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Abstract Process-based grassland models (PBMs)

simulate growth and development of vegetation over

time. The models tend to have a large number of

parameters that represent properties of the plants. To

simulate different cultivars of the same species,

different parameter values are required. Parameter

differences may be interpreted as genetic variation for

plant traits. Despite this natural connection between

PBMs and plant genetics, there are only few examples

of successful use of PBMs in plant breeding. Here we

present a new procedure by which PBMs can help

design ideotypes, i.e. virtual cultivars that optimally

combine properties of existing cultivars. Ideotypes

constitute selection targets for breeding. The proce-

dure consists of four steps: (1) Bayesian calibration of

model parameters using data from cultivar trials, (2)

Estimating genetic variation for parameters from the

combination of cultivar-specific calibrated parameter

distributions, (3) Identifying parameter combinations

that meet breeding objectives, (4) Translating model

results to practice, i.e. interpreting parameters in terms

of practical selection criteria. We show an application

of the procedure to timothy (Phleum pratense L.) as

grown in different regions of Norway.
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Terminology

This paper aims to bridge two different plant disci-

plines, i.e. process-based modelling and breeding, so

terms need to be defined. In modelling, we distinguish

between plant parameters, which are genotype-speci-

fic constants, and output variables, which are plant

characteristics that are predicted by the model and that

vary between environments. Process-based models

(PBMs) are dynamic models that represent physio-

logical and morphological processes in plants, and

their interaction with the environment. Simulation is

the process of specifying environment and parameter

values followed by running the PBM to calculate the

output variables. In plant breeding, traits are measur-

able properties of plants that arise from the interaction

between the genotype and its environment (G 9 E).

The influence of the environment may be large for

some traits (e.g. yield) or small (e.g. flower size). A

quantitative trait is a property measured on a
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continuum scale that depends on many genes. An

ideotype (Donald 1968) is a collection of traits, not

necessarily realised yet by any existing cultivar, that a

breeder believes is leading to high performance.

Performance is generally measured by a small number

of performance traits targeted by the breeder. An

example would be high average yield combined with

high yield stability. This paper studies the relation-

ships between plant parameters and output variables

on the one hand, and plant traits on the other.

Introduction

Plant breeding and process-based modelling

In many studies of plants, an effort is made to relate

plant- or vegetation-level characteristics, such as

growth rate or yield, to underlying physiological and

morphological properties. The objective is to explain

or predict how plants respond to their environment, or

to determine how plants can be improved by breeding.

Nearly five decades ago, Donald (1968) introduced the

concept of the ‘ideotype’, defined as a set of plant traits

that, if brought together in one new genotype, would

lead to high performance. He used the example of

breeding for high-yielding wheat cultivars that would

pose low demands on external inputs. The wheat

ideotype traits identified by Donald (1968) were

mainly morphological, such as erect leaves and low

stem height, but he suggested that they would

contribute to improved crop physiology, e.g. high rate

of photosynthesis per m2 ground area. The idea behind

ideotype-design was that it would provide the breeder

with an ultimate target for selection, thereby replacing

the trial-and-error method of stepwise increasing plant

performance.

Ideotype breeding thus focuses on multiple traits

simultaneously. The method differs from other mul-

tivariate approaches in plant breeding, such as index

selection, which tend to focus on the performance

traits and not on the underlying plant morphology and

physiology. Focusing directly on performance simpli-

fies the problem statistically, as there are fewer traits to

consider, but performance traits are difficult to mea-

sure reliably in other conditions than full-scale field

tests.

Despite Donald’s confidence that ‘‘eventually most

plant breeding may be based on ideotypes’’, the

approach has not been widely used in practice (Zhang

et al. 1999). Application is hampered by the fact that

we have only limited information about how plant

performance depends on the underlying physiology

and morphology of the plants, and information about

genetic variation for these underlying characteristics is

also limited (Marshall 1991).

Process-based models (PBMs) of crops and other

managed ecosystems simulate the growth of plants

based on a representation of the underlying morpho-

logical and physiological processes and the interaction

of the plants with their growing environment. Every

represented process requires at least one parameter, so

PBMs tend to be more parameter-rich than, for

example, statistical yield models or formulas for index

selection. Parameters representing the environment,

such as soil water retention characteristics and fertil-

ity, are site-specific parameters that need to be

changed whenever the model is applied to a new site.

The plant parameters governing physiology and

morphology, on the other hand, are generally treated

as cultivar- or species-specific constants, sometimes

referred to as ‘‘genetic coefficients’’ (Yin et al. 2004).

PBMs can speed up assessment of the value of a

measured trait, or a specific combination of traits, by

predicting the extent to which a measured genetic

difference in a crop character will affect plant

performance in different environments. Many more

years and environments can be simulated than can

feasibly be included in trials (Cooper et al. 2014). In

view of these characteristics, PBMs have been

considered as possible tools for the definition of

selection criteria for breeding.

An early example of such use of PBMs was the

work by Landivar et al. (1983), who used a cotton

model to examine the impact of changing leaf

properties, including photosynthesis, on fibre yield,

but the work was not coupled to a breeding pro-

gramme. Van Oijen (1992) used a potato model to

identify key components of resistance to late blight,

which were later targeted successfully by Colon et al.

(1995) in selection for parental line breeding material.

This was a simple application, and not an example of

model-supported ideotype design, as only five resis-

tance components were investigated and no attempt

was made to optimise any of the other plant param-

eters. In a more comprehensive study, Semenov et al.

(2014) used a PBM to define wheat ideotypes for

future climate conditions in Europe based on an
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optimization procedure including nine plant parame-

ters. The other plant parameters in the model were left

out of the study as they were considered less promising

for yield improvement based on reasoning not pre-

sented in the paper. Further examples of PBM-

supported ideotype design, specifically for rice, can

be found in the volume edited by Aggarwal et al.

(1995)—again without apparent impact on actual

breeding practice.

