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Abstract

Lake Ohrid (FYROM, Albania) is thought to be more than 1.2millionyears old and
hosts more than 200 endemic species. As a target of the International Continental Sci-
entific Drilling Program (ICDP), a successful deep drilling campaign was carried out
within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake
Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and
(bio-)geochemical data from the upper 247.8 m of the overall 569 m long DEEP site
sediment succession from the central part of the lake. According to an age model,
which is based on nine tephra layers (1st order tie points), and on tuning of biogeo-
chemical proxy data to orbital parameters (2nd order tie points) and to the global ben-
thic isotope stack LR04 (3rd order tie points), respectively, the analyzed sediment se-
quence covers the last 640 ka.

The DEEP site sediment succession consists of hemipelagic sediments, which are
interspersed by several tephra layers and infrequent, thin (< 5cm) mass wasting de-
posits. The hemipelagic sediments can be classified into three different lithotypes.
Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and
are predominantly attributed to interglacial periods with high primary productivity in the
lake during summer and reduced mixing during winter. The data suggest that high ion
and nutrient concentrations in the lake water promoted calcite precipitation and diatom
growth in the epilmnion in during MIS15, 13, and 5. Following a strong primary pro-
ductivity, highest interglacial temperatures can be reported for MIS11 and 5, whereas
MIS15, 13, 9, and 7 were comparable cooler. Lithotype 3 deposits consist of clastic,
silty clayey material and predominantly represent glacial periods with low primary pro-
ductivity during summer and longer and intensified mixing during winter. The data imply
that most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and
6 whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 3.
Interglacial-like conditions occurred during parts of MIS14, and 8.
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1 Introduction

Long sediment successions from lacustrine basins have been shown to provide valu-
able archives of local environmental variability and of global climate change during
the Quaternary and Neogene (Prokopenko et al., 2006; Melles et al., 2012; Stock-
hecke et al., 2014a). As lakes are highly sensitive to environmental change (e.g. Co-
hen, 2003), these lacustrine paleoclimate records commonly document external forcing
mechanism via internal feedback processes in their sedimentological records. External
forcing mechanisms are the global glacial/interglacial climatic variability, which char-
acterize climate conditions during the Quaternary (EPICA-members, 2004; NGRIP-
members, 2004; Lisiecki and Raymo, 2005; Raymo et al., 2006). Additional external
forcing mechanisms comprise orbital parameters and the effects of the local insolation
on the terrestrial realm. Lake basins thus have the potential to provide high-resolution,
continuous paleo-records of global climate change and its impact on regional environ-
ments.

Long terrestrial paleo-records in the eastern and southeastern Mediterranean region
have become available from Lake Van (Stockhecke et al., 2014b) and from the Dead
Sea (Stein et al., 2011). In the central Mediterranean Region, the only terrestrial paleo-
records that continuously covers more than one million year is the Tenaghi Philippon
pollen record in northern Greece (cf. Fig. 1), which spans the last 1.3 million years and
provides fundamental insights into the vegetation history of the area (e.g. Tzedakis
et al., 2006). However, analytical methods for paleoclimate reconstructions have so far
been restricted to pollen analyses and the sensitivity of vegetation changes to short-
term climate variability can be low (e.g. Panagiotopoulos et al., 2013).

Lake Ohrid on the Balkan Peninsula is thought to be more than 1.2 millionyears
old and has already demonstrated its high sensitivity to environmental change and
the potential to provide high-resolution paleoenvironmental information for the last
glacial/interglacial cycle (e.g. Wagner et al., 2008, 2009, 2014; Vogel et al., 2010a).
Given that Lake Ohrid is also a hotspot for endemism with more than 200 endemic
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species in the lake (Albrecht and Wilke, 2009), its sediment records also have the po-
tential to address evolutionary questions such as what the main triggers of speciation
events are.

Based on up to 15m long sediment cores, which were recovered between 2003
and 2011 (e.g. Wagner et al., 2009, 2012; Vogel et al., 2010a), and on hydro-acoustic
surveys carried out between 2004 and 2008 (e.g. Lindhorst et al., 2010), the Scientific
Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCOQO) project was
established within the scope of the International Continental Scientific Drilling Program
(ICDP). The main objectives of the SCOPSCO project are (1) to reveal the precise
age and origin of Lake Ohrid, (2) to unravel the seismotectonic history of the lake area
including effects of major earthquakes and associated mass wasting events, (3) to
obtain a continuous record containing information on volcanic activities and climate
changes in the central northern Mediterranean region, and (4) to better understand
the impact of major geological/environmental events on general evolutionary patterns
and shaping an extraordinary degree of endemic biodiversity as a matter of global
significance.

The ICDP deep drilling campaign took place in spring 2013 using the Deep Lake
Drilling System (DLDS) operated by the Drilling, Observation and Sampling of the
Earths Continental Crust (DOSECC) consortium. More than 2100 m of sediments were
recovered from four different drill sites. The processing of the cores from the DEEP site
in central part of Lake Ohrid (Fig. 1) is still ongoing at the University of Cologne (Ger-
many). Here, we present lithological, sedimentological, and (bio-)geochemical results
from the upper part of the DEEP site sediment succession, which covers the period
since 640 ka.

2 Site information

Lake Ohrid is located at the border of the Former Yugoslav Republic of Macedonia
(FYROM) and Albania at an altitude of 693 ma.s.l. (above sea level, Fig. 1a). The lake

15115

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15111/2015/bgd-12-15111-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15111/2015/bgd-12-15111-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

is approximately 30 km long and 15 km wide and covers a surface area of 358 km?. Due
to its location in a tectonic, N-S trending graben system, the bathymetry is tub-shaped
with a mean water depth of 150 m and a maximum water depth of 293 m (Fig. 1b). The
water volume calculates to 55.4km>. The lake is mainly fed by karstic inflow (55 %,
e.g. Matzinger et al., 2007; Vogel et al., 2010a; cf. Fig. 1), and by small rivers. The
karstic inflow partly originates from Lake Prespa, located at an altitude of 848 ma.s.l.
ca. 10km to the east of Lake Ohrid (Fig. 1b). Both lakes are connected via karstic
aquifers. The lake level of Ohrid is balanced by a surface outflow in the northern corner
(Crim Drim River, 60 %, Fig. 1b), and by evaporation (40 %, Matzinger et al., 2006a).
The large water volume and the high proportion of karstic inflow induce an oligotrophic
state of Lake Ohrid. A complete overturn of the water column occurs approximately
every 7 years (e.g. Matzinger et al., 2007). The upper about 200 m of the water column
are mixed every year.

The catchment of Lake Ohrid comprises 2393 km? including Lake Prespa (Fig. 1b).
Both lakes are separated by the up to 2300 ma.s.l. high Galicia mountain range
(Fig. 1b). To the west of Lake Ohrid, the Mocra mountain chain reaches up to about
1500 ma.s.l. The morphostructure with high mountains to the west and east of Lake
Ohrid is mainly the result of a pull-apart like opening of the basin during the late phases
of the Alpine orogeny (Aliaj et al., 2001; Hoffmann et al., 2010). Several earthquakes
in the area (NEIC database, USGS) and mass wasting deposits, which occur in the lat-
eral parts of Lake Ohrid (Reicherter et al., 2011; Lindhorst et al., 2012; Wagner et al.,
2012), document the tectonic activity in the area until present day.

