
Exploring the use of transformation group priors and the method
of maximum relative entropy for Bayesian glaciological inversions

Robert J. ARTHERN
Natural Environment Research Council, British Antarctic Survey, Cambridge, UK

Correspondence: Robert J. Arthern <rart@bas.ac.uk>

ABSTRACT. Ice-sheet models can be used to forecast ice losses from Antarctica and Greenland, but to
fully quantify the risks associated with sea-level rise, probabilistic forecasts are needed. These require
estimates of the probability density function (PDF) for various model parameters (e.g. the basal drag
coefficient and ice viscosity). To infer such parameters from satellite observations it is common to use
inverse methods. Two related approaches are in use: (1) minimization of a cost function that describes
the misfit to the observations, often accompanied by explicit or implicit regularization, or (2) use of
Bayes’ theorem to update prior assumptions about the probability of parameters. Both approaches have
much in common and questions of regularization often map onto implicit choices of prior probabilities
that are made explicit in the Bayesian framework. In both approaches questions can arise that seem to
demand subjective input. One way to specify prior PDFs more objectively is by deriving transformation
group priors that are invariant to symmetries of the problem, and then maximizing relative entropy,
subject to any additional constraints. Here we investigate the application of these methods to the
derivation of priors for a Bayesian approach to an idealized glaciological inverse problem.
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1. INTRODUCTION
One of the tasks presently facing glaciologists is to advise
how the Greenland and Antarctic ice sheets might con-
tribute to sea-level rise under the range of different climatic
conditions that could occur in the future. To be genuinely
useful to policymakers, planners of coastal infrastructure
and other investors that are sensitive to future sea level,
these glaciological forecasts will need to deliver information
about the probability of the various possible outcomes that
could be realized by the ice sheets. This makes it important
to characterize the probability density function (PDF) of the
sea-level contributions from Greenland and Antarctica.
Some estimates of how the climate of the atmosphere and

oceans might evolve are available from general circulation
models. These climate projections can be used to force
dynamical models of the flow of an ice sheet, giving a
forecast of the future contribution to sea level (e.g. Joughin
and others, 2014; Cornford and others, 2015). At present
these glaciological simulations are well adapted to investi-
gating the sensitivity of the forecast to various perturbations
in forcing, model parameters or initial conditions (e.g.
Bindschadler and others, 2013). However, unless we can
obtain reliable estimates of the probability of any particular
perturbation actually occurring, the models cannot be used
to evaluate the PDF of the contributions that ice from
Greenland and Antarctica will make to sea level.
Glaciological forecasts over the next century or two will

only be accurate if the models used to simulate the future
begin in a state for which the geometry and flow speed are
closely representative of the present-day ice sheets in
Greenland and Antarctica. As in weather forecasting, the
selection of the initial conditions for the simulation is an
important component of the forecast. The procedure for
setting up a model in a realistic starting state is known as
initialization. One of the best ways to initialize large ice-
sheet models is to use inverse methods (e.g. MacAyeal,

1992). These optimize the basal drag coefficient, viscosity or
similar model parameters, to ensure that the model state
from which the forecast proceeds agrees closely with a wide
variety of measurements from satellites, aircraft and field
campaigns. In this way the model starts from a state where
the shape and flow speed of the ice accurately reflect what is
happening now.
Ultimately, we are seeking to determine the complete

PDF for the sea-level rise contribution from Greenland and
Antarctica at times in the future that are relevant to planning
decisions. Any errors in the initial conditions will propagate
to give uncertainty in the simulation of future behavior. To
quantify this uncertainty it is important to first characterize
the uncertainty in the initial conditions in probabilistic
terms. This makes a Bayesian approach to model initializ-
ation attractive, since it offers a probabilistic interpretation,
while allowing information from satellites and other obser-
vational data to influence the joint PDF for viscosity, drag
coefficient and other parameter values, as well as the initial
values of state variables. Once this joint PDF has been
obtained it can either be used to design ensembles for
Monte Carlo experiments that evolve multiple simulations
with a variety of initial conditions and parameter values, or
as input to more formal probabilistic calculations that
evaluate how uncertainty in the present state will propagate
into the simulation used to forecast the future of the ice
sheet. In this study we adopt a Bayesian approach to the
problem of model initialization, and to the inversion of
model parameters, such as the basal drag coefficient and
viscosity.
A number of Bayesian inversions have been described

previously by glaciologists (e.g. Berliner and others, 2008;
Gudmundsson and Raymond, 2008; Raymond and Gud-
mundsson, 2009; Tarasov and others, 2012; Petra and
others, 2014; Zammit-Mangion and others, 2014). A key
requirement in applying Bayesian methods is the definition
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of a prior probability distribution for the parameters that we
wish to identify. In this paper, our particular focus will be on
how we can specify prior information for model parameters
that we have very little useful information about. A good
example is the basal drag coefficient. This can vary
enormously, depending on details of the subglacial environ-
ment that are completely unknown to us. The drag
coefficient can be effectively zero for ice floating on water,
but effectively infinite for ice frozen motionless to the bed.
In many places in Greenland and Antarctica we do not
know which condition applies. Furthermore, we do not
know whether there are narrow water-filled channels, large
water-filled cavities or broad sheets of water under the ice,
so we cannot specify the length scale on which the basal
drag coefficient might vary with any certainty. This makes it
difficult to specify the prior PDF that is needed for any
Bayesian inversion of this parameter.
One of our goals in this study is to reduce the subjectivity

attached to glaciological forecasts. The general approach of
defining the initial state of an ice-sheet model using inverse
methods and then running the model forward in time to
produce a forecast of the future might seem to provide a
strategy for prediction that is physically based, mechanistic
and largely free of subjectivity. By free of subjectivity we
mean that different scientists should provide the same
forecasts of the future behaviour of the ice sheet, assuming:
(1) they are given the same set of observations; (2) they make
the same rheological assumptions about the deformation of
ice or sediment; and (3) they use the same conservation
equations in the physical model that represents forces and
mass fluxes within the ice sheet. However, even with
observations, rheological assumptions and conservation
equations in common, there is scope for making subjective
decisions in the application of inverse methods that are used
to identify parameters in the model, or the initial values for
state variables. This applies particularly to the specification
of the prior PDF for those parameters.
Subjective decisions made in defining the prior PDF will

influence the initial state, and this, in turn, will affect the
forecast of the ice sheet. The rate of ice flow into the ocean
is sensitive to the basal drag coefficient and the ice viscosity
(Schoof, 2007). Furthermore, the forecast of the ice sheet is
typically obtained by solving a nonlinear system of equa-
tions, and it may be quite sensitive to small changes in initial
conditions or parameter values. Models that specify different
prior PDFs for the spatial variations in viscosity and basal
drag could potentially produce quite different projections of
sea level.
The subjectivity attached to glaciological inverse meth-

ods is not usually emphasized, and not much consideration
has been given to whether it is important or not, so we
consider it in some detail here. We do not claim to have a
recipe to eliminate all subjective decisions from glacio-
logical forecasts, nor is it our intention to criticize glacio-
logical inversions that have relied upon them. There will
always be decisions about which model to use, which
datasets to include, which parameters to invert for and
which methods to use to regularize the inversion. In
common with many previous studies, our work has involved
a variety of such decisions in mapping spatial patterns of
basal drag and estimating the flow speeds within the
Antarctic ice sheet (Arthern and others, 2015). The motiv-
ation for the present study is to explore whether this
approach can be improved upon by working within a

probabilistic framework. Tasked with providing probabilistic
estimates of the contribution of the ice sheets to sea level,
our goal is that those forecasts should be made as
objectively as currently available techniques allow.

2. BAYESIAN INFERENCE OF MODEL PARAMETERS
USING OBSERVATIONS
Suppose we are trying to estimate a vector, �, comprised of
N parameters, � ¼ ½�1, �2, . . . , �N�

T, which may include the
basal drag coefficient, �, at many different locations and
viscosity, �, at many different points within the ice sheet.
Bayes’ theorem provides a recipe for modifying a prior PDF
for these parameters, pð�Þ, to include the information
provided by new data, x ¼ ½x1, x2, . . . , xM�

T, which may
include observations from satellites, aircraft, field parties or
laboratory experiments. The result is the posterior PDF,

ppð�jxÞ ¼
plðxj�Þpð�Þ

pnðxÞ
: ð1Þ

The prior pð�Þ is a PDF, defined such that pð�Þd� is the
probability that the parameters lie within a vanishingly small
‘volume’ element d� ¼ d�1d�2 . . . d�N, located at �, within
an N-dimensional parameter space, �, that includes all
possible values of the parameters. The term prior reflects
that this is the PDF before we have taken account of the
information provided by the data. The information provided
by the data, x, is encoded in the likelihood function, plðxj�Þ.
The likelihood function can be assumed known, provided
two conditions are met. First, our physical model must be
capable of estimating the measured quantities, x, if supplied
with parameter values, �. Second, we must be able to
estimate the PDF of residuals between these model-based
estimates and the data, x (e.g. if model deficiencies can be
neglected, this amounts to knowing the distribution of the
observational errors). The likelihood function, plðxj�Þ, is
then proportional to the PDF for observing the data, x, given
that the parameters take particular values, �. The denomi-
nator, pnðxÞ, is defined as pnðxÞ ¼

R

�
plðxj�Þpð�Þ d�, and

can simply be viewed as a normalizing constant, defined so
the posterior PDF gives a total probabili ty of
R

�
ppð�jxÞd� ¼ 1, when integrated over all possible values

within the parameter space, �. To avoid ambiguity we will
use subscripts to identify various different posterior PDFs
(pp1, pp2, etc.), likelihoods (pl1, pl2, etc.), priors (p1, p2, etc.)
and normalizing constants (pn1, pn2, etc.).
The notation for conditional probabilities, PðAjBÞ, denotes

probability of event A given that B is true. The posterior,
ppð�jxÞ, is the PDF for the parameters, �, given that the data,
x, take the particular values observed. This means that, after
we have taken account of all the information provided by the
data, x, the posterior PDF, ppð�jxÞ d�, gives the updated
probability that the parameters lie within a small volume, d�,
of parameter space located at �. Selecting the values of � that
maximize ppð�jxÞ provides a Bayesian estimate for the most
likely value of the parameters.
The likelihood, function, plðxj�Þ, sometimes written