Overall, the role of PBMs in plant breeding seems

to have remained small for various reasons (Messina

et al. 2009). There are several requirements to be met

before a PBM can be used effectively in plant

breeding. First of all, the PBM needs to be shown to

provide realistic simulations of the crop for the

intended growing environments (Tardieu 2003).

Secondly, the large number of model parameters all

need to be quantified, as does the available genetic

variation for the parameters. Parameter optimisation

should not target just one trait but be multivariate.

Finally, results of the analysis in terms of model

parameters need to be translated into practical selec-

tion criteria that can be used in breeding programmes.

This paper aims to contribute to addressing these

problems.

Cultivar-specific parameter estimation

The parameterisation of PBMs tends to rely on direct

measurement and literature reviews (Breuer et al.

2003; Levy et al. 2004), including meta-analysis

(Medlyn et al. 1999). The literature studies often show

large variation for each examined parameter, causing

large uncertainty in model outputs (Levy et al. 2004).

In recent years, alternative methods for parameter

estimation for PBMs have been developed that are

based on representing uncertainty about parameter

values as probability distributions (Kennedy and

O’Hagan 2001; Van Oijen et al. 2005b; Fox et al.

2009; Ogle 2009; Wang et al. 2009). The most

generally applicable of these methods is Bayesian

calibration (Kennedy and O’Hagan 2001). This is

based on Bayes’ theorem, according to which a prior

distribution for the model’s parameters can be updated

when new data come in, by multiplying the prior with

the likelihood function for the data. Bayesian calibra-

tion of PBMs relies on drawing a representative

sample of parameter vectors from the parameter

distribution, and this is generally carried out using

Markov Chain Monte Carlo techniques (MCMC;

Metropolis et al. 1953). Bayesian calibration using

MCMC has been applied to models for Norway spruce

(Van Oijen et al. 2005b), N2O-emitting fields of

rapeseed, winter wheat and maize (Lehuger et al.

2009) and the dynamics of soil under grassland during

winter (Thorsen et al. 2010). MCMC not only allows

the use of complex models, such as PBMs, that are not

analytically solvable, but it also allows uncertainties

about parameters and measurements to be represented

by the most appropriate probability distributions; there

is no need to use standard distributions such as the

multivariate normal. As far as we are aware, Bayesian

calibration has not yet been used to quantify differ-

ences in PBM parameter values between cultivars of

the same species.

Quantifying genetic variation for plant parameters

Yin et al. (1999, 2000, 2004) showed that in some

cases, such as for the specific leaf area of barley, it is

possible to relate parameters or output variables of

PBMs to the genome, usually in the form of polygenic

traits corresponding to multiple QTLs (Quantitative

Trait Loci, parts of DNA that co-vary with a quanti-

tative trait). Similarly, Reymond et al. (2003) were

able to relate QTLs to the parameters that govern

response of maize leaf expansion to temperature and

water status, and Dong et al. (2012) developed a

regulatory network model for over 30 genes control-

ling flowering time in maize. These various studies

were largely based on recombinant inbred lines, thus

simplifying the genetic differences between geno-

types, and the variety of environmental conditions was

also limited. Generally GxE interaction will be more

complex (Tardieu 2003; Cooper et al. 2014), hamper-

ing the calculation of parameter values as functions of

QTLs. The effort to explicitly link model parameters

to the genome remains an active area of research

(Chenu et al. 2009; Hammer et al. 2006; Tardieu 2003;

Xu et al. 2011; Zheng et al. 2013).

Because direct measurement of the genetic basis of

model parameters is difficult, we may use calibration

methods instead, as in the present work. When model

calibration leads to highly divergent parameter values

for different cultivars, genetic variation for the

parameters can be considered to be wide. However,

beyond that general statement, there seem to be no

formal methods for estimating genetic variation for
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plant parameters in PBMs. This stands in contrast to

the use of classical mixed models for inferring genetic

parameters from selection experiments, which origi-

nated in the animal breeding literature of the 1950s

(Sorensen 2009), was later introduced in plant breed-

ing (Piepho et al. 2008) and for which both least

squares and MCMC estimation methods are in use

(Sorensen et al. 1994).

Deriving an ideotype in terms of model parameters

Once genetic variation for parameters has been

estimated, the next problem is how to identify the

ideotype, i.e. the optimal combination of plant

parameter values from within the range of genetic

variation. When PBMs are used, this will be evaluated

on the basis of model outputs that correspond to plant

performance traits of interest to the breeder, who must

decide how to evaluate trade-offs between different

performance traits. A strength of PBMs is that they

demonstrate the existence of these trade-offs as the

inevitable consequence of limited availability of

resources for growth, and feedbacks between different

processes (Van Oijen et al. 2004); the trade-offs do not

need to be detected by analysing data on large numbers

of genotypes.

In terms of modelling, the main problem may be

that the dimensionality of trait space is high, even if we

restrict ourselves to those traits that are represented by

a plant parameter in the PBM. Here we can take

advantage of MCMC methods, mentioned above,

which are designed to sample efficiently from a high-

dimensional probability distribution.

Translating results into practical selection criteria

An ideotype that has been determined using a PBM is

defined in terms of model parameter values. However,

not every model parameter is an easily measured

quantity. The next step will therefore be to translate

the model parameters into traits that can be measured

on real plants. This design of effective selection

criteria for use in practical breeding will require the

input from breeders who can decide which measure-

ments can be carried out at low cost and at sufficient

speed and accuracy. This step goes beyond what a

PBM can deliver.

Toward a Bayesian procedure for PBM-assisted

ideotyping

In the present paper, we propose the following four-

step procedure for PBM-assisted ideotype design in

plant breeding:

1. Parameterise the model for different genotypes by

means of Bayesian Calibration (BC), using infor-

mation from variety trials as input.

2. Combine the genotype-specific parameter distri-

butions into one distribution representing the

overall genetic variation for plant parameters.

3. Limit the genetic variation distribution using the

breeding objectives as constraints, and derive the

ideotype.

4. Translate the constrained parameter distribution

into multivariate selection criteria that can be used

by breeders.