The oldest bedrock in the catchment of Lake Ohrid is of Devonian age, consists of
metasediments (phyllites), and occurs in the northeastern part of the basin. Triassic
carbonates and siliciclastics occur in the southeast, east, and northwest (e.g. Wagner
et al., 2009; Hoffmann et al., 2010; Vogel et al., 2010b). Ultramafic metamorphic and
magmatic rocks including ophiolites of Jurassic and Cretaceous age crop out in the
west (Hoffmann et al., 2010). Quaternary lacustrine and fluvial deposits cover the plains
to the north and to the south of Lake Ohrid (Hoffmann et al., 2010; Vogel et al., 2010b).
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The climate at Lake Ohrid is influenced both by continental and Mediterranean cli-
mate conditions (Watzin et al., 2002). Between summer and winter, monthly average
air temperatures range between 26 and -1 °C, respectively. The annual precipitation
averages to ca. 750 mmyr1, with drier conditions during summer, and more precipita-
tion during winter. The prevailing wind directions are north and south and are controlled
by the topography of the Lake Ohrid valley (summarized by Wagner et al., 2009).

3 Material and methods
3.1 Field work

The DEEP site (5045-1) is the main drill site in the central part of the lake (Fig. 1b,
41°02'57" N, 20°42'54" E). The uppermost sediments at the DEEP site down to
1.5mb.Lf. (below lake floor) were recovered in 2011 using a UWITEC gravity and pis-
ton corer (core Co1261), as these drilling techniques provide a good core quality for
sub-surface sediments. In 2013, more than 1500 m of sediments were recovered from
six different drill holes (5045-1A to 5045-1F) at the DEEP site. The distance between
each drill hole averages ca. 40 m. Holes 5045-1A and 5045-1E comprise surface sed-
iments down to ca. 2.4 and 5mb.l.f., respectively. Holes 5045-1B and 5045-1C were
drilled down to a penetration depth of 480 mb.l.f. At hole 5045-1D, the maximum pen-
etration of 569 mb.l.f. was reached. Spot coring down to 550 mb.l.f. was conducted in
hole 5045-1F in order to fill gaps of the other holes (see also Wagner et al., 2014).
After core recovery, the sediment cores were cut into up to one meter long segments
and stored in darkness at 4 °C.

During the drilling campaign in 2013, onsite core processing comprised smear-slide
analyses of core catcher material and magnetic susceptibility measurements on the
whole cores in 2cm resolution using a Multi-Sensor Core Logger (MSCL, GEOTEK
Co.) and a Bartington MS2C loop sensor (see also Wagner et al., 2014). Following
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the field campaign, the cores were shipped to the University of Cologne for further
analyses.

3.2 Laboratory work

A first correlation of the individual core segments to provide a preliminary composite
profile for the DEEP site sequence was established based on the magnetic susceptibil-
ity data of the whole cores from holes 5045-1B, 5045-1C, 5045-1D, and 5045-1F. Cores
included into the composite profile were then split lengthwise and described for color,
grain-size, structure, macroscopic components, and calcite content (reaction with 10 %
HCI). High-resolution line scan images were taken using the MSCL (GEOTEK Co.).
X-ray Fluorescence (XRF) scanning was carried out at 2.5 mm resolution and with an
integration time of 10s using an ITRAX core scanner (Cox Analytical, Sweden). The
ITRAX core scanner was equipped with a chromium (Cr) X-Ray source and was run at
30kV and 30 mA. Data processing was performed with the software QSpec 6.5 (Cox
Analytical, Sweden, cf. Wennrich et al., 2014). In order to account for inaccuracies and
to validate the quality of the XRF- scanning data, conventional wavelength dispersive
XRF (WDXRF, Philips PW 2400, Panalytical Cor., the Netherlands) was conducted at
2.56 m resolution. The optical and lithological information (layer by layer correlation)
were then combined with XRF scanning data for a fine tuning of the core correlation by
using the Corewall software package (Correlator 1.695 and Corelyzer 2.0.1).

If an unequivocal core correlation was not possible, additional core sections from
other drill holes in the respective depths were opened, likewise analyzed, and used for
a refinement of the core correlation. In the composite profile, the field depth measure-
ments based on “meters below lake floor” (m b.l.f.) were replaced by “meters composite
depth” (mc.d.). The DEEP site composite profile down to 247.8 mc.d. comprises two
sections of core Co1261 for the uppermost 0.93mc.d. and in total 386 core sections
from holes 5045-1B, 5045-1C, 5045-1D, and 5045-1F (Fig. 2, Table 1). The overall re-
covery of the composite profile calculates to 99.97 %, as no overlapping sequences
were found between core run numbers 80 and 81 in hole 5045-1C. The length of the

15118

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15111/2015/bgd-12-15111-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15111/2015/bgd-12-15111-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

core catcher (8.5cm) between these two runs led to one gap between 204.719 and
204.804 mc.d.

At 16 cm resolution, 2cm thick slices (40.7 cm3) were removed from the core half
and separated into four sub-samples to establish a multiproxy data set. Intermediate
intervals (8 cm distance to the 2 cm thick slices) were subsampled for high-resolution
studies by pushing two cylindrical plastic vials (diameter = 0.9 cm, height = 4 cm, vol-
ume = 2.50m3) into the core halves. In addition, samples for paleomagnetic analy-
ses were taken in cubic plastic boxes (volume of 6.2 cm3) at 50cm resolution until
100mc.d., and at 48 cm resolution below this depth (cf. Just et al., 2015).

All sub-samples (8 cm resolution) were freeze-dried, and the water content was cal-
culated by the difference in weight before and after drying. For every other sample,
an aliquot of about 100 mg was homogenized and ground to < 63 um. For the mea-
surement of total carbon (TC) and total inorganic carbon (TIC) using a DIMATOC 100
carbon analyzer (Dimatec Corp., Germany), 40 mg of this aliquot was dispersed with
an ultrasonic disperser in 10mL DI water. TC was measured as released CO, after
combustion at 900 °C. The TIC content was determined as CO, after treating the dis-
persed material with phosphoric acid (H;PO,4) and combustion at 160°C. The total
organic carbon (TOC) content was calculated from the difference between TC and TIC.
For the measurement of total sulfur (TS) and total nitrogen (TN), 10 mg of the ground
material was analyzed using an elemental analyzer (vario cube, elementar Corp.) after
combustion at 1150 °C.

