
© 2015 The Authors. Journal of Applied Ecology 
© 2015 British Ecological Society 
 
This version available http://nora.nerc.ac.uk/511795/ 
 

 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  

 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. There may be differences between this and the publisher’s 
version. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The definitive version is available at http://onlinelibrary.wiley.com/ 
 
 

 
 

    
 
 

Article (refereed) - postprint 
 

 

 

Burthe, Sarah J.; Henrys, Peter A; Mackay, Eleanor B.; Spears, Bryan M.; 
Campbell, Ronald; Carvalho, Laurence; Dudley, Bernard; Gunn, Iain D.M.; 
Johns, David G.; Maberly, Stephen C.; May, Linda; Newell, Mark A.; Wanless, 
Sarah; Winfield, Ian J.; Thackeray, Stephen J.; Daunt, Francis. 2016. Do 
early warning indicators consistently predict nonlinear change in long-
term ecological data? Journal of Applied Ecology, 53 (3). 666-676. 
10.1111/1365-2664.12519  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact CEH NORA team at  

noraceh@ceh.ac.uk 

 

 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/511795/
http://nora.nerc.ac.uk/policies.html#access
http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1111/1365-2664.12519
mailto:nora@ceh.ac.uk


Page | 1 
 

Do early warning indicators consistently predict non-linear change in long-term ecological 1 

data?  2 

 3 

Sarah J. Burthe1, Peter A. Henrys*2, Eleanor B. Mackay*2, Bryan M. Spears1, Ronald Campbell3, 4 

Laurence Carvalho1, Bernard Dudley1, Iain D. M. Gunn1, David G. Johns4, Stephen C. Maberly2, 5 

Linda May1, Mark A. Newell1, Sarah Wanless1, Ian J. Winfield2, Stephen J. Thackeray†2 and Francis 6 

Daunt†1 7 

 8 
1 Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK. 9 
2 Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, 10 

Lancaster, LA1 4AP, UK. 11 
3 The Tweed Foundation, The Tweed Fish Conservancy Centre, Drygrange Steading, Melrose, 12 

Roxburghshire, TD6 9DJ, UK. 13 
4 Sir Alister Hardy Foundation for Ocean Science, The laboratory, Citadel Hill, Plymouth, PL1 2PB, 14 

UK. 15 

 16 

 17 

*these authors contributed equally to the work  18 

†these authors contributed equally to the work 19 

 20 

Running title: Early warnings of change in long-term ecological data 21 

 22 

 23 

* Correspondence author. E-mail:sburthe@ceh.ac.uk   24 



Page | 2 
 

Summary 25 

 26 

1. Anthropogenic pressures, including climate change, are causing non-linear changes in 27 

ecosystems globally. The development of reliable early warning indicators (EWIs) to predict 28 

these changes is vital for the adaptive management of ecosystems and the protection of 29 

biodiversity, natural capital and ecosystem services. Increased variance and autocorrelation are 30 

potential EWIs and can be readily estimated from ecological time series. Here, we undertook a 31 

comprehensive test of the consistency between EWIs and non-linear abundance change across 32 

species, trophic levels and ecosystem types.  33 

2. We tested whether long term abundance time series of 55 taxa (126 data sets) across multiple 34 

trophic levels in marine and freshwater ecosystems showed: i) significant non-linear change in 35 

abundance (“turning points”) and ii) significant increases in variance and autocorrelation 36 

(“EWIs”). For each data set we then quantified the prevalence of three cases: true positives 37 

(EWI and associated turning point), false negatives (turning point but no associated EWI) and 38 

false positives (EWI but no turning point). 39 

3. True positives were rare, representing only 9% (16 of 170) of cases using variance, and 13% 40 

(19 of 152) of cases using autocorrelation. False positives were more prevalent than false 41 

negatives (53% vs. 38% for variance; 47% vs. 40% for autocorrelation). False results were 42 

found in every decade and across all trophic levels and ecosystems. 43 

4. Time series that contained true positives were uncommon (8% for variance; 6% for 44 

autocorrelation), with all but one time series also containing false classifications. Coherence 45 

between the types of EWI was generally low with 43% of time series categorized differently 46 

based on variance compared to autocorrelation. 47 

5. Synthesis and applications.  Conservation management requires effective early warnings of 48 

ecosystem change using readily available data, and variance and autocorrelation in abundance 49 

data have been suggested as candidates. However, our study shows that they consistently fail 50 

to predict non-linear change. For early warning indicators to be effective tools for preventative 51 

management of ecosystem change, we recommend that multivariate approaches of a suite of 52 

potential indicators are adopted, incorporating analyses of anthropogenic drivers and process-53 

based understanding. 54 

 55 

 56 

 57 

Key-words: ecosystem resilience, food webs, non-linearity, preventative management, regime shifts, 58 

time series data, tipping points  59 
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Introduction 60 

 61 

There is accumulating evidence that ecosystems are exhibiting profound changes in structure and 62 

function in response to climate change and other anthropogenic drivers (Walther et al. 2002; Parmesan 63 

2006; Van der Putten, Macel & Visser 2010). Species abundance and ecosystem processes may show 64 

non-linear changes in response to environmental perturbations which can result in an irreversible shift 65 

to a different ecosystem state (a so-called “catastrophic shift”, Holling (1973); Scheffer et al. (2001)). 66 