This procedure is intended to be generally applica-

ble to any crop for which a sufficiently accurate PBM

is available. We shall give an example for timothy

(Phleum pratense L.), a grass species widely grown at

higher latitudes. For this crop, the model BASGRA is

available which simulates the year-round growth and

survival of timothy plants for a range of climatic

conditions (Höglind et al. 2001; Van Oijen et al.

2005a; Thorsen et al. 2010; Höglind et al. in prep.).

There has been some study of the variation of

BASGRA parameter values (Höglind et al. 2001;

Thorsen et al. 2010), but knowledge is still limited and

there remains a need for cultivar-specific calibration of

the model. Bayesian calibration of BASGRA for two

timothy cultivars will be part of the present paper as

the first step of the proposed ideotyping procedure.

In the next section, we describe how the four-step

procedure that we outlined above was implemented

for the timothy test-case, and we provide details of the

calibration data and the BASGRA model.

Materials and methods

Data

To calibrate the model, data were used from field

experiments on timothy (Phleum pratense L.) that had

been carried out on different locations in Norway

(Table 1), covering the major agricultural grassland
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areas in the western coastal regions and the eastern

lowlands. Experiments (Exp.) 1–3 included two

cultivars, Grindstad and Engmo, whereas Exp. 4 only

included Grindstad. More details on Exp. 1 can be

found in Höglind et al. (2006), on Exp. 2 in Höglind

et al. (2010) and on Exp. 4 in Höglind et al. (2005).

Exp. 3 contains previously unpublished material

(Sunde 1996). Grindstad and Engmo are the only

timothy cultivars for which a wide range of variables

have been measured in Norwegian field trials, making

them suitable for process-based modelling.

Exp. 1 was carried out at three locations: Fureneset,

Holt and Kvithamar (Table 1). From November 2005

to March 2006, on five occasions per location, shoot

dry weight, leaf area index (LAI), specific leaf area

(SLA), tiller density, content of water soluble carbo-

hydrates (WSC), and frost tolerance (LT50) were

determined. In addition, tiller density and DM yield

(total dry weight of herbage above a stubble height of

5 cm) was determined in June 2006.

Exp. 2 was carried out at the same locations as Exp.

1 (Table 1). From November 2006 to March 2007, on

three occasions per location, shoot biomass, tiller

density, WSC, and LT50 were determined. In addi-

tion, tiller density was determined at one location in

June 2007. The swards were cut once to twice in the

growing season 2006, and twice to three times in the

growing season 2007, and the DM yield of each cut

was determined.

Exp. 3 was carried out at Apelsvoll (Table 1).

Sampling was carried out from August 1990 to April

1991, on 13–15 occasions depending on cultivar and

plant variable to determine WSC and LT50.

Exp. 4 was carried out at Særheim (Table 1). There

were two fields. The first field was established in 1999,

with measurements taken in 2000. The other field was

established in 2000, with measurements taken in 2001

and 2002. Two harvesting regimes were compared in

each field. One harvesting regime consisted of an early

first cut, and the other of a late first cut, each first cut

followed by a second cut after 6–8 weeks of regrowth.

From April to August each year, with sampling

intervals of 7–14 days, shoot biomass, LAI, SLA,

tiller density, WSC, leaf appearance rate, number of

elongating leaves per tiller, and leaf elongation rate

per actively growing leaf were determined.

All experimental locations were equipped with

automatic weather stations, located within 500 m from

the experimental field, which were connected to the

weather database of NIBIO. For the calibration of the

model, daily weather data were downloaded from the

weather database of NIBIO.

BASGRA: a process-based model for managed

grasslands

BASGRA is a process-based model (PBM) for grass-

land that was derived from an earlier model called

LINGRA (Schapendonk et al. 1998). General model

characteristics remain unchanged: leaf-area determi-

nes light interception which drives carbon assimilation

through a water-status dependent light-use efficiency,

and carbon allocation depends on the balance between

carbon sources (assimilation and reserve mobilisation)

and sinks (leaf growth, root growth, tillering). To

make LINGRA usable for studying climate change

impacts, the effects of CO2 and temperature on the

light-use efficiency of the sward were included by

Rodriguez et al. (1999). The model was originally

used for perennial ryegrass (Lolium perenne L.), but to

Table 1 Sites with timothy experiments

Location Experiments Latitude Longitude Elevation (m) Climatic means, 1995–2012

Temperature (�C) Precipitation (mm year-1)

Apelsvoll 3 60�700N 10�870E 255 4.8 679

Fureneset 1, 2 61�290N 5�040E 12 7.7 2280

Holt 1, 2 69�650N 18�900E 12 3.8 966

Kvithamar 1, 2 63�490N 10�880E 28 6.0 1007

Løken – 61�490N 9�060E 527 2.7 637

Særheim 4 59�280N 9�280E 83 7.8 1430

Data for calibration were collected at all locations except Løken. All locations except Fureneset were included in the subsequent

simulation study to identify an ideotype for timothy in Norway
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simulate timothy (Phleum pratense L.) as well,

tillering was simulated in greater detail, distinguishing

elongating from non-elongating tillers (Höglind et al.

2001; Van Oijen et al. 2005a). Algorithms for winter

processes, including hardening and frost damage, were

developed more recently (Thorsen et al. 2010). The

model code was translated fromMatlab to FORTRAN

by D. Cameron, and the ‘summer’ and ‘winter’

processes were linked together, producing the year-

round model now called BASGRA (Höglind et al. in

prep.). BASGRA operates on a daily time step, and

requires input information on management (cutting

regime), environmental variables (radiation, temper-

ature, precipitation, wind speed, [CO2]) and environ-

mental constants (soil water retention parameters).

The model has 45 plant parameters whose meaning,

units and prior probability distributions are given in

Online Resource 1. The model is archived online (Van

Oijen et al. 2015), from where full code, including for

Bayesian calibration, can be downloaded.

