea	Surface	Temperature	(SST,	°C;	monthly	median	

composite)	for	2009/10,	(b)	Chlorophyll-a	(chl-a,	mg	m-3;	monthly	median	

composite;	log-transformed),	for	2009/10	(c)	Thermal	front	frequency	(Tfreq,	%	

time;	0.4°C	front	detection	threshold;	monthly	synoptic	composite)	for	2009/10.		

(d)-(f)	Dynamic	variables	for	2011/12.		(g)	GEBCO	Depth	(30	arc-second	resolution).	
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Figure	3		Spatial	predictions	of	ensemble	ecological	niche	models	(EENMs),	and	

cross-validation	among	years.		Spatial	predictions	of	final	EENM	(weighted	mean,	

removal	of	MaxEnt	predictions)	for	(a)	2009/10	and	(b)	2011/12.		Cross-validation	

of	(c)	2009/10	EENM	onto	2011/12	environmental	conditions	and	(d)	2011/12	

EENM	onto	2009/10	environmental	conditions.		Spatial	predictions	displayed	as	

Habitat	Suitability	Index	(HSI)	per	grid	cell,	scaled	from	0	to	1.		Greater	similarity	

between	(a),	(b)	and	(c),(d)	indicates	better	EENM	transferability	among	years.	

	 	

60°S

55°S

50°S

45°S

40°S
(a) (b)

50°W 40°W 30°W

(c) (d)

0.0

0.5

1.0



	
	

Figure	4	Model	Response	Curves	for	SST	in	2011/12	model	sets,	per	algorithm,	(a)	

GAM,	(b)	RF,	(c)	BRT,	(d)	MaxEnt	
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Figure	5	Spatial	predictions	of	ecological	niche	models	per	algorithm,	(a)	Generalised	

Additive	Models,	GAM,	2009-10	(b)	GAM,	2011/12;	(c)	Maximum	Entropy,	MaxEnt,	

2009/10,	(d)	2011/12;	(e)	Random	Forest,	2009/10,	(f)	2011/12;	(g)	Boosted	

Regression	Trees,	2009/10,	(h)	2011/12.	Spatial	predictions	displayed	as	Habitat	

Suitability	Index	(HSI)	per	grid	cell,	scaled	from	0	to	1	(mean	over	all	model	runs,	

n=50	per	algorithm).	
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Figure	6	Percentage	of	area	accessible	during	brood-guard	phase	(estimated	using	

whole-dataset	maximum	displacement	from	colony)	containing	oceanographic	

conditions	suitable	for	foraging	against	EENM-predicted	Habitat	Suitability	Index	

(HSI).		2009/10	EENM	(weighted	mean)	as	black	line;	2011/12	in	grey.	
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Figure	S1	Model	Response	Curves	for	Chl-a	in	2011/12	model	sets,	per	algorithm,	
(a)	GAM,	(b)	RF,	(c)	BRT,	(d)	MaxEnt	
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Figure	S2	Model	Response	Curves	for	TFreq	in	2011/12	model	sets,	per	algorithm,	
(a)	GAM,	(b)	RF,	(c)	BRT,	(d)	MaxEnt	
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Figure	S3	Model	Response	Curves	for	depth	in	2011/12	model	sets,	per	algorithm,	
	 (a)	GAM,	(b)	RF,	(c)	BRT,	(d)	MaxEnt	
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Table	1	Variable	Importance	(Mean	over	all	model	sets	per	algorithm),	scaled	as	
Relative	Importance	of	Contribution	to	model	Coefficients	(RICC),	from	0	to	1.		
Variable	importance	rankings	in	brackets	

	

	
	
	 	

	 Variable	Importance,	2009/10	 Variable	Importance,	2011/12	

	 SST			 Chl-a	 TFreq	 Depth	 SST			 Chl-a	 TFreq	 Depth	

GAM		 0.61396	
(1)	

0.4570					
(2)	

0.06512	
(4)	

0.17284	
(3)		

0.92174	
(1)	

0.09860	
(3)	

0.07752	
(4)	

0.16574				
(2)	

MaxEnt		 0.45498	
(2)	

0.48992	
(1)	

0.06060	
(4)	

0.12338		
(3)	

0.55658	
(1)	

0.21478	
(3)	

0.31830	
(2)	

0.18928	
(4)	

RF		 0.46120	
(2)	

0.52012		
(1)	

0.08466	
(4)	

0.16598	
(3)	

0.51792	
(1)	