Lð�; xÞ or Lð�Þ, can be considered as a function of � for
the observed values of the data, x. It is sometimes the case
when applying Bayes’ rule that the likelihood, Lð�Þ, is
negligible except within a narrowly confined region of
parameter space, while the prior, pð�Þ, describes a much
broader distribution. This situation would indicate great

Arthern: Transformation group priors and maximum relative entropy948



prior uncertainty in parameter values, �, but much less
uncertainty once the information from the data is incorpor-
ated using Bayes’ rule. In such cases, the information
provided by the likelihood function, Lð�Þ, overwhelms the
information provided by the prior, pð�Þ. Specifying the prior
accurately in such circumstances is perhaps not so import-
ant, since any sufficiently smooth function much broader
than the likelihood function would produce a similar
posterior PDF. However, we should not be complacent just
because there are some circumstances in which it is not
very important to specify the prior PDF accurately. There is
no guarantee that this situation will correspond to glacio-
logical inversions of the type that we are considering. Many
aspects of the subglacial environment are barely con-
strained by data, so it is in our interests to specify the prior
PDF carefully.
In this paper we will apply two principles advocated by

Jaynes (2003) to constrain the choice of prior PDF: (1) we
will exploit symmetries of the ice-sheet model, by requiring
that the prior PDF is invariant to a group of transformations
that do not alter the mathematical specification of the
inverse problem, and (2) using this invariant prior as a
reference function, we will include additional constraints by
seeking the PDF that maximizes the relative entropy subject
to those constraints. Both approaches are described in detail
by Jaynes (2003), and we will only make brief introductory
remarks about them (Sections 5 and 6). Our intention is to
guide, and as far as possible eliminate, the subjective
decisions made during the inverse problem that defines the
initial state of the model from the observations, particularly
with respect to the choice of a prior PDF for the parameters.
Although we concentrate here on methods advocated by
Jaynes (2003), reviews by Kass and Wasserman (1996) and
Berger (2006) provide a broader perspective and include
additional background on the use of formal rules for the
selection of prior PDFs.

3. THE CLOSE RELATIONSHIP BETWEEN THE PRIOR
PDF AND THE REGULARIZATION OF INVERSE
METHODS
Although we will use Bayesian methods, our investigation is
relevant to a wide variety of glaciological inverse methods,
many of which have been described in the literature without
mention of Bayes’ theorem.
In particular, our approach is related to a broad class of

inverse methods that minimize a cost function, Jmisfit, that
quantifies the misfit between the model and data. A
common example is choosing model parameters that
minimize the mismatch between model velocities, u, and
observations of the ice velocity, u�, from satellites, so that
the cost function is the unweighted sum of the squares of the
misfit, e.g. Jmisfit ¼ 1

2
P

i ui � u�i
� �2, or some similar function

weighted by estimates of the observational error covariance,

R, e.g. Jmisfit ¼ 1
2
P

ij ui � u�i
� �

R� 1ij uj � u�j
� �

. Other cost func-

tions to characterize the misfit between the model and the
data have been proposed (Arthern and Gudmundsson,
2010; Morlighem and others, 2010) and the choice of cost
function is therefore one way that subjective decisions can
influence the inversion.
There are other aspects of the inversion that require

subjective decisions. Generally speaking, simply minimiz-
ing the mismatch with observations does not uniquely

define the spatially varying fields of basal drag and viscosity.
This is because many different combinations of parameters
allow the model to agree equally well with the available
observational data. This is often dealt with by constraining
parameters, using some kind of explicit or implicit
regularization.
Regularization introduces additional information about

parameters (e.g. requiring that they be close to some estim-
ated value, or that they are small in magnitude, or that they
vary smoothly in space). Before proceeding we will describe
how regularization of inverse methods as commonly applied
in glaciology relates to our Bayesian inversion.
The purpose of regularization is either to turn an ill-posed

problem into a well-posed problem, or an ill-conditioned
problem into a well-conditioned problem. As defined by
Hadamard (1902), an ill-posed problem either has no
solution, more than one solution, or a solution that varies
discontinuously when small perturbations are made to any
quantitative information provided (i.e. data). In any of these
three cases it becomes impossible to precisely define a
solution to the problem. On a practical level, especially
when performing calculations numerically, we may come
across problems that are not exactly ill-posed in the above
sense, but are ill-conditioned. This means that a unique
solution exists, but small changes to the data from measure-
ment errors or numerical roundoff can result in large
changes to that solution. If the resulting loss of precision is
too great, we may be willing to constrain the solution in
some other way, by regularizing the problem.
To be more concrete, we will give some simple examples

of how a glaciological inversion can be ill-posed or ill-
conditioned, beginning with an example of a problem that
does not have a unique solution. Suppose we would like to
find the initial state for a model of ice of constant thickness
flowing down a featureless inclined plane. Furthermore,
suppose we know the ice thickness, the surface elevation
and the flow speed at the surface (i.e. the data). Suppose
now that we have no information about the drag coefficient
at the base of the ice, or the ice viscosity, but wish to
determine these using inverse methods.
For a slab of the given thickness, the ice speed at the

surface could be matched either by a rigid slab that is sliding
at its base, or by a slab that is fixed at the base, but
deforming through internal shearing (Fig. 1). None of the
data provide information about the subsurface flow speed so
we cannot distinguish between these two possibilities, or
between these and some intermediate solution that is any
combination of sliding and internal shearing that matches
the specified surface velocity.
In practical applications, to avoid such non-uniqueness, it

is rare that viscosity and basal drag are solved for simul-
taneously. Rather, it is commonly assumed that one or other
of these quantities is known perfectly. On floating ice shelves
the viscosity is usually solved for on the assumption that
basal drag is zero. By contrast, on grounded ice, the basal
drag is usually solved for on the assumption that the viscosity
perfectly obeys some rheological flow law with known
parameters, so that the viscosity can be considered known.
The assumption that either the basal drag or the viscosity

is perfectly known regularizes what would otherwise be an
ill-posed problem, by avoiding a multiplicity of non-unique
solutions. However, there are difficulties with this approach.
First, for ice shelves where the bathymetry is poorly
mapped, it may be difficult to be certain there is no basal
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drag from some unidentified contact with the sea floor (Fürst
and others, 2015). Second, on grounded ice, many factors
that are not included in commonly used flow laws can affect
the viscosity. These include such poorly known factors as
impurity content, anisotropy, grain size, geothermal heating
and damage from crevassing. This makes it problematic to
assume we have perfect knowledge of the viscosity. Another
consideration is that we have assumed in the problem
specified above that the ice thickness is known perfectly.
However the thickness is poorly known in many places, and
it might be useful to invert for this field, rather than assume it
is known perfectly (Raymond and Gudmundsson, 2009).
Clearly, the problem of non-uniqueness would become
even more acute if the observations of ice thickness were
unavailable and we tried to solve for ice thickness as well as
the basal drag and viscosity.
In the above example there are three parameters that we

would like to invert for: ice thickness, ice viscosity and
basal drag coefficient. Rather than assume we have perfect
knowledge of two of these, it would be more realistic to
acknowledge that there is considerable uncertainty in each,
and to seek a compromise solution that jointly reflects
these uncertainties.
For problems with many uncertain parameters a Bayesian

approach is attractive. Rather than one set of parameters that
minimize the cost function, Jmisfit, Bayesian inversion seeks
the posterior joint PDF, ppð�jxÞ, for the parameters. This
means that the combined uncertainty in basal drag co-
efficient, viscosity and thickness can be evaluated. If we
wish, we can later seek the values of the parameters that
maximize the joint PDF, allowing us to solve simultaneously
for the most likely values of all three quantities. To perform
such Bayesian inversion we will need to define a prior PDF,
pð�Þ, for the parameters. It is this aspect that we concentrate
on in this paper.
As an example of ill-conditioning, suppose the slipperi-

ness at the base of the slab is not uniform as assumed above,
but has fluctuations on some scale. As the characteristic size
of these fluctuations decreases, their effect on the flow at the
surface will diminish, until they become too small to have

any significant effect (Bahr and others, 1994; Gudmundsson,
2003). At the smallest scales their effect on the surface
elevation and flow speed will be smaller than the accuracy
with which these data are measured. Any inverse method
that seeks to recover the fluctuations in basal drag on such a
fine scale will be corrupted by the errors in surface elevation
and surface velocity. In extreme cases, wild and unrealistic
variations in basal drag might be introduced in an attempt to
match the flow speed in the model to noise in the
observations. This is known as overfitting. The usual remedy
is to apply some form of regularization.
There are various different ways of regularizing inversions

of basal drag to avoid overfitting, but a common approach is
to enforce smoothness of the recovered pattern of basal
drag. Many of the iterative algorithms that are used to
minimize the cost function have a convenient property: they
introduce features in basal drag on coarse scales in the first
few iterations, then add progressively finer scales in later
iterations (Maxwell and others, 2008; Habermann and
others, 2012). Simply stopping after some number of
iterations can prevent unrealistic fine-scale features being
added. Deciding when to stop is a more vexing question,
but there are criteria that can serve as a guide (Maxwell and
others, 2008; Habermann and others, 2012). One remaining
issue is that the regularized solution depends upon the initial
guess for parameters used to start the very first iteration.
Again, this is an opportunity for different people to make
different choices.
A different form of regularization that is often used is

Tikhonov regularization (e.g. Jay-Allemand and others,
2011; Gillet-Chaulet and others, 2012; Sergienko and
Hindmarsh, 2013). Here the data–model misfit cost func-
tion, Jmisfit, is replaced by Jtotal ¼ Jmisfit þ Jreg, where Jreg is a
term that penalizes solutions for the basal drag coefficient,
�, that are not smooth and promotes those that are. A
common choice is Jreg ¼ �reg

R
r�j j

2 dS, for some constant
�reg, which adds a term proportional to the area integral of
the square of the magnitude of the horizontal gradient in
basal drag coefficient (e.g. Sergienko and Hindmarsh, 2013).
Adding this term to the data–model misfit cost function

