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Abstract 13 

To date, the majority of hydrological forecasting studies have focussed on using medium-14 

range (3 to 15 days) weather forecasts to drive hydrological models and make predictions of 15 

future river flows. With recent developments in seasonal (1 to 3 months) weather forecast 16 

skill, such as those from the latest version of the UK Met Office global seasonal forecast 17 

system (GloSea5), there is now an opportunity to use similar methodologies to forecast 18 

groundwater levels in more slowly responding aquifers on seasonal timescales. This study 19 

uses seasonal rainfall forecasts and a lumped groundwater model to simulate groundwater 20 

levels at 21 locations in the United Kingdom up to three months into the future. The results 21 

indicate that the forecasts have skill; outperforming a persistence forecast and 22 

demonstrating reliability, resolution and discrimination. However, there is currently little to 23 
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gain from using seasonal rainfall forecasts over using site climatology for this type of 24 

application. Furthermore, the forecasts are not able to capture extreme groundwater levels, 25 

primarily because of inadequacies in the driving rainfall forecasts. The findings also show 26 

that the origin of forecast skill, be it from the meteorological input, groundwater model or 27 

initial condition, is site specific and related to the groundwater response characteristics to 28 

rainfall and antecedent hydro-meteorological conditions.  29 

 30 
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1. Introduction 45 

Often a cleaner and more reliable source of drinking water than surface reservoirs, 46 

groundwater aquifers comprise the world’s largest freshwater resource and provide 47 

resilience to climate extremes which may increase in frequency with future climate change 48 

(Alley et al., 2002; Mishra and Singh, 2010; Sukhija, 2008). Under prolonged dry climatic 49 

conditions groundwater drought can develop, often characterised by significantly low 50 

groundwater levels which persist for months to years (Lanen and Peters, 2000; Marsh et al., 51 

2007). This may lead to the drying up of significant water-bearing wells and the degradation 52 

of ecologically important rivers and springs. Conversely, lasting wet conditions can induce 53 

anomalously high groundwater levels resulting in persistent flooding, potentially at large 54 

economic cost (Huntingford et al., 2014; Pinault et al., 2005; Upton and Jackson, 2011). 55 

Proper management of these resources is vital to ensure their sustainability and to reduce 56 

the risk and impacts from groundwater level extremes.  57 

 58 

One possible way forward is to forecast future groundwater levels so that management 59 

strategies can be employed in advance of likely future events. However, these approaches 60 

generally require some insight into future weather patterns and an understanding of site-61 

specific hydrogeological characteristics that control the non-linear groundwater discharge 62 

response to changes in groundwater levels (Eltahir and Yeh, 1999; Moore and Bell, 1999). 63 

This paper attempts to do this by using state-of-the-art seasonal weather forecasts to drive 64 

a series of groundwater models to forecast groundwater levels up to three months into the 65 

future.     66 

 67 
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The majority of groundwater level forecasting studies have been conducted using black-box 68 

modelling approaches (Jakeman et al., 2006) whereby an empirical relationship between 69 

groundwater level time-series and one or more predictor variables is found using an 70 

optimization algorithm (Sahu, 2003). Typically, meteorological covariates, including rainfall 71 

and temperature, are used because these perturb groundwater recharge fluxes. Flow 72 

through the unsaturated zone and saturated aquifer can slow the response of groundwater 73 

level to rainfall events (Alley et al., 2002). Accordingly, a suitable characterisation of this 74 

lagged response may be sufficient for forecasting future groundwater levels in aquifers, 75 

given up-to-date weather data. 76 

 77 

The most widely used method to characterise the lagged response of groundwater levels to 78 

meteorological predictor variables is the non-parametric Artificial Neural Network (ANN), a 79 

flexible tool that is able to implement multiple statistical models to replicate patterns in 80 

time-series (Maier and Dandy, 2000). Daliakopoulos et al. (2005) used neural networks to 81 

forecast monthly groundwater levels in a highly heterogeneous alluvial aquifer in Crete, 82 

Greece. Trichakis et al. (2009) also used ANNs to forecast the change in hydraulic head in a 83 

complex karstic limestone aquifer in Greece which proved to be accurate up to a 90-day 84 

lead time. Taormina et al. (2012) forecast groundwater levels on an hourly time-step for a 85 

flashy shallow coastal aquifer in the Venice lagoon and found that they could accurately 86 

reproduce groundwater depths for several months ahead. These, along with other studies 87 

that have used ANNs (Nourani et al., 2008; Sreekanth et al., 2009; Ying et al., 2014) all show 88 

significant forecasting skill months into the future. However, there are two key limitations 89 

with these approaches: i) not all aquifers exhibit a significant lagged response to antecedent 90 
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weather; and ii) to forecast more than one time-step ahead these studies used retrospective 91 

observed meteorological predictor variables which would not be available ahead of time. 92 

 93 

Tsanis et al. (2008) recognised the second issue and adapted the work of Daliakopoulos et 94 

al. (2005) to include a precipitation projection model which, if used in combination with 95 

seasonally averaged temperature data, could simulate groundwater levels up to 30 months 96 

ahead, achieving a R2 > 0.9. It should be noted, however, that it is likely that this high 97 

correlation score largely reflects the model’s ability to capture a downward groundwater 98 

level trend induced by steady abstractions in the dry season. Even so, it does demonstrate 99 

the possibility of using meteorological forecasts to extend the lead time of real-time 100 

groundwater level projections. 101 

 102 

Alternative black box methods such as support vector machines (Behzad et al., 2010; 103 

Suryanarayana et al., 2014; Vapnik, 1999; Yoon et al., 2011) and wavelet decompositions 104 

(Adamowski and Chan, 2011; Maheswaran and Khosa, 2013; Partal and Kişi, 2007) have also 105 

been used for groundwater level forecasting in the past with promising levels of skill. 106 

Mendicino et al. (2008) took a different approach by using a simple conceptual distributed 107 

water balance model to derive average groundwater storage over the most southern 108 

peninsular of Italy, the outputs of which were used to derive a groundwater drought index. 109 