Multi-site Bayesian calibration of BASGRA

Bayesian calibration (BC) is a procedure for proba-

bilistic parameter estimation of models using mea-

surements of model output variables. BC was used

here to parameterise the model BASGRA for two

cultivars. BC was implemented in the same way as

described by Van Oijen et al. (2005b, 2013) for forest

PBMs. We refer to these studies for technical details,

and only give a general overview here.

In the present study, Bayesian calibration was

carried out separately for timothy cultivars Engmo and

Grindstad. Both calibrations were multi-site, i.e. data

from sites across Norway (Table 1) were used. Plant

parameters were allowed to differ between cultivars,

but not between sites. This constraint implies a test of

the model: if model performance is poor when

parameters are held constant over sites, then those

parameters do not represent genetic coefficients and

the model is not suitable for ideotype design.

Bayesian calibration of BASGRA consists of three

steps: (1) define the prior distribution for the model’s

parameters, (2) define the likelihood function for the

model’s parameters, (3) sample from the ‘posterior

distribution’ given by the normalised product of prior

and likelihood. The posterior distribution expresses

how the data have reduced our uncertainty about

parameter values.

The same prior distribution was used for the

parameter sets of both cultivars. Prior parameter

ranges for individual parameters were derived from

earlier literature study (Höglind et al. 2001; Van Oijen

et al. 2005a; Thorsen et al. 2010) where available, and

wide ranges of plausible values were assumed other-

wise. The marginal prior probability distribution for

each individual parameter was defined as a beta

distribution over the parameter’s range of plausible

values. No information on parameter correlations was

available, so the joint prior distribution for the

parameters was written as the product of the marginal

distributions.

The likelihood function quantified the probability,

for any given parameter vector, of the mismatch

between the model outputs induced by the parameter

vector and the data (5 sites, 11 variables). The

measurement error terms in the likelihood function

followed the conventional assumption of independent

Gaussians with variances that varied between vari-

ables and observations.

The sample from the posterior distribution was

generated by means of MCMC using the Metropolis

algorithm (Metropolis et al. 1953; Van Oijen et al.

2005b). Chain length was 300,000 to ensure conver-

gence for all parameters.

In the summary of the results of the Bayesian

calibration for the two cultivars (Tables 2 and 3), we

use the Normalised Root Mean Square Error

(NRMSE) to quantify the mismatch between the data

and the outputs from the calibrated model. The

NRMSE is defined as the square root of the mean

squared difference between observations and outputs,

divided by the mean of the observations.

Combining cultivar-specific parameter

distributions

Ideally, information on a large number of genotypes is

available when estimating genetic variation for plant

parameters. However, PBMs require detailed infor-

mation, which was only available for two timothy

cultivars grown in Norway. This may be enough to

illustrate the procedure here, but more genotypes

would be required for application in practice. The two

posterior parameter distributions, for cultivars Engmo

and Grindstad, were combined into one distribution

representing the estimated overall genetic variation for

plant parameters. This was done in two steps. First we
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calculated the mean and variance of the union of the

two distributions. Irrespective of the shape and number

of the individual distributions, the mean of the union of

multiple distributions is the average of the individual

means, whereas the variance of the union is equal to the

average of the individual variances plus the variance of

the individual means. In the second step, we calculated

beta distributions with the given combined mean and

variance, under the assumption that prior parameter

bounds were conserved. Using beta distributions,

which have lower and upper limits, rather than

Gaussians prevented spurious inclusion of extreme

values in the estimated genetic variation. The result of

this procedure was a different beta-distribution for

each of the 45 plant parameters of BASGRA. In this

calculation, we ignored the correlations between

parameters that were present in the two cultivar-

specific distributions, because those correlations may

represent joint uncertainty rather than genetic linkage.

Deriving an ideotype and selection criteria

To derive the ideotype, we evaluated two performance

traits: average yield and yield stability. Both traits

were calculated using ‘virtual trials’, i.e. BASGRA

simulations at five sites in Norway (Table 1), with a

standard sequence at each site of six three-year long

grass rotations for the period 1995–2012. These sites

were chosen to cover the climatic range of timothy in

Norway. Two harvests per year were simulated, so the

total number of simulated yield values amounted to

180 (5 sites 9 18 years 9 2 harvests). Average yield

was calculated as the mean of the 180 values, and yield

stability as the inverse of the coefficient of variation

across the 180 values. Yield stability thus is defined

with respect to both spatial and temporal variability.

Both values were normalised by dividing them with

the values of yield and yield stability for the mode of

the genetic variation distribution, i.e. the genotype for

which the distribution reaches its peak.

We defined the performance of a parameter vector

as the minimum value of the two normalised perfor-

mance traits.

We defined acceptable genotypes as those param-

eter vectors for which performance was greater than

one, i.e. both yield and yield stability exceeded that of

the mode of the genetic variation distribution. MCMC

was used to generate a sample of 500,000 accept-

able genotypes, and the ideotype was defined as the

highest performing parameter vector in this sample.

Table 2 Bayesian calibration for timothy cultivar Engmo

Apelsvoll Fureneset Holt Kvithamar Særheim

Biomass (g m-2) Mean of data 210 (5) 38 (8) 89 (3) 35 (8)

NRMSE 0.23 (-20) 0.90 (4) 0.24 (-57) 0.57 (-54)

Reserves (g g-1) Mean of data 0.22 (13) 0.12 (5) 0.23 (8) 0.34 (3) 0.23 (7)

NRMSE 0.29 (-37) 0.34 (142) 0.45 (-15) 0.51 (-19) 0.48 (23)

Yield (g m-2) Mean of data 300 (2) 340 (3) 260 (5) 220 (5)

NRMSE 0.50 (-5) 0.36 (-50) 0.37 (-40) 0.74 (-14)

LAI (m2 m-2) Mean of data 1.1 (5) 0.2 (5) 0.2 (5)

NRMSE 0.18 (-76) 0.45 (-35) 0.60 (-42)

SLA (m2 g-1) Mean of data 0.027 (5)

NRMSE 0.35 (-8)