Such a change involves a major reorganization of community structure that may lead to undesirable 67 

losses of natural capital and/or ecosystem services. These losses can also occur where changes are 68 

smooth and reversible (“non-catastrophic transitions”, Kefi et al. (2013)).  Therefore, there is a strong 69 

focus amongst research ecologists, conservation managers and policy makers to develop early warning 70 

indicators (EWIs) so that undesirable ecosystem change can be prevented (Moss et al. 2013).   71 

 72 

Extensive theoretical work has shown that prior to catastrophic shifts, ecosystems undergo a 73 

phenomenon known as “critical slowing down” (Scheffer et al. 2009).  These models demonstrate that 74 

ecological time series show characteristic behaviours as a consequence of this process, notably an 75 

increase in variance and autocorrelation over time, and these behaviours have been suggested as 76 

potential EWIs (Wissel 1984; Carpenter & Brock 2006; van Nes & Scheffer 2007; Dakos et al. 2008; 77 

Scheffer et al. 2009). This theoretical work has received support from manipulative studies, some 78 

focused on artificial perturbations in laboratory experiments (Drake & Griffen 2010) and others on 79 

changes in predator abundance in whole lake experiments (Carpenter et al. 2011; Pace et al. 2013), 80 

which found that variance and autocorrelation in ecological time series increased prior to abrupt changes 81 

in these systems. Models have also demonstrated that similar patterns can occur in systems approaching 82 

non-catastrophic transitions, because they show increased sensitivity to environmental perturbations  83 

prior to the transition (Kefi et al. 2013). Thus, theory and experiments support the use of EWIs based 84 

on variance and autocorrelation as generic indicators of a wide array of non-linear ecosystem changes. 85 

 86 

Despite this broad theoretical and experimental support, there is considerable uncertainty about the 87 

application of EWIs to real world ecological systems. Models suggest that ecosystems with complex 88 

dynamics may not exhibit EWIs prior to regime change (Hastings & Wysham 2010) and EWIs perform 89 

poorly when simulated data exhibit levels of noise similar to that seen in real world ecological data 90 

(Perretti & Munch 2012).  Empirical studies that have explored the behaviour of real world ecological 91 

time series prior to non-linear change suggest that variance and autocorrelation have only limited 92 

application as EWIs (Hsieh et al. 2006; Litzow, Urban & Laurel 2008; Litzow, Mueter & Urban 2013; 93 

Krkosek & Drake 2014). However, these studies have typically been carried out on selected taxa and 94 

functional groups. The ecosystem-scale nature of potential non-linear change necessitates 95 

comprehensive, community-scale assessments utilizing existing long-term ecological time series to 96 
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provide a catalogue of non-linear changes (hereafter, ‘turning points’) against which EWIs can be tested 97 

across contrasting ecosystems and multiple trophic levels. The ability to detect turning points and 98 

associated EWIs is predicted to differ among trophic levels because of differences in process variance 99 

and sampling protocols. For example, abundance time series of K-selected species, such as apex 100 

predators, show lower process variance and are typically sampled less frequently, often at annual 101 

intervals. Thus, they may be strong candidates for identification of turning points but weaker candidates 102 

for the detection of significant changes in variance or auto-correlation. In contrast, abundance time 103 

series of r-selected species, such as phytoplankton, generally show high process variance and sampling 104 

frequency, often at biweekly or monthly intervals.  Thus, turning points may be more challenging to 105 

identify, but such time series may be stronger candidates for the detection of EWIs. These potential 106 

differences highlight the importance of assessing whether increases in variance and autocorrelation are 107 

consistent and reliable signals of impending non-linear change in multiple components of ecosystems.  108 

 109 

In this paper, we focus on investigating coherence between changes in variance and autocorrelation and 110 

turning points in long-term abundance time series in six aquatic study systems that include shallow lake, 111 

deep lake and coastal marine ecosystems, across all trophic levels from primary producers to apex 112 

predators. Although there has been a documented regime shift in one of the systems examined (North 113 

Sea, Beaugrand 2004), we did not specifically test for associations between EWIs and regime shifts. 114 

Instead, we focused on non-linear change since theory suggests that increases in variance and 115 

autocorrelation are indicators or both catastrophic and non-catastrophic transitions. Study systems were 116 

selected because they comprised a broad range of ecosystems with structural differences, and with rich, 117 

long-term data on species abundance across all trophic levels from r-selected phytoplankton to K-118 

selected apex predators. These data therefore enabled us to test the consistency between non-linear 119 

change and potential EWIs for a large sample of functionally-divergent species. Furthermore, the 120 

identification of reliable EWIs that would aid in averting undesirable change would align closely with 121 

relevant policy mechanisms tasked with identifying indicators of environmental change (EU Water 122 