They found that due to the persistence of low groundwater levels in the summer months, 110 

droughts could be forecast months prior to their occurrence based on model simulations of 111 

the current groundwater storage. 112 

 113 
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While these studies have shown some skill, the relative infancy of groundwater level 114 

forecasting science becomes apparent when compared to the abundance of studies 115 

focussed on forecasting other hydrological variables such as river discharge for flood 116 

forecasting (see Cloke and Pappenberger (2009) and Cuo et al. (2011) for two 117 

comprehensive reviews of these applications). Here, forecasters are not afforded the luxury 118 

of long response times to prior weather patterns. At the catchment scale, river flow 119 

response time to rainfall is typically of the order of minutes to hours. As such, forecasters 120 

drive their hydrological models with medium-range weather forecast products from 121 

numerical weather prediction (NWP) centres, which typically offer lead times of 3 to 15 122 

days. These extended lead times may allow water resource managers and contingency 123 

planners to implement mitigation strategies in advance of extreme events. Of course, the 124 

benefit of increased lead time comes at a cost; namely that these meteorological products 125 

are inherently uncertain due to the non-linear, chaotic nature of the atmosphere (Lorenz, 126 

1963). In response, river flow forecasters now adopt probabilistic methodologies that 127 

incorporate this uncertainty rather than relying on a single deterministic forecast. A popular 128 

approach that couples probability with determinism is ensemble forecasting (Lewis, 2005) 129 

whereby a number of deterministic weather forecasts with differing initial conditions are 130 

used to drive the hydrological model. If these realisations are assumed independent and of 131 

the same random process, it is possible to assign probabilities to the occurrence or 132 

exceedance of given flow thresholds. This probabilistic, ensemble-based approach provides 133 

more consistent and skilful outlooks from which users can manage risks more effectively 134 

(Addor et al., 2011; Buizza, 2008). One may also cascade other uncertainties, such as those 135 

associated with the hydrological model parameterisation, through the forecasting system 136 

(Beven, 2006; Pappenberger et al., 2005; Zappa et al., 2010; Zappa et al., 2011). A well 137 
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established approach for this is the Generalised Likelihood Uncertainty Estimation (GLUE) 138 

method (Beven and Binley, 1992; Beven and Binley, 2013), whereby an informal likelihood 139 

function is used to weight an ensemble of behavioural models. It should be noted, however, 140 

that due to the computational burden, such approaches for real-time hydrological 141 

forecasting applications are still not widely used today.  142 

 143 

The response of groundwater levels to rainfall generally operate on longer time scales (days 144 

to months) than river flows. As such, strategies to mitigate an imposing groundwater 145 

drought, for example, can only be properly formulated with a good understanding of the 146 

likely future groundwater levels over a similar time scale. Here, longer-range weather 147 

forecasts on the scale of months would be required, like those produced by the latest 148 

version of the Met Office global seasonal forecast system (GloSea5) which are now showing 149 

increased skill up to a three month lead time (Scaife et al., 2014). To date, however, the 150 

majority of seasonal forecasting studies have been undertaken by the river flow forecasting 151 

community.  Yossef et al. (2012) investigated the potential for forecasting monthly and 152 

seasonal river flow extremes in 20 large river basins around the world by driving the global 153 

hydrological model, PCR-GLOBWB (Sperna Weiland et al., 2010) with observed 154 

meteorological forcing data. They found that they could capture observed flood and 155 

drought events given skilful meteorological inputs. More recently, Svensson et al. (2015) 156 

used GloSea5 seasonal rainfall forecasts to drive a 1 km resolution water balance model 157 

(Bell et al., 2013) and forecast winter (December-January-February) river flows across the 158 

UK. The forecasts correlated with observed winter river flows with a median correlation 159 

score of 0.45. They also found a clear geographical contrast in the source of predictability 160 

whereby the initial condition was the strongest source of predictability in the more 161 
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permeable, baseflow-dominated catchments of south-east England, and the skill was much 162 

more dependent on the meteorological forcing data for the flashy catchments in the north-163 

west of Great Britain. The role of river flow response characteristics on seasonal forecast 164 

skill was also found to be important for global seasonal river flow forecasting by Yossef et al. 165 

(2013). Indeed, contrasting response characteristics to rainfall can also be found in 166 

groundwater level time-series (e.g. see the work of Bloomfield and Marchant, 2013), and 167 

these are likely to influence the sensitivity of groundwater level forecasts to the 168 

meteorological forcing data. 169 

 170 

To summarise, skilful forecasts of groundwater levels would provide useful information to 171 

water resource managers and contingency planners which could help to mitigate hazards 172 

such as groundwater flooding and drought, both of which can lead to social, economic and 173 

environmental degradation. Experience gained from the river flow forecasting community 174 

shows that skilful ensemble hydrological forecasts can be generated using driving data from 175 

medium-range NWP models. However, because aquifers generally respond to prevailing 176 

weather patterns over a number of months, the insight gained over a 15-day lead time may 177 

be small. This has led most studies to rely on the lagged response of groundwater levels to 178 

past weather patterns to make forecasts. However, it may be possible to extend the skilful 179 

forecast lead time using seasonal weather forecast products to drive groundwater models, 180 

an approach that is already showing some skill in river flow forecasting experiments. 181 

 182 

This paper presents a new probabilistic groundwater level forecasting approach that utilises 183 

state-of-the-art GloSea5 multi-member seasonal forecasts of rainfall produced by the UK 184 

Met Office to drive a series of groundwater models up to three months into the future. A 185 
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parsimonious lumped conceptual groundwater model, AquiMod (Mackay et al., 2014), 186 

which simulates groundwater levels at observation boreholes has been used. The models 187 

have been calibrated to simulate groundwater level time-series at 21 locations across the 188 

UK and in different aquifers with contrasting hydrogeological properties and response 189 

characteristics to rainfall. The skill of the groundwater level forecasts is evaluated over the 190 

four UK seasons using a 14-year sequence of GloSea5 rainfall reforecasts. For comparison, 191 

reforecasts using rainfall climatology and observed rainfall have also been evaluated. 192 