Tiller density (m-2) Mean of data 2230 (6) 1420 (9) 2770 (3) 1930 (10)

NRMSE 0.27 (-36) 0.33 (-45) 0.20 (-21) 0.36 (17)

Generative tiller fraction (-) Mean of data 0.8 (1) 0.8 (1) 0.8 (1)

NRMSE 0.08 (-89) 0.04 (-94) 0.02 (-97)

LT50 (�C) Mean of data -17.0 (12) -13.2 (5) -19.4 (7) -22.0 (2) -18.6 (8)

NRMSE 0.15 (-42) 0.29 (-32) 0.27 (-14) 0.10 (-14) 0.25 (-2)

The mean of the data is given with the number of measurements in brackets. NRMSE is the Normalised Root Mean Square Error for

the mismatch between data and model for the mode of the posterior distribution. It is followed in brackets by the percent change in

NRMSE from prior to posterior mode (in bold if negative)
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The ideotype thus defined consisted of 45 param-

eter values, which is much more than can be consid-

ered in any breeding programme. We therefore

determined which of the parameters contributed most

to performance by calculating the partial correlation

coefficient (PCC) of each parameter with perfor-

mance. Parameters with highest PCC were considered

to be prime candidates for selection criteria.

Results

Cultivar-specific Bayesian calibration

A priori, the same probability distribution had been

assigned to the parameters of cultivars Engmo and

Grindstad. Bayesian calibration introduced differ-

ences between the cultivars in the form of divergent

marginal posterior distributions for parameters

(Fig. 1). For 40 % of the parameters, the difference

between posterior modes was more than one quarter of

the overall mean. For some parameters, the posterior

means differed, e.g. for parameter LAITIL (tillering

rate at low LAI), whereas for other parameters, such as

DAYLG1G2 (day length below which no stem

elongation takes place), the posterior means were

similar but the variance was lower for Grindstad than

for Engmo. This reflects the higher information

content of the data for Grindstad, for which more

observations were available (compare Tables 2 and 3).

The Bayesian calibration was carried out using data

from five different sites on a total of 11 different

Table 3 Bayesian calibration for timothy cultivar Grindstad

Apelsvoll Fureneset Holt Kvithamar Særheim

Biomass (g m-2) Mean of data 162 (6) 26 (8) 94 (3) 352 (88)

NRMSE 0.27 (31) 1.01 (-48) 0.36 (-22) 0.36 (-30)

Reserves (g g-1) Mean of data 0.20 (15) 0.12 (5) 0.17 (8) 0.25 (3) 0.14 (79)

NRMSE 0.45 (-9) 0.13 (19) 0.49 (-2) 0.42 (-17) 0.37 (-14)

Yield (g m-2) Mean of data 350 (2) 370 (3) 300 (5) 280 (5)

NRMSE 0.34 (-33) 0.71 (58) 0.30 (-33) 0.39 (-37)

LAI (m2 m-2) Mean of data 1.3 (5) 0.2 (5) 3.6 (80)

NRMSE 0.22 (-55) 0.46 (-89) 0.40 (-28)

SLA (m2 g-1) Mean of data 0.029 (5) 0.033 (5) 0.026 (80)

NRMSE 0.31 (-35) 0.34 (-31) 0.26 (-36)

Leaf appearance (tiller-1 d-1) Mean of data 0.13 (80)

NRMSE 0.45 (-15)

Leaf elongation (m d-1) Mean of data 0.012 (80)

NRMSE 0.68 (11)

Elongating leaf density (tiller-1) Mean of data 1.6 (81)

NRMSE 0.52 (6)

Tiller density (m-2) Mean of data 1870 (6) 1310 (9) 2990 (3) 2680 (102)

NRMSE 0.32 (-44) 0.68 (-59) 0.20 (9) 0.42 (29)

Generative tiller fraction (-) Mean of data 0.8 (1) 0.8 (1) 0.8 (7)

NRMSE 0.16 (-78) 0.14 (-81) 0.14 (-79)

LT50 (�C) Mean of data -12.8 (13) -12.4 (5) -16.1 (8) -20.0 (3) -16.6 (8)

NRMSE 0.35 (-43) 0.17 (-65) 0.10 (-78) 0.18 (3) 0.21 (-15)

Abbreviations as in Table 2

cFig. 1 Distributions for the 45 parameters of the BASGRA

model. Thin black line prior distribution.Green posterior for cv.

Engmo. Blue posterior for cv. Grindstad. Red genetic variation.

The abscissa is scaled to the prior, so the mode of the prior is

always at parameter value 1.0. The prior limits and mode of the

unscaled parameters in their original units are provided in

Online Resource 1
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variables. Figure 2 shows an example of the impact of

the calibration on model behaviour for one of the most

data-rich sites, the Grindstad experiment at Særheim

in the years 2001–2002. When BASGRA is run with

the mode of the posterior distribution for the Grindstad

parameters (the so-called maximum a posteriori

parameter vector, MAP), all nine output variables

are consistent with the measurements taken on the site.

Tables 2 and 3 give an overview for all sites of

BASGRA behaviour when the model is run with the

MAP for Engmo and Grindstad, respectively. The

tables confirm that a single parameter vector, the

MAP, suffices to simulate nearly all measured vari-

ables, including yield, to a NRMSE of less than 0.5.

This is in the same order of magnitude as the

coefficient of variation of the data. The NRMSE does

exceed 0.5 in cases where the observations were

restricted to periods of the year with low values of the

variable, such as the biomass measurements at Holt,

which were carried out during winter time. The two

tables also indicate how the NRMSE for the MAP

compared to the NRMSE for the mode of the prior

distribution for the parameters. In most cases, the

NRMSE decreased, but sometimes the prior was

superior. This reflects the fact that the calibration aims

to reconcile data and outputs for all sites and variables

at the same time, so variables for which there is little

information in the data carry little weight in the

calibration.