Framework Directive and Marine Strategy Framework Directive). The study had four aims: i) to 123 

identify turning points in the abundance time series; ii) to identify significant increases in 124 

autocorrelation or variance in these time series; iii) to quantify the consistency with which turning points 125 

are preceded by significant increases in autocorrelation and/or variance; iv) to establish whether 126 

particular species, trophic levels or ecosystems consistently show coherence between non-linear change 127 

and EWIs. 128 

 129 

 130 

Materials and methods 131 

 132 

Data sets 133 
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We assessed the evidence for non-linear change, and associated EWIs, using 126 abundance time series 134 

representing 55 taxa (see Table S1 in Supporting Information for details on species and duration of time 135 

series). These study systems are all the subject of multi-decadal monitoring schemes which gather data 136 

on taxa from multiple trophic levels, from primary producers through to apex predators. The duration 137 

of the time series analysed ranged from 25 to 264 years (4926 cumulative years), with an average of 39 138 

years. While all of our systems have exhibited long-term ecological change, they are not all the subject 139 

of documented regime shifts, providing an ideal opportunity to make a more generic assessment of the 140 

consistency between non-linear change and EWIs (sensu Kefi et al. 2013).  141 

 142 

The Cumbrian lakes freshwater study system 143 

Abundance data have been collected for over 65 years from lakes in the Windermere catchment, UK 144 

(54°21'N 2°56'W; Maberly and Elliott (2012)). The Cumbrian Lakes have been impacted by climatic 145 

change, nutrient enrichment and species introductions (George, Maberly & Hewitt 2004; Thackeray, 146 

Jones & Maberly 2008; Winfield, Fletcher & James 2010; Dong et al. 2012; McGowan et al. 2012). 147 

While significant changes in species abundance, community structure and seasonal dynamics have been 148 

observed in response to these drivers there is currently no quantitative evidence of regime shifts in these 149 

lakes. The abundance of dominant phytoplankton and zooplankton taxa or of annual catches of 150 

dominant fish species were analysed from the north and south basins of Windermere (all taxa), and 151 

from Esthwaite Water and Blelham Tarn (phytoplankton and zooplankton only). These lakes differ 152 

markedly in their morphology and trophic status (see Feuchtmayr et al. (2012)), with surface areas 153 

ranging from  0.1–8.1 km2 and maximum depths from 15–64 m. 154 

Raw phytoplankton data comprised counts at weekly to fortnightly intervals (Lund 1949). These 155 

taxonomically-resolved data were supplemented with data on chlorophyll-a concentrations (a widely 156 

used proxy for phytoplankton biomass; see Talling (1974) for details). Crustacean zooplankton data 157 

were derived from two sources (Thackeray et al. 2013): species-level data at weekly to fortnightly 158 

intervals (Windermere north basin), and aggregate total zooplankton filter paper counts for all lakes 159 

(Talling 2003). Plankton data were aggregated to genus level in order to minimize potential biases 160 

arising from differences in observers over the course of the monitoring scheme and analysis focused on 161 

a subset of easily identified commonly occurring genera. The study focused on data from 1978 onwards, 162 

when consistent counting methods were used. Fish data comprised Arctic charr Salvelinus alpinus, pike 163 

Esox lucius and perch Perca fluviatilis relative abundances from recreational catches, nets, and traps in 164 

the north and south basins of Windermere (see Paxton et al. (2004); Winfield, Fletcher and James 165 

(2008)).  166 

The Loch Leven freshwater study system 167 
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Abundance data for plankton and birds were obtained from Loch Leven, a 13 km2, shallow lake in 168 

lowland Scotland, UK (56°10'N 30°30'W). Over the study period, Loch Leven has been impacted by 169 

climate change, nutrient enrichment, changes in catchment management practices and industrial 170 

pollution (Spears & Jones 2010; Carvalho et al. 2012; May & Spears 2012). Although these drivers 171 

have been related to significant changes in ecosystem structure, there has been no formal quantification 172 

of regime shifts in this system. Long-term monitoring of phytoplankton has been undertaken since the 173 

late 1960s (May & Spears 2012).  Raw plankton data comprised counts at weekly to monthly intervals 174 

(see Lund (1949); CEN (2004); Gunn et al. (2012)). Autumn and winter (September–March) waterfowl 175 

counts were collected by Scottish Natural Heritage (SNH) and the Royal Society for the Protection of 176 

Birds (RSPB) from land-based vantage points between 1968 and 2006 using Wetland Bird Survey 177 

(WeBS) methods (Austin, Collier & Rehfisch 2008). From 2006, fortnightly surveys were carried out. 178 

Here, we analysed winter peak counts.  179 

 180 

The North Sea marine study system 181 

Count data were analysed across four trophic levels of a pelagic food web in the north-western North 182 

Sea. A major ecosystem regime shift occurred in the North Sea in the late 1980s, thought to be driven 183 

by hydro-climatic forcing (Beaugrand 2004). Fisheries are also considered important drivers of 184 

ecosystem change in this system (Kenny et al. 2009). Monthly abundance data on phytoplankton and 185 

zooplankton were obtained from the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) 186 

Continuous Plankton Recorder (CPR) survey (data available from David Johns, SAHFOS, The 187 

laboratory, Citadel Hill, Plymouth, PL1 2PB, UK), an upper layer plankton monitoring programme 188 

(Richardson et al. 2006). Data were obtained from an area of the North Sea (55°–58°N 3°W–0°E; Johns 189 

(2009)) that provided a balance between sampling resolution and proximity to the Isle of May National 190 