Consideration of the catchment response characteristics and their influence on forecast skill 193 

are also made. From these analyses, this study seeks to provide a first evaluation of the 194 

potential for national, real-time seasonal groundwater level forecasting. 195 

2. Methodology 196 

2.1. Study catchments 197 

In total, 21 groundwater catchments, each with an observation borehole and associated 198 

groundwater level record were selected for this study from a database of 181 groundwater 199 

level time-series held in the National Groundwater Level Archive (Marsh and Hannaford, 200 

2008). They were selected because: i) they are situated in unconfined aquifers for which the 201 

AquiMod groundwater model is best suited; ii) they are located away from any significant 202 

groundwater abstractions; and iii) they have continuous monthly groundwater level records 203 

that cover the operational 14-year GloSea5 reforecast period from March 1996 to February 204 

2010 (MacLachlan et al., 2014) and at least 15 years of data prior to this for model 205 

calibration. The boreholes penetrate into some of the UK’s principal aquifers including the 206 

Cretaceous Chalk and Lower Greensand, the Jurassic and Magnesian Limestone and the 207 
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Permo-Triassic Sandstone (Figure 1). Between 16 and 34 years of continuous groundwater 208 

level data were available for model calibration. 209 

 210 

Figure 2 shows the raw groundwater level time-series for four of the observation boreholes. 211 

Also included are the groundwater level auto-correlation plots and the rainfall-groundwater 212 

level cross-correlation plots. It can be seen that groundwater level fluctuations contrast 213 

between the catchments. For example, Ashton Farm shows a sinusoidal pattern with 214 

relatively uniform amplitude while the New Red Lion borehole shows more variable 215 

amplitude with multiple winter peaks. The West Dean cross-correlation plot shows the 216 

highest correlation between groundwater and rainfall at a lag of zero, indicating a very rapid 217 

and flashy response. This is in contrast to the smooth Heathlanes hydrograph which exhibits 218 

relatively small seasonal variability, but more pronounced inter-annual fluctuations. The 219 

auto-correlation and cross-correlation plots for this site indicate significant persistence in 220 

levels and a much longer response time to rainfall. Also note that because this borehole is in 221 

a high storage Sandstone aquifer, annual groundwater levels typically fluctuate by only 0.5 222 

m. In contrast, the water table at New Red Lion in the low porosity Jurassic Limestone 223 

aquifer can vary by as much as 20 m in one year.      224 

2.2. AquiMod  225 

AquiMod takes monthly rainfall and potential evapotranspiration (PET) driving data and 226 

uses conceptual hydrological equations to simulate the downward movement of water 227 

through the soil and unsaturated zone and the lateral flow and subsequent discharge of 228 

groundwater through the saturated zone (Figure 3). A soil module divides rainfall between 229 

evapotranspiration, runoff and soil drainage. The soil drainage is attenuated through the 230 
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unsaturated zone using a Weibull distribution transfer function, before reaching the 231 

saturated zone as groundwater recharge. Discharge from the saturated zone is calculated 232 

using a Darcy flux equation. The reader is referred to Mackay et al. (2014) for a more 233 

comprehensive description of the underlying theory and model code. 234 

 235 

The AquiMod code was chosen for this study because it was designed specifically for 236 

simulating groundwater levels at observation boreholes. It includes in built Monte Carlo 237 

parameter sampling, has a small computational burden and also allows the user to 238 

incorporate different saturated zone model structures with variable levels of complexity. 239 

Mackay et al. (2014) showed that this model can efficiently capture the non-linear 240 

groundwater level dynamics in a range of hydrogeological settings. They also showed that a 241 

two or three layer aquifer representation is generally most efficient and these structures 242 

have been adopted in this study (Figure 3). 243 

2.3. Model calibration 244 

The models were driven with observed monthly rainfall and PET data and calibrated against 245 

observed groundwater levels prior to the reforecast period. Rainfall data were obtained 246 

from the national 5 km gridded dataset held by the UK Met Office National Climate 247 

Information Centre (Perry et al., 2009). This is comprised of rain gauge data interpolated 248 

onto a regular grid using inverse-distance weighting. PET data were extracted from the Met 249 

Office Rainfall and Evapotranspiration Calculation System (MORECS) dataset (Field, 1983) 250 

which uses synoptic station data in conjunction with a modified version of the Penman-251 

Monteith equation to determine the monthly average PET rate on a 40 km grid of over the 252 

UK (Monteith and Unsworth, 2008).  253 
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 254 

Following the methodology of Mackay et al. (2014), eight of the possible 16 model 255 

parameters were fixed based on known catchment characteristics while the remaining were 256 

used as calibration parameters (Table 1). A Monte Carlo procedure was used to randomly 257 

select 106 unique parameter sets from a user-defined parameter space for each model 258 

structure. Here we considered the uncertainty in model structure and parameter selection 259 

by adopting the GLUE methodology and using the well established Nash-Sutcliffe efficiency 260 

(NSE) score (Bennett et al., 2013; Nash and Sutcliffe, 1970) as the informal likelihood 261 

measure. Only those models that exceeded a NSE score of 0.5 were deemed behavioural. 262 

Those that did not achieve this were assigned a likelihood of zero. 263 

 264 

Between 1780 and 2470 behavioural models were obtained for the 21 study catchments 265 

achieving a maximum efficiency (NSEmax) between 0.71 and 0.94 and a containment ratio 266 

(CR) (Xiong and O’Connor, 2008), which specifies the percentage of observations captured 267 

within specified upper and lower prediction bounds, between 65.3 and 97.8% when using 268 

the GLUE 95% confidence interval (Table 2). Figure 4 shows the observed and simulated 269 

groundwater levels with the GLUE 95% prediction bounds for Bussels, where AquiMod 270 

achieved the highest NSEmax, and Therfield Rectory, where AquiMod scored the lowest 271 

NSEmax. It can be seen that the GLUE prediction bounds for Bussels contain almost all of the 272 

observations and the best model closely replicates the timing and seasonality in the 273 

hydrograph including the pronounced 1976 drought period. For Therfield Rectory, AquiMod 274 

captures the timing and seasonality of the hydrograph and most of the observations during 275 

the drought of 1973. However, it fails to capture the rapid recession in 1992, and some of 276 
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the peak levels observed in 1961, 1979 and 1988. These deficiencies are considered in more 277 

detail in the discussion.  278 

2.4. Reforecast climate data 279 

Monthly rainfall inputs for the 14-year reforecast period were taken from the GloSea5 280 

model. These comprised four reforecasts per year representing the four seasons: i) spring 281 