0.27812	
(2)	

0.24914	
(3)	

0.20358	
(4)	

BRT		 0.5644	
(1)	

0.56014	
(2)	

0.01672	
(4)	

0.05316	
(3)	

0.59350	
(1)	

0.29776	
(2)	

0.22872	
(3)	

0.0805				
(4)	

EENM		 0.577					
(2)	

0.585						
(1)	

0.037			
(4)	

0.086				
(3)	

0.744			
(1)	

0.150			
(3)	

0.155			
(2)	

0.100				
(4)	



Table	2	Model	Performance	Metrics	(Mean	over	all	model	sets	per	algorithm).			Area	
Under	Receiver	Operating	Characteristic	Curve	(AUC)	scaled	0	to	1;	True	Skill	
Statistic	(TSS)	scaled	0	to	1;	Boyce	Index	scaled	-1	to	+1.		Highest-scoring	model	for	
each	performance	metric	highlighted	in	bold.		EENM	rows	have	metrics	for	final	
EENM,	without	MaxEnt	(black)	and	EENM	with	MaxEnt	(grey).		Performance	
rankings	per	metric	in	brackets.	

	

	

	 Model	Evaluation,	2009/10	 Model	Evaluation,	2011/12	

Model	Set	 AUC			 TSS	 Boyce	

Index	

AUC			 TSS	 Boyce	

Index	

GAM		 0.9421		
(3)	

0.8237				
(2)	

0.9213				
(2)	

0.9372			
(3)	

0.7835			
(3)	

0.8943			
(3)	

MaxEnt		 0.9276		
(4)	

0.7740				
(4)	

0.9300				
(1)	

0.9101			
(4)		

0.7184			
(4)	

0.9051			
(1)	

RF	 0.9523		
(1)	

0.8277				
(1)	

0.8329				
(3)	

0.9563			
(1)	

0.8283			
(1)	

0.8998			
(2)	

BRT	 0.9444		
(2)	

0.8176				
(3)	

0.7130				
(4)	

0.9418				
(2)	

0.7843				
(2)	

0.8615			
(4)	

EENM		 0.9547	

0.9479	

0.7914	

0.7514	

0.9512	

0.8990	

0.9610	

0.9591	

0.7871	

0.7791	

0.9656	

0.9626	

EENM	
Extrapolation	

0.9107	

0.9038	

0.5194	

0.5188	

0.8536	

0.7138	

0.9281	

0.9267	

0.6630	

0.6208	

0.9358	

0.9540	



Table	S1	Variable	importance	per	iteration	of	control	locations,	2009/10.	Mean	
importance	of	environmental	variables	(Sea	Surface	Temperature,	SST;	
Chlorophyll-a,	chl-a;	thermal	front	frequency,	Tfreq;	depth)	over	model	runs	(10-
fold	cross-validation)	per	iteration	of	control	locations,	for	each	model	algorithm	
(Generalised	Additive	Models,	GAM;	Maximum	Entropy	modelling,	MaxEnt;	Random	
Forest,	RF;	Boosted	Regression	Trees,	BRT).	Mean	of	Relative	Importance	to	the	
model	Coefficients	(RICC)	metric	over	successive	iteration	of	control	locations.	

	

Control	
Location	
Iteration	

Model	
Algorithm	

Variable	Importance	

(mean	over	10	runs	per	pseudo-absence	iteration)	