Fig. 1. Simultaneous inversion for basal drag coefficient, �, and viscosity, �, is not well posed. Any observed surface velocity could be
produced either by a well-lubricated base with high viscosity (left), or by a slab with high basal drag and low viscosity (right). Prior
information about basal drag and/or viscosity is needed to determine which situation is more likely. The inversion may also be ill-
conditioned if features at the bed are too small to affect the shape or flow speed of the upper surface. The usual remedy for non-uniqueness
or ill-conditioning is to regularize the problem, and this can be interpreted in Bayesian terms as specifying prior probabilities for basal drag
and viscosity. The coordinate axes used for the simple slab model are shown.
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before minimization favors solutions for basal drag that have
small gradients, hence the wildly fluctuating high-frequency
oscillations that might otherwise be introduced by over-
fitting are reduced.
When Tikhonov regularization is used, the value of �reg

can be varied to increase or decrease the strength of the
regularization. It can be difficult to know what value to use
for this parameter. Some heuristic conventions exist for
selecting �reg, among them plotting the L-curve (e.g. Jay-
Allemand and others, 2011), or making use of a discrepancy
principle (Maxwell and others, 2008), but in real applications
these do not always provide an obvious choice (Vogel, 1996).
It can also be difficult to know whether to penalize

gradients in the drag parameter or its logarithm, i.e.
Jreg ¼ �reg

R
rln�j j

2 dS. Other options include the square of
basal drag, Jreg ¼ �reg

R
�j j
2 dS, or its logarithm, Jreg ¼

�reg
R
ln�j j

2 dS, but it is not always obvious why one should
use one form rather than another, or even some combin-
ation. It is clear there is scope for many different choices in
applying Tikhonov regularization, and we have not even
mentioned all of them.
Regularization requires the introduction of information

that does not come from the observational data, x, that we
have available from satellites, aircraft, field observations or
laboratory experiments. This extra information must come
from somewhere. The source of much of the subjectivity that
we refer to in this paper is that the practitioners of the
inverse methods often simply decide what seems reason-
able. It is here that many of the subjective decisions that we
would prefer to avoid can arise.
How smooth should the field of basal drag be? What

should be the starting guess for iterative minimization of the
cost function? What form of Tikhonov regularization should
be used? How much can the viscosity vary from some
prescribed approximation of the ice rheology, such as
Glen’s flow law? Viewed from the Bayesian perspective, all
of these decisions amount to the selection of priors for basal
drag and viscosity.
One of the attractions of Bayes’ theorem is that it can

provide the joint PDF for the parameters, given some
observations with known error distribution. Crucially, the
theorem cannot be applied without a prior for the par-
ameters. This requirement to define a prior PDF for the
parameters brings into the open many of the subjective
decisions that are often made in an ad hoc fashion in the
process of regularizing inversions.
As noted in many studies using Bayesian methods (e.g.

Gudmundsson and Raymond, 2008; Petra and others,
2014), the link between regularization and specification of
the prior can often be made explicit by taking the negative of
the logarithm of Eqn (1),

� lnppð�jxÞ ¼ � lnplðxj�Þ � lnpð�Þ þ lnpnðxÞ: ð2Þ

Now, we identify a misfit function, Jmisfit ¼ � lnplðxj�Þ,
defined as the negative of the log-likelihood, and a
regularization term, Jreg ¼ � lnpð�Þ, that is the negative of
the logarithm of the prior, and J0 ¼ lnpnðxÞ, which is just a
constant offset for any given set of observations. Then it is
clear that choosing parameters, �, that maximize the
posterior PDF is the same as choosing them to minimize a
misfit function, Jtotal ¼ Jmisfit þ Jreg þ J0 ¼ � lnppð�jxÞ. The
relationship, Jreg ¼ � lnpð�Þ, means for instance that quad-
ratic regularization terms, such as Jreg ¼ �reg

R
r�j j

2 dS,

correspond to specifying a Gaussian density function for
pð�Þ, such as expð� �reg

R
r�j j

2 dSÞ, and vice versa. From a
Bayesian perspective the various options for Tikhonov
regularization described above are just different ways of
specifying a prior PDF for the parameters.
Working in the Bayesian framework provides some

clarity to the definition of the cost function, Jmisfit, since it
suggests that if we want the most likely parameters we
should use the negative log-likelihood function, � lnplðxj�Þ,
to characterize the misfit with data, rather than unweighted
least-squares or some other choice. It also clarifies the
process of regularization, since it requires that the informa-
tion to be added is explicitly formulated in terms of a prior
PDF for the parameters. However, simply adopting the
Bayesian approach does not tell us what the prior, pð�Þ,
should be. So how should priors be defined for parameters
that we have so little information about?

4. SUBJECTIVE PRIORS
One possible way to define a prior, pð�Þ, is to leave this up
to the individual scientist performing the inversion. In the
case of inverting for the basal drag under an ice sheet this
seems a questionable choice. The posterior PDF, ppð�jxÞ,
will be used to define the parameters for the model, and
these parameters are an important component of the sea-
level forecast. The glaciological forecast usually requires us
to solve a nonlinear system of equations, which may be
sensitive to small changes in parameter values or initial
conditions, and we know that flow of ice into the ocean is
sensitive to the basal drag coefficient and the ice viscosity
(Schoof, 2007). This suggests that models that specify
different prior PDFs for the spatial variations in basal drag
could produce quite different projections of sea level. At
present it is difficult to know how important this effect could
be, but as more forecasts are produced, each with different
models and different inversion methods, it will become
easier to evaluate the degree of spread among projections.
Often a great deal of effort and cost is expended in

developing the physical model, collecting the observations,
x, and characterizing the error covariance of those obser-
vations. It seems questionable to apply such dedication to
deriving the likelihood, plðxj�Þ, but then multiply this
function by a prior that is left up to individual choice,
either through explicit definition of a subjective prior, or
implicitly through choices of regularization strategy. This
could be justified if the scientist performing the inversion
has some real insight into the range of variation and the
length scale on which basal drag varies. As mentioned
above, there is great uncertainty regarding the subglacial
environment and it is difficult to know how the insight
needed to define the prior would be obtained. We
emphasize that the prior, pð�Þ, is logically independent of
the observations, x, that will be used in the inversion, so
these observations cannot be used to provide insight into
what the prior should be.
Another way of defining the prior, pð�Þ, would be to

delegate the task to experts on the subglacial environment,
asking them to define the prior for the basal drag, viscosity,
etc. The justification for this would be that there are people
who (without regard of the observations that we will use in
the inversion) can provide us with useful information on the
range of values that the viscosity and basal drag coefficient
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can take, and the length scales they will vary over. If such
experts exist then their views should be taken into account
in definition of the prior, pð�Þ. However, it may be difficult
to find anyone with such comprehensive information about
the details of the subglacial environments of Greenland and
Antarctica.
In the end, the main justifications for using subjective

priors, or indeed heuristic approaches to regularization, may
be (1) that they are easy to implement, (2) that it can
plausibly be assumed, or checked after the fact, that the
main results of the forecast are not too sensitive to the details
of how this regularization is performed and (3) that it can be
difficult to imagine what else could be done. The first point
is certainly true, and should not be downplayed, since it
allows large-scale calculations to be performed that could
not be otherwise (e.g. Gillet-Chaulet and others, 2012;
Morlighem and others, 2013; Joughin and others, 2014;
Petra and others, 2014; Arthern and others, 2015; Cornford
and others, 2015). The second point may well be true also,
but seems to require that we address the third. After all,
without first considering what else we might do to regularize
the problem it is hard to argue that it won’t make much
difference. In the following sections we outline two
principles that have been advanced by Jaynes (2003) as a
way of defining prior PDFs for parameters when minimal
information about them is available.

5. TRANSFORMATION GROUP PRIORS
Transformation group priors use symmetries of the problem
to constrain the function, pð�Þ, that is used as a prior PDF. In
many mathematical problems knowledge of some particular
symmetry can be extremely valuable, because it allows us to
rule out a wide range of possible solutions that do not
exhibit that symmetry. For instance, if there is some prior
information available to us that can be written as mathemat-
ical expressions involving � and if there are transformations
that can be applied to these expressions that do not alter
them in any way, then Jaynes (2003) argues that those
transformations should also leave the prior, pð�Þ, un-
changed. The motivation is to ensure consistency, so that
for two problems where we have the same prior information
we assign the same prior probabilities (Jaynes, 2003). Based
on this, Jaynes (2003) argues that we should select priors
that are invariant to a group of transformations that do not
alter the specified problem. Surprisingly, in some cases,
identifying the symmetries in the form of a group of
transformations that leave the problem unchanged and then
requiring that the function pð�Þ is invariant to those
transformations can completely determine which function
to use as a prior. The value of using transformation group
priors is perhaps best appreciated by imagining that we use
a prior that does not respect the symmetries of the specified
problem. Then we would, in effect, be claiming access to
additional information that is not inherent in the problem
specification, and, if called upon, we should be able to
provide a reasoned explanation of where that information
has come from.

6. MAXIMIZING RELATIVE ENTROPY
In addition to the symmetries of the problem, we may have
other information that is relevant to specification of the
prior. Sometimes this information can be expressed in the

form of constraints that the PDF must satisfy. One common
class of constraints are expectations of the form,

Z

�

pð�Þfið�Þ d� ¼ Fi: ð3Þ

For instance, if we have reason to believe that the expected
value for the vector of parameters � is �, we would apply a
constraint with fi ¼ �, Fi ¼ �. A similar constraint with
fi ¼ Fi ¼ 1 requires that the PDF, pð�Þ, is normalized such
that it integrates to one. Jaynes (2003) provides a recipe for
incorporating such constraints, arguing that we should favor
the PDF that maximizes the relative entropy subject to
whatever constraints are imposed. The relative entropy of a
PDF, pð�Þ, is a functional, HðpÞ, defined with respect to a
reference PDF, �ð�Þ, as

H ¼ �
Z

�

pð�Þ ln
pð�Þ
�ð�Þ

� �

d�: ð4Þ

Multiple constraints of the form given by Eqn (3) can be
imposed using Lagrange multipliers � ¼ �1,�2, . . . ,�Q

