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ABSTRACT

This paper examines trends in the southern annular mode (SAM) and the strength, position, and width of

the Southern Hemisphere surface westerly wind jet in observations, reanalyses, and models from phase 5 of

the CoupledModel Intercomparison Project (CMIP5). First the period over 1951–2011 is considered, and it is

shown that there are differences in the SAM and jet trends between the CMIP5 models, the Hadley Centre

gridded SLP (HadSLP2r) dataset, and the Twentieth Century Reanalysis. The relationships between these

trends demonstrate that the SAM index cannot be used to directly infer changes in any one kinematic

property of the jet. The spatial structure of the observed trends in SLP and zonal winds is shown to be largest,

but also most uncertain, in the southeastern Pacific. To constrain this uncertainty six reanalyses are included

and comparedwith station-based observations of SLP. TheCMIP5mean SLP trends generally agreewell with

the direct observations, despite some climatological biases, while some reanalyses exhibit spuriously large

SLP trends. Similarly, over the more reliable satellite era the spatial pattern of CMIP5 SLP trends is in

excellent agreement with HadSLP2r, whereas several reanalyses are not. Then surface winds are compared

with a satellite-based product, and it is shown that the CMIP5mean trend is similar to observations in the core

region of the westerlies, but that several reanalyses overestimate recent trends. The authors caution that

studies examining the impact of wind changes on the Southern Ocean could be biased by these spuriously

large trends in reanalysis products.

1. Introduction

The Southern Hemisphere (SH) westerlies are the

strongest time-averaged surface winds on the planet,

and they exert a pronounced influence on the global

climate system. They do so in part by driving upwelling

of deep waters in the Southern Ocean, and thereby the

upper limb of the Atlantic meridional overturning cir-

culation (AMOC) (Toggweiler and Samuels 1995;

Marshall and Speer 2012). The AMOC, in turn, strongly

modulates the oceanic uptake of heat and carbon

(Kostov et al. 2014; Frölicher et al. 2015) and also

controls global primary production through regulation

of the nutrient supply to the ocean thermocline

(Sarmiento et al. 2004; Marinov et al. 2006). Variability

and changes in the westerlies are thus of central inter-

est when considering human-induced climate change

(Toggweiler and Russell 2008).

The dominant mode of atmospheric variability in the

SH is the southern annular mode (SAM). The SAM

index has alternately been characterized as the leading

empirical orthogonal function (EOF) of sea level pres-

sure in the SH (Thompson andWallace 2000) and as the

sea level pressure difference between 408 and 658S
(Gong and Wang 1999). Observations have shown a

trend toward the positive phase of the SAM since about

1970 (Thompson and Solomon 2002; Marshall 2003).

Modeling studies have attributed this trend to human

influence from a combination of increasing greenhouse

gases and ozone depletion (Fyfe et al. 1999; Son et al.

2010; Gillett et al. 2013). The influence of ozone de-

pletion has a strong seasonal signal, being largest during
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austral summer [December–February (DJF)], whereas

the greenhouse gas (GHG) forcing operates consistently

year round (Son et al. 2010; Thompson et al. 2011;

Gillett et al. 2013). As a result, historical trends in the

SAM are largest during austral summer, but small and

statistically insignificant during the austral winter

(Thompson et al. 2011).

These recent trends in the SAM have been associated

with changes in the tropospheric circulation and climate

(Thompson and Solomon 2002; Thompson et al. 2011).

Month-to-month changes in the polarity of the SAM

index are primarily associated with nearly symmetrical

north–south vacillations of the surface westerly jet

(herein referred to simply as the jet) (Hartmann and Lo

1998; Thompson and Wallace 2000). The positive phase

of the SAM is associatedwith a poleward shifted jet, such

that the westerlies are stronger over much of the

Southern Ocean (with a center near 608S) and weaker to

the north (with a center near 408S) (Thompson et al.

2011). However, oscillations in the SAM are also asso-

ciated with changes in the width of the westerly jet and

the strength of the jet at its peak (Monahan and Fyfe

2006). Indeed, the historical trend toward the positive

phase of the SAM during the austral summer has been

concurrent with both a poleward shift and a strengthen-

ing at the peak of the westerly jet (Swart and Fyfe 2012).

The climate models participating in phases 3 and 5 of

the Coupled Model Intercomparison Project (CMIP3

and CMIP5, respectively) show systematic biases in

their simulation of the SH westerly jet. On average the

models simulate a climatological jet position that is 28–38
of latitude equatorward of the observed position over

the historical period (Swart and Fyfe 2012; Bracegirdle

et al. 2013). Swart and Fyfe (2012) also showed that the

simulated trends in jet strength over 1979–2010 were

significantly smaller at the 5% level than the trends seen

in the average of four reanalysis products (R1, R2,

20CR, and ERA-Interim; see Table 1 for expansions and

additional information) in all seasons except June–August

(JJA). However, they also cautioned that this result was

potentially unreliable, given that the reanalyses showed a

large spread of trends and were poorly constrained in

the Southern Hemisphere (Swart and Fyfe 2012).

More recently Gillett and Fyfe (2013) showed that

over 1951–2011 the CMIP5 models simulate a SAM

trend which is consistent with observationally based

estimates, at least during DJF. Since trends in the

strength of the westerly jet may be closely related to those

in the SAM index (or sea level pressure gradient) through

geostrophy, the findings of Swart and Fyfe (2012) and

Gillett and Fyfe (2013) appear to be contradictory. How-

ever, given that the studies covered different time frames

and used different metrics, there are many potential rea-

sons for the apparent contradiction. In this paper we will

compare changes in both the SAM and the westerly jet

over a common period to resolve this discrepancy.

The aims of this study are to address two principal

questions: 1) What is the relationship between trends in

the SAM index and the kinematic properties of the

westerly jet? 2) How do historical trends in the SAM

and westerly jet compare between the best available

direct observations, common reanalysis products, and

the CMIP5 climate models? The second question is

designed to quantify any systematic biases in the

reanalyses or CMIP5 models. A major difficulty is that

the direct observational estimates of sea level pressure

and winds are not available with comprehensive cover-

age in both space and time.Here we attempt tomake the

closest possible comparison with the best available ob-

servations, which requires comparing trends in the SAM

and winds over several different periods, and at specific

geographic locations.