Biogenic silica (bSi) concentrations were determined at 32 cm resolution by means
of Fourier Transform Infrared Spectroscopy (FTIRS) at the Institute of Geological Sci-
ences, University of Bern, Switzerland. For sample preparation, 0.011 g of each sam-
ple was mixed with 0.5 g of oven-dried spectroscopic grade potassium bromide (KBr)
(Uvasol®, Merck Corp.) and subsequently homogenized using a mortar and pestle.
A Bruker Vertex 70 equipped with a DTGS (Deuterated Triglycine Sulfate) detector,
a KBr beam splitter, and a HTS-XT accessory unit (multi-sampler) was used for the
measurement. Each sample was scanned 64 times at a resolution of 4cm™ (recipro-
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cal centimeters) for the wavenumber range from 3750 to 450 cm™ in diffuse reflectance
mode. After the measurements, linear baseline correction was applied to normalize the
recorded FTIR spectra and to remove baseline shifts and tilts by setting two points of
the recorded spectrum to zero (3750 and 2210-2200 cm'1). The determination of bSi
from FTIR spectral information relies on spectral variations in synthetic sediment mix-
tures with known bSi concentrations and calibration models between the FTIR spectral
information and the corresponding bSi concentrations based on partial least squares
regression (PLSR, Wold et al., 2001 and references therein). For details and informa-
tion regarding groundtruthing of the calibration see Meyer-Jacob et al. (2014).

For grain-size analyses at 64 cm resolution, 1.5 g of the sample material was treated
with hydrogen peroxide (H,O,, 30 %), hydrochloric acid (HCI, 10 %), sodium hydroxide
(NaOH, 1 M), and Na,P,0. Prior to the analyses, the sample material was dispersed
on a shaker for 12 h and underwent one minute of ultrasonic treatment. Sample aliquots
were then measured three times with a Saturn DigiSizer 5200 laser particle analyzer
equipped with a Master Tech 52 multisampler (Micromeritics Co., USA) and the individ-
ual results were averaged. Data processing was carried out by using the GRADISTATv8
program (Blott and Pye, 2001).

4 Results and discussion
4.1 Lithology

The sediments from the DEEP site sequence down to 247.8 mc.d. consist of fine-
grained hemipelagic sediments, which are sporadically interspersed by more coarse-
grained event layers. From the top to the bottom, the water content decreases from
a maximum of 70 % to a minimum of 32 % due to compaction by overlying deposits (for
detailed studies on the sediment compaction at the DEEP site see Baumgarten et al.,
2015).
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4.1.1 Hemipelagic sediments

The hemipelagic deposits of the DEEP site sequence were subdivided into three litho-
types (Figs. 2 and 3) based on information from the visual core descriptions. This
includes variations in the calcite content (reaction with 10 % HCI), and the sediment
color and structure.

The sediments of lithotype 1 (Figs. 2 and 3) show strong to very strong reactions with
10 % HCI, have very dark greenish grey to greenish grey colors, and appear massive,
bioturbated, or finely laminated. Silt to gravel-sized vivianite concretions occur irregu-
larly distributed within lithofacies 1 and can be identified by a color change from grey
to blue after core opening.

The strong to very strong reaction with 10 % HCI and TIC contents between 2 and
9.7 % imply that calcite (CaCQOj) is abundant in lithotype 1 sediments. Changes in
color correspond to different calcite and TOC contents in the deposits (Fig. 3). The
TOC content can be used as an indicator for the amount of finely dispersed organic
matter (OM) in lacustrine deposits (e.g. Cohen, 2003; Stockhecke et al., 2014a). In the
sediments of lithotype 1, bright colors (greenish grey) are commonly correlated with
massive layers and are indicative for high calcite and low OM contents. Dark (very dark
greenish grey, dark greenish grey) lithotype 1 deposits appear bioturbated and have
lower calcite and higher OM concentrations. Laminated successions occur only in the
upper meter of the DEEP site sequence. The bSi contents in the sediments of lithotype
1 vary between 1.9 and 42.5% and suggest that diatom frustules can be abundant.
Low potassium intensities (K, Fig. 2) correspond to minima in the fine fraction (< 4 um,
Fig. 2) of the grain size classes and imply a low abundance of siliciclastic minerals in
lithotype 1 sediments (cf. Arnaud et al., 2005; Wennrich et al., 2014).

Lithotype 2 sediments exhibit a moderate reaction with 10 % HCI, are greenish black
and very dark greenish grey in color, and appear bioturbated or massive. Vivianite
concretions occur irregularly, and yellowish brown layers yield high amounts of siderite
(FeCO,) crystals in smear-slide samples (Figs. 2 and 4).
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The moderate reaction with 10 % HCI implies that calcite is less abundant in lithotype
2 sediments, which is consistent with TIC contents between 0.5 and 2 %. Distinct peaks
in the TIC content correspond to peaks in Fe and Mn counts and to the occurrence of
the yellowish brown siderite layers (Fig. 4). The greenish black sediment successions
of lithotype 2 sediments are bioturbated and have high amounts of OM, as indicated by
TOC contents of up to 4.5 %. Brighter, very dark greenish grey sections can be massive
or bioturbated and have lower TOC contents (Fig. 3). The amount of diatom frustules is
moderate to high, as inferred from bSi contents between 2 and 27.9 %, and the amount
of clastic matter is moderate (Fig. 2, K-intensities).

The bright, greenish grey sediments of lithotype 3 do not show a reaction with 10 %
HCI, are bioturbated and intercalated with massive sections of up to several decimeters
thickness (Fig. 3). Vivianite concretions occur irregularly, and yellowish brown siderite
layers are abundant (Fig. 2).

The TIC values of lithotype 3 sediments rarely exceed 0.5 %, which infers negligible
calcite contents, and matches the null reaction to 10 % HCI. Peaks in TIC, which oc-
casionally exceed 0.5 % can be attributed to the occurrence of siderite layers (Figs. 2
and 4). TOC ranges between 0.4 and 4.8 % (Fig. 2), with higher values > 2.5 % close
to the lower and upper boundaries of lithotype 3 sediment sections, and between 3.21
and 2.89mc.d. (Fig. 2). The amount of bSi is mostly between 1.68 and 14.5 %, ex-
cept for several peaks of up to 41.3 % above tephra layers. High potassium intensities
throughout most parts of lithotype 3 sediments indicate high clastic matter contents
and correspond to high percentages of the fine fraction (< 4 um, Fig. 2).

4.1.2 Event layers

The macroscopic event layers were classified as tephra deposits if exclusively glass
shards were observed in the smear slides, and as mass movement deposits (MMD)
if predominantly minerogenic components or a mixture of glass shards from different
tephras occurred (cf. Figs. 2 and 3). Tephra layers in the DEEP site sequence appear
as up to 15cm thick layers and as lenses (cf. Leicher et al., 2015). Most of the tephra
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layers are between 0.5 and 5 cm thick (e.g. Fig. 3, 1D-18H-3, 85 to 82 cm section depth,
1D-6H-2, 23 to 21 cm section depth). Tephrostratigraphic work including geochemical
analyses of glass shards enabled the correlation of eight tephra layers from the DEEP
site sequence to known volcanic eruptions in the central Mediterranean Region (cf.
Table 2, Leicher et al., 2015). In addition, a distinct peak in the K concentration in
the DEEP site sequence at 2.773mc.d. was identified as the Mercato crypto tephra
layer (cf. Table 2) by a correlation the K XRF curve to those of cores Co1202 (Sulpizio
et al., 2010; Vogel et al., 2010c) and Co1262 (Wagner et al., 2012, for locations of the
cores see Fig. 1). In cores Co1202 and Co1262, glass shards that co-occurred with
a significant potassium peak were identified as the Mercato crypto tephra layer and
glass shards were also found in the DEEP site, where the corresponding K peak was
identified.