� �
,

by seeking stationary points of the functional,

H1ðp,�Þ ¼

�

Z

�

pð�Þln
pð�Þ
�ð�Þ

� �

d�þ
XQ

i¼1
�i

Z

�

pð�Þfið�Þ d� � Fi

� �

:
ð5Þ

As described by Jaynes (2003), when the normalization
constraint is enforced and other constraints, i ¼ 1, 2, . . . ,Q,
are also imposed, stationary points of H1ðp,�Þ are provided
by PDFs of the form

pð�Þ ¼
�ð�Þ exp

PQ
i¼1 �ifið�Þ

h i

Z
, ð6Þ

Zð�Þ ¼
Z

�

�ð�Þ exp
XQ

i¼1
�ifið�Þ

" #

d�, ð7Þ

@ lnZ
@�i

¼

Z

�

pð�Þfið�Þ d� ¼ Fi: ð8Þ

Solving Eqn (8) often provides a convenient way of
identifying values for the Lagrange multipliers, �, such that
H1 is stationary and the constraints are enforced. Once these
values of � have been obtained, Eqn (6) provides the PDF
and Zð�Þ plays the role of a normalizing constant. If there
are no constraints other than normalization, then finding
stationary points of H1 results in pð�Þ ¼ �ð�Þ. This means
that �ð�Þ can be viewed as a preliminary prior that will be
modified, such that any additional constraints on pð�Þ are
satisfied. Jaynes (2003) argues that the PDF, pð�Þ, that
maximizes H, subject to whatever constraints are imposed
has many attractive features. Roughly speaking, H can be
viewed as quantifying the ‘uninformativeness’ of the PDF,
pð�Þ. Maximizing H is therefore a way of guarding against
selecting a prior that is too prescriptive about which values
of � are likely. This provides a safeguard against ruling
things out that could possibly happen. A prior probability
obtained in this way is guaranteed to satisfy the constraints,
but is otherwise as uninformative as possible.
We would obviously prefer to have a very informative

prior, since then we would know exactly which parameter
values to use in our model. It may then seem strange that we
are selecting the least informative prior possible, subject to
the information introduced by the reference distribution and
the constraints. The point is that we should only use an
informative prior if we actually have the information to back
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it up. Here, once we have defined a reference distribution,
the extra information is being introduced in the form of
constraints, or through the data that we will introduce later
via Bayes’ theorem. For each constraint that we impose, the
prior will become more informative, relative to the original
PDF, �ð�Þ. If we were to subjectively choose a prior more
informative than demanded by the constraints we would be
guilty of subjectively introducing information into the in-
version without good reason, and this is exactly what we are
hoping to avoid, as far as possible. A prior that is too
prescriptive about which parameter values are possible will
only lead to overconfidence in the accuracy of our forecasts
and to surprises when the forecast fails to deliver such
accuracy.
It may seem that the problem has now simply changed

from finding pð�Þ to finding the preliminary prior, �ð�Þ. This
is where a combination of the two approaches outlined
above can be used. Jaynes (2003) suggests that invariance to
a transformation group defining the symmetry of the
specified problem should be used to define �ð�Þ. Having
obtained �ð�Þ, any additional constraints can then be
imposed by maximizing the relative entropy, H, subject to
those constraints. This is the procedure that we will adopt in
the rest of this paper.

7. APPLICATION TO A SIMPLE GLACIOLOGICAL
PROBLEM
To introduce the methods outlined above, we will consider
the simple problem of estimating the viscosity and basal
drag coefficient for a slab of uniform thickness flowing down
a plane. Although this is a highly simplified problem
compared with the initialization of large-scale models of
the Greenland and Antarctic ice sheets, it will turn out to
contain many of the essential features of the more difficult
three-dimensional problem, and therefore serves as a useful
starting point to illustrate the methods.
We define a coordinate system in which the x- and y-axes

are parallel to the planar bed of the ice sheet, which slopes
downwards at an angle � below horizontal in the direction
of increasing x, with no slope in the direction of increasing y
(Fig. 1). The z-axis is taken to be normal to the bed, positive
upwards, with z ¼ zb defining the bed and z ¼ zs defining
the surface. The thickness, h ¼ zs � zb, is assumed uniform,
and velocity in the x-direction, uðzÞ, is a function of depth.
Any vertical shearing within the slab leads to a shear stress
�xz. The ice density, �, is assumed constant. The basal drag
coefficient is �, and the viscosity within the slab is �, which
is assumed constant with depth in this simplified problem.
Within the slab, body forces from gravity are balanced by
gradients in stress. At the lower boundary a linear sliding
law is assumed, so the shear stress �xz ¼ �u. At the upper
boundary the shear stress vanishes, so �xz ¼ 0. For now, we
will assume nothing about � or �, other than that they are
positive constants.
For this simple system, conservation of momentum in the

x-direction gives the system of equations:

�@zu ¼ �xz, in zb < z < zs,
@z�xz ¼ � �g sin�, in zb < z < zs,
�xz ¼ 0, on z ¼ zs,

� �xz þ �u ¼ 0, on z ¼ zb,

ð9Þ

where g is acceleration due to gravity. Generally, before

performing an inversion using the model we will already
have available a discrete version of the momentum equa-
tions. For illustrative purposes we can consider a simple
finite-difference discretization of the above system on a
uniform grid that has n velocity levels at grid spacing
� ¼ h=ðn � 1Þ and velocities in the x-direction of u1, u2,
etc. These are defined on each of the different levels, so u1 is
the sliding velocity at the base and un is the flow velocity at
the upper surface. We define

A ¼ XTDX, ð10Þ

X ¼

1
� 1 1

: :

: :

� 1 1
� 1 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

, f ¼

0
�g sin�

:

:

�g sin�
0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

,

D ¼

�
�

�

�2

:

:
�

�2

�

�2

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

, u ¼

u1
u2
:

:

un� 2

un� 1

un

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

:

ð11Þ

The discretized system corresponding to Eqn (9) is then

Au ¼ f : ð12Þ

This is obviously a highly simplified model. We have only
introduced it here so we have a very simple discrete system
that we can use to illustrate how the methods can be applied
in more general circumstances. More sophisticated ice-sheet
models can be written in a very similar form, with A a
symmetric positive-definite matrix, u a vector of velocities
and f a vector comprised of body forces and forcing terms
from boundary conditions.
If A and f are known, solving the system defined by

Eqn (12) provides an estimate, A� 1f , for the velocities, u. In
this paper we are not particularly interested in such a
straightforward application of the model. Instead we would
like to consider very general inferences about the velocity
field, u, the forces, f, and the matrix, A, remembering that
this matrix depends on the parameters, � and �, that we are
trying to identify. We will also consider the possibility that
the model is not perfect, so Eqn (12) is satisfied only
approximately.
Note that in the above example, if we can estimate the

matrix A, we can later derive the parameters � and � by
computing D ¼ X� TAX� 1. To keep the following discussion
as generally applicable as possible, we will not yet assume
any particular form for the system matrix, A, except that it is
positive-definite and symmetric. Later, we will return to the
problem with the particular A defined by Eqn (10).
We will include in our vector of parameters, �, all of the

quantities that we might perhaps want to estimate. These
will include velocities, u, forces, f, the upper triangular
(including leading diagonal) elements, Au, of the symmetric
matrix, A, and the upper triangular (including leading
diagonal) elements, Cu, of the model error covariance,
C. Some of these would not usually be regarded as
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‘parameters’, but we will continue to use this terminology
for the unknown quantities that we would like to be able to
estimate. We have only included the upper triangular
elements of symmetric matrices in our list of parameters
because the complete matrix, e.g. AðAuÞ, can always be
recovered from these if needed.
For now, our only concern is to find a function that we

can use as a prior for velocities, u, forces, f, and the upper
triangular elements of A and C, based on what we know
about the relationships between them.
It is important to recognize that we will not introduce any

observations of any of the quantities until we have obtained
the prior and are ready to include those observations using
Bayes’ rule. Equally, once we have obtained a very general
prior, we can later impose additional constraints on the form
of the matrix, A. If expert knowledge or independent
estimates of parameter values from laboratory experiments
are available these can also be introduced later using
Bayes’ theorem.

8. DERIVING A GENERAL PRIOR FOR DISCRETE
SYMMETRIC POSITIVE-DEFINITE SYSTEMS
On the assumption that a symmetric positive-definite matrix,
A, exists that relates velocities, u, and body forces, f, with
finite error covariance and finite bias, we have the following
prior information:

u � A� 1f ¼ �,

Eu, f jA,C ��T
� �

¼ C,

u, f 2 ún A,C 2 PðnÞ:

ð13Þ

Since we are assuming that the model has already been
discretized using some particular set of basis functions, the
velocities, u, and body forces, f, belong to the set ún of real
vectors of known dimension n. The matrices A and C belong
to the set PðnÞ of n� n real symmetric positive-definite
matrices. The conditional expectation Eu, f jA,C ��T

� �
, is the

average of ��T over the velocity, u, and body forces, f, for
particular values of A and C. We will refer to the matrix C as
the model error covariance. It is possible that the model is
biased, so to be strict we should perhaps refer to this as the
mean-squared error. It is defined as C ¼ Covð�Þ þ bbT,
where b ¼ Eu, f jA,C �½ � is the expected bias of the model vel-
ocities represented by A� 1f , averaged over all possible for-

cings, f, and Covð�Þ ¼ Eu, f jA,C ð� � bÞð� � bÞT
h i

is the error

covariance of the model, averaged over all possible forcings.
Before looking at any data, we do not know anything

about u, f, A or C, except for the information contained in
Eqn (13). Before we can use Bayes’ theorem to make
inferences about u, f, A and C from data, we need a prior
PDF so that pð�Þd� is the prior probability that the
parameters lie within a small interval, d�, of parameter
space located at �. For our particular choice of parameters,
this takes the form

pðu, f ,Au,CuÞdudf dAu dCu �
probability parameters lie within volume element
du df dAu dCuf g at u, f ,Au,Cuf g,

ð14Þ

where du ¼
Q

i dui, df ¼
Q

i dfi, dAu ¼
Q

i, j�i dAij and dCu ¼
Q

i, j�i dCij are the standard (i.e. Lebesgue) measures for

integration over elements of u, f, Au and Cu, the latter being
the nðnþ 1Þ=2 upper triangular elements of A and C,
respectively. To label the domains of integration for u, f,
Au and Cu, we write U ¼ u 2 únf g, F ¼ f 2 únf g, Aþ ¼
Au 2 únðnþ1Þ=2 such that AðAuÞ 2 PðnÞ
� �

, a n d Cþ ¼

Cu 2 únðnþ1Þ=2 such that CðCuÞ 2 PðnÞ
� �

, and � ¼ U � F�

Aþ � Cþ for the parameter space that combines all of U, F ,
Aþ and Cþ.
The information defined by the prior information

(Eqn (13)) is invariant under several transformations:

T1 �ð Þ: Orthogonal transformations, with � an n� n
orthogonal matrix, such that �T� ¼ ��T ¼ I,

u7!�u, f 7!�f , A7!�A�T, C 7!�C�T: ð15Þ

T2 a,bð Þ: Change of units. Rescaling by a > 0 and b > 0,

u7!au, f 7!abf , A7!bA, C 7!a2C: ð16Þ

T3 rð Þ: Superposition of solutions,

u7!uþr, f 7!fþAr, A7!A, C 7!C: ð17Þ

T4(q): Switch velocities for forces and model for inverse.
Repeated q times, with q ¼ 1 or q ¼ 2,

u7!f , f 7!u, A7!A� 1, C 7!ACA: ð18Þ

According to Jaynes (2003) it is important to specify the
transformations as a mathematical group. Mathematically, a
group is a set of elements (e.g. A, B, C, etc.) that also has an
operation, �, that takes two elements A and B of the set and
relates them to a third element P. To be a group the set and
the operation must together satisfy certain conditions: (1) the
operation must be closed so that the product, P ¼ A� B,
always lies within the set; (2) the operation must be
associative, so that for any A, B and C in the set,
ðA� BÞ � C ¼ A� ðB� CÞ; (3) the set must contain an
identity element, I, such that A� I ¼ A for any element A;
(4) each element of the set must have an inverse, A� 1, such
that A� A� 1 ¼ I. In Appendix A we show that the
transformations T1 to T4 satisfy these conditions individually
and that their direct product defines a transformation group.
As noted by Jaynes (2003), the key role played by the

preliminary reference prior, �ðu, f ,Au,CuÞ, is to define a
volume measure for the parameter space, �. To qualify as a
transformation group prior, this volume measure must be
invariant to the group of transformations that do not alter the
mathematical specification of the problem, but it need not
correspond to the Lebesgue volume measure, dV ¼
dudf dAu dCu, that would apply if the parameter space
had a standard Euclidean geometry. The following distance
metric is invariant under the group of transformations
defined above:

ds2 ¼Tr A� 1 dAA� 1 dA
� �

þ Tr C� 1 dC C� 1 dC
� �

þ duT C� 1 duþ dfT ðACAÞ� 1 df ,
ð19Þ

where Tr indicates the trace, obtained by summing elements
on the main diagonal. We have written dA, dC, du and df to
represent infinitesimal changes to A, C, u and f. The
invariance of ds2 to the transformation group can be shown
by applying the transformations to Eqn (19), and using the
invariance of Tr A� 1 dAA� 1 dA

� �
to inversion A7!A� 1, scale

changes A7!bA, and to congruent transformations of the
form A7!BABT, where B is an invertible n� n matrix
(Moakher and Zéraï, 2011).
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From expressions given by Moakher and Zéraï (2011), the
volume element that corresponds to the distance metric,
ds2, is

dV ¼ 2nðn� 1Þ=2 CAj j
� ðnþ3Þ=2 dudf dAu dCu, ð20Þ

where du, df , dAu and dCu are the usual Lebesgue
measures. The following transformation group prior is
therefore a suitable preliminary prior for derivation of a
maximum-entropy PDF,

�ðu, f ,Au,CuÞdu df dAu dCu ¼

Z� 10 2nðn� 1Þ=2 CAj j
� ðnþ3Þ=2 dudf dAu dCu,

ð21Þ

where Z0 is a non-dimensional constant that will be
determined by normalization.
Because the matrices A and C are defined to be positive-

definite, the function �ðu, f ,Au,CuÞ is finite everywhere
within the parameter space, �, provided that Z0 is finite.
However, �ðu, f ,Au,CuÞ is an ‘improper’ prior, as described
by Jaynes (2003). This means that if we attempt to integrate
Eqn (20) over the parameter space, �, we find that this
integral does not exist. Therefore a finite Z0 cannot be
defined such that the prior, �ðu, f ,Au,CuÞ, is a normalized
PDF over the entire parameter space, �. To allow us to
interpret the function �ðu, f ,Au,CuÞ as a PDF, we will
consider a restricted section of parameter space, ��, for
which the necessary integral exists, and for which there is a
well-defined limiting process �� ! � as �! 0þ. For
example, rather than an improper uniform prior for a single
parameter over the interval ð� 1,1Þ, a well-defined
uniform prior can be defined over a range ½� l=�, l=��, with
l a constant that is finite and positive. Restricted domains U�,
F �, Aþ� and Cþ� that are subsets of U, F , Aþ and Cþ,
respectively, are defined in Appendix B. The restricted
parameter space is then derived from the Cartesian product,
�� ¼ U� � F � �A

þ
� � C

þ
� . Later, having derived a posterior

PDF that depends upon �, we can investigate its behavior in
the limit �! 0þ. In Appendix B, we also define a separate
non-dimensional parameter, �, that controls the smallest
diagonal entries of positive-definite matrices.
Having defined the restricted parameter space, ��, we

can seek the PDF, pðu, f ,Au,CuÞ, that maximizes the relative
entropy, H,

HðpÞ � �
Z

��

pðu, f ,Au,CuÞ ln
pðu, f ,Au,CuÞ
�ðu, f ,Au,CuÞ

� �

dudf dAu dCu,

ð22Þ

subject to whatever constraints are imposed. In our case the
constraints are that the PDF must be normalized, so that

Z

��

pðu, f ,Au,CuÞdu df dAu dCu ¼ 1, ð23Þ

and that the conditional expectation of the error covariance,

Eu, f jA,C ðu � A� 1fÞðu � A� 1fÞT
h i

is equal to C. Using the

product rule, PðAjBÞPðBÞ ¼ PðA,BÞ, for conditional prob-
abilities of events A and B gives

pðu, f jAu,CuÞ ¼ pðu, f ,Au,CuÞ=pn2ðAu,CuÞ,

pn2ðAu,CuÞ ¼
Z

U�F �

pðu, f ,Au,CuÞ dudf :
ð24Þ

The constraint, Eu, f jA,C ðu � A� 1fÞðu � A� 1fÞT
h i

¼ C, takes

the form
Z

U�F �

p u, f jAu,Cuð Þ u � A� 1f
� �

u � A� 1f
� �T

� C
h i

du df ¼ 0:

ð25Þ

The constraints can be imposed using Lagrange multi-
pliers, �1, a scalar, and �2ðAu,CuÞ, a positive-definite
symmetric matrix. We seek stationary points for the
following quantity:

H2ðp,�1,�2Þ �

�

Z

��

pðu, f ,Au,CuÞ ln
pðu, f ,Au,CuÞ
�ðu, f ,Au,CuÞ

� �

du df dAu dCu

þ�1

Z

��

pðu, f ,Au,CuÞdu df dAu dCu � 1
� �

�

Z

Aþ� C
þ
�

Tr �2
Z

U�F �

pðu, f jAu,CuÞ
��

ðu� A� 1fÞðu� A� 1fÞT du df � C
i�
dAu dCu:

ð26Þ

Wherever pn2ðAu,CuÞ does not vanish, we can define

Z1 ¼ exp 1 � �1½ �,
�ðAu,CuÞ ¼ �2ðAu,CuÞ=pn2ðAu,CuÞ:

ð27Þ

Then H2 is stationary for PDFs of the form

pðu, f ,Au,CuÞ ¼ Z� 11 �ðu, f ,Au,CuÞe� Tr � ðu� A
� 1fÞðu� A� 1fÞT� C½ �f g:

ð28Þ

The normalization constraint is satisfied for

Z1 �ð Þ ¼
Z

��

�ðu, f ,Au,CuÞe� Tr � ðu� A
� 1fÞðu� A� 1fÞT� C½ �f g dudf dAu dCu,

ð29Þ

in which Z1 is regarded as a functional of �ðAu,CuÞ. To
evaluate the function � we require that the first variation of
Z1ð�Þ with respect to � is zero. This is analogous to
identifying values for Lagrange multipliers by solving
Eqn (8). Since the preliminary prior, �ðu, f ,Au,CuÞ, is
independent of u, carrying out an integration over U
provides the approximation

Z1 �ð Þ ¼

�
n
2

Z

F �A
þ
� C
þ
�

�ðu, f ,Au,CuÞ �j j�
1
2 eTr �C½ � df dAu dCu þ E:E:,

ð30Þ

where � written without arguments represents the constant,
and E.E. represents edge effects arising because we have
integrated over U rather than U�. Here we neglect these edge
effects, in anticipation that they become unimportant in the
limit �! 0þ, whereupon U� ! U. Then, requiring that the
first variation of Z1ð�Þ with respect to � is zero provides

�Z1 �ð Þ ¼

�
n
2

Z

F �A
þ
� C
þ
�

�ðu, f ,Au,CuÞ �j j�
1
2 eTr �C½ ��� C �

1
2
� � 1

� �

df dAudCu

¼ 0:

ð31Þ

Since this must be true for any �� , and the quantities
preceding �� in the integrand are all positive, applying the
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fundamental lemma of the calculus of variations provides

� ¼
1
2
C� 1: ð32Þ

We therefore arrive at the following expression for the prior:

pðu, f ,Au,CuÞ ¼

Z� 12 �ðu, f ,Au,CuÞ exp �
1
2
ðu � A� 1fÞTC� 1ðu � A� 1fÞ

� �

,

Z2 ¼
Z

��

�ðu, f ,Au,CuÞ exp �
1
2
ðu � A� 1fÞTC� 1ðu � A� 1fÞ

� �

dudf dAu dCu:

ð33Þ

9. INTRODUCING ADDITIONAL INFORMATION
USING BAYES’ THEOREM
Deriving the prior PDF is only the first step of our inversion.
We still have information available to us that we have not
used. In particular, we have not yet introduced any of the
observational data, x. We will assume that these data provide
an estimate for the velocity at the upper surface, u�, and that
it also allows us to estimate the forces, f�. Having obtained a
prior density function and a likelihood function, we can write
the posterior PDF (Eqn (1)) using Bayes’ rule as

ppðu, f ,Au,Cuju�, f
�
Þ ¼

plðu�, f
�
ju, f ,Au,CuÞpðu, f ,Au,CuÞ

pnðu�, f
�
Þ

,

ð34Þ

with

pnðu�, f
�
Þ¼

Z

��

plðu�, f
�
ju, f ,Au,CuÞpðu, f ,Au,CuÞdu df dAu dCu,

ð35Þ

where plðu�, f
�
ju, f ,Au,CuÞ is the likelihood function and

pnðu�, f
�
Þ is the normalizing constant. The posterior PDF

should then approach a well-defined limit as �! 0þ and
� ! 0þ, so that�� ! �. If it does not, this may be a sign that
the problem remains ill-posed and additional information is
needed. Other information could also be introduced using
Bayes’ theorem. For instance, we may have data from
laboratory experiments that can help to constrain the ice
viscosity, or there may be additional information about basal
drag from experts in subglacial processes. We have tried to
define a very general prior that does not rely on such expert
knowledge, but if credible information from experts can be
obtained there is no reason it could not be introduced later
using Bayes’ theorem.