Nature Reserve, Scotland (56° 11’N 2° 33’W), the focal point of the apex predator (seabird) data. We 191 

analysed counts of the ten most abundant phytoplankton (diatom) species, and zooplankton species that 192 

are known to be important in the diet of sandeels Ammodytes marinus, which occupy a key mid-trophic 193 

position in this system (see Burthe et al. (2012) for full details).  194 

We analysed an index of sandeel biomass, modelled from the probability of sandeel larvae occurring in 195 

CPR samples and the summed mass of larvae in a sample (see Frederiksen et al. (2006)). Catch 196 

abundance data for sea-trout Salmo trutta were analysed from two netting stations in the River Tweed 197 

estuary, Berwick-Upon-Tweed, UK (55° 77’N 2° 01’W): Sandstell and Whitesands; and annual catch 198 

data based on average catches across 14 netting stations from this estuary (Waite (1831); Tweed 199 

Foundation; unpublished data extracted from the records of the Berwick Salmon Fishing company held 200 

in the Public Record Office, Berwick; data available from The Tweed Foundation, The Tweed Fish 201 

Conservancy Centre, Drygrange Steading, Melrose, Roxburghshire, TD6 9DJ, UK). We analysed 202 
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abundance data for five seabird species that breed on the Isle of May National Nature Reserve, a major 203 

seabird colony adjacent to the western North Sea (Daunt et al. 2008). Abundance consisted of annual, 204 

whole-island counts of breeding pairs during the breeding season (see Walsh et al. (1995) for full 205 

details). 206 

 207 

Data analysis 208 

Data processing  209 

Ecologically significant non-linear ecosystem changes are frequently long-term in nature, and so we 210 

analysed non-linear change in abundance data at an inter-annual scale. Twenty-six of the time series 211 

were originally recorded at an annual scale. The remaining data sets (all plankton species) were monthly 212 

average counts (15 data sets), or counts at finer than monthly resolution that had uneven gaps between 213 

sampling occasions (85 data sets). To standardize the temporal resolution of these plankton data sets, 214 

we calculated annual mean chlorophyll-a concentrations and population counts for further analysis. 215 

This approach also prevented outliers (anomalously high abundances on specific dates) from exerting 216 

strong leverage when estimating long-term change. 217 

The biological basis for the interpretation of EWIs is implicitly grounded in shorter-term ecosystem 218 

behaviour (Scheffer et al. 2009). Therefore, in order to evaluate whether there were significant increases 219 

in autocorrelation or variance that could be used as EWIs, we focused on data at the original sampling 220 

resolution apart from the 85 data sets that had uneven gaps between sampling occasions. For these time 221 

series, data were interpolated to a biweekly resolution so that the sliding window used to calculate 222 

changes in the EWIs was consistent across the time series. 223 

The first step in identifying changes in the abundance data was to ensure that, prior to investigating 224 

turning points, each time series was standardized. Models were fitted to the abundance data with day of 225 

year (doy) as a covariate in order to account for any seasonality. This model was fitted as a Generalized 226 

Additive Model (GAM, Hastie and Tibshirani (1990)) to allow for a non-linear, within-year relationship 227 

for the doy term and to allow for the non-normal error structure associated with the abundance data. 228 

The model formula used to standardize the abundance data 𝑦 at time 𝑡 was: 229 

 230 

log(𝑦𝑡) =  𝛽0 + 𝑓(𝑑𝑜𝑦𝑡) + ∑ 𝛾𝑖

𝑘

𝑖=1

 231 

 232 

where a log link was used (left hand side of equation), 𝛽0 is the model intercept, which effectively 233 

corresponded to the overall mean abundance, 𝑑𝑜𝑦 is the day of year, which can run from 1 to 366; 𝑓 is 234 

a smoothly varying function (derived using thin plate regression splines, Wood (2003)), with flexibility 235 
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constrained according to the length of the time series (Fewster et al. 2000), and 𝛾 represents the 𝑘 236 

contrasting levels of any confounding factors (not fitted here). As the majority of abundance data was 237 

actually non-integer valued, a Gamma error distribution was assumed. Models were fitted using the 238 

mgcv package (version 1.8-3; Wood (2011)) in the R statistical environment  (R Core Team, 2014). A 239 

standardized time series (one with within-year seasonality removed) was obtained by subtracting 240 

estimates of the fitted model from the observed abundance data. These residuals, representing long-241 

term abundance change after partitioning out variation due to seasonality, were then used to assess 242 

evidence of any turning points in the time series. 243 

  244 

 245 

Identifying turning points 246 

To estimate changes in the long-term trend of each standardized abundance time series (i.e. turning 247 

points), and to characterize the pattern of the response, smoothly varying relationships were fitted to 248 

the data with respect to time. The smooth form is able to capture the general signal present in the 249 

standardized time series, while smoothing out random variation about the trend. This was fitted using a 250 