Estimating genetic variation

Genetic variation for individual parameters was

quantified as beta distributions with the same mean

and variance as the union of the cultivar-specific

posterior distributions (Fig. 1). The genetic variation

mean is thus always exactly midway between those for

the individual cultivars. The variance of the genetic

variation also tends to be close to the average of the

individual variances, but in a small number of cases

the variance of the genetic variation distribution is

larger than that for the individual cultivars and even

larger than for the prior distribution. Such wide

distributions for genetic variation are derived when

the calibration pulls the two cultivars far apart, such as

for DLMXGE (day length below which reserves

become a prominent sink) and LAITIL (tillering rate

at low LAI).
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Fig. 2 Partial results of the Bayesian calibration for cv.

Grindstad, showing prior and posterior time series at location

Særheim, with observations in 2001–2002. Blue observa-

tions ± standard deviation. Black model outputs for the mode

of the prior distribution. Red model outputs for the posterior

mode ± standard deviation. RES reserve content, DM dry

matter, LAI leaf area index, LERG leaf elongation rate,NELLVG

number of elongating leaves, RLEAF relative leaf appearance

rate, SLA specific leaf area, TILTOT tiller density, FRTILG

fraction of tillers that is generative

636 Euphytica (2016) 207:627–643

123



Sampling from the genetic variation

and identifying the ideotype

Acceptable genotypes were defined as those parameter

vectors that led to improved performance compared to

the mode of the genetic variation distribution, with

performance defined as the minimum of relative

average yield and relative yield stability. The sample

of 500,000 acceptable genotypes that was generated

using MCMC is depicted in Fig. 3. Figure 3a shows

that the acceptable genotypes included some where

yield or yield stability more than doubled, but never

both. Apparently there is a trade-off where very high

yields cannot be stable across all the sites and years,

and vice versa.

The ideotype, defined as the highest performing

acceptable genotype, is flagged in the figure. Its

performance was 1.94 because of that level of relative

average yield, whereas its yield stability value was

1.95.

Figure 3b gives an indication of the ‘genetic

probability’ of the acceptable genotypes including

the ideotype. Genetic probability is calculated as the

probability of the parameter vector given the under-

lying genetic variation distribution. Low values of this

probability thus indicate that many plant parameter

values are located near the extremes of the genetic

variation. The probabilities are normalised with

respect to the mode of the genetic variation distribu-

tion. The figure shows that the ideotype has lower

genetic probability than most of the other

acceptable genotypes.

Figure 4 shows the variation in yields among the

five different sites, for each of the six harvests in the

three-year rotations that were simulated. The first

harvest of the first year tended to be low as swards

were being established. The ideotype had higher yields

than the genetic variation mode (i.e. the peak of the

distribution for genetic variation) for each of the

harvests at all sites, but yield increases varied between

sites. Harvests that were high using the genetic

variation mode, such as the third and fifth harvests at

Kvithamar and Særheim, increased less than those that

were low to start with. The overall result was a

reduction of spatial variation, thus contributing to

overall yield stability.

Partial correlation analysis

for acceptable genotypes

For the class of acceptable genotypes, partial correla-

tions (PCC) were calculated between individual

parameters and performance (Fig. 5). The absolute

PCC-values varied strongly, with the highest values

for the parameters PHY, KRDRANAER, LAITIL and

LAICR. The KRDRANAER parameter determines

Fig. 3 A sample of 500,000 acceptable parameter vectors from

the genetic variation distribution. 3A values of the performance

traits for each parameter vector. 3B the logarithm of genetic

probability vs. performance. The ideotype is indicated in both

plots, as is the genetic mode (located at point [1,1] in 3A)
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tiller death rate during anaerobic conditions, which

may arise in winters during periods of ice encasement.

The other three parameters relate to shoot dynamics

primarily during the growing season. PHY is the

phyllochron, i.e. the thermal time between successive

leaf appearances. LAITIL and LAICR govern tillering

rate at low and high LAI, respectively.

Discussion

Bayesian calibration of a PBM for different

cultivars

Process-based models (PBMs) offer the possibility to

quickly, and at low cost, test different genotypes in a

variety of environments, provided the many parame-

ters of such models can be adequately quantified. Here

we used Bayesian calibration (BC) to parameterise

two cultivars of timothy, using data from five climat-

ically different sites on a total of eleven variables

measured in different years. BASGRA, or parts of the

model, had been parameterised before (Van Oijen

et al. 2005a; Thorsen et al. 2010), but not for cv.

Engmo and with much smaller data sets than now

available. We carried out the BC using Markov Chain

Monte Carlo (MCMC) sampling. Monte Carlo meth-

ods such as MCMC have been used fairly often in

studies of genetics (Sorensen et al. 1994; Sorensen

2009; Thompson 2014) and metabolism (Jayaward-

hana et al. 2008), but the models involved in these

studies were limited to a small number of parameters.

Here all 45 plant parameters of the model were

simultaneously estimated. About half the parameters

showed clear differences between prior and posterior

distribution, for both cultivars, reflecting the rich

information content of the data sets that were used

(Fig. 1).

BC is increasingly being applied to parameter-rich

PBMs (Van Oijen et al. 2005b), but multi-site, multi-

output BC as carried out here is still rare. PBMs are

more commonly parameterised site-specifically, even

when multiple sites are examined in the same study

(e.g. Lehuger et al. 2009, but see Reinds et al. 2008 and
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Fig. 4 Yields (g m-2) for each of the six within-rotation

harvests, averaged over all three-year long rotations that were

simulated (1995–1997, 1998–2000, ..., 2010–2012). 1.1 = first

rotation year, first harvest; 1.2 = first rotation year, second

harvest, etc. Full bars indicate yields for the ideotype, smaller

black bars indicate yields for the mode of the genetic variation

distribution
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Van Oijen et al. 2013 for other examples of multi-site

BC of PBMs). The results of the BC in this paper

suggest that BASGRA meets the requirements of

general model applicability without the need for site-

specific parameterisation, at least not for the geo-

graphic variation among the five sites in Norway that

were considered here. This is evident from the low

values of posterior NRMSE for most variables

(Tables 2 and 3). Note that the NRMSE-values could

have been reduced further if the calibration had been

carried out in a less stringent way. This could have

been done by reducing the number of simultaneously

calibrated variables from eleven to one or two, by

calibrating site-specifically or for only one site rather

than five, or by using unbounded uniform or Gaussian

priors for the parameters rather than bounded beta-

distributions. Such more lenient calibration would

have increased goodness-of-fit, but would not have

shown that the model adequately represents the

underlying processes and that its parameters can be

treated as site-invariant—both of which are require-

ments for the use of the model in ideotype design. Our

Bayesian ideotyping procedure thus benefits most

from field trials at different sites, on a wide range of

genotypes, and with measurements on many more

variables than just yield. This will ensure that the

majority of model parameters are informed by the

data, so that the model can reliably simulate the variety

of ways in which performance can be improved.