The MMDs in the DEEP site sequence are between 0.1 and 3 cm thick, and consist of
very coarse silt to fine sand-sized material (cf. also Fig. 3). A higher frequency of MMD’s
occurs between 117 and 107 mc.d., and between 55 and 50 m c.d., respectively. Most
of the MMD’s appear normal graded (Fig. 3, 1C-68H-2, 70 to 68 cm section depth),
or as lenses (Fig. 3, 1D-24H-2, 41 to 39 cm section depth). In some very thin MMDs,
the graded structures are only weakly expressed. The MMD in core 1F-4H-3 (Fig. 2,
3, 17 to 14 cm section depth) differs from all other MMDs in the DEEP site sequence
as it is the only one with a clay layer at the top, and a 1.5 cm thick, poorly sorted, clay
to fine sand-sized section at the bottom. In the overlapping core sections from holes
5045-1B, 5045-1C, and 5045-1D, the basal, poorly sorted part of the MMD in 1F-4H-3
is not preserved.

4.2 Sedimentary processes
4.2.1 Hemipelagic sediments

As shown by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) analy-
ses (e.g. Wagner et al., 2009; Leng et al., 2010), the calcite in the sediments of Lake
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Ohrid is mainly endogenic and the amount of detrital carbonates is considered to be
negligible despite the high abundance of limestones in the catchment. Only minor con-
tributions to the calcite content come from biogenic sources, for example from ostra-
cod valves (Vogel et al., 2010a). Endogenic calcite deposition in the sediments of Lake
Ohrid is predominately triggered by photosynthesis-induced formation of calcite crys-
tals in the epilimnion (e.g. Wagner et al., 2009; Vogel et al., 2010a). The precipitation
occurs at warm temperatures during spring and summer, as long Ca®* and HCO®*"
ions are not short in supply (e.g. Matzinger et al., 2007; Wagner et al., 2009; Vogel
et al.,, 2010a). High Ca®* and HCO®~ concentrations in Lake Ohrid are triggered by
the intensity of chemical weathering and limestone dissolution in the catchment, the
amount of incoming water, and the evaporation of lake water (Vogel et al., 2010a). The
calcium carbonate concentration in the sediments also depends on the preservation
of the endogenic calcite. Dissolution of calcite at the sediment surface and lower parts
of the water column can be caused by oxidation of OM, which triggers H,COj release
from the surface sediments and a lowering of the lake-water pH (Muller et al., 2006;
Vogel et al., 2010a). SEM analyses indicate that microbial dissolution of endogenic
calcite can be observed in the DEEP site sequence (Lacey et al., 2015).

The high TIC contents in lithotype 1 imply high photosynthesis induced precipitation
of endogenic calcite, high temperatures during spring and summer, good calcite preser-
vation in the sediments, and buffering of the lake water pH. Lower primary productivity,
lower temperatures and probably at least partly dissolution of calcite can be inferred
from the TIC record in lithotype 2 and 3 sediments. In lithotype 2 and 3, siderite lay-
ers (FeCOg) also contribute to the TIC content (cf. Figs. 2 and 4). In neighboring Lake
Prespa, siderite formation has been reported to occur in the surface sediments close
to the redox boundary under acid and reducing conditions (Leng et al., 2013). In Lake
Ohrid, DEEP site lithotype 2 and 3 sediments contain discrete horizons of authigenic
siderite crystals and crystal clusters nucleating within an unconsolidated clay matrix
(Lacey et al., 2015). The open-packed nature of the matrix and growth relationships
between crystals suggest that, as also observed in Lake Prespa, siderite formed in
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surface sediments close to the sediment—water interface, similar to other ancient lakes
such as Lake Baikal (Granina et al., 2004).

The OM in the sediments of the DEEP site sequence is predominately of aquatic
origin with minor contributions of allochthonous OM supply, as indicated by TOC/TN
ratios below 16 (cf. Meyers and Ishiwatari, 1995; Wagner et al., 2009). Thus, high TOC
contents in the sediments imply a strong primary productivity in Lake Ohrid, which is
also displayed by high amounts of diatom frustules (Wagner et al., 2009) and, accord-
ingly, in high biogenic silica (bSi) contents (Vogel et al., 2010a). A high productivity
in the lake requires high temperatures and sufficient nutrient supply to the epilimnion.
The nutrient supply to Lake Ohrid is mainly triggered by river inflow (e.g. Matzinger
et al., 2006a, b, 2007; Wagner et al., 2009; Vogel et al., 2010a), karstic inflow from
Lake Prespa (Matzinger et al., 2006b; Wagner et al., 2009), and by nutrient recycling
from the surface sediments (Wagner et al., 2009). Phosphorous recycling from the sur-
face sediments is promoted by anoxic bottom water conditions and mixing can trans-
port phosphorous from the bottom water to the epilimnion (e.g. Wagner et al., 2009).
However, mixing also leads to oxidation of OM at the sediment surface and, thus, to
lower TOC contents. Hence, low (high) TOC content are be related to an overall lower
(higher) productivity and/or to more (less) oxidation of OM and improved (restricted)
mixing conditions.

Overall high TOC and bSi contents in lithotype 1 sediments imply a high productivity
and high temperatures at Lake Ohrid. Less productivity and/or oxidation of OM can
be inferred for sediments of lithotype 2 and 3 from low TOC and bSi contents, and
from TOC/TN ratios < 4 (cf. Leng et al., 1999). At Lake Ohrid, low TOC/TN ratios
are a result of OM degradation and clay-bound ammonium supply from the catchment,
such as observed in core Lz1120 from the southeastern corner of the lake (Holtvoeth
et al., 2015).

Good OM preservation, low oxygen availability, and overall poor mixing conditions
could have favored sulfide formation, such as pyrite, in lithotype 1 sediments. Pyrite
formation can be indicated by a low TOC/TS ratio (cf. Muller, 2001; Wagner et al.,
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2009). In lithotype 1 sediments, the high TOC/TS ratios correspond to minima in the
Fe intensities (cf. Fig. 2), which suggests that iron availability limited the pyrite formation
(cf. also Holmer and Storkholm, 2001). This is consistent with temperature dependent
magnetic susceptibility measurement on selected samples that indicate minor contents
of pyrite throughout the sedimentary sequence (Just et al., 2015). Urban et al. (1999)
have shown that early diagenetic sulfur enrichment in OM is low in oligotrophic lakes, as
up to 90 % of the produced sulfides can be re-oxidized seasonally or episodically, which
affects the sulfur storage over several years. At Lake Ohrid, re-oxidation of sulfides may
occur during the mixing season, or under present climate conditions during the irregular
complete overturn of the entire water column every few years. If re-oxidation has biased
the TOC/TS ratio as an indicator for restricted mixing conditions, the lower ratios in
lithotype 2 and 3 sediments are rather a result of the overall low TOC concentrations,
which is confirmed by the good correspondence between the TOC/TS ratio and the
TOC content.