In the following section we describe the data and

methods used in this study. Section 3 begins by consid-

ering changes in the SAM index and kinematic prop-

erties of the westerly jet focusing on the historical

period since 1951. We start with a long historical record

(i.e., presatellite era) because it facilitates the robust

TABLE 1. List of reanalyses used in this study.

Name Abbreviation Reference Data source

NCEP–NCAR reanalysis R1 Kalnay et al. (1996) http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis.html

NCEP–DOE AMIP-II reanalysis R2 Kanamitsu et al. (2002) http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis2.html

Twentieth Century Reanalysis

(version 2)

20CR Compo et al. (2011) http://portal.nersc.gov/project/20C_Reanalysis/

ECMWF interim reanalysis ERA-Interim Dee et al. (2011) http://apps.ecmwf.int/datasets/data/interim-full-moda

NCEP Climate Forecast System

Reanalysis

CFSR Saha et al. (2010) http://rda.ucar.edu/datasets/ds093.2/

NASA MERRA MERRA Rienecker et al. (2011) http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl
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detection of long-term trends and it also allows us to

compare our results with those of Gillett and Fyfe

(2013). Section 4 uses a simple theoretical model to es-

tablish the expected relationship between SAM changes

and jet properties and shows that this simple description

largely explains the relationships seen in the full CMIP5

models. The spatial pattern of trends is examined in

section 5. Then, in section 6 we undertake a detailed

intercomparison of changes in sea level pressure and

surface winds in various observations, reanalysis prod-

ucts, and the CMIP5 models over the more recent and

reliable satellite era. In the final section we synthesize

our findings and draw some broader conclusions.

2. Data and methods

We use monthly mean sea level pressure, 10-m

zonal wind speed fields (u10m), and surface east-

ward wind stress from ensemble member 1 from 30

CMIP5models [ACCESS1.0, ACCESS1.3, BCC_CSM1.1,

BCC_CSM1.1(m), BNU-ESM, CanESM2, CMCC-CM,

CMCC-CMS, CNRM-CM5, CSIRO Mk3.6.0, GISS-

E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC,

HadCM3, HadGEM2-AO, HadGEM2-CC, HadGEM2-

ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR,

IPSL-CM5B-LR, MIROC5, MIROC-ESM, MIROC-

ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MRI-

CGCM3, NorESM1-M, and NorESM1-ME; expan-

sions of acronyms are available online at http://www.

ametsoc.org/PubsAcronymList]. We also use the equiva-

lent output from six reanalyses, listed with their abbre-

viations, references, and data sources in Table 1. The

Twentieth Century Reanalysis (20CR; Compo et al.

2011) is an ensemble reanalysis consisting of 56members.

The 20CRensemblemembers are not ‘‘free running’’ like

the CMIP5 models, but rather they are produced with an

ensemble Kalman filter data assimilation system to esti-

mate the state of the atmosphere every 6h (Compo et al.

2011). The spread across the 20CRensemble provides the

uncertainty of that estimate, arising from ‘‘atmospheric

dynamics . . . imperfect observations and a finite-

ensemble first guess generated using an imperfect NWP

model’’ (Compo et al. 2011, p. 4). The spread across the

20CR ensemble does not represent large-scale differences

in internal variability (e.g., phase of the SAM or ENSO),

since all ensemble members are constrained to follow the

observations. Hence, we consider the spread across the

20CR ensemble to represent ‘‘observational uncertainty.’’

For bothCMIP5 and 20CRweperformour analysis on the

individual ensemble members, and then compute an en-

semble mean with an associated uncertainty (see below).

We use the gridded observational sea level pressure

dataset, HadSLP2r, with reduced variance (Allan and

Ansell 2006). HadSLP2 extends from 1850 to 2004 and is

based on quality controlled marine and terrestrial

pressure observations that have been blended, gridded,

and made spatially complete using a reduced space op-

timal interpolation. HadSLP2r extends this from 2005 to

2012 based on R1 fields (Table 1), which have been

adjusted to have the same mean and variance as

HadSLP2. (This ‘‘reduced variance’’ version is available

online at http://www.metoffice.gov.uk/hadobs/hadslp2.)

We also use the observed sea level pressures over 1958–

2011 updated from Marshall (2003). Marshall (2003)

used 12 individual stations to compute the proxy zonal

mean SLPs at 408S and 658S (six stations near each lati-

tude circle). Additional observationally based SAM re-

constructions exist (e.g., Jones et al. 2009; Visbeck 2009),

and have previously been compared with each other (Ho

et al. 2012), but we do not make use of them here.

The cross-calibrated multiplatform (CCMP) ocean

surface wind vector analyses of Atlas et al. (2011) is used

for u10m winds and psuedo–wind stress fields over the

period 1988–2011. The data were downloaded from the

Research Data Archive at the National Center for At-

mospheric Research, Computational and Information

Systems Laboratory, Boulder, Colorado (available on-

line at http://rda.ucar.edu/datasets/ds744.9/). The sup-

plied zonal psuedo–wind stress (u2) is converted to wind

stress as: tx 5 rcdu
2, where r 5 1.2 kgm23 is the density

of air and cd 5 1.4 3 1023 is a dimensionless drag co-

efficient. CCMP is created using a variational analysis

method (VAM), which takes in data from satellite ra-

diometers and scatterometers, as well as ship and buoy

observations. Observations are adjusted to the 10-m

level assuming neutral stability. The VAM combines the

data in a best fit, while satisfying smoothness and dy-

namical constraints. The procedure also requires a first-

guess field, which comes from the ERA-40 reanalysis

from July 1987 to December 1998, and from ERA-

Interim thereafter (Atlas et al. 2011). Here we refer to

CCMP as ‘‘satellite observations,’’ while acknowledging

the presence of other observational inputs, and the

reanalysis-based first guess.