GAM with a smoothly varying function of time included as an explanatory covariate. In this case, the 251 

time covariate is a running day value continuously increasing from the first day of sampling until the 252 

last, fitted with a log link function and Gamma distribution.   253 

 254 

From this fitted smoother, the nature of the trend was determined at all points along the whole time 255 

series. The trend was characterized according to three states: increasing trend, decreasing trend or 256 

stationary. To assign any point along the temporal axis to one of these three states, the first derivative 257 

of the fitted smoother with respect to time was calculated using finite differences. Standard errors of 258 

these derivatives were also estimated to provide 95% point-wise confidence intervals around the 259 

gradient and hence assess whether the gradient was significantly different from zero. If the gradient was 260 

non-significant the trend was classified as stationary, otherwise the trend was classified according to 261 

the sign of the gradient. This follows a similar approach to that taken by Large et al. (2013) and Monteith 262 

et al. (2013). A significant change in the time series was defined as the point at which the trend changed 263 

from one state to another. Similar approaches to estimating turning points have also investigated 264 

significant second derivatives (e.g. Fewster et al. (2000)). However, because of the requirement to 265 

classify the trend into the three states (stationary, positive, negative), the first derivative method was 266 

used – the second derivative method cannot inform on periods of stationarity.  267 

 268 

Identifying time periods with changing autocorrelation and variance (EWIs) 269 

Lag-1 autocorrelation and variance components were extracted for all of the raw time series 270 

corresponding to those series which have been assessed for turning points.  This was done across a 271 

rolling window that corresponded to 25% of the data using the R package “earlywarnings” following 272 
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Dakos et al. (2012a). The extracted autocorrelation and variance series were then subjected to the same 273 

routine as the abundance time series to determine when any significant changes in the state of the 274 

indicator had occurred. As theoretical models predict an increase in variance or a strengthening of 275 

autocorrelation prior to a turning point in the time series (Carpenter et al. 2008; Dakos et al. 2012a), we 276 

only considered changes from a positive state to a stationary state and changes from a stationary state 277 

to a positive state as being ecologically informative, these being, respectively, indicative of a change to 278 

a new state or an increase in EWI preceding change.  279 

 280 

Coherence between EWIs and turning points  281 

To be ecologically informative as EWIs, significant increases in the variance and autocorrelation of a 282 

time series must occur prior to turning points in the data. In the absence of a priori information on the 283 

timescale over which EWIs would precede abundance change, we considered ten years to be an 284 

appropriate period within which to assess coherence. A decade encompasses a broad range of potential 285 

lags between EWIs and turning points, and, based on existing knowledge of the population dynamics 286 

and generation times of the study organisms, we would expect demographic responses to occur within 287 

this time scale. Moreover, ten years is a practically-useful time horizon over which managers could 288 

respond. We undertook separate assessments of variance and autocorrelation.  We first examined each 289 

case in which an EWI and/or a turning point was detected in a time series. Each case was categorized 290 

as either a turning point with an associated EWI, a turning point without an EWI or an EWI without a 291 

turning point; thus, there could be multiple cases per time series. When assessing cases, we did not 292 

differentiate between the direction of change in either the EWI (stationary to positive or positive to 293 

stationary) or the turning point (stationary to positive, positive to stationary, stationary to negative, 294 

negative to stationary). We followed the terminology used by Scheffer et al. (2009) to assign each case 295 

to one of three EWI detection classifications: 296 

i) False positive: significant increase in the EWI but no associated turning point in 297 

the abundance time series. 298 

ii) False negative: significant turning point in the abundance time series but no 299 

associated increase in the EWI. 300 

iii) True positive: significant increase in the EWI in association with a significant 301 

turning point in the abundance time series. 302 

Where a turning point in the abundance time series occurred within ten years of the start of the data set 303 

and with no EWI preceding it, we could not be confident that an EWI had not occurred previously. 304 

Similarly, where an EWI occurred within 10 years of the end of a data set but no turning point followed, 305 

we could not be certain of the absence of a turning point.  We therefore did not consider these cases 306 

further.   307 
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We then classified each data set into the following categories according to the combination of EWI 308 

detection classifications that it contained: i) Null: no EWI detection classifications (no significant 309 

turning points in the time series and no EWIs); ii) False negative(s) only; iii) False positive(s) only; iv) 310 

True positive(s) only; v) False positive(s) and false negative(s); vi) True positive(s) and false 311 

negative(s); vii) True positive(s) and false positive(s); or viii) True positive(s), false positive(s) and 312 

false negative(s).  313 

Finally, a bootstrap-based test was developed to see if there was a statistically significant association 314 

between EWIs and turning points. A test statistic was developed that: i) looped through all turning 315 

points in a given time series; ii) found the nearest preceding significant change in the EWI for each of 316 

these turning points; and iii) calculated the time lag between these events and the variance among lags 317 

(in days), as the test statistic. In a bootstrap procedure, this observed test statistic was then compared to 318 

1000 other test statistics obtained by randomly generating the same number of pseudo turning points as 319 

had been found in the observed data according to a uniform distribution across the time period. The p 320 

value is given by the proportion of times the variance of the simulated data was more extreme than the 321 

variance of the observed data. This provided a clear test of whether the observed changes in the EWI 322 

were more consistently related to turning points than could be achieved by chance. Lag variance was 323 

used because our primary aim was to identify whether EWI variance or autocorrelation showed a 324 

consistent association with turning points in the time series, rather than estimating the proximity of the 325 