Elemental intensities of the clastic matter, as obtained from high resolution XRF
scanning, can provide information about the sedimentological composition of the de-
posits, and about erosional processes in the catchment. Variations in the clastic matter
content of DEEP site sequence sediments, as inferred from the potassium intensities
(K, Fig. 2), can be a result of changing erosion in the catchment, such as it has also
been reported from other lakes on the Balkan Peninsula (e.g. Francke et al., 2013).
This implies that increased denudation rates could be inferred for lithotype 2 and 3
sediments, while less clastic matter supply occurs in lithotype 1 deposits. However,
mutual dilution with authigenic components such as calcite, OM and diatom frustules
can bias the potassium record as indicator for denudation and clastic matter supply.

K intensities can occur in K-feldspars and clay minerals. Potassium is mobilized par-
ticularly during chemical weathering and pedogenesis, and the residual soils in the
catchment become depleted in potassium (Chen et al., 1999). In contrast to K, Zircon
mostly occurs in the mineral zirconium, which has a high density and a high resistance
against physical and chemical weathering. Thus, the Zr/K ratio provides insights into
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the intensity of the chemical weathering, which affected the clastic matter in the catch-
ment. Thereby, the Zr/K ratio does not provide information about weathering processes
during the time of deposition, as chemically altered minerals may be stored for long
time periods in the catchment before they are eroded and transported to a sedimen-
tary basin (cf. also Dosseto et al., 2010). Low Zr/K ratios in lithotype 1 and 2 sediments
match with low percentages of the < 4 um fraction and imply that more coarse detrital
matter, predominately consisting of K-rich clastic material from young and moderately
chemically weathered soils, were deposited at the DEEP site. In contrast, high Zr/K
ratios in lithotype 3 sediments match with high percentages of the < 4 um fraction and
suggest that more fine grained, chemically weathered, and K-depleted clastics from old
soils were supplied to the lake.

4.2.2 Event layers

Probable trigger mechanism for MMDs have widely been discussed and encompass
earthquakes, delta collapses, flooding events, over steepening of slopes, rock falls, and
lake-level fluctuations (e.g. Cohen, 2003; Schnellmann et al., 2006; Girardclos et al.,
2007; Sauerbrey et al., 2013). At Lake Ohrid, MMDs in front of the Lini Peninsula
(Fig. 1) and in southwestern part of Lake Ohrid were likely triggered by earthquakes
(Lindhorst et al., 2012, 2015; Wagner et al., 2012). A strong earthquake might have
also triggered the deposition of the MMD in core 1F-4H-3 (cf. Figs. 2 and 3), which
is composed of a turbidite succession and an underlying, poorly sorted debrite (after
the classification of Mulder and Alexander, 2001). The disturbance generated by a de-
bris flow can cause co-genetic turbidity currents of fine-grained material in front and
above the mass movement (Schnellmann et al., 2005; Sauerbrey et al., 2013). As the
debrite-turbidite succession occurs at 7.87mc.d., it likely corresponds to a massive
slide complex north of the DEEP site (cf. hydro acoustic profile of Fig. 2 in Wagner
et al., 2014). Density flows that enter the Lake Ohrid basin close to the DEEP site from
eastern or southern directions have not been observed in hydro-acoustic profiles (cf.
Figs. 2 and 3 in Wagner et al., 2014). The three massive MMDs that occur in front
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of the Lini Peninsula to the west of the DEEP site (cf. Wagner et al., 2012) are likely
not related to the debrite-turbidite succession in core 1F-4H-3. The underlying debrite
does not occur in overlapping segments of holes 5045-1B, 5045-1C, and 5045-1D.
Holes 5045-1B, 5054-1C, and 5045-1D form a N-S transect (40 m distance between
each hole), whereas hole 5045-1F is located approximately 70 m to the east. Due to
the absence of the debrite deposits in most drill holes and the relatively low thickness in
hole 1F, erosional processes at the DEEP site are likely low. In addition, hydroplaning
generates a basal water layer below the debris flows, which causes high flow velocities
with little basal erosion (Mohrig et al., 1998; Mulder and Alexander, 2001).

The sand lenses and normal graded MMDs (cf. Figs. 2 and 3) can be classified as
grain-flow deposits (after the classification of Mulder and Alexander, 2001; Sauerbrey
et al., 2013) and are composed of reworked lacustrine sediments from shallow water
depths or subaquatic slopes close to riverine inflows. Grain flows that enter the deep
parts of the Lake Ohrid basin via the steep slopes might transform into a mesopycnal
flow at the boundary of the hypolimmion (cf. also Mulder and Alexander, 2001; Juschus
et al., 2009), which prevents erosion of the underlying sediments.

5 Core chronology

The chronostratigraphy for the sediments of the DEEP site sequence down to
247.8mc.d. was established by using radiometric ages from nine tephra layers (cf.
Table 2), and by cross-correlation to orbital parameters (Laskar et al., 2004) and to the
global benthic isotope stack LR04 (Lisiecki and Raymo, 2005; Figs. 5 and 6). Correla-
tion of the tephra layers to well-known eruptions from Italian volcanoes by geochemical
fingerprint analyses and a re-calibration of 4OAr/‘o’gAr ages from the literature provided
a robust basis for the age model (Leicher et al., 2015). Thus, the nine tephra layers
were used as 1st order tie points.

The chronological information from the nine tephra layers was also used to define
cross correlation points to orbital parameters, which were included into the age depth
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as 2nd order tie points. The tephra layers Y-5, X-6, P11, and A11/12 were deposited
when minima in the TOC content and in the TOC /TN ratio can be observed (cf. Fig. 5),
and when there is a inflection point (black vertical line in insolation and winter season
length plots, Fig. 5) of increasing local summer insolation (21 June, 41°N) and win-
ter season length (21 September to 21 March, Fig. 5). Summer insolation and winter
season length have a direct impact on the OM content and the TOC/TN ratio, as they
may trigger primary productivity and decomposition. Low insolation and colder temper-
atures during summer reduce the primary productivity in the lake, but simultaneously,
a shorter winter season would have reduced mixing in the lake, which reduces the de-
composition of OM and increases TOC and the TOC/TN ratios (cf. Fig. 5, insolation
and winter season length minima). A longer winter season improves the mixing, but
a strong insolation during summer promotes the primary productivity in the lake, which
also results in higher TOC and TOC/TN (cf. Fig. 5, insolation and winter season length
maxima). Thus, low OM preservation and low TOC and TOC/TN in the sediments may
occur when summer insolation strength and winter season length are balanced, i.e.
when both summer insolation and winter season length are at their inflection points.
Hence, minima in the TOC content and the TOC/TN ratio were tuned to increasing
insolation and winter season lengths.

3rd order tie points were obtained by tuning the LR04 580 record to the TIC content,
as maxima in the TIC record have a good correspondence with minima in the LR04
680 record (cf. Fig. 5), when the stratigraphic positions of the 1st and 2nd order tie
points are considered. This is supported by the P11 tephra layer, which has an age of
129 ka. Its position below a TIC peak at ca. 48 mc.d. (cf. Fig. 5) implies that this TIC
peak likely corresponds to peak interglacial conditions at 123 ka (MIS 5.5), which is
confirmed by results of former sediment core studies (Belmecheri et al., 2009; Vogel
et al., 2010a).