Genetic variation for plant parameters

We estimated the mean and variance of the genetic

variation distribution as those of the union of the

cultivar-specific distributions. This simple prelimi-

nary approach was used because we had extensive

calibration data for only two cultivars. The approach is

based on a continuum hypothesis, where we assume

Fig. 5 Partial correlations

of individual parameters

with performance in the

sample of

acceptable parameter

vectors from the genetic

variation distribution. Red

parameters mainly affecting

growing season processes.

Blue parameters mainly

affecting winter survival
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that all parameter vectors covering the posterior

distributions for the two cultivars are possible geno-

types. More reliable estimation of genetic variation for

the plant parameters, and verification of the continuum

hypothesis, will require data on a much larger number

of genotypes. Such data will also be required to

estimate genetic linkages between parameters, which

are unidentifiable when only two cultivars are

examined.

Once data on more cultivars become available, we

should consider replacing the first two steps of our

procedure by hierarchical Bayesian calibration (e.g.

Banerjee et al. 2012; Condit et al. 2006). In this

approach, the plant parameters of all cultivars would

be estimated simultaneously, together with hyperpa-

rameters representing overall genetic variation and

genetic linkage between parameters. A benefit of the

approach would be that it would quantify uncertainty

about the estimates of genetic variation. Hierarchical

approaches that include parameters representing (co)-

variance of quantitative traits, are fairly common in

evolutionary science, phylogenetics and taxonomy

(e.g. Kremer and Le Corre 2012). Hierarchical

Bayesian models have also been introduced in breed-

ing science (Meuwissen et al. 2001; Gianola et al.

2009) but only for the linear model of phenotype

prediction as the sum of environmental effects and the

combined effect of multiple markers, with variance of

marker effects represented by unknown parameters

that need to be estimated. PBMs used in breeding

studies do not assume such separation of additive

environmental and genetic effects, and they have, as

far as we are aware, not yet been calibrated using

hierarchical Bayesian methods. The main obstacle is

technical: the computational demand of evaluating

PBMs in the high-dimensional hierarchical parameter

space covering multiple genotypes. Despite this, the

hierarchical approach may become feasible if we

restrict the analysis to those parameters that have

strong impact on the phenotype. These can be

identified from cultivar-specific calibrations as those

where the posterior distribution is much narrower than

the prior distribution (Fig. 1).

An ideotype for timothy in Norway

To identify the ideotype, we chose as breeding

objectives a high average yield and high yield stability

across sites in the major Norwegian agricultural

grassland areas. In our study, these objectives implied

some degree of cold tolerance as well, because yields

were evaluated for 3-year long rotations which

included cold winters at some of the sites. Other

breeding objectives could have been chosen or differ-

ent measures for yield stability than the inverse

variation coefficient that we used (Annicchiarico

2002). If traits like forage quality, nutrient-use

efficiency or disease resistance were to be included

as breeding objectives, a more comprehensive model

than BASGRA would need to be used. In future work,

we plan to extend BASGRA to cover also these

aspects of plant performance.

Genotype performance is measured by the degree to

which breeding objectives are realised. We defined

performance as the minimum of relative yield and

relative yield stability, but other definitions such as the

mean or a weighted mean could be preferred by

breeders. Further, we defined the ideotype as the

genotype with maximum performance, irrespective of

its genetic probability as measured by proximity to the

mode of the genetic variation distribution. With these

definitions, the ideotype that was identified had 94 %

higher yield than the genetic mode, and 95 % greater

yield stability. The analysis suggested a clear trade-off

between the two breeding objectives, so breeding

exclusively for increasing yields may reduce yield

stability. In this analysis, yield stability was defined

with respect to both spatial and temporal variability

(see ‘‘Deriving an ideotype and selection criteria’’

section), but the same negative correlation between

achievable yield and yield stability was found when

only temporal variation was considered.

The performance increase we simulated, with near-

doubling of both yield and yield-stability, may be

unachievable in practice once additional constraints of

genetic linkages between parameters are recognized.

This can be examined when information on more

cultivars than Engmo and Grindstad becomes avail-

able, allowing for the hierarchical approach alluded to

above.

Ideotypes should not claim to have universal

validity but be aimed at specific breeding objectives

(Messina et al. 2009), and any modelling should

recognize the population of environments at which the

breeding is targeted (Cooper et al. 2014). By evalu-

ating timothy performance on the five selected sites

across Norway, we effectively designed a Norway-

scale ideotype. That may not represent the best
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performing genotype for any given smaller region. For

example, an ideotype for the region in South-Western

Norway around Særheim may require less cold

tolerance than ideotypes for regions with more severe

winters. In future work, we plan to compare the

Norway-wide ideotype with regional ideotypes.

From ideotype to selection criteria

The fourth and final step in our ideotyping procedure,

involving the translation of the ideotype into selection

criteria of practical use to breeders, was only carried

out in a preliminary way. The ideotype consists of

specific values for all 45 plant parameters, which is

more than can be handled in any breeding programme.

Therefore a smaller set of four key parameters

contributing most to genotype performance was

identified by means of partial correlation analysis.