March-April-May (MAM); ii) summer June-July-August (JJA); iii) autumn September-October-282 

November (SON); iv) winter December-January-February (DJF). Each consisted of an 283 

ensemble of one, two and three month ahead rainfall, averaged over the UK. The GloSea5 284 

winter and summer forecasts were made up of 24 ensemble members while the spring and 285 

autumn forecasts were made up of 12 ensemble members. All were downscaled to the 286 

catchment scale using linear models defined by ordinary least squares regression between 287 

observed catchment rainfall and observed UK average rainfall. Figure 5a and Figure 5b show 288 

the relationship between seasonal UK average and seasonal catchment rainfall for the 289 

Ashton Farm and New Red Lion observation boreholes. The fitted linear regression models 290 

are shown by the solid black lines. It can be seen that for Ashton Farm, a linear 291 

approximation of the scale relationship is satisfactory, giving an R2 score of 0.51, while for 292 

New Red Lion, this approximation is less adequate, where the model only explains 31% of 293 

the variance. In general, however, the linear regression models demonstrated a good fit, 294 

with a mean R2 score of 0.46 across the study catchments. These models were then used to 295 

downscale the GloSea5 forecasts of UK average rainfall for each catchment. The downscaled 296 

GloSea5 seasonal rainfall forecasts for Ashton Farm showed the most skill, where the 297 

ensemble mean seasonal rainfall correlated with the observed catchment rainfall with an R2 298 

of 0.44 (Figure 5c). In contrast, the downscaled GloSea5 seasonal rainfall forecasts for New 299 
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Red Lion showed negligible correlation with the observed catchment rainfall (Figure 5d). 300 

Overall, the skill of the downscaled rainfall forecasts was low with a mean R2 of 0.19 across 301 

the study catchments.  302 

 303 

For each seasonal reforecast at a given location, the population of behavioural models were 304 

run for two years using observed rainfall and PET data to initialise the soil and unsaturated 305 

zone in the models. Their initial groundwater levels were fixed to the latest observation. The 306 

models were then run for a further three months using the rainfall and PET data described 307 

above, producing an ensemble of predictions with n*m members, where n is the number of 308 

behavioural models, and m is the rainfall ensemble size. The predicted groundwater level 309 

probability density function was then constructed using the predefined GLUE likelihoods 310 

and assuming equal probability of occurrence for each rainfall ensemble member. 311 

2.5. Skill analysis 312 

When evaluating forecast skill, it is often useful to establish categorical events for which the 313 

observed and forecast frequencies can be compared. Here, three categorical events were 314 

chosen for each catchment; below, near and above normal groundwater levels, defined by 315 

monthly terciles from the observed groundwater level data. Jolliffe and Stephenson (2012) 316 

detail a vast number of forecast verification metrics. We have chosen to use four 317 

quantitative metrics which assess different aspects of forecast skill for a given categorical 318 

event including: 319 

 320 
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1. Frequency bias: The ratio of the total number of forecast occurrences to the total 321 

number of observed events. Here, the forecast event was defined as that which had 322 

the highest forecast probability. 323 

2. Reliability: The consistency between the forecast probabilities and the observed 324 

relative frequencies. Here, a negatively oriented reliability score derived from the 325 

decomposition of the brier score (Murphy, 1973) has been used. 326 

3. Relative operating characteristic (ROC) score: This measures the capacity to 327 

correctly discriminate between the occurrence and non-occurrence of an event. A 328 

value greater than 0.5 indicates that the hit rate exceeds the false alarm rate. 329 

4. Continuous ranked probability score (CRPS): Calculated as the integrated square 330 

difference between the cumulative distributions of the forecasts and observations. 331 

This is a probabilistic generalisation of the mean absolute error.  332 

 333 

We chose to convert the CRPS into a skill score, the CRPSS, by comparing the groundwater 334 

level forecasts to a reference persistence forecast. A persistence-type benchmark was 335 

deemed the most rigorous test given that hydrogeological memory can serve as a potential 336 

source of skill. We evaluated three different benchmarks against historical observed 337 

groundwater levels including i) persisting the latest observed groundwater level; ii) 338 

perturbing the latest observed groundwater level using the monthly mean changes in 339 

groundwater levels taken from historical data; and iii) persisting the percentile location of 340 

the initial groundwater level in the distribution of historical groundwater levels for that 341 

month over the following three months (i.e. if the initial condition was near-normal, the 342 

forecast for the subsequent three months would remain in this category). We found that 343 
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the third approach was the best, consistently outperforming the other two benchmarks and 344 

so this was deemed the most rigorous test for forecast skill. 345 

 346 

To complement the benchmark tests, the groundwater models have also been driven with 347 

two other meteorological inputs including: i) an unskilful rainfall ensemble made up of re-348 

sampled observed catchment data; and ii) a best case deterministic rainfall input using 349 

observed data. 350 

3. Results 351 

It is known that groundwater levels respond to rainfall differently between the catchments. 352 

It is therefore likely that the models will also respond differently. This is examined in the 353 

first part of the results by undertaking a sensitivity analysis of the models. The results from 354 

this are used to organise the models into a number of response type groups. Note here, and 355 

in the text that follows, the term model refers to the population of behavioural models for a 356 

given catchment rather than a single model realisation. The remainder of this section 357 

analyses the skill of the forecasts for each of the response groups, first by using the skill 358 

metrics outlined above and then by analysing a selection of forecast time-series plots. 359 

3.1. Groundwater level response to rainfall 360 

It is postulated that because of the contrasting response characterises to rainfall across the 361 

catchments, the calibrated models will exhibit different sensitivities to rainfall over the 362 

three month forecast horizon. Understanding these sensitivities is important because they 363 

influence the added value of using seasonal rainfall forecasts to simulate future 364 

groundwater levels.  365 
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 366 