EWI to the turning point. If consistency was apparent, then the lag between the EWI and the turning 326 

point would be established. When only one turning point was identified in the time series data, the 327 

distance in days between that turning point and any significant change in the EWI was used as the test 328 

statistic. We quantified the number of significant relationships between EWIs and turning points 329 

according to species, ecosystem or trophic level in order to identify whether particular species groups 330 

showed high levels of coherence and hence had potential as effective species for management 331 

intervention. 332 

 333 

  334 
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Results 335 

 336 

Turning points in annual scale time series data 337 

 338 

Of the 126 time series tested, 91 (72%) did not show any significant turning points. Of the remaining 339 

thirty-five, 10 showed one turning point and 25 showed multiple turning points (range 2–8), giving a 340 

total of 81 turning points (see Figure 1, Figure 2, Figure S1 & Table S2). Expressed as the average 341 

turning point per unit time to standardize across time series of different lengths, this equated to 0.128 342 

to 2.143 turning points per decade (mean 0.179). There was a broadly even distribution of turning points 343 

between the four different categorizations, with 24%, 27%, 21% and 28% of turns being negative to 344 

stationary, positive to stationary, stationary to negative and stationary to positive respectively. We did 345 

not detect any obvious temporal synchrony in the incidence of turning points among taxa within, or 346 

between, trophic levels or ecosystems (Figure 2 and Figure S1). A greater proportion of predator time 347 

series (91%; n=11) showed turning points than other trophic levels (primary producers 19% (n=83); 348 

primary consumers 28% (n=18); secondary consumers 29% (n=14)). Note, however, that 70% of the 349 

predator time series are from the North Sea (Figure 3). However, there was no difference among trophic 350 

levels in turning points per decade (Figure S2). 351 

 352 

Early warning indicators: increases in variance and autocorrelation 353 

 354 

A significant change in variance was detected in 74 (59%) of the 126 time series, whereas 56 (44%) 355 

showed a significant change in autocorrelation. For variance, 16 of 74 (22%) showed one change and 356 

58 of 74 (78%) showed multiple changes (range 2–4), giving a total of 161 changes (76 positive to 357 

stationary and 85 stationary to positive).  Equivalent values for autocorrelation were 13 of 56 (23%) 358 

with one change and 43 of 56 (77%) with multiple changes (range 2–7), totalling 137 (73 positive to 359 

stationary and 64 stationary to positive; see Table S3 and S4). The incidence of significant changes per 360 

unit time equated to 0.125 to 1.600 (mean 0.383) significant changes per decade for variance and 0.076 361 

to 2.258 (mean 0.321) for autocorrelation. 362 

 363 

 364 

Coherence between EWIs and turning points: EWI detection classifications per case 365 

 366 

A total of 88 time series for variance and 78 for autocorrelation contained cases that could be assigned 367 

an EWI detection classification (contained a turning point and/or an EWI). There were a total of 239 368 

cases based on variance. Sixty nine cases occurred within 10 years of the start or end of the time series 369 

and were not considered further (see methods), leaving a total of 170 cases to test for coherence. Of 370 

these, 16 (9%) were true positives where the variance change preceded a significant turning point within 371 
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a 10 year period. For autocorrelation, there were a total of 209 cases, of which 57 were excluded due to 372 

proximity to the start or end of the time series, leaving 152 cases that could be assigned an EWI detection 373 

classification. Of these 152 cases, 19 (13%) were true positives. False results were more common in the 374 

time series than true positives (91% of cases for variance and 87% for autocorrelation), of which false 375 

positives were more common than false negatives (53% vs. 38% for variance; 47% vs. 40% for 376 

autocorrelation; see Table 1). Moreover, false results were found in every decade across all trophic 377 

levels and ecosystem types. 378 

 379 

Coherence between EWIs and turning points: EWI detection classifications per time series 380 

When considering associations between increased variance and turning points, 55 time series contained 381 

cases with uncertain classification due to proximity to the start or end of the time series. Of the 71 382 

remaining data sets, 6 (8%) contained true positives (five with one true positive, one with two), but all 383 

of them also contained false cases. For autocorrelation, 43 time series were unclassified, leaving 83 data 384 

sets of which 5 (6%) contained true positives (two with one true positive, one with two and two with 385 

three), with all but one of these also containing false cases. Therefore, only one time series contained a 386 

true positive without any false results and this had a single true positive case. No time series contained 387 

multiple true positive cases without any false cases being present, either for variance or autocorrelation.  388 

In total, 38 (30%) data sets tested for change in variance and 48 (38%) for autocorrelation were classed 389 

as null because there was no significant change in the EWI or turning points in the time series (Figure 390 

4 and Table S5). There was generally poor concordance between the classifications for variance and 391 

those for autocorrelation. Of the 54 time series that did not contain cases with uncertain classification 392 

for both variance and autocorrelation, 25 (43%) were assigned a different classification (see Table S6 393 

for a full breakdown). 394 

 395 

Formal testing of the significance of associations between the EWI and turning points was undertaken 396 

on the 35 data sets showing significant turning points. Two time series, both from the south basin of 397 