We did not assess the effort involved in measuring the

traits that correspond to these parameters, which could

in practice hamper their usability in selection (Sinclair

2011), or at least limit their use to the first or last

phases in breeding programmes in which the number

of genotypes to be evaluated is limited.

Furthermore, the types of selection criteria that can

be handled by breeders have changed over time, and

genetic tests have become affordable and fast. So

modellers may want to translate plant parameters into

equivalent genes or collections of genes. This was not

attempted, as discussed in the Introduction, because

for most parameters the link with DNA sequences or

QTLs is still tenuous, with some notable exceptions

(Reymond et al. 2003; Yin et al. 2004). Messina et al.

(2009) and Cooper et al. (2014) sketch a future of plant

breeding in which unravelling the genetic basis of

modelled plant properties will support high-through-

put phenotyping, which they consider essential for the

scaling up of breeding programmes to larger numbers

of genotypes. For most plant parameters, however, this

will require much progress in elucidating the links

between the different levels of organisation that

separate genes, cells, plant organs, plant individuals

and crops (Tardieu 2003; Messina et al. 2009; Sinclair

2011).

One of the key parameters that was identified,

KRDRANAER, relates to winter survival under

anaerobic conditions. This result was somewhat

surprising because timothy is considered to be more

tolerant of severe winter conditions than, for

example, the ryegrasses. The inclusion among the

test sites of locations with severe winters may have

contributed to the result, notably the northern, coastal

location Holt in the region of Troms. In this region,

severe winter injury occurred in four of the 18 years

studied here according to the official statistics of

insurance payment for winter injuries (Landbruksdi-

rektoratet, https://www.slf.dep.no/no), with freezing

and thawing events leading to ice encasement being a

major cause. The other three key parameters influ-

ence leaf appearance and tillering rate. These are

processes that contribute to tiller recovery and refo-

liation after the sward has been cut or grazed during

summer, or after episodes of winter kill. Notably

absent from the shortlist were parameters such as the

light extinction coefficient K and leaf Rubisco con-

tent RUBISC that govern the source-strength of the

grassland. The model analysis thus suggests that

timothy performance in Norway is more sink- than

source-limited.

Conclusions and outlook

• A procedure for ideotype breeding involving

cultivar-specific Bayesian calibration of process-

based models was proposed.

• The method allows for both calibration and

subsequent optimisation of all plant parameters

simultaneously.

• Results from a preliminary application of the

procedure suggest that there is scope for improved

yield and yield stability of timothy in Norway, but

that there is an inevitable trade-off between the

two.

• Parameters that were identified as key contributors

to high performance relate to winter survival, leaf

appearance and tillering.

• The ideotype identified here was designed for high

performance across sites in Norway with widely

differing climates. In future work, this nation-wide

ideotype will be contrasted with region-specific

ones.

• There is a need to assemble detailed data on more

genotypes than the two cultivars Engmo and

Grindstad. This will facilitate more reliable

assessment of genetic variation for the plant

parameters than was possible here.
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• We plan to develop the procedure further by

replacing part of it with hierarchical Bayesian

calibration in which genetic variation and genetic

linkages appear as hyperparameters.

Acknowledgments MvO thanks the staff at NIBIO who

arranged for a 1-year sabbatical at their research station in

Særheim where this work was carried out. Partial funding also

came from the Natural Environment Research Council (NERC)

through the MACSUR project. MH’s part of the study was

funded by the Norwegian Research Council and NIBIO, and is

connected to the VarClim project (199664; ‘Understanding the

genetic and physiological basis for adaptation of Norwegian

perennial forage crops to future climates’). We thank two

anonymous reviewers whose comments led to considerable

improvement of the paper.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unre-

stricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

References

Aggarwal PK, Matthews RB, Kropff MJ, Van Laar HH (eds)

(1995) Applications of systems approaches in plant

breeding. SARP Research Proceedings DLO,Wageningen,

p 144

Annicchiarico P (2002) Genotype 9 Environment Interactions:

challenges and opportunities for plant breeding and culti-

var recommendations. FAO Plant Production and Protec-

tion Paper 174 FAO, Rome

Banerjee S, Finley AO, Waldmann P, Ericsson T (2012) Hier-

archical spatial process models for multiple traits in large

genetic trials. J Am Stat Assoc 105:506–521

Breuer L, Eckhardt K, Frede H-G (2003) Plant parameter values

for models in temperate climates. EcolModel 169:237–293

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C,

Hammer GL (2009) Simulating the yield impacts of organ-

level quantitative trait loci associated with drought

response in maize: a ‘‘gene-to-phenotype’’ modeling

approach. Genetics 183:1507–1523

Colon LT, Budding DJ, Keizer LCP, Pieters J (1995) Compo-

nents of resistance to late blight (Phytophthora infestans)

in eight South American Solanum species. Eur J Plant

Pathol 101:441–456

Condit R, Ashton P, Bunyavejchewin S et al (2006) The

importance of demographic niches to tree diversity. Nature

313:98–101

Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A,

Hausmann NJ, Wright D, Graham G (2014) Predicting the

future of plant breeding: complementing empirical evalu-

ation with genetic prediction. Crop Pasture Sci 65:311–336

Donald GM (1968) The breeding of crop ideotypes. Euphytica

17:385–403

Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N,

Cooper M (2012) A gene regulatory network model for

floral transition of the shoot apex in maize and its dynamic

modeling. PLoSONE 7:e43450. doi:10.1371/journal.pone.

0043450

Fox A, Williams M, Richardson AD, Cameron D, Gove JH,

Quaife T, Ricciuto D, Reichstein M, Tomelleri E, Tru-

dinger CM, Van Wijk MT (2009) The REFLEX project:

comparing different algorithms and implementations for

the inversion of a terrestrial ecosystem model against eddy

covariance data. Agric For Meteorol 149:1597–1615

Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R

(2009) Additive genetic variability and the Bayesian

alphabet. Genetics 183:347–363

Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, Van

Eeuwijk F, Chapman S, Podlich D (2006) Models for

navigating biological complexity in breeding improved

crop plants. Trends Plant Sci 11:587–593
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