A relative measure of sensitivity to rainfall has been derived for each of the calibrated 367 

models. To do this, each model was spun-up using observed rainfall and PET and then run 368 

for three months using six arbitrary synthetic rainfall inputs ranging from 0 to 5 mm d-1. This 369 

process was repeated using each of the months in the reforecast sequence as the initial 370 

condition. The sensitivity was then calculated for each month as the range of the six 371 

groundwater level forecasts, normalised with respect to the model specific yield. This 372 

normalisation step accounts for the different storage properties of each model to allow for 373 

easier inter-model comparison. 374 

 375 

Figure 6a shows how the model sensitivity to rainfall changes over the reforecast period for 376 

one, two and three month simulations for the Rockley observation borehole in the Chalk 377 

aquifer. As would be expected, the sensitivity increases with lead time as the influence of 378 

the initial condition diminishes, but there is also a seasonal cycle with peak sensitivity during 379 

the winter and considerably reduced sensitivity in the summer months. Given that the 380 

climate data for the forecasts are fixed, these variations are a result of perturbations in the 381 

initial conditions only. This can be explained by the initial soil moisture deficit (SMD) 382 

conditions in the model (Figure 6b) which generally develop in the warmer summer months 383 

and must be satisfied before recharge (Figure 6d) is initiated. In the winter months the SMD 384 

is small and so small changes in the rainfall input can significantly perturb the modelled 385 

groundwater level. Despite this, the sensitivity can increase as the soil moisture deficit 386 

develops (for example see year 2003 boxed in Figure 6). This behaviour can be attributed to 387 

the initial groundwater level condition, which shows to be receding, and the quadratic 388 

groundwater discharge response to a unit rise in groundwater head. In other words, as the 389 
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groundwater level recedes, the discharge response to an influx of recharge is smaller, and so 390 

the sensitivity increases. 391 

 392 

Similar seasonal fluctuations in sensitivity were observed for all of the study catchments, 393 

but the magnitude varied substantially. The reason for this is likely to be multifaceted, but it 394 

can be attributed primarily to the different model response times to rainfall. It is possible to 395 

investigate this by considering the calibrated unsaturated zone Weibull distribution transfer 396 

function in AquiMod which spreads the flux of water from the soil zone to the water table 397 

over a number of months. This transfer function can be evaluated at lags covering the three 398 

month forecast horizon to define a model response characteristic, P, which specifies the 399 

percentage of modelled effective rainfall that reaches the water table over this period. 400 

Figure 7a shows that this value ranges between 20 – 95% and that the relationship between 401 

P and the derived model sensitivities can be approximated with an exponential curve (R2 = 402 

0.79) that shows that as P increases, the model sensitivity to rainfall also increases. The 403 

permeability of each catchment is also likely to influence the sensitivity to rainfall. Indeed, a 404 

closer fit is obtained if the model sensitivity is normalised by the catchment baseflow index 405 

(BFI) (Figure 7b), taken from Marsh and Hannaford (2008), which defines the proportion of 406 

effective rainfall that contributes to groundwater flow. Furthermore, the calibrated model 407 

sensitivities also correlate well with an independent inference of the response time to 408 

rainfall for each catchment estimated by the peak lead lag correlation (CCmax) between 409 

observed rainfall and de-seasonalised groundwater levels (Figure 7c), obtaining an R2 of 410 

0.76.  411 

 412 
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These findings demonstrate that the more pronounced the AquiMod lagging mechanism, 413 

the less sensitive the three month simulations are to the choice of rainfall input. A similar 414 

relationship between the sensitivity and an independent estimation of the peak 415 

groundwater level response time to rainfall for each borehole, further indicates that the 416 

catchment response time has a clear influence on the sensitivity, and therefore is also likely 417 

to influence the skill of the forecasts. Consequently, the catchments have been split into 418 

three equally sized groups representing slowly responding (3 ≤ CCmax ≤ 10), moderately 419 

responding (1 ≤ CCmax ≤ 2) and quickly responding (0 ≤ CCmax ≤ 1) groundwater catchments. 420 

These are indicated in Figure 7a-c by the circles, squares and triangles respectively and the 421 

analyses in the subsequent sections are conducted using this grouping.   422 

3.2. Skill metrics 423 

For the purpose of this skill analysis the reforecasts have been subdivided into 36 different 424 

assessment groups for which an independent assessment of skill has been conducted. These 425 

groups comprise the three categorical events, the four seasons and the three groundwater 426 

response groups. Figure 8 shows the four skill measurements for all of the assessment 427 

groups using the three different climate inputs.  428 

 429 

The frequency bias ranges between 0.61 and 0.5 (Figure 8a). In the summer (JJA), there is a 430 

consistent under forecasting of below normal levels which is mainly offset by a positive 431 

frequency bias for near normal events. The winter (DJF) forecasts show the opposite 432 

pattern, under forecasting above normal events and over forecasting below normal events. 433 

The fact that groundwater levels tend to peak in the winter and trough in the summer 434 

indicates that there is a tendency for the forecasts to miss the groundwater level extremes. 435 
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Indeed, on average, the above and below normal events show negative frequency biases of 436 

-0.04 and -0.11 respectively while the near normal event category shows a positive 437 

frequency bias of 0.13. This deficiency cannot be attributed to the driving rainfall data as all 438 

assessment groups demonstrate that they are insensitive to this, except for the quickly 439 

responding catchments in winter and autumn (SON) where using the best case observed 440 

climate reduces the bias by approximately half. This insensitivity is also apparent in the 441 

other skill metrics, indicating that the skill or lack of it stems more from the model than the 442 

rainfall input in most situations.  443 

 444 

Generally, the forecasts are more reliable when predicting above and below normal events 445 

than near normal events, especially during winter and autumn and during the summer for 446 

the quickly responding catchments (Figure 8b). Figure 9 shows the reliability diagrams for 447 

the quickly responding catchments in winter. It can be seen that for the above and below 448 

normal events the reliability curves follow the line of perfect reliability closely indicating 449 

good consistency between the forecast probabilities and observed relative frequencies. In 450 

contrast, there is a tendency for the forecasts to predict closer to base rate probabilities 451 