10. RETURNING TO THE SIMPLE SLAB PROBLEM
We now return to our simple slab problem. To give a
practical illustration of how a Bayesian estimation might
proceed, we will derive a posterior PDF for the basal drag
coefficient, �, and the viscosity, �, for our slab. For this
example we will make numerous simplifying assumptions,
some of which would not be applicable in real situations.
Nevertheless, many of the methods that we will use would
apply to more general problems.
Specifying the likelihood requires knowledge of the

accuracy of the various observations that are to be
introduced, and how the errors in those observations are
correlated. In a real inversion the estimation of the

likelihood function might be quite involved, but to illustrate
the methods we will assume Gaussian distributed errors in
the estimation of surface velocity, u�, and body forces, f�.
We then have the likelihood function

plðu�, f
�
ju, f ,Au,CuÞ ¼

exp �
1
2
ðHu � u�ÞTR� 1u ðHu� u�Þ �

1
2
ðf � f�ÞTR� 1f ðf � f�Þ

� �

,

ð36Þ

where Ru and Rf are the error covariances for the
observations u� and f�, respectively. Note that these are
distinct from the model error, C, that was introduced
previously. For our simple slab model we only have one
observation of surface velocity, so u� and Ru are scalars, and
H ¼ ½0, 0, 0, . . . , 0, 0, 1� simply selects the surface velocity,
so that Hu ¼ un.
The observational data, u� and f �, are not the only

information that we need to include. We also know that the
form of the system matrix is given by A ¼ XTDX, where D is
diagonal and the matrix X is known. To begin with, we
assume no information about the basal drag coefficient, �, or
viscosity, �, except that these are positive, so we treat the
matrix D as an unknown diagonal matrix with positive
elements Dd ¼ D11,D22, . . . ,Dnn½ � on its diagonal. To intro-
duce this information we apply a one-to-one coordinate
transformation, defined in Appendix B, from Au to

Y ¼ Dd,Msl
h i

and we recognize that our system matrix is a

special case of Eqns (B1) and (B2), where M is the identity
matrix. This corresponds to Msl ! 0, or, more precisely, all
elements of Msl bounded within the interval ½� �M, �M�,
defined by some vanishingly small quantity, �M. To trans-
form the PDF to the new coordinates we need to know the
Jacobian of the coordinate transform from Au to Y. This can
be found by explicitly writing out the dependence of Aij on
Mij, Dii and Xij and differentiating, then reordering the vari-
ables so that the Jacobian of this transformation is a triangular
matrix (e.g. Magnus and Neudecker, 1980; Mathai, 1997).
The determinant of this triangular matrix is then given by the
product of its diagonal elements, which results in

J 1j j ¼
@Au

@Y

�
�
�
�

�
�
�
� ¼ Xj jnþ1 Dj j

n� 1
2 : ð37Þ

This can be used to define the transformed PDF

pp2ðu, f ,Dd,Msl,Cuju�, f�Þ ¼ ppðu, f ,AuðYÞ,Cuju�, f
�
Þ J 1j j:

ð38Þ

Using the product rule, PðAjBÞPðBÞ ¼ PðA,BÞ, for condi-
tional probabilities of events A and B gives

pp3ðu, f ,Dd,CujMsl,u�, f�Þ ¼
pp2ðu, f ,Dd,Msl,Cuju�, f�Þ

pn3ðMslju�, f�Þ
,

ð39Þ

which provides the posterior PDF for unknown quantities,
given values for the data, u�, f�, and the known matrix
elements, Msl. As usual, the denominator,

pn3ðMslju�, f�Þ ¼
Z

U�F �D
þ
� C
þ
�

pp2ðu, f ,Dd,Msl,Cuju�, f�Þdu df dDd dCu,
ð40Þ

can be viewed as a normalizing constant. The notation Dþ�
refers to the restricted domain lD� < Dd

i < lD=�, with lD
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positive and finite, and the standard (Lebesgue) measure
dDd ¼

Q
i dD

d
i is used.

Many similar manipulations can be considered. For
instance, if we want to assume some particular model error,
Cu, or, more precisely, that all elements of Cu lie within
some small interval, ½� �C, �C�, of such an estimate for
vanishingly small �C, we could modify this to

pp4ðu, f ,DdjMsl,Cu, u�, f�Þ ¼
pp2ðu, f ,Dd,Msl,Cuju�, f�Þ

pn4ðMsl,Cuju�, f�Þ
, ð41Þ

where the normalizing constant is then

pn4ðMsl,Cuju�, f�Þ ¼
Z

U�F �D
þ
�

pp2ðu, f ,Dd,Msl,Cuju�, f�Þdudf dDd:
ð42Þ

If we are more interested in estimating the parameters Dd

than the forces and velocities within the slab, we can
integrate over u and f to compute the marginalized distri-
bution,

pp5ðDdjMsl,Cu,u�, f�Þ ¼
Z

U�F �

pp4ðu, f ,DdjMsl,Cu,u�, f�Þdudf :
ð43Þ

If we assume constant viscosity in the slab, we also know
that Dii ¼ D22 for i > 2. To use this information we make a
second transformation of coordinates of the form eDd ¼

D�,D�, �
� �

, with D� ¼ ��� 1 ¼ D11, D� ¼ ��� 2 ¼ D22,
and a set of residuals that will be assumed zero, given by
� ¼ D� 133 � D� 122

� �
, D� 144 � D� 122
� �

, . . . , D� 1nn � D� 122
� �� �

. There
is a subtlety in the choice of �: later we will explain why we
have taken residuals of inverses of diagonal elements, rather
than diagonal elements themselves. We use the Jacobian

J 2j j ¼
@Dd

@eDd

�
�
�
�
�

�
�
�
�
�
¼
Yn� 2

i¼1
�i þD� 1�
� �� 2

�
�
�
�
�

�
�
�
�
�
, ð44Þ

to give

pp6ðD�,D�, �jMsl,Cu,u�, f�Þ ¼

pp5ðDdðD�,D�, �ÞjMsl,Cu, u�, f�Þ J 2j j:
ð45Þ

Then the posterior PDF for D� and D�, assuming known �,
Msl, Cu, u� and f�, is

pp7ðD�,D�j�,Msl,Cu,u�, f�Þ ¼
pp6ðD�,D�, �jMsl,Cu,u�, f�Þ

pn7ð�jMsl,Cu,u�, f�Þ
,

ð46Þ

with

pn7ð�jMsl,Cu,u�, f�Þ ¼
Z lD=�

lD�

Z lD=�

lD�
pp6ðD�,D�, �jMsl,Cu,u�, f�ÞdD� dD�:

ð47Þ

Making substitutions from the equations above, we have

pp7ðD�,D�j�,Msl,Cu,u�, f�Þ ¼
R

U�F �
J 1j j J 2j jplðu�, f

�
ju, f ,Au,CuÞpðu, f ,Au,CuÞdudf

pn7ð�jMsl,Cu, u�, f�Þpn4ðMsl,Cuju�, f�Þpnðu�, f
�
Þ

:

ð48Þ

Reassuringly, this can be interpreted as an application of
Bayes’ rule (Eqn (1)), with parameters � ¼ D�,D�,u, f

� �
and

data x ¼ �,Msl,Cu,u�, f�
n o

, followed by marginalization

over u and f. The Jacobians, J 1j j and J 2j j, just apply the
changes of coordinates mentioned above, and the chain
rule, PðA,B,CÞ ¼ PðAjB,CÞPðBjCÞPðCÞ, can be used to
rewrite the denominator in the more usual form, pnðxÞ.
To evaluate the prior, pðu, f ,Au,CuÞ, we need the

determinant Aj j. For our simple problem X is triangular
and has a determinant given by the product of elements on
the leading diagonal. This gives Xj j ¼ 1, so Aj j is given by
Aj j ¼ XTDX

�
�

�
� ¼ Dj j Xj j2¼ Dj j. To impose that viscosity is

constant in the slab, we require that all elements of � are
bounded within some small interval, ½� ��, ���, for vanish-
ingly small ��. Then J 1j j, J 2j j and Aj j are approximated by

J 1j j ¼ Xj jnþ1 Dj j
n� 1
2 ¼ D�

�
�

�
�
ðn� 1Þ
2 D�

�
�
�
�
ðn� 1Þðn� 1Þ

2 ,

J 2j j ¼ D�

�
�
�
�2ðn� 1Þ,

Aj j ¼
Y

i
Dii

�
�
�
�
�

�
�
�
�
�
¼ D�Dðn� 1Þ� :

ð49Þ

If we take � to be a constant, independent of �, then taking
the limit �! 0þ in Eqn (48), produces the posterior PDF
over a restricted section of parameter space for which all Dii
are greater than some constant, lD�. Collecting all factors
that do not depend on D� or D� into one constant of
normalization, Z8, then gives

pp8ðD�,D�j�,Msl,Cu,u�, f�Þ ¼ lim�!0þpp7
¼ Z� 18 D� 2� D� 2� IðD�,D�Þ,

ð50Þ

Z8 ¼
Z 1

lD�

Z 1

lD�
D� 2� D� 2� IðD�,D�Þ dD� dD�, ð51Þ

where the integral, IðD�,D�Þ, is

IðD�,D�Þ ¼
Z

UF

e �
1
2 ðHu� u�ÞTR� 1u ðHu� u�Þ� 12 ðf � f

�
Þ
TR� 1f ðf � f

�
Þ� 12 ðu� A

� 1fÞTC� 1ðu� A� 1fÞ½ �

dudf :

ð52Þ

This evaluates to

IðD�,D�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þ2n Ruj j Rfj j Cj j
C2j j

s

exp �
1
2

u� � HA� 1f�
� �T

C� 12 u� � HA� 1f�
� �

� �

,

ð53Þ

where � written without arguments represents the constant,
and

C2 ¼ Ru þHCHT þHA� 1RfA� 1HT
� �

: ð54Þ

For our simple problem, the dependence of the matrix, A� 1,
on D� and D� can be computed explicitly as