SST	 Chl-a	 TFreq	 Depth	

1	 GAM	 0.6160	 0.4646	 0.0721	 0.1762	

MaxEnt	 0.4840	 0.5192	 0.0784	 0.1140	

RF	 0.4746	 0.5360	 0.1122	 0.1285	

BRT	 0.5679	 0.5618	 0.0139	 0.0396	

2	 GAM	 0.6089	 0.4589	 0.0690	 0.1503	

MaxEnt	 0.4779	 0.4031	 0.1327	 0.2149	

RF	 0.4523	 0.5474	 0.0694	 0.1651	

BRT	 0.5808	 0.5655	 0.0146	 0.0447	

3	 GAM	 0.5992	 0.4509	 0.0430	 0.1572	

MaxEnt	 0.4449	 0.4771	 0.0345	 0.1019	

RF	 0.4645	 0.5094	 0.0891	 0.1683	

BRT	 0.5559	 0.5690	 0.0244	 0.0417	

4	 GAM	 0.6040	 0.4803	 0.0910	 0.1544	

MaxEnt	 0.3937	 0.5321	 0.0364	 0.0852	

RF	 0.4614	 0.5267	 0.0743	 0.1499	

BRT	 0.5470	 0.5718	 0.0131	 0.0544	

5	 GAM	 0.6417	 0.4303	 0.0505	 0.2261	

MaxEnt	 0.4744	 0.5181	 0.0210	 0.1009	

RF	 0.4532	 0.4811	 0.0783	 0.2181	

BRT	 0.5704	 0.5326	 0.0176	 0.0854	

mean	of	means	 GAM	 0.61396	 0.4570	 0.06512	 0.17284	

MaxEnt	 0.45498	 0.48992	 0.06060	 0.12338	

RF	 0.46120	 0.52012	 0.08466	 0.16598	

BRT	 0.5644	 0.56014	 0.01672	 0.05316	

	
	
	
	



Table	S2	Variable	importance	per	iteration	of	control	locations,	2011/12.	Mean	
importance	of	environmental	variables	(Sea	Surface	Temperature,	SST;	Chlorophyll-
a,	chl-a;	thermal	front	frequency,	Tfreq;	depth)	over	model	runs	(10-fold	cross-
validation)	per	iteration	of	control	locations,	for	each	model	algorithm	(Generalised	
Additive	Models,	GAM;	Maximum	Entropy	modelling,	MaxEnt;	Random	Forest,	RF;	
Boosted	Regression	Trees,	BRT).	Mean	of	Relative	Importance	to	the	model	
Coefficients	(RICC)	metric	over	successive	iteration	of	control	locations.	

	

Control	
Location	
Iteration	

Model	
Algorithm	

Variable	Importance	

(mean	over	10	runs	per	pseudo-absence	iteration)	

SST	 Chl-a	 TFreq	 Depth	

1	 GAM	 0.9427	 0.0941	 0.0669	 0.1390	

MaxEnt	 0.5170	 0.2031	 0.4323	 0.1567	

RF	 0.4893	 0.2765	 0.2358	 0.1887	

BRT	 0.5819	 0.2770	 0.2378	 0.0778	

2	 GAM	 0.9277	 0.0861	 0.0580	 0.1997	

MaxEnt	 0.5942	 0.2101	 0.2982	 0.1814	

RF	 0.5094	 0.2904	 0.2906	 0.1838	

BRT	 0.5621	 0.3188	 0.2943	 0.0681	

3	 GAM	 0.9310	 0.1234	 0.0423	 0.1522	

MaxEnt	 0.4932	 0.1673	 0.1621	 0.2250	

RF	 0.5145	 0.2910	 0.2369	 0.1892	

BRT	 0.6279	 0.3018	 0.1764	 0.0690	

4	 GAM	 0.8950	 0.0873	 0.1362	 0.1821	

MaxEnt	 0.7395	 0.3093	 0.5689	 0.1517	

RF	 0.5737	 0.2619	 0.2485	 0.2424	

BRT	 0.6172	 0.2780	 0.2186	 0.1113	

5	 GAM	 0.9123	 0.1021	 0.0842	 0.1557	

MaxEnt	 0.4390	 0.1841	 0.1300	 0.2316	

RF	 0.5027	 0.2708	 0.2339	 0.2138	

BRT	 0.5784	 0.3132	 0.2165	 0.0763	

mean	of	means	 GAM	 0.92174	 0.09860	 0.07752	 0.16574	

MaxEnt	 0.55658	 0.21478	 0.31830	 0.18928	

RF	 0.51792	 0.27812	 0.24914	 0.20358	

BRT	 0.59350	 0.29776	 0.22872	 0.0805	

	
	
	
	
	



Table	S3	Model	performance	metrics	per	iteration	of	control	locations,	2009/10.		
Evaluation	metrics	(Area	Under	Receiver	Operating	Curve,	AUC;		True	Skill	Statistic,	
TSS).		Mean	over	model	runs	(10-fold	cross-validation)	per	iteration	of	control	
locations,	for	each	model	algorithm	(Generalised	Additive	Models,	GAM;	Maximum	
Entropy	modelling,	MaxEnt;	Random	Forest,	RF;	Boosted	Regression	Trees,	BRT).	