(0.33) for the near normal events as indicated by the flat reliability curves which imply a lack 452 

of forecast resolution. This is reflected in the ROC scores (Figure 8c) which are smaller on 453 

average for the near normal events indicating that the forecasts are less efficient at 454 

discriminating these events. Even so, all of the ROC scores obtained were greater than 0.5 455 

showing that the number of hits exceeded the number of false alarms. The forecasts were 456 

also able to discriminate below normal events with an average ROC score of 0.87 using the 457 

downscaled GloSea climate which is particularly encouraging. 458 

 459 
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The ROC scores also demonstrate a clear relationship with the catchment response times 460 

where the less sensitive, slowly responding catchments have greater discrimination capacity 461 

than the quickly responding catchments. However, this again appears to be an artefact of 462 

the model skill rather than to do with the sensitivity to the rainfall input. Even so, the use of 463 

observed climate consistently improves the discrimination capacity of the forecasts, 464 

particularly for the quickly responding catchments where improvements of up to 0.14 are 465 

shown. 466 

 467 

From the 36 assessment groups, 35 return a positive CRPSS when using the climatology 468 

rainfall input (Figure 8d). This indicates that even climatology yields forecasts that are a 469 

better predictor of groundwater levels than a persistence forecast. Slightly fewer (31) of the 470 

groups return a positive CRPSS using the observed rainfall and only 30 when using the 471 

downscaled GloSea data. All suggest that the forecasts consistently outperform the 472 

persistence approach. 473 

3.3. Time-series analysis 474 

Finally, the forecasts have been evaluated over three time periods which contain important 475 

historical events including: i) the onset and persistence of below normal levels in 1996 and 476 

1997, a period where many parts of the UK experienced groundwater drought; ii) the 477 

subsequent transition back to normal levels in 1997 and 1998, broadly associated with the 478 

end of the drought; and (iii) the onset and peak of above normal levels in the winter of 479 

2000/2001, a period where many boreholes recorded their highest ever levels and where 480 

there was widespread groundwater flooding, particularly in the Chalk of south-east England. 481 

Figure 10 shows the number of catchments in each response category that successfully 482 
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forecast each event using the three different climate inputs. A forecast was only deemed a 483 

success if all of the observed groundwater levels were contained within the forecast 484 

uncertainty bounds as defined by the limits of the ensemble. In addition, Figure 11 displays 485 

time-series plots for several of the study catchments over these events which have been 486 

used to compare the observed groundwater levels (black dots) against the ensemble mean 487 

forecasts (thick dashed lines) using the GloSea5 and observed rainfall inputs. The 488 

uncertainty bounds (thin dashed lines) are also shown. 489 

 490 

The forecasts were least effective at capturing the high levels of winter 2000/2001 when 491 

using the downscaled GloSea and climatology rainfall, but showed significant improvements 492 

when driven with observed data. This is demonstrated in Figure 11a where the observed 493 

initial groundwater rise (time steps one to three) at the quickly responding New Red Lion 494 

borehole, is only replicated by the ensemble mean forecast when using the observed rainfall 495 

input. The forecast using the downscaled GloSea rainfall does not capture this due to 496 

underestimating the seasonal rainfall by almost 130 mm. Note that the GloSea forecast is 497 

able to capture the peak groundwater level at the fourth time step. This is partly because 498 

this corresponds to the one month ahead forecast, and therefore the model was initialised 499 

at the above normal levels from the previous time step. 500 

 501 

For the below normal levels of 1996 and 1997, the choice of climate has less impact on the 502 

success rate which is demonstrated by the New Red Lion reforecast in Figure 11b. It can be 503 

seen here that regardless of the rainfall input, the ensemble mean overestimates the 504 

groundwater levels and the uncertainty bounds do not capture the gradual recession of the 505 

hydrograph and even extend into the above normal range between time steps five and six. 506 
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This insensitivity could be explained by the large soil moisture deficit that would likely 507 

develop over this period. Therefore, the forecasts are much more reliant on the skill of the 508 

model, which in this case does not capture the groundwater discharge and subsequent 509 

hydrograph recession adequately. 510 

 511 

Some catchments, such as the quickly responding Bussels catchment (Figure 11c) did 512 

demonstrate significant sensitivity to the rainfall input during this drought period. Here, it 513 

can be seen that when using the observed rainfall, the ensemble mean follows the 514 

persistent low groundwater levels closely, but when using the downscaled GloSea rainfall, 515 

the ensemble mean forecast actually predicts a sharp rise in groundwater level almost back 516 

to normal conditions (time steps seven to nine) due to the downscaled GloSea forecast 517 

overestimating rainfall by 100 mm for this period.  518 

 519 

The highest overall success rates using the downscaled GloSea inputs were recorded for the 520 

return to normal levels in 1997 and 1998.  For the moderately responding Rockley 521 

observation borehole (Figure 11d), it can be seen that the two ensemble mean forecasts 522 

using the GloSea and observed rainfall inputs are similar. Furthermore, both capture all of 523 

the observations in their uncertainty bounds which was observed for most of the 524 

catchments for this period. 525 

4. Discussion 526 

This study has demonstrated that skilful seasonal forecasts of groundwater levels at 527 

observation boreholes can be generated by using seasonal weather forecasts to drive 528 

parsimonious conceptual groundwater models. The forecasts were proficient at 529 
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discriminating between below, near and above normal future groundwater levels and they 530 

consistently outperformed a reference persistence forecast system. They also demonstrated 531 

good reliability, particularly for the seasonal forecasts of spring groundwater levels. These 532 

positive attributes have also been demonstrated for the quickly responding catchments, 533 

indicating that the skill can extend beyond the peak response time of these groundwater 534 

systems.  535 

 536 

The skill of the forecasts originates from a combination of the driving climate data, the 537 

groundwater models and the initial groundwater level condition. For those catchments 538 

where groundwater levels respond more slowly to rainfall, the groundwater models and the 539 

initial conditions have a stronger influence on the forecast skill than the rainfall input. 540 

However, there is no clear indication that the sensitivity to the rainfall input directly affects 541 

the forecast skill. Rather, the relationship between groundwater level response time to 542 

rainfall and forecast skill appears to be primarily controlled by the groundwater model 543 

efficiency. Indeed, when conducting this work, we could find no apparent correlation 544 

between skill and geographical location like, for example, the work of Svensson et al. (2015). 545 