Potential explanations for a strong correlation between global benthic 6'80 variabil-
ity and the TIC content in the DEEP site sediments could be a synchronous timing
of marine and terrestrial events, or a teleconnection between ice sheet variability and
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the environmental settings in the Mediterranean Region. Minimum ice sheet expansion
(minima in LR0O4 6180) in the Northern Hemisphere and a northern location of the
atmospheric circulation patterns and of the Inter-Tropical Convergence Zone (ITCZ),
such as it occurs today, could have resulted in maximum summer temperatures at
Lake Ohrid. Warm temperatures promote calcite precipitation in the epilimnion. During
glacial periods, the northern ice sheet expansion caused a southward shift of the at-
mospheric circulation patterns (LR04 5'%0 maxima), which could have triggered lower
temperatures at Lake Ohrid, and less calcite precipitation in the epilimnion.

The nine tephra layers and 45 cross correlation points of 2nd and 3rd order (Sup-
plement) were used for the establishment of an age-depth model. An uncertainty of
+1000 years was applied for each tie point of 2nd and 3rd order in order to account for
inaccuracies in the tuning process. For the age depth modeling using the Bacon 2.2
software package (Blaauw and Christen, 2011), overall stable sedimentation rates at
the DEEP site (mem.strength = 4, mem.shape = 0.7, thick = 40 cm) and expected sed-
imentation rates (acc.shape = 1.5, acc.mean = 20) from first age estimations for the
DEEP site sequence by Wagner et al. (2014) were considered (cf. Fig. 6). Finally, the
age model was evaluated and refined by a detailed comparison with the age- depth
model for the downhole logging depth scale (Baumgarten et al., 2015, cf. Fig. 7) by
tuning Potassium counts (K) obtained from high-resolution XRF scanning to the spec-
tral gamma radiation (SGR) of potassium (cf. Supplement) in hole 5045-1D (for more
details see Baumgarten et al., 2015). The obtained age model reveals that the upper
247.8 mc.d. of the DEEP site sequence comprise the last ca. 640 ka (MIS16).

6 Overview about the paleoenvironmental history of Lake Ohrid

Variations in the TIC, bSi, TOC, K, and Zr/K records of the DEEP site sequence cor-
respond to global and regional climatic variability on glacial-interglacial time scales,
such as indicated by a comparison to the global benthic isotope stack LR04 (Lisiecki
and Raymo, 2005), to North Greenland isotope record (NGRIP-members, 2004; Barker
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et al., 2011), and to variations in the arboreal pollen percentage of the Tenaghi Philip-
pon record from Northern Greece (Tzedakis et al., 2006, cf. Fig. 7). In addition to the
climatic variability on orbital time scales, a comparison of the individual interglacial and
glacial stages allows a first discrimination of the intensity of these stages at Lake Ohrid.

6.1 Interglacials

Between 640 ka and present day, the interglacial sediments of the DEEP site sequence
mainly consist of lithotype 1 and 2 sediments. Moderate to high TIC, TOC, and bSi
contents in lithotype 1 and 2 sediments imply a moderate to strong primary produc-
tivity, and thus, moderate to high temperatures during spring and summer. The overall
high temperatures during spring and summer and a longer summer season during in-
terglacial periods likely resulted in an incomplete and restricted mixing of the water
column during winter, such as it also persists today. Poor mixing hampers the decom-
position of OM and thus, promotes the preservation of TOC and restricts the bacterial
CO, release at the sediment surface. A reduction in the H,CO4 formation and a higher
pH in the bottom waters improve the calcite preservation. In addition, interglacial con-
ditions likely promoted high Ca®* and HCO, concentrations and a high pH also in the
epilimnion, as warm temperatures increased chemical weathering of the limestones
in the catchment and evaporation of lake water. The good correspondence between
high TIC during interglacials, which also exhibit overall high 5'80-lake water (6180|W)
values and indicate a low P/E ratio (Lacey et al., 2015), suggest that evaporation may
contribute to high Ca®* and HCO, concentrations in the lake water. Increased evapo-
ration could have also increased the concentration of Si ions in the epilimnion, which
could have promoted diatom productivity, as it is indicated by a correspondence be-
tween high 6180|W and high bSi concentrations. Similar fertilization processes can be
observed after the deposition of tephras, when leaching of these tephras results in
higher Si concentrations in the lake water (D’Addabbo et al., 2015), and trigger diatom
growth in the epilimnion (cf. Jovanovska et al., 2015).
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Despite intensive chemical weathering and pedogenesis in the catchment during
interglacials, low K intensities in lithotype 1 and 2 sediments, along with the stable sed-
imentation rates despite high accumulation of calcite, bSi, and OM, indicates that the
clastic matter supply to the lake basin was low. This is likely a result of low erosion rates
in the catchment. Relatively high pollen concentrations in the interglacial sediments of
the DEEP site core imply a dense vegetation cover (cf. Fig. 7 and Sadori et al., 2015),
which restricted erosion in the catchment of Lake Ohrid. In addition, the low Zr/K ratios
and the low proportion of the < 4 um grain size fraction in lithotype 1 and 2 sediments
imply that in particular K-rich minerals and the products of young soils were transported
to the lake. This hypothesis is supported by high S ratios in interglacial deposits, which
indicate a high proportion of primary magnetic minerals (i.e. (titano-)magnetite) from
the bedrock in the sediments, whereas the amount of secondary minerals (hematite +
goethite) as products of chemical weathering is low (cf. Fig. 7 and Just et al., 2015).

Lithotype 3 deposits with negligible TIC contents only occur at the onsets and termi-
nations of interglacial periods, and during MIS7 and 3 (cf. Fig. 7). The low TIC, TOC,
and bSi contents of these sediments correspond to colder periods with a restricted pri-
mary productivity. In addition, low temperatures during winter would have improved the
mixing, which could promote decomposition of OM in the surface sediments and led to
lower TOC and TIC.

Variations of interglacial conditions since 640 ka

Differing OM, bSi, and TIC contents in the interglacial sediments of the DEEP site
sequence imply different intensities of interglacials at Lake Ohrid. MIS15 and 13, with
high TIC and bSi, and low OM are characterized by strong primary productivity and
high temperatures during spring and summer, and decomposition of OM during the
mixing season although MIS15 and 13 are regarded as relatively weak interglacials
based on the modeled Greenland isotope record (Barker et al., 2011) and the global
benthic isotope stack LR04 (Lisiecki and Raymo, 2005, cf. also Fig. 7). On possible
explanation could be that the inferred high intensity of these interglacials at Lake Ohrid
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is due to restricted inflow and precipitation, and high evaporation, as it is suggested
by high 6180|W concentrations (Lacey et al., 2015). In addition, the high TIC and bSi
concentrations could also be a result of the lower TOC contents and of mutual dilution
with OM.

During the first part of MIS11, between 420 and 400 ka, highest TIC concentrations
along with moderate and high bSi and TOC concentration imply highest productivity
(high TOC) and highest temperatures (highest TIC), while biogenic silica preservation
in the sediments is restricted. This is consistent with other records, where strongest
interglacial conditions and highest temperatures since 640 ka are reported for the onset
of MIS11 (Lang and Wolff, 2011).