Windermere, showed a significant relationship between the timing of an EWI and a turning point in the 398 

time series: Staurastrum sp. showed an increase in autocorrelation in 1993 and a turning point in 1994; 399 

pike showed an increase in variance in 1979 and a turning point in 1990 (see Table S7). Note that for 400 

pike this coherence between variance and turning points was not included in previous assessments at 401 

the case level, due to the gap between EWI and turning point being greater than 10 years. As only two 402 

species showed significant coherence between EWIs and turning points, we were not able to address 403 

our aim of identifying whether particular species, trophic levels or ecosystems were more sensitive to 404 

showing effective EWIs. 405 

 406 
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Discussion 407 

 408 

Variance and autocorrelation as EWIs of non-linear change 409 

 410 

This paper presents an analysis of temporal coherence between turning points and significant increases 411 

in variance and autocorrelation in abundance time series. Based on 126 long-term data sets from a suite 412 

of species across four trophic levels in shallow lake, deep lake and coastal marine ecosystems, we 413 

believe it represents one of the most comprehensive tests of EWIs in real world data yet undertaken. 414 

Although our analysis identified both significant increases in variance and autocorrelation, and turning 415 

points in abundance, there was scant evidence that turning points were consistently preceded by 416 

significant increases in variance and autocorrelation. False results were found to be prevalent in all 417 

decades, trophic levels and ecosystems. False positives (significant increases in variance or 418 

autocorrelation but no associated turning point) and false negatives (the converse) were both more 419 

commonly found than true positives.  Furthermore, the majority of data sets containing true positives 420 

also contained false results. Based upon our bootstrapping procedure, only two true positive cases were 421 

unlikely to have occurred by chance. Our results therefore support modelling and empirical studies that 422 

have quantified changes in variance and autocorrelation in selected taxa or functional groups and found 423 

inconsistent or little evidence that they precede non-linear change (Hsieh et al. 2006; Litzow, Urban & 424 

Laurel 2008; Dakos et al. 2012b; Batt et al. 2013; Dakos, van Nes & Scheffer 2013; Litzow, Mueter & 425 

Urban 2013; Krkosek & Drake 2014).  426 

 427 

We adopted a flexible approach by considering turning points as generic indicators of non-linear 428 

change, which may have included both catastrophic and non-catastrophic transitions. Abundance data 429 

were used because they are readily analysed using freely available statistical packages and long time 430 

series were available. The analysis identified turning points in 38% of the amassed time series. In 431 

general, there was little evidence of temporal synchrony among turning points detected for different 432 

taxa or trophic levels within ecosystems (Figure S1, Table S2), which is unsurprising since generation 433 

times and life-history strategies of different species and trophic levels differ. Although we are unable 434 

to establish whether turning points represented species and systems undergoing non-catastrophic or 435 

catastrophic shifts, our time series encompassed a well documented regime shift in the North Sea in the 436 

1980s (Beaugrand 2004) and turning points of key species, notably zooplankton, accorded with the 437 

shift.   438 

 439 

Variance and autocorrelation were selected as candidate EWIs because they have an established 440 

theoretical basis, empirical verification from experimental work, and can be calculated readily (Scheffer 441 

et al. 2009; Carpenter et al. 2011). In addition, models have demonstrated that they offer different 442 

advantages: variance can be calculated for shorter time series, whilst autocorrelation is generally more 443 
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effective because it is less influenced by environmental noise (Dakos et al. 2012b). We successfully 444 

identified significant increase in variance and autocorrelation in 41% and 44% of time series 445 

respectively.  Overall, we were therefore confident that we had sufficient cases of turning points and 446 

increases in candidate EWIs to test the association between them. However, we found poor temporal 447 

coherence between variance, autocorrelation and turning points both among and within data sets, with 448 

false results predominating and present in data sets exhibiting cases of positive coherence. This finding 449 

supports our assertion that we would be constrained by the particular characteristics of different trophic 450 

levels.  Thus, our data suggest that K-selected species are strong candidates for the detection of turning 451 

points but do not show sufficient process variance or sampling frequency to detect EWIs that precede 452 

them.  In contrast, r-selected species have higher process variance, even when integrated to the same 453 

sampling intervals as K-selected species, making the detection of turning points more challenging. 454 

Alternatively, EWIs may be more effective prior to catastrophic change, in association with the 455 

phenomenon of critical slowing down, and the predominance of false associations could have occurred 456 

if the majority of turning points were linked to non-catastrophic change.  However, theoretical work 457 

has shown that EWIs also occur prior to non- catastrophic transitions, because ecosystems show 458 

increased sensitivity at this time (Kefi et al. 2013).  Had we found a greater degree of coherence between 459 

EWIs and abundance change across our time series, the next step would have been to identify which 460 

species, species groups or trophic levels had the greatest potential as sensitive indicator species for 461 

management. Secondly, we would have identified critical indicator levels of change in variance or 462 

autocorrelation occurring prior to a non-linear change that could be used to trigger a management 463 

response (as advocated by Biggs, Carpenter and Brock (2009)). However, the high prevalence and broad 464 

distribution of false results across ecosystems precluded us from fulfilling these aims.   465 

 466 

Synthesis and applications 467 

 468 

While abundance time series and associated variance and autocorrelation have great appeal in being 469 

widely available and readily analysed, we believe that additional approaches are required to identify 470 