Prior to any analysis, all the model, reanalysis, and

observation data were remapped to a common 18 3 18
grid, using a distance weighting algorithm. The unitless

SAM index is often calculated as the difference between

the normalized sea level pressure at 408 and 658S after

Gong and Wang (1999). However, normalization (i.e.,

subtracting the mean and dividing by the standard de-

viation) removes systematic biases in the pressure at

each latitude. Our nonnormalized SAM index is calcu-

lated as the zonal mean sea level pressure difference

between 408 and 658S in hectopascals (across all longi-

tudes), as inGillett and Fyfe (2013), except where noted.
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Alternatively, where noted (and in Figs. 9 and 10), the

SAM index is calculated in the same way but using only

data from the 12 locations coincident with the stations

used byMarshall (2003). The strength of the westerly jet

is taken as the maximum of the zonal mean u10m be-

tween 208 and 708S (in meters per second). The position

of the jet is taken as the latitude, in degrees, at the jet

maximum. The jet width is taken as the range of contig-

uous latitudes between 208 and 708S (in degrees latitude),

where the zonal mean u10m is positive. Where appro-

priate, seasonal averages were constructed as a simple

(unweighted) mean over the 3-month periods DJF,

March–May (MAM), JJA, and September–November

(SON) respectively (seasonal means were computed

from monthly indices, where applicable). Trends in the

SAM index and jet properties were computed over vari-

ous different time intervals (years), to allow for compar-

ison with different observational products that each

cover a limited period.

The analysis carriedout in this paperwas performedwith

the aid of IPython (Pérez and Granger 2007), and graphics

were producedwithmatplotlib (Hunter 2007), version 1.4.3

(Droettboom et al. 2015). The analysis is fully reproducible

with the open source code available from Swart (2015).

Ensembles, uncertainty, and statistics

Observed and simulated climate trends contain vari-

ous sources of uncertainty that must be properly

accounted for when formulating statistical tests (Fyfe

et al. 2013; Santer et al. 2008). In this section we outline

the sources of uncertainty in the CMIP5 ensemble of

model simulations, the 20CR observational ensemble,

and other observations. We then discuss appropriate

statistical tests for (i) determining if observed and sim-

ulated trends are (in)consistent and (ii) determining

whether an ensemble mean trend is significantly differ-

ent from zero. A representation of the simulated and

observed trends can be given by

bm
ij 5 um 1Eintmij 1Em

i , i5 1, . . . , nm, j5 1 and

(1)

bo
k 5 uo 1Eintok 1Eo

k , k5 1, . . . , no , (2)

where bm
ij and bo

k are trends calculated from single model

runs or the observations; um and uo are the true, un-

known, deterministic trends due to external forcing in

the model and observations (Fyfe et al. 2013); um is the

component of the trend common to all models (in the

limit as the collection of exchangeable models grows

infinitely large); and Eintmij and Eintok are perturbations

to bm
ij and bo

k respectively due to internal variability. For

the models this is different for each run, but there is

essentially only one realization of internal variability for

the observations. Also,Em
i is the perturbation to bm

ij that

is introduced by model error in model i, and Eo
k is the

observational error; nm is the number of models (and

here we have only used one realization for each model,

j 5 1) and no is the size of the observational ensemble

(which could be no 5 56 for 20CR but is no 5 1 for the

other observations).

To assess (i) whether the observed and simulated

trends are consistent, we formulate the null hypothesis

that the observed and simulated trends are equal:

H
0
: um 5 uo . (3)

An estimator of um 2 uo is bm 2 bo, where the overbar

represents the average over all ensemble members. A

test of null hypothesis may be given by a test similar to

the Student’s t test for the difference in means:

t5
bm 2 boffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bm

nm
1 So2

r , (4)

where s2bm /n
m is an estimate of the variance of the mean

of the model-mean trend, which arises due to model

errors (Em
i ) and internal variability (Eintmij ) that are

present in the CMIP5 ensemble (Santer et al. 2008). The

uncertainty estimated from the CMIP5 ensemble in this

way accounts for all the uncertainty terms in (1). Also,

So2 is an estimate of the variance of the observed trend.

This term should account for the uncertainty due to

observational error (Eo
k) and internal variability (Eintok)

present in the observations. Estimating the observa-

tional error requires more than a single observation

(often not available) and the influence of internal vari-

ability is hard to estimate robustly given that there is

only a single observed realization of this variability.

The uncertainty in the observed trend due to internal

variability (Eintok) can be estimated using the standard

error of the trend adjusted for autocorrelation (e.g.,

Santer et al. 2008). Alternatively, this uncertainty can be

estimated bymaking the assumption that the variance of

the observed and simulated trends is equal (i.e., the

spread across the model ensemble is used as an estimate

of the influence of internal variability on the observa-

tions). Under this assumption of equal variances with a

single observational estimate yields

t5
bm 2 bo

s
bm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nm
1 1

r ’
bm 2 bo

s
bm

. (5)

To reject the null hypothesis of equal trends at the 5%

level requires jbm 2 boj. csbm , where c is the 97.5th
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percentile of the Student’s t distribution with nm 2 1

degrees of freedom. Since c ’ 2 (for nm * 10), a statis-

tically significant difference requires that the observa-

tions lie outside of two standard deviations (2s) from

themodel mean trend. For a large enough sample size of

normally distributed data, this is equivalent to saying

that the observed trend should lie outside of the 2.5th–

97.5th percentile of the simulated trends (which we shall

show in all trend plots). The consistency of simulated

and observed trends can thus be evaluating by asking

whether the observations fall within the 2.5th–97.5th

percentile of the simulated trends (Swart et al. 2015;

Gillett and Fyfe 2013; Gillett et al. 2013).

In the case of the 20CR ensemble, the observational

uncertainty (Eo
k) may also be directly quantified as

s2bo /n
o, where no 5 56 is the number of members in the

20CR ensemble and s2bo is the variance across the en-

semble. Note, however, that we cannot simply replace

So2 in (4) with s2bo /n
o. The reason for this is that on av-

erage over the free-running CMIP5models the influence

of internal variability is zero (Eintmij 5 0), but for each

20CR ensemble member the influence of internal vari-

ability is constrained to be the same by the observations

(Eintok 6¼ 0). If we neglected to account for this, as the

number of model and 20CR ensemble members in-

creased, we would inevitably find significant differences,

bm 2 bo 6¼ 0, even if the true underlying trends were

equal (um 2 uo 5 0), simply because of differences in

internal variability. We could instead add the 20CR

observational uncertainty into the test above to make it

even more conservative:

t5
bm 2 boffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
bm

�
1

nm
1 1

�
1

s2bo

no

s (6)

but since sbm � s2bo /n
o, neglecting this term makes little

practical difference. Therefore throughout we will con-

sider the observed and simulated trends to be signifi-

cantly different at the 5% level when the observed trend

(ensemble mean for 20CR) falls outside of the 2.5th–

97.5th percentile of the simulated trends.