A� 1 ¼ X� 1D� 1X� T,

X� 1¼

1
1 1
1 1 1

: :

1 1 : : 1
1 1 : : 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, D� 1¼

D� 1�
D� 1�

:

:

D� 1�
D� 1�

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

,

ð55Þ
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so Eqns (50) and (51), with substitutions from Eqns (53–55),
provide the posterior PDF for D� and D�.
For this simple example we have assumed that viscosity

in the slab is constant, so elements of � are bounded close to
zero, and that A ¼ XTDX, with X and D given by Eqn (11).
We have also assumed that the model error, C, is known,
that the thickness, h, is known and that observational data
for velocity, u�, and forces, f�, along with their error
covariances, Ru and Rf, are available. In the limit of
vanishing model error and vanishing error in estimation of
forces, such that HCHT þHA� 1RfA� 1HT ¼ 0, we can make
the further simplifying assumption, C2 ¼ Ru. Then the
integral defined by Eqn (51) can be evaluated in the limit
� ! 0þ. In that case, the posterior PDF defined by
pp9 ¼ lim�!0þpp8 can be normalized, resulting in

pp9ðD�,D�j�,Msl,Cu, u�, f�Þ ¼ lim
�!0þ

pp8

¼ Z� 19 D� 2� D� 2� exp �
1
2

u� � HA� 1f�
� �T

R� 1u u� � HA� 1f�
� �

� �

,

ð56Þ

with

Z9 ¼ lim
�!0þ

Z 1

lD�

Z 1

lD�
D� 2� D� 2�

exp �
1
2

u� � HA� 1f�
� �T

R� 1u u� � HA� 1f�
� �

� �

dD� dD�,

ð57Þ

¼
2Ru

ðn � 1Þðn � 2Þ2ð�g sin�Þ2
ffiffiffi
�
p

u�
ffiffiffiffiffiffiffiffi
2Ru
p erf

u�
ffiffiffiffiffiffiffiffi
2Ru
p

� �

þ 1
� �

þ exp �
1
2
u�R� 1u u�

� �� �

: ð58Þ

Figure 2 shows this posterior PDF for basal drag co-
efficient, �, and viscosity, �, calculated according to Eqn (56).
The plots show results for non-dimensional quantities,
eu ¼ u=u�, ef ¼ f=ð�g sin�Þ, ez ¼ z=h, e� ¼ �u�=ð�gh sin�Þ
¼ D�u�=ð�gðn � 1Þ sin�Þ, e� ¼ �u�=ð�gh2 sin�Þ ¼ D�u�=
½�gðn � 1Þ2 sin��. Colors show the PDF normalized by the
maximum value. In this example we set n ¼ 1000 and
C2 ¼ Ru ¼ ð0:05u�Þ2, which corresponds to 5% error in
velocity, perfect knowledge of forces, f�, and negligible
model error.
Figure 3 shows multiple profiles of non-dimensional

velocity, eu, as a function of non-dimensional depth, ez,
overlain on the same plot. Different curves are plotted for
each combination of non-dimensional basal drag coeffi-
cient, e�, and viscosity, e�. Each curve is colored according to
the posterior probability for the particular combination of
non-dimensional basal drag coefficient, e�, and viscosity, e�,
that it represents. Profiles for higher probabilities are plotted
on top of those with lower probabilities. The profile
corresponding to values of e� and e� that maximize the
posterior PDF is shown as a white dashed curve.
Interestingly, even though we did not introduce any

information about the viscosity of the slab or the basal drag
coefficient, the posterior PDF shown in Figure 2 has a well-
defined maximum. Figure 3 shows that the parameter values
that maximize the posterior PDF correspond to a particular
velocity profile through the slab. As discussed by Jaynes
(2003), the maximum entropy distribution can be interpreted
as the distribution that can be achieved in the greatest

number of ways, subject to the imposed constraints, so we
might perhaps expect this velocity profile to be realized with
highest probability in a natural system, if viscosity is constant
in the slab and the symmetries encoded by the transformation
group are respected by the physical system, but there are
otherwise no constraints on the values taken by the viscosity
and basal drag coefficient. However, in a more realistic
inversion, we would probably want to introduce information
about the viscosity derived from laboratory experiments. If
the uncertainty in viscosity can be estimated, so that a
likelihood function can be derived, the information could be
introduced using Bayes’ theorem. Figures 4 and 5 show the
effect of weighting the posterior PDF shown in Figure 2 by a

Gaussian likelihood function, exp � 1
2 ðe� � 5Þ

2
=0:25

h i
,

which corresponds to an estimate e� ¼ 5� 0:5. Again, there
is a preferred velocity profile, but now the most likely
parameter values correspond to a velocity profile that is

Fig. 2. The posterior PDF for different values of non-dimensional
basal drag coefficient, e�, and viscosity, e�.

lim

lim

Fig. 3.Multiple profiles of non-dimensional velocity, eu, overlain on
the same plot, each colored according to the posterior probability
for the particular combination of non-dimensional basal drag
coefficient, e�, and viscosity, e�, that it represents. The profile
corresponding to values of e� and e� that maximize the posterior PDF
is shown as a white dashed curve.
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almost uniform with depth. An alternative approach would
be to require that the expected value of the viscosity is equal
to the laboratory-derived value, using a constraint of the form
described by Eqn (3). Although we have concentrated here
on a simple linear rheology, similar constraints could be
applied using values of viscosity predicted by Glen’s flow
law, or some other rheology.

11. DISCUSSION
More realistic situations than a simple slab of uniform
viscosity can obviously be imagined, but in this paper we
wanted to illustrate the main features of the methods without
introducing too many complications into the model. We
have illustrated how manipulations of the PDF can be made
using coordinate transformations, the product rule, margin-
alization and Bayes’ theorem. For more general problems,
some of the details would be different, but many aspects of
the approach outlined above could still be applied.
To make our example problem as simple as possible we

have made a number of assumptions that could be
questioned. In addition to the observational constraints,
we have imposed constraints on �, to make the viscosity
uniform within the slab, and onMsl, to impose the particular
structure of our very simple finite-difference model. We
have also assumed that Cu and Rf can be made arbitrarily
small, to impose the assumption of negligible model error
and negligible errors in the estimation of forces. Of course,
in a more realistic situation, the viscosity would not be
constant, the model structure would be more complicated
and it would be difficult to justify either the perfect model
assumption or perfect knowledge of forces. As an alternative
to neglecting model error, we could perhaps marginalize
over model error, C, treating it as a nuisance parameter, or
use some other estimate for model error, based on the
approximate magnitude of neglected terms in an asymptotic
expansion describing the model. It would also be worth
trying to relax the unrealistic assumption that we make
negligible error in estimation of forces, f�.
An important consideration in our example is that we

simplified the PDF to a function of only two parameters so
that it could be plotted. To do this, we imposed the

constraints � ! 0, Msl ! 0 and C ! 0þ. However, these
constraints do not provide sufficient information to provide a
well-defined posterior PDF unless we also describe how
these limits are approached. This is an example of the Borel–
Kolmogorov paradox (e.g. Jaynes, 2003). The important point
to consider is that conditional probabilities, e.g. pðAjBÞ, can
only be defined unambiguously with respect to an event B
that has non-zero probability, so we must consider a
limiting process, such as the requirement specified above
that all elements of � ¼ D� 133 � D� 122

� �
, D� 144 � D� 122
� �

, . . . ,
�

D� 1nn � D� 122
� �

g are bounded within some small interval,
½� ��, ���, for vanishingly small ��. Perhaps surprisingly, there
are many different ways to represent uniform viscosity in
the slab, and these can result in different posterior PDFs.
Instead of using �, we could have represented constant
viscosity by requiring that all elements of e� ¼ D33 � D22ð Þ,f

D44 � D22ð Þ, . . . , Dnn � D22ð Þg are bounded within some

small interval � �e�, �e�
h i

for vanishingly small �e�. Then we

would have obtained a different Jacobian, ð J 2j j ¼ 1Þ,
instead of Eqn (44), and hence a different posterior PDF.
Similarly, a different coordinate transformation could have
been used in place of Eqns (B1) and (B2).
In situations where different coordinates, such as � or e�,

can be used it can be difficult to know which option should
apply. In our example there are additional desirable
symmetries that can perhaps help. Allowing for a factor of
CAj j

� 1 in Eqn (21) that originates from the final two terms in
Eqn (19) and provides scale-invariance, our use of Eqns (21),
(37), (B1) and (B2) is consistent with treating diagonal
elements of D, which are known to be positive, as scale
parameters, and elements of Msl, which are known to be
bounded within ½� 1, 1�, as location parameters in the
terminology of Jeffreys (1961) and Jaynes (2003). Then, the
advantage of using � over e� is that we obtain a PDF that does
not depend upon n in the limit n!1. This means the PDF
we obtain converges to a well-defined function as we
increase the resolution of the finite-difference model. It still
seems possible that some other choice of variables might also
satisfy this symmetry, so for now we make no claim that the
particular posterior PDF that we have obtained is unique in

Fig. 4. As Figure 2, but with a constraint on non-dimensional
viscosity, e� ¼ 5� 0:5.