EWIs that managers of real world ecosystems can use. It is clear from our analyses that despite variance 471 

and autocorrelation showing promise as EWIs using simulated data, these approaches are currently 472 

inadequate for widespread application to real world data. To increase their utility for real ecosystems, 473 

further development of EWIs is therefore a high priority.  474 

 475 

We focused our analysis on temporal coherence between EWIs and generic turning points, which may 476 

have included both catastrophic and non-catastrophic changes. We recommend further exploration of 477 

systems exhibiting well characterized regime shifts to establish whether EWIs are more effective 478 

indicators of catastrophic change.  We also recommend the application of these approaches beyond 479 

abundance data to other ecologically-relevant state variables such as phenology, productivity, 480 
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physiology and behaviour. Such parameters may be more sensitive and responsive to environmental 481 

change than abundance, which typically integrates multiple processes affecting fitness traits. 482 

Incorporating spatial information into time series analyses may help increase statistical power and 483 

inference (Dakos et al. 2011).  However, models must include spatial as well as temporal variance and 484 

autocorrelation, and factoring in a spatial component considerably reduces the number of available data 485 

sets.  486 

 487 

The efficacy of EWIs may also be a matter of ecological scale. Herein we assessed change at the 488 

population scale and sought coherence among these population-level results. However, EWIs may in 489 

fact be more strongly manifest in measures of community or ecosystem structure. Multivariate 490 

modelling techniques that analyse community-level data could therefore enhance our ability to identify 491 

transitions (Dakos et al. 2012a; Lindegren et al. 2012). Community-level turning points may be more 492 

indicative of ecosystem-level catastrophic change than single time series (Angeler et al. 2013; Eason, 493 

Garmestani & Cabezas 2014; Spanbauer et al. 2014), and testing could be focussed on systems with 494 

well documented regime shifts (Wouters et al. 2015).   495 

 496 

Furthermore, we also recommend exploring a larger suite of candidate EWIs (Lindegren et al. 2012). 497 

Changes in skewness, flickering and conditional heteroscedasticity show promise as effective EWIs in 498 

theoretical studies and warrant investigation in real world data sets (Scheffer et al. 2009; Seekell et al. 499 

2012; Dakos, van Nes & Scheffer 2013).  Finally, establishment of EWIs for ecosystem change using 500 

state variables such as abundance time series might be challenging without incorporating drivers of 501 

change and process based understanding into models. However, more sophisticated approaches are 502 

challenging to communicate and of more limited management potential which would introduce 503 

constraints on building capacity among the research and conservation communities. 504 

 505 

There is accumulating evidence that species and communities are exhibiting non-linear changes in 506 

response to environmental change. These transitions have resulted in considerable concerns among 507 

conservation managers and policy makers that ecosystem change may become more frequent, with 508 

associated losses in natural capital and ecosystem services.  Preventing such change is more desirable 509 

and practical than reversing it, hence there is widespread interest in developing reliable EWIs for real 510 

world situations.  Long-term monitoring plays a vital role in ensuring that the development, testing and 511 

refinement of such indicators can continue into the future.  While studies should focus on the most 512 

promising time series in terms of quality and length, our study supports the assertion that there is 513 

unlikely to be a “silver bullet” that meets this challenge (Dakos et al. 2012a; Lindegren et al. 2012) and 514 

that early detection of non-linear change using variance and autocorrelation as early warnings may be 515 

wishful thinking (Ditlevsen & Johnsen 2010).  Thus, it is recommended that further studies could adopt 516 

some of the alternative approaches suggested here.  Ultimately, there is likely to be a limit to what can 517 
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be achieved with time series analysis in isolation.  Therefore, such studies should be undertaken in 518 

tandem with empirical analyses and modelling that enhance process understanding.  519 
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Table 1: Number of cases in each early warning indicator (EWI) detection classification  753 

 754 

EWI detection classification No. of cases based on variance 
No. cases based on 

autocorrelation 

True positive 16 19 

False positive 90 72 

False negative 64 61 

  755 

 756 

  757 
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 758 
 759 

Figure 1: Example plot showing abundance of common guillemots Uria aalge in the North Sea 760 

ecosystem. Turning points occur where the fitted line changes thickness. All four directions of change 761 

were observed in this data set. 762 
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773 
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 775 

Figure 2: Timing and direction of change of turning points in time series across different trophic 776 

levels for the North Sea (see Figure S1 for plots of other study ecosystems). The direction of change is 777 

indicated by the filled symbols. The lengths of the lines represent the duration of the time series 778 

(truncated to 1960 for ease of viewing). 779 
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Figure 3: The percentage of data sets with at least one turning point, by trophic level, across 790 

ecosystems (four Cumbrian Lakes grouped for ease of viewing). The numbers above the bars indicate 791 

the number of time series in each category. Secondary consumers in the North Sea showed no turning 792 

points. 793 
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 810 

Figure 4: Classification of time series with respect to early warning indicator (EWI) detection 811 

classifications. Null classification occurs when data sets have no significant change in EWIs (variance 812 

or autocorrelation) or turning points. Bars show the number of data sets in each category, with 813 

classifications based on variance shown in grey and autocorrelation shown in black. 814 
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