The above tests relate to the question of whether the

observed and simulated trends are consistent. The sec-

ond topic (ii) that we are interested in assessing is

whether a given ensemble mean trend is significantly

different from zero. The appropriate Student’s t test of

the null hypothesis that themean trend is zero is given by

t5
b

s
b

ffiffiffi
1

n

r , (7)

which could be tested for the models or 20CR ensemble.

The uncertainty in the mean trend is represented by the

(95%) confidence interval, which is given by

b6
cs

bffiffiffi
n

p , (8)

where c is the 97.5th percentile of the Student’s t dis-

tribution with n2 1 degrees of freedom (von Storch and

Zwiers 1999). We also plot this 95% confidence interval

for the CMIP5 and 20CR trends. This definition of the

95% confidence interval is used for both time series

(e.g., Fig. 1, shaded areas) and trends (e.g., Fig. 2, solid

vertical bars).

3. Observed and simulated changes in the SAMand
westerly jet

a. Time series

Over 1871–1950 the annual mean SAM index from

20CR, HadSLP2r, and the CMIP5 models hover around

25hPa on average (Fig. 1a). Over this period, theCMIP5

ensemble mean has an equatorward biased jet position

relative to 20CR (Fig. 1c), but the simulated jet strength

and width are roughly equivalent to those in 20CR

(Figs. 1b,d).

Prior to 1950, these metrics show pronounced inter-

annual and decadal time scale variability, but no sig-

nificant secular trends. From around 1950 onward,

HadSLP2r and 20CR both show a clear shift toward

larger values of the SAM index. Jet strength shows a

simultaneous increase in 20CR over this period, while

consistent changes in jet position and width are less

evident. The CMIP5 models also show an increase in

the SAM index and jet strength, although the simulated

increase generally appears lower than that seen in the

20CR and HadSLP2.

To more closely compare changes between 20CR,

HadSLP2r, and the CMIP5 models, we next consider

linear trends in these metrics over 1951–2011. The R1

data is also available over this period, but we exclude it

here because it is known to exhibit spurious trends in the

SAM (Marshall 2003). However, in section 6 we will

conduct a more thorough interobservational product

comparison.

b. Linear trends by season over 1951–2011

Over 1951–2011 both HadSLP2r and 20CR show a

positive SAM trend during all seasons (Fig. 2a). The

HadSLP2r SAM trends are generally a little smaller

than those in 20CR, and exhibit more seasonality. The

CMIP5 models also exhibit positive trends on average

during all seasons, but the model trends show the
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opposite seasonality to HadSLP2r and 20CR, being

largest in DJF and smallest in JJA on average, as would

be expected from the ozone-related forcing (Son et al.

2010; Thompson et al. 2011).

During DJF the model-mean SAM trend is almost

identical to that seen in 20CR, consistent with Gillett

and Fyfe (2013). However, during the austral winter

(JJA) the models significantly underestimate the SAM

trend relative to 20CR and HadSLP2r. The models also

significantly underestimate the annual (ANN) mean

trend SAM relative to 20CR. Significance in this sense is

FIG. 2. Trends over 1951–2011 in (a) the SAM index andwesterly

jet (b) strength, (c) position, and (d) width by season in HadSLP2r,

20CR, and CMIP5. The CMIP5 and 20CR ensemble mean trends

are given by the horizontal lines (red and green respectively), the

95% confidence interval is given by the solid vertical bars, and the

2.5th–97.5th percentile of trends in the individual ensemble

members is given by the light vertical bars.

FIG. 1. Time series of the annual mean (a) SAM index and

westerly jet (b) strength, (c) position, and (d) width over 1881–

2013. The shaded areas envelop the 95% confidence interval about

the mean for the CMIP5 and 20CR ensembles.
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determined from the fact that the 20CR ensemble mean

trend lies outside of the 2.5th–97.5th percentile of

CMIP5 trends, and thus we can reject the null hypothesis

that the 20CR and CMIP5 trends come from the same

distribution, at the 5% level (see section 2).

For jet strength, 20CR exhibits a trend of between

0.15 and 0.25m s21 decade21 (Fig. 2b). The CMIP5

models also show positive jet strength trends in all sea-

sons on average. Yet for jet strength, the modeled trends

are significantly smaller than for 20CR in all seasons,

with the annual mean trend being about 5 times weaker

in the models. In all seasons, the 20CR-mean trends lie

outside the 2.5th–97.5th percentile of CMIP5 trends.

Trends in jet position vary in sign over the seasons in

20CR (Fig. 2c), with a small, nonsignificant trend in the

annual mean. The CMIP5 models show poleward trends

in jet position that are significant at the 5% level during

all seasons except JJA. The largest poleward trend in jet

position occurs in DJF, with nearly identical trends in

20CR and the CMIP5 mean. Jet width does not exhibit

any significant trends in the CMIP5 models except for in

DJF,whichhas abroadening trendof about 0.18 latitudeper
decade on average. 20CR, by contrast, shows narrowing

trends in all seasons, especially SON.

The disagreements between 20CR,HadSLP2r, and the

CMIP5 models identified here at least partly reflect

spuriously large trends in 20CR and HadSLP2r, rather

than an underestimation of the ‘‘true’’ trend by the

CMIP5 models, as we shall see in sections 5 and 6. Re-

gardless, our key focus here is to highlight that over 1951–

2011 the DJF jet strength trends differ by more than a

factor of 2 between 20CR and CMIP5, while their SAM

trends are similar. Indeed, it is not valid to assume that

trends in the SAM index and jet properties are directly

interchangeable, as we show in the following section.

4. The relationship between changes in the SAM
index and westerly jet properties

a. A simple theoretical model

To illustrate the relationship between the SAM index

and the kinematic properties of the jet, we use a simple

geostrophic model. The zonal mean zonal velocity U is

given by aGaussian, with a specified positionF, strength

h, and width s:

U(f)5h exp

"
2
(f2F)2

2s2

#
, (9)

where f is latitude. In this model, the zonal jet velocity

is related to the surface pressure field via geostrophy,

such that

P(f)52r

ð
fU dy , (10)

where f 5 2v sin(f) is the Coriolis parameter, given the

angular rotation rate of Earth, v 5 7.3 3 105 s21, and

r 5 1.2 kgm23 is the density of air. We can use this

idealized model to examine how the SAM changes are

related to changes in an individual kinematic property of

the jet. We start with default values of h 5 7m s21,

F52488, and s5 68, and then vary each of these three

parameters individually, while keeping the other two

fixed (Fig. 3).