	

	 	

Control	Location	
Iteration	

Evaluation	
Metric	

Model	Algorithm	

(mean	over	10	runs	per	Pseudo-Absence	iteration)	

GAM	 MaxEnt	 RF	 BRT	

1	 AUC	 0.9362	 0.9166	 0.9511	 0.9407	

	 TSS	 0.8172	 0.7599	 0.8273	 0.8094	

	 Boyce	Index	 0.9155	 0.9391	 0.8635	 0.681	

2	 AUC	 0.9520	 0.9358	 0.9641	 0.9552	

	 TSS	 0.8383	 0.7967	 0.8632	 0.8452	

	 Boyce	Index	 0.9174	 0.9343	 0.8215	 0.6572	

3	 AUC	 0.9593	 0.9287	 0.9431	 0.9374	

	 TSS	 0.8209	 0.7871	 0.8164	 0.8110	

	 Boyce	Index	 0.9154	 0.9695	 0.8195	 0.6966	

4	 AUC	 0.9494	 0.9315	 0.9604	 0.9518	

	 TSS	 0.8466	 0.7749	 0.8352	 0.8256	

	 Boyce	Index	 0.9164	 0.9624	 0.8336	 0.7599	

5	 AUC	 0.9337	 0.9253	 0.9428	 0.9369	

	 TSS	 0.7956	 0.7514	 0.7963	 0.7967	

	 Boyce	Index	 0.9419	 0.8436	 0.8263	 0.7701	

Mean	of	means	 AUC	 0.9421	 0.9276	 0.9523	 0.9444	

	 TSS	 0.8237	 0.7740	 0.8277	 0.8176	

	 Boyce	Index	 0.9213	 0.9300	 0.8329	 0.7130	



Table	S4	Model	performance	metrics	per	iteration	of	control	locations,	2011/12.		
Evaluation	metrics	(Area	Under	Receiver	Operating	Curve,	AUC;		True	Skill	Statistic,	
TSS).		Mean	over	model	runs	(10-fold	cross-validation)	per	iteration	of	control	
locations,	for	each	model	algorithm	(Generalised	Additive	Models,	GAM;	Maximum	
Entropy	modelling,	MaxEnt;	Random	Forest,	RF;	Boosted	Regression	Trees,	BRT).	

	

	
	
	
	 	

Control	Location	
Iteration	

Evaluation	
Metric	

Model	Algorithm	

(mean	over	10	runs	per	Pseudo-Absence	iteration)	

GAM	 MaxEnt	 RF	 BRT	

1	 AUC	 0.9311	 0.9058	 0.9461	 0.9334	

	 TSS	 0.7824	 0.7214	 0.8111	 0.7745	

	 Boyce	Index	 0.9125	 0.9484	 0.9040	 0.8692	

2	 AUC	 0.9344	 0.9055	 0.9551	 0.9418	

	 TSS	 0.7748	 0.7019	 0.8196	 0.7810	

	 Boyce	Index	 0.8638	 0.8955	 0.9065	 0.8397	

3	 AUC	 0.9463	 0.9126	 0.9658	 0.9496	

	 TSS	 0.7892	 0.7136	 0.8345	 0.7842	

	 Boyce	Index	 0.8778	 0.8398	 0.8697	 0.8447	

4	 AUC	 0.9365	 0.9122	 0.9581	 0.9403	

	 TSS	 0.7871	 0.7399	 0.8394	 0.7908	

	 Boyce	Index	 0.8968	 0.9237	 0.8989	 0.8564	

5	 AUC	 0.9376	 0.9143	 0.9565	 0.9437	

	 TSS	 0.7842	 0.7154	 0.8369	 0.7908	

	 Boyce	Index	 0.9206	 0.9181	 0.9197	 0.8976	

Mean	of	means	 AUC	 0.9372	 0.9101	 0.9563	 0.9418	

	 TSS	 0.7835	 0.7184	 0.8283	 0.7843	

	 Boyce	Index	 0.8943	 0.9051	 0.8998	 0.8615	



	
Table	S5	Model	Parameterisation	settings	
	
	
GAM	

package	=	‘mgcv’,	family	=	‘binomial’	(link	=	‘logit’),	type	=	‘s’	(spline-based	
smooth),	model	formula	=		

	
RF	

number	of	trees	=	500,	node	size	=	5;	Boosted	Regression	Trees		

	
BRT	

distribution	=	‘bernoulli’,	number	of	trees	=	2500,	shrinkage	=	0.001,	bag	
fraction	=	0.5,	train	fraction	=	1,	cross-validation	folds	=	3	

	
MaxEnt	

maximum	training	iterations	=	200,	
linear/quadratic/product/threshold/hinge	features	enabled,	default	
prevalence	=	0.5	

	