Fig. 5. As Figure 3, but with a constraint on non-dimensional
viscosity, e� ¼ 5� 0:5.
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satisfying all of the symmetries of the problem that we have
identified. If it turns out not to be unique, the question of
whether there are other symmetries that we have yet to take
into account would arise. Each symmetry that we can
identify places constraints on the prior, but there is no
guarantee that it can be specified uniquely.
Although we advocate the Bayesian approach to inver-

sion, there may be problems for which it is too expensive to
derive the posterior PDF in full. To consider how maximiz-
ing the posterior PDF relates to minimization of a cost
function, we can take the negative of the logarithm of
Eqn (56). We obtain

Jtotal ¼
1
2

u� � HA� 1f�
� �T

R� 1u u� � HA� 1f�
� �

þ 2 ln� þ 2 ln � þ J0,

ð59Þ

where J0 is a constant offset. Since HA� 1f� is a model-based
estimate of the surface velocity, this is a quadratic misfit
function, defined by the negative of the log-likelihood
function, with an additional term, Jreg ¼ 2ln� þ 2ln �. This
term appears in place of the more conventional Tikhonov
regularization terms, Jreg, mentioned in Section 3. In this
particular example, for which we have assumed we can
neglect model error, there are no arbitrary coefficients �reg,
so there is no requirement for an L-curve analysis to fix the
degree of regularization applied. The general case, where
model error cannot be neglected, would not be so
straightforward.
The terms 2ln� and 2ln � penalize large values of basal

drag, �, and viscosity, �. This provides qualitative support to
the algorithms that are commonly used in glaciological
inversions (e.g. Morlighem and others, 2013; Joughin and
others, 2014; Petra and others, 2014; Arthern and others,
2015). However, most previous approaches have not
exploited the symmetries of the model in the specification
of their regularization, or in the characterization of the prior
PDF, and therefore are effectively introducing additional
information about the subglacial environment into the
inversion. In itself this does not represent a problem, if
some reasoned explanation can be provided for where this
information has come from, but our poor knowledge of the
subglacial environment perhaps makes it difficult to furnish
a very convincing explanation. Comparing many diverse
approaches to the inversion (e.g. Favier and others, 2014)
and assessing the consequences for the simulation of the
future behavior of the ice sheet would offer one way to
explore the consequences for predictions of sea level.
It will be interesting to explore how these methods apply

in models with a greater number of spatial dimensions than
the simple slab problem. The prior determined by Eqn (33) is
very general, and could be used for any discretized system
of equations with a symmetric positive-definite matrix. As an
example, a more complicated three-dimensional model of
Antarctica can also be written in the form A ¼ XTDX, with X
known and D a diagonal matrix that depends upon viscosity
and basal drag parameters (Arthern and others, 2015). In
that case, the matrices X and D are different from the simple
model considered above, and a different coordinate trans-
formation would be needed to separate out the known and
unknown parts of the matrix. Nevertheless, it seems likely
that very similar methods could be used to provide a
posterior PDF for the viscosity and basal drag in a realistic
geographical setting.

Some of the mathematical aspects of our approach could
be developed further. We have considered a discretized
model from the outset, but the equivalent problem for
continuous linear differential operators could also be investi-
gated. Other avenues open to exploration include the
application of similar methods to a nonlinear ice rheology,
further characterization of group orbits produced as the
transformation group acts on the parameter space, math-
ematical consideration of the actual length scales of basal
drag that are important in the ice-sheet prediction problem,
further investigation of sensitivity to the limiting process that
is used to define the restricted parameter space in more
general cases than considered here, and investigations that
relate the prior defined here to other approaches (e.g.
Jeffreys, 1961; Kass and Wasserman, 1996; Berger, 2006).

12. CONCLUSIONS
In this paper, we have described an exploratory study to
investigate whether transformation group priors and the
maximization of relative entropy might have a role to play in
glaciological inversions for viscosity and basal drag. These
inversions are used to initialize forecasts of the ice sheets,
and their formulation in Bayesian terms is an essential
prerequisite to probabilistic forecasts of the sea-level
contribution from Greenland and Antarctica.
Our initial findings are that adopting a Bayesian approach

that uses transformation group priors and the maximization
of relative entropy does add complexity to the problem.
Nevertheless, having investigated a very general problem
with a model that is based upon a symmetric positive-definite
matrix, and having applied this to a highly simplified
problem for a slab of ice flowing down an inclined plane,
it does seem that these methods could be used to initialize
ice-sheet models. Rather than an ad hoc and subjective
approach to regularization of the glaciological inverse
problem, this would provide a more formulaic approach to
the definition of priors for the parameters.
The great advantage of the Bayesian approach is that it

allows the complete probability distribution of the model
parameters to be evaluated. This could be of considerable
value, either in setting up ensembles for Monte Carlo
simulations of the future behavior of an ice sheet, or in more
formal calculations of the probability of various possible
contributions to sea level that might come from the ice
sheets of Greenland and Antarctica.
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APPENDIX A: THE TRANSFORMATION GROUP
Mathematically, a group is a set of elements (e.g. A, B, C,
etc.) that also has an operation � that takes two elements, A
and B, of the set and relates them to a third element, P. To be
a group the set and the operation must together satisfy
certain conditions: (1) the operation must be closed, so that
the product P ¼ A� B always lies within the set; (2) the
operation must be associative, so that for any A, B and C in
the set ðA� BÞ � C ¼ A� ðB� CÞ; (3) the set must contain
an identity element, I, such that A� I ¼ A for any element A;
(4) each element of the set must have an inverse A� 1, such
that A� A� 1 ¼ I.
Varying the parameter � within the set of orthogonal

matrices defines the set of possible transformations, T1 �ð Þ,
that could be applied. For transformation groups the
operation � represents successive application of two
transformations from the set, so that T1 �2ð Þ � T1 �1ð Þ

represents the transformation T1 �1ð Þ followed by the
transformation T1 �2ð Þ. It is then straightforward to show
that T1 �ð Þ, together with this operation, defines a group.
Closure follows, since

T1 �2ð Þ � T1 �1ð Þ ¼ T1 �2�1ð Þ, ðA1Þ

and �2�1 is orthogonal. Associativity follows from associa-
tivity of matrix multiplication:

T1 �3ð Þ � ðT1 �2ð Þ � T1 �1ð ÞÞ ¼ T1 �3ð�2�1Þð Þ ¼

T1 ð�3�2Þ�1ð Þ ¼ ðT1 �3ð Þ � T1 �2ð ÞÞ � T1 �1ð Þ:
ðA2Þ
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The identity is IT1 ¼T1 lð Þ, where l is the identity matrix. The
inverse is T1 �T

� �
, since T1 �T

� �
� T1 �ð Þ ¼ IT1.

Similar considerations can be used to show that when �
represents successive application of the transformations,
(T2ða,bÞ, with �), (T3ðrÞ, with �) and (T4ðqÞ, with �) also
define transformation groups. For the transformation group
defined by T2ða,bÞ, closure follows from T2ða1,b1Þ�
T2ða2,b2Þ ¼ T2ða1a2,b1b2Þ, associativity follows from that
of multiplication, the identity is IT2 ¼T2ð1, 1Þ and the
inverse is T2ð1=a, 1=bÞ. For T3(r), closure follows from
T3ðr1Þ � T3ðr2Þ ¼ T2ðr1 þ r2Þ, associativity follows from
that of addition, the identity is IT3 ¼ T3(0) and the inverse
is T3(–r). The transformation T4(1) is its own inverse, so
T4(2) = T4(1)� T4(1) is the identity, IT4. The set composed of
T4(1) and T4(2), along with �, defines a cyclic trans-
formation group. For T4(q), closure and associativity
ðA� BÞ � C ¼ A� ðB� CÞ can be verified trivially for all
possible combinations of A, B and C that are either T4(1) or
the identity, IT4 (i.e. T4(2)).
The four groups (T1 �ð Þ, with�), (T2ða,bÞ, with �), (T3(r),

with �) and (T4ðqÞ, with �) can be combined by taking their
direct product. The direct product of groups is defined so
that the sets of transformations are combined using their
Cartesian product, and operations are applied component
by component: a simple example of a direct product for two
groups (fA1,B1g with �1) and (fC2,D2g with �2) is the
group composed of the set of ordered pairs f(A1,C2),
(A1,D2) , ( B1,C2) , ( B1,D2) g, w i t h t h e o p e r a t i o n
(A1,C2Þ � ðB1,D2Þ ¼ ðA1 �1 B1,C2 �2 D2).

APPENDIX B: THE RESTRICTED PARAMETER SPACE
We define the restricted domains U� ¼ fu 2 ½� lu=�, lu=��ng,
F � ¼ ff 2 ½� lf=�, lf=��

n
g from the Cartesian product of n

finite intervals, with lu and lf being positive constants. As
�! 0þ, U� and F � approach the domains U and F ,
respectively. To introduce a similar restricted domain, Aþ� ,
for the matrix A it is useful to first consider a transformation
of coordinates from Au. If X is an arbitrary invertible square
matrix, such as the one defined by Eqn (11), any symmetric
positive-definite matrix, A, can be written as

A ¼ XTWX, ðB1Þ

withW symmetric positive-definite. Let D ¼ diagðWÞ be the
diagonal matrix composed of the diagonal elements of W.

All diagonal elements Dd ¼ D11,D22, . . . ,Dnnf g are posi-
tive, since W is symmetric positive-definite, so W can be
further decomposed as

W ¼ D
1
2MD

1
2 , ðB2Þ

where M has diagonal elements Mii ¼ 1. Our simple
example system, defined by Eqn (11), corresponds to the
special case where M is the identity. More generally, since
W is symmetric positive-definite, M must also be symmetric
positive-definite. A necessary (but not sufficient) condition
for this is that the off-diagonal elements lie in the range
� 1 < Mi, j6¼i < 1. This implies that Msl, the elements of M
that are strictly below the leading diagonal, lie within

M¼ fMsl2 ð� 1, 1Þnðn� 1Þ=2, such that MðMslÞ2 PðnÞg, ðB3Þ

where MðMslÞ has diagonal elements Mii ¼ 1, elements Msl

strictly below the leading diagonal and elements above the
leading diagonal determined by the fact thatM is symmetric.
For any particular invertible matrix, X, there is a one-to-

one coordinate transform from Au to Y ¼ Dd,Msl
h i

. In our

restricted parameter space we require that diagonal ele-
ments of D lie in the range Dþ� ¼ fD

d 2 ½lD�, lD=��ng with lD
finite and positive. For now, we will leave � as a general
parameter that controls the smallest values of Dii. Our
restricted domain is then

Aþ� ¼ Au 2 únðnþ1Þ=2, such that AðAuÞ ¼ XTD
1
2MD

1
2X

n
,

with Msl 2 M and Dd 2 Dþ� g:

ðB4Þ

We can derive a restricted domain, Cþ� for C
u, in a similar

way as

Cþ� ¼ Cu 2 únðnþ1Þ=2, such that CðCuÞ ¼ V
1
2PV

1
2 ,

n

with Psl 2Mp and Vd 2 Vþ� g,
ðB5Þ

where VðVdÞ is a diagonal matrix of variances Vd, restricted
to the domain Vþ� ¼ fV

d 2 ½lV�, lV=��ng with lV finite and
positive. The symmetric positive-definite correlation matrix,
PðPslÞ, has diagonal elements Pii ¼ 1 and elements Psl

strictly below the diagonal. The set Mp ¼M is defined in
the same way as Eqn (B3), but for Psl rather than Msl. The
restricted parameter space is derived from the Cartesian
product �� ¼ U� �F � �A

þ
� � C

þ
� .
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