Changes in jet strength and the SAM index are line-

arly related, such that an increasing SAM is associated

with a strengthening jet (Fig. 3d). Changes in jet position

and the SAM index are inversely related, with a pole-

ward shifting jet corresponding to a strengthening SAM

(Fig. 3e). However, the relationship is not linear. The

increase in SAM is largest per unit of poleward shift for

jets which are more equatorward. For example, for a jet

that is centered at 458S a poleward shift of 18 latitude is

associated with an increase in the SAM index of about

1.7 hPa, while for a jet that is centered at 508S the in-

crease in SAM is less than 1hPa for the same 18 poleward
shift. Changes in the SAM index are also proportional to

changes in jet width, but are generally more sensitive to

jet narrowing than to jet widening.

The chief value of the model used here is to illustrate

that changes in the SAM index can be influenced by

changes in all three kinematic properties of the jet, as

found previously (Monahan and Fyfe 2006, 2008).

Changes in the SAM may be associated with changes in

one kinematic property of the jet, while the other ki-

nematic properties remain constant or even change in

the opposite sense.

b. SAM–jet relationships in the CMIP5 models and
20CR

We first consider the relationships between the trends

in the SAM index and the kinematic properties of the jet

for a single season, DJF, when the simulated mean

changes are largest. Trends in theDJF-mean SAM index

over 1951–2011 are significantly correlated with trends

in all three kinematic properties of the jet across the

CMIP5 models (Figs. 4a,c,e). The sign of the relation-

ships are as predicted by the simple geostrophic model.

The SAM index trend is also significantly correlated

with the climatological position and inversely correlated

with the climatological jet strength across the CMIP5

models (Figs. 4b,d). The correlation between SAM in-

dex trend and climatological position was also predicted

by the simple geostrophic model: the change in SAM

index is larger per degree poleward shift in jet position
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for models that start with a more equatorward clima-

tological position than for those with a more poleward

climatological position (Fig. 3e). In addition, it is known

that jets with a more equatorward climatological position

experience larger historical poleward trends in position

(Kidston and Gerber 2010; Bracegirdle et al. 2013).

Given these correlations showing that models with

large SAM trends tend to have large trends in jet

strength, position, and width, it might appear that the

SAM index can be used to infer changes in the jet.

However, the relationships between trends in the SAM

and the kinematic properties of the jet change by season.

This is demonstrated for the relationship between trends

in the SAM index and jet strength (Fig. 5). Further, the

relationships between the SAM and the jet differ be-

tween the CMIP5 and 20CR ensembles (Figs. 4 and 5),

and also differ when comparing the six reanalyses in

Table 1 to the CMIP5 models over the satellite era (not

shown). The correlations between the SAM and jet

properties within a given model also vary significantly

over the CMIP5 ensemble. For example, the correlation

between the SAM index and jet strength varies from r5
0.44 in IPSL-CM5B-LR to r 5 0.84 in ACCESS1.0.

Therefore, given the variability of these SAM jet re-

lations across models and by season, trends in the SAM

index cannot be used as a direct proxy for trends in the

jet, as previously shown (Thomas et al. 2015; Monahan

and Fyfe 2006, 2008).

The reasoning above also explains how it is that

20CR-mean and the CMIP5-mean SAM trends can be

similar, while the 20CR mean jet strength trend is much

larger than seen in the models on average (Figs. 4a and

2). The poleward trend in jet position is similar between

20CR and the models on average (Fig. 4c); however, the

models show a positive jet width trend (broadening) on

average, while 20CR shows a small negative width trend

on average (Fig. 4e). Thus, the broadening of the jet in

the models makes it dynamically consistent for them to

have the same SAM trend as 20CR, even though their jet

strength trends are much weaker than in 20CR. In ad-

dition, the models have an equatorward biased clima-

tological jet position relative to 20CR, and more

equatorward jets are associated with larger changes in

SAM (Fig. 4d) per unit poleward shift in jet position.

The apparent discrepancies between trends in the SAM

and jet strength are thus resolved.

5. Spatial structure of historical trends

The trends inmonthly SH sea level pressure andwinds

also have important spatial structure. The SLP trend

maps are shown over 1951–2004 (Fig. 6) because the

FIG. 3. The (a) strength, (b) position, and (c) width of an idealized Gaussian jet, and the relationship between changes in the (d) strength,

(e) position, and (f) width of the idealized jet and changes in the corresponding SAM index.
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HadSLP2r data become unreliable after 2005, as we

shall see below. The HadSLP2r trend pattern is domi-

nated by circumpolar wide negative trends in SLP south

of 508S, with a bull’s-eye of strong negative trends fo-

cused over the South Pacific. To the north HadSLP2r

shows an increase in pressure near 408S, focused south of
Africa. The 20CR mean trends shows generally very

similar patterns. In the CMIP5 mean trend, there are

similar circumpolar bands of positive trends centered on

408S, and negative trends south of 508S. However, the

CMIP5 models do not show the focused region of large

negative trends in the South Pacific, or increasing SLP

south of Africa. In both of these regions, the HadSLP2r

trends lie outside the 2.5th–97.5th percentile of indi-

vidual model trends, indicating that the differences are

significant (Fig. 6). These differences may occur because

the CMIP5 models have difficulty correctly simulating

variations in the wavenumber-3 pattern around Antarctica

FIG. 4. The relationship betweenDJF-mean trends over 1951–2011 in the SAM index and trends in jet (a) strength,

(c) position, and (e) width as well as climatological jet (b) strength, (d) position, and (f) width for the 30 individual

CMIP5 simulations and 20CR.Numbers in the bottom right of the panels give the correlation coefficient r and p value

of the relationship.
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(Marshall and Bracegirdle 2015), or because of uncer-

tainties in the observations described below.

Wind trends are shown for 20CR and theCMIP5mean

(Fig. 7). 20CR shows a band of large positive trends

centered on the jet core near 508S, with regions of neg-

ative trends on either side. The CMIP5 mean also shows

strengthening trends, but they are much weaker and

poleward displaced relative to the 20CR trends. Thus,

theCMIP5models show a strengthening on the poleward

flank of the jet on average. The anomaly map shows a

tripole of differences, indicating the shifted nature of the

trends in the CMIP5 mean, relative to 20CR, with the

differences being significant nearly everywhere.

In the previous sections we have shown how the

CMIP5 models have trends in SLP and surface winds

that differ significantly from HadSLP2r and 20CR.