TIC concentration during the second phase of MIS 11, between 400 and 374 ka, and
during MIS9 and 7 are generally lower and mostly restricted to distinct peaks. This im-
plies overall less calcite precipitation, less primary productivity, and lower temperatures
at Lake Ohrid. This is consistent with the low bSi concentrations, but not with the high
TOC contents, and with relatively stronger interglacials subsequent to the MBE inferred
from the modeled North Greenland isotope record (Barker et al., 2011) and the LR04
stack (Lisiecki and Raymo, 2005). The temperatures during the second phase of MIS11
and during MIS9 and 7 were likely lower compared to the first phase of MIS11 as in-
dicated by the TIC record (cf. Fig. 7), and in addition the somewhat lower TIC and bSi
contents also correspond to lower 6180|W concentrations in the Lake Ohrid sediments,
which imply that this interglacial periods are isotopically fresher and less evaporated
than the previous interglacial periods (Lacey et al., 2015).

Overall high TIC, TOC, and bSi concentrations during MIS5 imply a strong primary
productivity in the eplimnion and high temperatures during spring and summer. 6180|W
during MIS5 is notably higher compared to the two previous interglacial periods (Lacey
et al., 2015) and indicates a low P/E ratio. In particular the onset of MIS5 is reported
to be the strongest interglacial period during the last 640 ka in marine records (Lang
and Wolff, 2011), which is also indicated in the North Greenland temperature varia-
tions (NGRIP-members, 2004; Barker et al., 2011), and in the global benthic isotope
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stack LR0O4 (Lisiecki and Raymo, 2005), and correspond to high TIC, TOC, and bSi
concentrations in the DEEP site sequence.

6.2 Glacials

Glacial periods between 640 ka and today are characterized by predominant deposition
of lithotype 3 sediments, with rare occurrence of lithotype 1 and 2 sediments in MIS14
and 8, when TIC contents are higher. Low TOC and bSi and negligible TIC contents
in lithotype 3 sediments imply low primary productivity and low temperatures during
glacial periods. Some minor fluctuations in productivity and temperature are indicated
by TOC and bSi. They are not documented in TIC, as oxidation of OM at the sedi-
ment surface due to intensified and prolonged mixing, which is indicated by TOC/TN
ratios < 4, may have led to a slight decrease of the bottom water pH and dissolution
of calcite precipitated from the epilimnion. Dissolution of calcite and the existence of
a threshold can also explain the delayed increase of TIC compared to TOC and bSi at
the transitions of MIS16, 12, 10, 8, 6, and 2 into the following interglacials.

High K, a high proportion of the fine fraction < 4 um, and stable sedimentation rates
despite low calcite, OM and bSi content in the glacial sediments, indicate high input
of clastic terrigenous matter and increased erosion in the catchment. Furthermore, the
high Zr /K ratios suggest the supply of K-depleted, intensively weathered soils from the
catchment, which is supported by a higher hematite + goethite to magnetite ratio (low
S ratio) in glacial deposits of the DEEP site sequence (cf. Fig. 7 and Just et al., 2015).
The enhanced erosion of intensively weathered clastic material can be explained by
less dense vegetation cover in the catchment, such as implied by low pollen concen-
trations in the DEEP site sequence in most of the glacial periods (cf. Fig. 7), and by the
existence of local ice caps in the surrounding mountains of Lake Ohrid, as indicated
by moraines in the catchment, which are though to have formed during the last glacial
cycle (Ribolini et al., 2011).
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Variations of glacial conditions since 640 ka

As TIC is affected by dissolution and indicate negligible calcite concentrations, informa-
tion about the severity of the individual glacials at Lake Ohrid can only be inferred from
TOC and bSi. Minima in the TOC and bSi imply that most severe glacial conditions at
Lake Ohrid occurred at the end of MIS16, and during MIS12, 10, and 6. Somewhat
higher bSi and TOC in parts of MIS14 and 8, and in MIS6, 4, and 2 imply less severe
glacial conditions. This implies that the finding of glacial moraines from MIS2 (Ribolini
et al., 2011) is probably only due to better preservation of these glacial features com-
pared to the older glacials. Interglacial-like conditions with higher primary productivity
and reduced oxidation of OM in the surface sediments prevailed at the occurrence
of lithotype 1 and 2 sedimentation, i.e. between 563 and 540 ka during MIS14, and
between 292 and 282 ka during MIS 8.

The frequent occurrence of MMDs between 280 and 241 ka and between 160 and
130 ka implies significant lake level fluctuations during MIS8 and 6. During the first
period (MIS8), distinct fluctuations in the AP pollen percentages of the Tenaghi Philip-
pon pollen record (Tzedakis et al., 2006) correspond to similar fluctuations in the pollen
concentrations in the DEEP site sequence (cf. Fig. 7, and Sadori et al., 2015) and prob-
ably indicate a shift from cold and dry to more warm and humid conditions in northern
Greece and at Lake Ohrid. During MIS6, a 60 m lower lake-level compared to present
conditions, and a subsequent lake level rise during late MIS6 or during the transition
from MIS6 to MISS5 is reported from hydro-acoustic and sediment core analyses from
the northeastern corner of Lake Ohrid (Lindhorst et al., 2010). This is in agreement
with pollen data (Sadori et al., 2015), which suggest that quite arid conditions took
place during MIS6.

The general observation that MIS16 and 12 were the most severe glacials is in
broad agreement with other records, such as the North Greenland isotope record
(Barker et al., 2011), the global benthic stack LR04 (Lisiecki and Raymo, 2005), and
the Tenaghi Philippon pollen record (Tzedakis et al., 2006). Furthermore, TOC, bSi and
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greigite in the Lake Ohrid DEEP site sequence support that MIS10 was more severe
than MIS6, as syn-sedimentary formation of greigite during the older glacial period is
likely linked to a combination of low productivity and improved mixing conditions in the
lake (Just et al., 2015). However, the idea that MIS10 is more severe than MIS6 differs
from the pollen records from the same core (Sadori et al., 2015) and from Tenaghi
Philippon (Tzedakis et al., 2006), as both archives suggest more harsh conditions dur-
ing MIS6. The pollen record from the DEEP site sequence also imply a strong aridity
during MIS6 (Sadori et al., 2015), which is consistent with a low lake level of Lake
Ohrid as implied by the frequent occurrence of MMDs between 160 and 130ka, and
the results of the sediment core and hydro-acoustic study in the northeastern corner
of the lake (Lindhorst et al., 2010). This implies that the dry conditions during MIS6 are
probably not mirrored in TOC, bSi, and greigite concentration.

7 Summary and conclusion

The investigated sediment succession between 247.8 m c.d. and the sediment surface
from the DEEP site in the central part of Lake Ohrid provides a valuable archive of
environmental and climatological change for the last 640 ka. An age model was es-
tablished using chronological tie points from nine tephra layers, and by tuning bio-
geochemical proxy data to orbital parameters and to the global benthic isotope stack
LR04. The imprint of environmental change on the lithological, sedimentological, and
(bio-)geochemistry data can be used to unravel the lake’s history including the de-
velopment of the Lake Ohrid basin, and the climatological variability on the Balkan
Peninsula.