However, we suggest that with a larger sample size of boreholes, and by evaluating the 546 

forecast skill at longer lead times, where meteorological driving data plays a more crucial 547 

role in the forecast skill, such relationships may become more apparent. Indeed, while all of 548 

the response groups demonstrated forecast skill, it remains to be seen at what lead time 549 

this skill diminishes. 550 

 551 

The origin of forecast skill also changes as a response to antecedent hydro-meteorological 552 

conditions. Here, it was found that when a large soil moisture deficit is developed during the 553 
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model spin up and initialisation, the subsequent forecasts are less sensitive to the rainfall 554 

input. As such, we noted that for the summer forecasts, the skill derives mainly from the 555 

groundwater models and their internal hydrogeological memory. This has potential 556 

implications because some of the models have shown deficiencies, such as poor 557 

representation of the hydrograph recession, which materialised as forecast errors. Some of 558 

these deficiencies are likely to result from imperfect model calibration, errors in the 559 

meteorological input data and observed groundwater levels, or from inadequacies of the 560 

model structure and parameters. In this study, no account of input error was made, but we 561 

did acknowledge some of the model uncertainties by using an equifinality of acceptable 562 

model structures and parameter sets. Of course, this approach in itself may also propagate 563 

forecasting errors. For example, the choice of the NSE as a measure of model likelihood was 564 

subjective, and as with any objective function, is subject to undesirable properties that are 565 

likely to manifest themselves as modelling errors (Smith et al., 2008). There is also evidence 566 

that model appropriateness depends strongly on hydro-climatic conditions (Herman et al., 567 

2013) and that it may be beneficial to develop better suited limits of acceptability which can 568 

be relaxed dynamically as a mean to implicitly account for input errors (Liu et al., 2009).  569 

 570 

In contrast to the forecasts issued following dry conditions, during winter, when the soil is 571 

generally more saturated, the forecasts are more sensitive to the driving rainfall data, and 572 

as such the meteorological forecasts play a more crucial role in the skill of the groundwater 573 

level forecasts. The winter forecasts using the downscaled GloSea and climatology rainfall 574 

inputs both consistently outperformed the persistence approach, although it should be 575 

noted that using the downscaled GloSea5 rainfall data showed no significant improvement 576 

over using the site climatology inputs, and in some cases showed to be a worse rainfall 577 
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predictor. This is perhaps not surprising given that UK rainfall has complex spatio-temporal 578 

signatures that make deriving robust downscaling transformations difficult. Certainly, the 579 

linear downscaling model employed showed to be inadequate for some sites, and improving 580 

this should be a high priority for improving site-specific hydrological forecasts like these. 581 

However, it may be possible to improve this using more sophisticated non-linear 582 

downscaling and post processing techniques which have shown to be effective for medium-583 

range ensemble streamflow forecasts (Verkade et al., 2013). Further data assimilation could 584 

also provide enhancements in skill through dynamic updating of state variables and forecast 585 

errors, although to date there is limited evidence that this is useful for seasonal or 586 

groundwater level forecasting applications (Liu et al., 2012). There are also other seasonal 587 

weather forecasting models which could be used for these types of applications, such as the 588 

System 4 from the European Centre for Medium-range Weather Forecasts (ECMWF) which 589 

has shown “marginally useful” degrees of reliability over Northern Europe (Weisheimer and 590 

Palmer, 2014). 591 

 592 

It is important to note that the interpretation of skill in this study is primarily based on 593 

analysis of the verification metrics and by comparing the forecasts to the benchmark results. 594 

Pappenberger et al. (2015) compared a range of benchmarks for medium-range river flow 595 

forecasting and they note that the best benchmarks are the ones that are hardest to beat. 596 

While considerable effort was made to select appropriate benchmarks and avoid reporting 597 

“naïve” skill, it should be noted that the persistence benchmark used is less skilful for those 598 

boreholes that exhibit significant inter-annual groundwater level fluctuations, and so there 599 

is likely to be positive bias in the CRPSS reported for the more slowly responding 600 

catchments. Certainly, an equivalent thorough examination of benchmark performance to 601 
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that of Pappenberger et al. (2015) is also needed for seasonal groundwater level 602 

forecasting. 603 

 604 

It is also important to consider that, the verification metrics used in this study only give an 605 

average indication of the forecast’s ability to reliably discriminate between the occurrence 606 

of below, near and above normal levels over the 14-year reforecast sequence. When looking 607 

at the extreme 2000/2001 high groundwater level event specifically, only two of the 21 608 

groundwater level forecasts were able to capture it within their uncertainty bounds when 609 

using the downscaled GloSea and climatology inputs. For the 1996/1997 drought period, the 610 

timing of the return to normal conditions could only be predicted when using observed 611 

rainfall data. This is an important issue, as it is arguably extreme events like these that, if 612 

foreseeable, would provide the most economic, environmental and societal benefit. That of 613 

course is not to say that these forecasts are not useful; on the contrary the Environment 614 

Agency in England, for example, routinely use measures of aquifer levels relative to normal 615 

conditions to inform agricultural communities about future prospects for spray irrigation 616 

and this approach can be used to help aid decision making processes for these needs. It 617 

does however mean that if we wish to forecast the initiation or end of extreme events on a 618 

seasonal time scale at the catchment or borehole resolution, then further enhancements in 619 

the skill and the use of seasonal rainfall forecasts are required. 620 

5. Conclusions 621 

Using seasonal weather forecasts to drive 21 conceptual groundwater models, this study 622 

has shown that skilful seasonal forecasts of groundwater levels at observation boreholes 623 

can be generated up to three months into the future. Site-specific groundwater level 624 
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response characteristics to rainfall result in contrasting sensitivities to the driving rainfall 625 

input across the study catchments. These sensitivities have also shown to be strongly 626 

controlled by prevailing weather conditions, where dry conditions tend to result in forecasts 627 

that are strongly controlled by the groundwater model, and wet conditions result in 628 

forecasts that are much more reliant on good driving rainfall data. This has important 629 

implications for where the skill or lack of it derives from, and more importantly, where 630 

future improvements can be made. There are clearly issues with correctly forecasting 631 

extreme groundwater levels which are primarily due to lack of skill in the driving rainfall 632 

data. In particular it is recommended that future work should focus these aspects: 633 