These differences are evident in integrated metrics like

the SAM index and zonal-mean jet strength, and as we

have shown here are regionally focused in the south-

eastern Pacific. However, the southeastern Pacific is one

of the most data-sparse regions and significant un-

certainties exist in the observations, and from the

FIG. 5. The relationship between trends over 1951–2011 in the SAM index and trends in jet

strength over various seasons. The b values given in the bottom right of the panels are the slope

of the regression lines.
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infillingmethodologies associated with HadSLP2r (Allan

and Ansell 2006).

To demonstrate this, the uncertainty in the 20CR SLP

and u10m trends is shown as 2 times the standard de-

viation in trends across the 56-member 20CR ensemble

(Fig. 8). The 2s spread is largest in the southeastern

Pacific, and it represents about 20% of the magnitude of

the mean trends. The 20CR ensemble also suffers from

spurious trends associated with a changing observa-

tional network that are not fully quantified by the en-

semble spread discussed above (Wang et al. 2013). In the

following sections, we address these issues by conduct-

ing an intercomparison of available observational and

reanalysis products.

6. Intercomparison of changes across observational
products and models

a. SAM index computed at Marshall station locations

One of the most reliable records of changes in the SH

SLP is from the station based estimates updated from

FIG. 6. (left) Trends in monthly sea level pressure over 1951–2004 for (top)–(bottom) HadSLP2r, 20CR, and the

CMIP5 mean, and (right) anomalies relative to the HadSLP2r trends. The areas where the HadSLP2r trend lies

outside the 2.5th–97.5th percentile of trends in the individual CMIP5 simulations is shown by stippling in the bottom-

right panel. Numbers in the right-hand panels give the root-mean-square difference with HadSLP2r (Pa decade21).

Black dots in the panel for HadSLP2r show the position of the Marshall (2003) stations.

FIG. 7. (left) Trends in u10mover 1951–2011, and (right) anomalies relative to the 20CR trend. The areas where the

20CR trend lies outside the 2.5th–97.5th percentile of trends in the individual CMIP5 simulations is shown by

stippling in the bottom-right panel. The number in the bottom left of the right panel gives the root-mean-square

difference between the 20CR and CMIP5 mean trends (m s21 decade21).
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Marshall (2003). Data from six stations located near

408S and an additional six stations near 658S were av-

eraged to give the mean SLP at those two latitudes re-

spectively (for station positions see Fig. 6). Here,

HadSLP2r, six reanalyses, and the CMIP5 models are

subsampled at these same 12 locations in order to

compare with the Marshall (2003) data.

In the time series of themean pressure at 408S it can be
seen that the reanalyses and Marshall based observa-

tions have well-synchronized interannual variability

(Fig. 9a). In all products a general long-term increase in

SLP at 408S is also evident. At 658S, the observations and
all six reanalyses show a long term decline in SLP

(Fig. 9b). Biases here also occur principally in R1, which

starts with a pressure that is about 8 hPa too high, and

exhibits a large and spurious negative trend not seen in

the observations of Marshall (2003) prior to about 1990.

R2, which is a closely related product, has similar issues,

and to a much lesser extent, 20CR. Since the 20CR

spread is generally small after 1950 (Fig. 1), from here on

we show only the 20CR ensemble mean. It can also

clearly be seen that a large and spurious change occurs

after 2005 at 658S in HadSLP2r, coincident with when

that product begins to be based on R1 output, and de-

spite efforts to homogenize the dataset. Hence we limit

all our spatial comparisons with HadSLP2r to the period

before 2005.

The CMIP5 models on average have a pressure that is

systematically low by about 1 hPa at 408S and system-

atically high by about 4 hPa at 658S, relative to the

Marshall data (Figs. 9a,b). The SAM index shows thewell-

known long-term increase for the models, reanalyses, and

observations (Fig. 9c). Biases, which largely stem from

those at 658S, are also clearly evident. To better assess the

changes, SAM trends by season are also computed for two

time periods (Fig. 10).

Over 1958–2011, trends at 408S are generally small

and positive. Trends at 658S are negative and larger,

and show large biases for R1 relative to the Marshall and

HadSLP2r observations. In the SAM index, the

Marshall-based trend is positive in all seasons, except

SON, when it is zero. The HadSLP2r trends also gen-

erally match the Marshall trends well, with the largest

difference occurring in SON. The 20CR ensemblemean

SAM trend is slightly larger than the trend observed in

the Marshall data in all four seasons and the annual

mean. The spread of CMIP5 trends over 1958–2011

includes the observed Marshall trend in all seasons ex-

cept SON (Fig. 10). Interestingly, in the annual mean,

the CMIP5 mean trend almost exactly matches the

observed Marshall trend.

Over the shorter period from 1979 to 2009, most of the

same conclusions hold. Trends at 408S are small and

positive, while trends at 658 are negative, larger, and less

certain. The CMIP5 range of trends includes the Mar-

shall observations in all seasons, and in the annual mean

the CMIP5 mean trend is again almost identical to ob-

served over the shorter satellite era.

FIG. 8. The uncertainty in 20CR trends in SLP and u10m over

1951–2011, given by 2 times the standard deviation of trends across

the 56-member 20CR ensemble.

FIG. 9. Time series over 1962–2012 of pressure at (a) 408S and

(b) 658S, and (c) the SAM index computed using only data from the

locations of the stations used by Marshall (2003) and shown for

the original Marshall (2003) data, HadSLP2r, six reanalyses, and

the CMIP5 mean plus 95% confidence interval. All data have been

smoothed with a 5-yr running mean.
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These findings suggest that there is little evidence that

the CMIP5 models systematically underestimate the

SAM trend. This is opposite to the conclusion in section

3, where the JJA (and annual mean) SAM trend (based

on the zonal mean over all longitudes and over 1951–

2011) in HadSLP2r and 20CR was found to be signifi-

cantly larger than the CMIP5 trends.Much of the reason

for this is that over 1951–2011 the largest SLP trends in

20CR and HadSLP2r occur in the southeastern Pacific,

and this region contributes significantly to the overall

SAM trend, but is also the most uncertain. In contrast,

the Marshall-based SAM index considered in this sec-

tion does not have any stations located in the south-

eastern Pacific (see Fig. 6) but has reliable trends due to

using a fixed observational network (Marshall 2003). In

the following section we return to examining the spatial

structure of trends over the full Southern Ocean.