The lithological, sedimentological, and geochemical data from the DEEP site se-
quence imply that Lake Ohrid did not experience major catastrophic events such as
extreme lake-level low stands or desiccation events during the last 640 ka. Hiatuses
are absent and the DEEP site sequence provides an undisturbed archive of environ-
mental and climatological change.
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Based on the initial core description and the calcite content, the hemipelagic sedi-
ments from the DEEP site sequence can be classified into the three lithotypes. This
classification is supported by variations in the (bio-)geochemistry data and follows cli-
mate variations on glacial/interglacial time scales. Overall, interglacial periods are char-
acterized by high primary productivity during summer, restricted mixing during winter,
and low erosion in the catchment. During glacial periods, the primary productivity is
low, intense mixing of the water column promotes the decomposition of OM, which
may have lowered the water pH and led to dissolution of calcite at the sediment sur-
face. Enhanced erosion of interglacial soils and higher clastic matter input into the lake
during glacial periods can be explained by a less dense vegetation cover in the catch-
ment and melt water run-off due to the existence of local ice caps on the surrounding
mountains.

Following a strong primary productivity during spring and summer, highest inter-
glacial temperatures can be inferred for the first part of MIS11, and for MIS5. In con-
trast, somewhat lower spring and summer temperatures are observed for MIS15, 13,
9, and 7. The data also suggested that high ion and nutrient concentrations in the lake
water promote calcite precipitation and diatom growth in the epilmnion during MIS15,
13, and 5, whereas less evaporated interglacial periods exhibit lower TIC and bSi con-
tents (MIS9 and 7).

Most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and
6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 3.
A low lake level implies dry conditions during MIS6. Interglacial-like conditions occurred
during parts of MIS14 and 8, respectively.

The Supplement related to this article is available online at
doi:10.5194/bgd-12-15111-2015-supplement.
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Table 1. The contributions of the different core sections to the DEEP site profile.

Hole Number of core runs  Percent of core runs  Number of sections Percent of sections
Co1261 2 11% 2 0.5%

5045-1B 26 14.2% 50 12.9%

5045-1C 72 39.3% 137 35.3%

5045-1D 75 41.0% 184 47.4%

5045-1F 8 4.4% 15 3.9%

> 183 388
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Table 2. Correlated tephra layer in the DEEP site sequence according to Leicher et al. (2015).
40Ar/39Ar ages from the literature were recalculated on a 2o confidence level (Leicher et al.,

2015).

Ohrid Tephra  Correlated eruption/tephra

Recalculated “°Ar/*°Ar age

(mc.d.) (ka)

2.773 Mercato 8.540+0.05"
11.507 Y-3 29.05+0.37"
16.933 Y-5 39.6 £ 0.1
43.513 X-6 109+2
49.947 P11 129+ 6
61.726 Vico B 162+ 6
181.769 Pozzolane Rosse 457 + 2
201.049 Sabatini Fall A 496+ 3
201.782 A11/A12 511 +6

* Calibrated "C age.
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Figure 1. (a) Location of lakes Ohrid and Prespa on the Balkan Peninsula. (b) Map of the
area of lakes Ohrid and Prespa and bathymetric map of Lake Ohrid. Marked in white are the
DEEP site and the short cores Lz1120 (Wagner et al., 2009), Co1202 (Vogel et al., 2010a), and
LO2004-1 (Belmecheri et al., 2009). TP: Tenaghi Pilippon pollen record.
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Figure 2. Variations of the lithological and (bio-)geochemical proxy data of the DEEP site se-
quence plotted against meter composite depth (mc.d.). The core composite profile of the DEEP
site sediment sequence consists of core sections from core Co1261 (upper 0.93mc.d.), and
of core sections from holes 5045-1B, 5045-1C, 5045-1D, and 5045-1F (cf. legend “Compos-
ite”). Marked is also the gap in the composite profile between 204.719 and 204.804 mc.d.,
where no overlapping core segments are available. The lithological information includes the
classification of the sediments into the three lithotypes (for color code see legend “Lithology”),
and information about the water content, TIC, TOC, bSi, TOC/TS, TOC/TN, K, Fe, Zr/K, and
grain size variability (< 4 um grain size fraction). High-resolution XRF data was filtered by using
a lowpass filter (5th order, cut off frequency: 0.064 Hz) in order to remove white noise from the
data. Red dots mark the results of the conventional XRF analyses. The occurrence of siderite
layer, tephra layers, and Mass Movement Deposits (MMD) are indicated on the right column
(cf. legend “Lithology”). Tephra layer and Mass Movement Deposits marked with an asterisk
are shown in Fig. 3: *1: 1F-4H-3, *2: 1D-24H-2, *3: 1C-68-2, *4: 1F-6H-2, *5: 1D-18H-3.
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Figure 3. High-resolution line-scan images showing characteristic core segments from deposits
of lithotype 1 to 3, and of Mass Movement Deposits (MMD) and tephra layers. The vertical scale
is in centimeter section depth.
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Figure 4. Siderite layer in core 1F-11H-3 (ca. 60 cm section depth) at 22.56 to 23.57 mc.d..
The yellowish brown siderite layer correlates to enhanced TIC, iron (Fe), and manganese (Mn)

intensities in the sediments.
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Figure 5. Age modeling of the DEEP site sequence down to 247.8 m c.d., with ages and occur-
rence of tephra layers (1st order tie points, red), and tuning of TOC and TOC/TN (2nd order tie
points, purple) vs. local insolation and winter season length (Laskar et al., 2004), and TIC (3rd
order tie points, green) vs. the global benthic isotope stack LR04 and marine isotope stages
(MIS, grey) 15 to 1 (Lisiecki and Raymo, 2005).
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Figure 6. Age model of the DEEP site sequence down to 247.8 mc.d. (640 ka), using the soft-
ware package Bacon 2.2 (Blaauw and Christen, 2011). Overall stable sedimentation rates at the
DEEP site (mem.strength = 4, mem.shape = 0.7, thick = 40cm) and expected sedimentation
rates (acc.shape = 1.5, acc.mean = 20) from first age estimations for the DEEP site sequence
by Wagner et al. (2014, cf. Fig. 6) were considered. For the ages and errors of the tephra layers
(red) see Table 2. The cross correlation points (green) include an error of £1000years. The
age model was re-evaluated and refined by a comparison to the age model of the downhole
logging data (purple) by Baumgarten et al. (2015).
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Figure 7. Proxy data from the DEEP site sequence plotted vs. age and compared to the
global benthic isotope stack LR04 (Lisiecki and Raymo, 2005), the local (41°N) insolation at
21 June, the arboreal pollen concentration (AP) in the Tenaghi Philippon record in northern
Greece (Tzedakis et al., 2006), the north Greenland temperature derived from the NGRIP
580 record (%o VSMOW, NGRIP-members, 2004) and the GL;_syn 6'20 synthetic isotope
record (%> VSMOW, Barker et al., 2011). The grey shaded areas indicate interglacial marine
isotope stages (MIS; Lisiecki and Raymo, 2005). For the legend of the Mass Movement De-
posits (MMD) see Fig. 2. High-resolution XRF data was filtered by using a lowpass filter (5th
order, cut off frequency: 0.064 Hz) in order to remove white noise from the data. Note the log-
arithmic scale for TOC. Pollen concentrations are from Sadori et al. (2015), lake water 5180,W
from Lacey et al. (2015), and S ratios representing hematite + goethite vs. magnetite from Just
et al. (2015).
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