1. Investigate the best practice for data assimilation, downscaling and post processing 634 

of seasonal weather forecasts for hydrological forecast applications. 635 

2. Compare the use of different seasonal forecast products such as those produced by 636 

the ECMWF System 4 model. 637 

3. Examine the maximum skilful forecast lead time for different aquifers in relation to 638 

their response characteristics to rainfall. 639 
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1. Figures 893 

 894 

Figure 1: Observation borehole locations across the principal aquifers of the UK. 895 
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 896 

 897 

Figure 2: Groundwater level time-series with groundwater level auto-correlation and rainfall-groundwater level 898 

cross-correlation plots. Note that the vertical scales vary across the plots. 899 

 900 
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 903 

Figure 3: Schematic of generalised AquiMod model structure (left) and different saturated zone component 904 

structures used in this study (right) after Mackay et al. (2014). 905 
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 910 

Figure 4: Calibration period simulations and observations for the Bussels and the Therfield Rectory observation 911 

boreholes. 912 

 913 
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 914 

Figure 5: Linear regression models (solid black lines) fitted to downscale seasonal rainfall from UK average to 915 

catchment scale for the Ashton Farm (a) and New Red Lion (b) observation boreholes. The resulting correlation 916 

between the downscaled GloSea5 rainfall forecasts and the observed catchment rainfall is also shown for the 917 

Ashton Farm (c) and New Red Lion (d) observation boreholes. 918 

 919 
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 920 

Figure 6: Calculated monthly sensitivity to climate inputs for one, two and three month forecasts (a) ; Soil 921 

moisture deficit initial condition (b); Groundwater level initial condition (c); and mean monthly simulated 922 

recharge (d). 923 

 924 

 925 

 926 

Figure 7: Model response characteristic, P, against the derived model sensitivity (a); P against the sensitivity 927 

normalised with respect to the BFI (b); and the peak lead lag correlation between observed rainfall and de-928 

seasonalised groundwater levels, CCmax, against the sensitivity normalised with respect to the BFI (c) for the 21 929 

catchment models. All data points are arranged into slowly (circles), moderately (squares) and quickly 930 

(triangles) responding catchments. 931 
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 933 
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 934 

Figure 8: Frequency bias (a), reliability (b), ROC (c), and CRPSS (d) metrics calculated from the reforecasts. 935 
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 938 

Figure 9: Reliability diagrams for the quickly responding catchments. The histograms denote the sample sizes 939 

for each point on the reliability curves. 940 

 941 

 942 

 943 

Figure 10: Number of successful forecasts for three events. The solid black lines indicate the total number of 944 

catchments with available observation data. 945 
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 947 

Figure 11: Comparison of the reforecasts using downscaled GloSea and observed rainfall inputs for different 948 

time periods. 949 
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2. Tables 958 

Table 1: List of AquiMod model parameters and calibration ranges. 959 

Module Parameter 

(units) 

Description Typical calibration range 

Soil 

Δx   (km) Representative aquifer length  Fixed as distance between 

observation borehole and 

river discharging 

groundwater. 

BFI   (-) Baseflow index Taken from Marsh and 

Hannaford (2008). 

FC   (-) Field capacity of the soil Taken from Boorman et al. 

(1995). 

WP   (-) Wilting point of the soil Taken from Boorman et al. 

(1995). 

Zr   (mm) Maximum rooting depth of vegetation 100 – 3000 

p   (-) Depletion factor of vegetation 0 – 1 

Unsaturated Zone 

n (-) Maximum number of time-steps taken 

for soil drainage to reach the 

groundwater  

Set based on cross-

correlation analysis between 

rainfall and groundwater 

levels. 

k   (-) Weibull shape parameter 1 – 7 

λ   (-) Weibull scale parameter 1 – 12 

Saturated Zone 

Ki   (m d
-1

) Hydraulic conductivity for layer i 0.01 – 100 

S   (%) Aquifer storage coefficient 0.1 – 20 

Zi   (m asl) Outlet elevation for layer i Deep outlet set to the known 

bottom elevation of aquifer. 
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Remaining outlet elevations 

set after preliminary 

calibration runs. 
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Table 2: List of 21 observation boreholes with the number of behavioural models (n), the efficiency of the most 981 

efficient model (NSEmax) and the containment ratio using the GLUE 95% confidence bounds (CR). 982 

Observation borehole Aquifer n NSEmax CR 

Ashton Farm Chalk 2155 0.89 94.4 

Aylesby Chalk 2470 0.82 96.9 

Chilgrove House Chalk 2125 0.91 97.8 

Clanville Lodge Chalk 2025 0.84 89.0 

Dalton Holme Chalk 2000 0.81 82.6 

Grimes Graves Chalk 1960 0.86 88.9 

Little Bucket Farm Chalk 2305 0.90 85.7 

Rockley Chalk 1835 0.88 94.1 

Stonor Park Chalk 2430 0.78 65.3 

Therfield Rectory Chalk 1915 0.71 68.9 

Washpit Farm Chalk 1910 0.91 96.3 

Well House Inn Chalk 1850 0.73 68.1 

West Dean Chalk 2210 0.83 92.2 

West Woodyates Manor Chalk 1780 0.86 84.8 

New Red Lion Jurassic Limestone 2155 0.74 77.0 

Lower Barn Cottage Lower Greensand 2120 0.81 79.5 

Swan House Magnesian Limestone 1960 0.86 89.6 

Bussels Permo-Triassic Sandstone 2090 0.94 97.5 

Furness Abbey Permo-Triassic Sandstone 2055 0.75 72.7 

Heathlanes Permo-Triassic Sandstone 2095 0.87 87.9 

Skirwith Permo-Triassic Sandstone 2390 0.83 87.6 
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 983 

 984 

 985 

 986 

Highlights 987 

• We forecast groundwater levels 3 months into the future for 21 boreholes in the UK. 988 

• We use GloSea5 seasonal rainfall forecasts to drive a conceptual groundwater 989 

model. 990 

• The forecasts consistently show more skill than a persistence forecasting approach. 991 

• The forecasts are not able to capture extreme groundwater level events. 992 

• Sensitivity to (skill derived from) rainfall forecasts is highly site specific.  993 

 994 