b. Spatial structure of trends over the recent past

SLP trend maps were computed for 1979–2004, when

all reanalysis products and HadSLP2r are available, and

by ending in 2004 we avoid the continuity problems in

HadSLP2r identified above (Fig. 11). The most prom-

inent pattern in the HadSLP2r trends over this period is

again the large negative and circumpolar trends in

pressure south of about 508S. Similar patterns are seen

in R1, R2, and 20CR, but these products tend to over-

estimate the magnitude of the trends relative to

FIG. 10. Trends in (a),(b) pressure at 408S, (c),(d) pressure at 658S, and (e),(f) the SAM index computed using only

data from the locations of the stations used by Marshall (2003) and shown for the periods (a),(c),(e) 1958–2011 and

(b),(d),(f) 1979–2009. The CMIP5mean trend is given by the horizontal red line, the 95% confidence interval is given

by the solid red vertical bar, and the 2.5th–97.5th percentile of trends in the individual CMIP5 simulations is given by

the light red vertical bar.
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HadSLP2r. CFSR andMERRA show the opposite, with

large positive trends, and correspondingly, these prod-

ucts have the largest root-mean-square difference from

the HadSLP2r observations. ERA-Interim also has SLP

trends that are a little too positive, but it has the best

fit to the HadSLP2r observations after 20CR. The

CMIP5 models show a similar pattern of trends to the

observations, but generally with a weaker magnitude.

FIG. 11. (left) Trends in monthly mean sea level pressure over 1979–2004 for (top)–(bottom)

HadSLP2r, six reanalyses, and the CMIP5 mean, and (right) anomalies relative to the

HadSLP2r trends. The areas where the HadSLP2r trend lies outside the 5th–95th percentile of

trends in the individual CMIP5 simulations is shown by stippling in the bottom-right panel.

Numbers in the bottom left of the right panels give the root-mean-square difference with

HadSLP2r (Pa decade21).
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Interestingly we note that the CMIP5 mean trend is

more similar to the HadSLP2r observations than any of

the six reanalyses, as seen by its smaller root-mean-

square difference (51.65Pa decade21).

Maps of u10m trends from the CCMP satellite-based

wind product are compared with the reanalyses and

CMIP5 models for the available period of 1988–2011

(Fig. 12). CCMP generally shows negative trends in the

FIG. 12. (left) Trends in monthly mean u10m over 1988–2011 for (top)–(bottom) CCMP

satellite winds, six reanalyses, and the CMIP5 mean, and (right) anomalies relative to the

CCMP trends. The areas where the CCMP trend lies outside the 2.5th–97.5th percentile of

trends in the individual CMIP5 simulations is shown by stippling in the bottom-right panel.

Numbers in the bottom left of the right panels give the root-mean-square difference with

CCMP (m s21 decade21).
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zonal winds (u10m) over the Southern Ocean during

this period (20.13m s21 decade21 averaged south of

358S). Note that this contrasts with the surface wind

speed trends in CCMP, which are generally positive

(10.27ms21 decade21 averaged south of 358S) (Li et al.
2013; Wanninkhof et al. 2013). The CCMP u10m trend

pattern is dominated by a large dipole-like feature in the

South Pacific. All the reanalyses produce this pattern, but

with varying degrees of magnitude. The trends are gen-

erally too large inR1, R2, and 20CR.MERRA is the best

fit to the CCMP observations, followed by ERA-Interim,

judged by their small root-mean-square difference with

the CCMP trends. The CMIP5 models show only weak

trends and do not reproduce the South Pacific dipole.

This could reflect that fact that there is significant inter-

nal variability over the 23-yr period shown, or that the

models are incapable of reproducing the correct response

in the surface winds in this region, perhaps due to their

inability to capture changes in the wavenumber-3 pattern

as noted above (Marshall and Bracegirdle 2015).

To help compare the trends discussed above, zonal

mean fields of the SLP and u10m trends were computed

(Fig. 13). In the zonal means it is clear that the CMIP5

mean reproduces the available SLP observations very

well (see red line and black crosses in Fig. 13a). In

contrast, the positive SLP trends south of 508S in CFSR

and MERRA clearly stick out as spurious. The CCMP

u10m trends interestingly show no positive trend near

the peak of the jet (508–558S; Fig. 13b). The MERRA

u10m trends agree fairly well with the observations over

this region, while R1, R2, and 20CR all seem to have

trends that are too large. The CCMP observations and

several reanalyses also show large negative u10m trends

between about 308S and 508S. The CMIP5 model mean

trend agrees well with the CCMP observations in the

FIG. 13. Trends in zonal mean (a) sea level pressure over 1979–

2004, (b) u10m over 1988–2011, and (c) the zonal component of the

wind stress over 1988–2011. The solid red line shows the CMIP5

mean trend; the dark shading envelops the 95% confidence interval

and the light shading envelops the 2.5th–97.5th percentile of trends

in the individual CMIP5 simulations.

FIG. 14. Trends over 1979 to 2009 in (a) SAM index, (b) jet

strength, (c) jet position, and (d) jet width by season in six reanalyses

andCMIP5. The CMIP5 mean trend is given by the horizontal red

line, the 95% confidence interval is given by the solid red vertical

bar, and the 2.5th–97.5th percentile of trends in the individual

CMIP5 simulations is given by the light red vertical bar. Since the

spread in the 20CR ensemble is very small over this period it is

not shown.
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region of the peak of the westerly jet near 508–608S.
However themodels do not simulate the negative trends

on the equatorward flank of the jet near 358S, where the
CCMP trends fall outside the 2.5th–97.5th percentile of

the CMIP5 trends.

Because u10m winds depend on the formulation used

to move winds to the reference height of 10m (Kent

et al. 2013), we also compare trends in surface zonal

wind stress (Fig. 13c). Stress fields occur at a natural

level (the surface), but themselves depend on the drag

formulation employed. Nonetheless, in general the

stress fields convey the same picture as u10m, with R1,

R2, and 20CR having larger than observed positive

trends, with MERRA, ERA-Interim, and the CMIP5

mean being close to the CCMP values. Of note are the

large negative trends evident in CFSR, consistent with a

previous report (Swart et al. 2014).

Clearly, the best reanalysis product depends on the

time period and variable of interest. One notable finding

is that the CMIP5 models do not seem to underestimate

the jet strengthening trend relative to the available ob-

servations, but R1, R2, and 20CR seem to overestimate

the surface speed trends. In light of this it appears that

the findings of section 2 that the models significantly

underestimate the jet strength trends relative to 20CR

should likely be interpreted as due to spuriously large

trends in 20CR, not as a shortcoming in the models

(although both could be in error). This indicates that a

high degree of caution is required in using reanalysis

products to validate simulated trends. Indeed, previous

studies have also found a large spread between re-

analysis products in the climatologies and trends of

surface winds in the Southern Ocean (Kent et al. 2013;

Li et al. 2013). In the final section, we reevaluate trends

by season across all available products to search for

robust features of change.

c. Linear trends by season over 1979–2009

Here we consider trends over the 30-yr period be-

tween 1979 and 2009 (Fig. 14). This period has the ad-

vantage of being well observed, since it is within the

satellite era. There are also six reanalysis products

available for comparison, and the interproduct spread

allows a determination of the observational uncertainty.

The shorter 30-yr duration increases the ratio of noise in

the trends due to internal variability, and reduces the

statistical power relative to the 60-yr period (1951–2011)

used previously. This is illustrated, for example, by the

fact the 2.5th–97.5th percentile spread in DJF SAM

trends across the CMIP5 ensemble increased from 1hPa

over 1951–2011 to over 3hPa over 1979–2009.

During DJF, all six reanalysis products and the

CMIP5 model mean show a significant positive trend in

the SAM. However, the SAM trends for the CMIP5

mean are smaller and not significant during the other

seasons, and there is a large spread among the six

reanalyses, which even differ their signs.

Similarly, the CMIP5 mean trend in jet strength is

largest and statistically significant during DJF. All six

reanalyses also show a positive trend duringDJF, but the

spread in magnitudes is large. Trends are smaller and

more ambiguous during other seasons. Notably, in the

annualmean, while theCMIP5models show a significant

positive trend on average, two reanalyses show negative

trends, and the remaining four reanalyses have a factor

of 3 spread in the magnitude of their trends.

Jet position trends show an important seasonality. The

CMIP5 mean and all six reanalyses agree that the jet

shifted poleward during DJF. However, during all the

other seasons, and in the annual mean, the CMIP5

models do not show a significant trend in position. In-

deed, all six reanalyses show a near a zero trend in an-

nual mean jet position during this period. The annual

mean trend is near zero in the reanalyses because the

poleward trend during DJF is balanced by opposing

equatorward trends in jet position during JJA and SON.

Jet width trends are not significant during any season

for the CMIP5 mean. All six reanalyses do show nega-

tive trends (i.e., jet narrowing) during SON, but the

spread in magnitude is large, and in the annual mean the

reanalyses width trends are spread about zero.

The large spread among the reanalysis trends in-

dicates the large degree of uncertainty in recently ob-

served changes in the SH circulation. Similarly, the

simulated changes have a large spread and are less cer-

tain than over the longer 60-yr period. Yet, despite the

overall uncertainty, robust changes are clear during

DJF, which is expected given the combination of ozone

and GHG forcing (Son et al. 2010).

7. Discussion and conclusions

Over 1951–2011 theDJF trends in the 20CR ensemble

mean SAM index and CMIP5 multimodel mean are

nearly identical, yet over this same period the trend in

the strength of the westerly jet in 20CR is much larger

than the trends seen in the CMIP5 models (Figs. 2a,b).

Using a simple geostrophic model we explained that

trends in the SAM index and jet strength are not directly

interchangeable, because trends in jet position and

width combine with changes in jet strength to influence

the SAM (Fig. 3). For this reason, trends in the SAM

should not be used as a direct proxy for changes in any

single kinematic property of the jet.

The CMIP5 models had an annual mean trend in the

SAM index and jet strength that was significantly
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smaller than seen in 20CR over 1951–2011 (Fig. 2b).

However, this is partly due to spuriously large trends in

20CR, rather than the CMIP5 models underestimating

the true trend. Indeed, the 20CR and HadSLP2r SAM

trends since 1951 were largely driven by large negative

trends in SLP in the South Pacific, a data-sparse region

with a large uncertainty (Fig. 8; Allan and Ansell 2006).

Using sea level pressure data coincident with the 12

station locations used byMarshall (2003), we showed that

the CMIP5 mean SLP trends at 408 and 658S and the

corresponding SAM index are consistent with the direct

observations (Fig. 10). Surprisingly, the spatial pattern of

CMIP5 model mean SLP trends was a better fit to

HadSLP2r observed trends than any of six reanalysis

products over the period 1979–2004 (Fig. 11). Similarly, in

the zonal mean the CMIP5 trends in jet strength since

1988 were generally consistent with the CCMP satellite-

based wind product near the core of the jet, although the

models did not reproduce the spatial pattern of changes

(Figs. 12 and 13). 20CR,R1, andR2 overestimated recent

strengthening of the jet near its peak, relative to CCMP.

The best performing reanalysis product depends on

the variable (SLP or u10m) and time period of choice,

but in general 20CR best reproduced observed SLP

trends while MERRA best reproduced surface wind

trends relative to observations, and ERA-Interim per-

formed best for surface winds and SLP combined.

However, all the six reanalysis products experienced

some spurious trends. The temporal continuity of

reanalyses is inherently hampered by the evolving ob-

servational network that underlies these products. The

resulting long-term trends in Southern Hemisphere sea

level pressure and winds are unreliable, and as such

reanalyses are likely inappropriate tools for validating

these particular aspects of climate model simulations.

Many studies have used reanalysis-based forcing, and

particularly R1, for forcing ocean-only models to in-

vestigate the role of Southern Ocean wind changes on

ocean circulation (e.g., Biastoch et al. 2009; Screen et al.

2009) and the carbon cycle (e.g., Le Quéré et al. 2007;

Lovenduski et al. 2008). The widely used surface forcing

from the Co-ordinated Ocean–Ice Reference Experi-

ments (CORE) Phases 1 and 2 (Danabasoglu et al. 2014;

Large and Yeager 2009; Griffies et al. 2009) is itself

primarily based on R1. However, as we have shown

here, R1 has particularly large and spurious trends over

the Southern Ocean, which might in turn bias studies

using R1-derived products as surface forcing. Indeed,

the impacts of atmospheric circulation changes on the

Southern Ocean circulation and carbon cycle are highly

sensitive to the choice of surface forcing (Swart et al.

2014), and the significant uncertainties associated with

this forcing require further attention.
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